
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 1

High-Performance Remote Data Persisting for
Key–Value Stores via Persistent Memory Region

Yongping Luo , Peiquan Jin , Member, IEEE, Xiaoliang Wang , Member, IEEE,
Zhaole Chu , Kuankuan Guo , Peng Xu, Jinhui Guo, and Fei Liu

Abstract—Key–value stores (KVStores), such as LevelDB and1

Redis, have been widely used in real-world production environ-2

ments. To guarantee data durability and availability, traditional3

KVStores suffer from high write latency, mainly caused by the4

long network and data-persisting time. To solve this problem,5

this article presents a novel data-persisting path for KVStores,6

allowing remote clients to persist data to the KVStore server7

with µs-level latency. The novelty of this study is threefold.8

First, we propose PMRDirect, which utilizes a persistent memory9

region (PMR) in the NVM express standard to construct a10

direct data-persisting path from the RDMA networking card11

(NIC) to the PMR region inside an SSD. Second, to showcase12

PMRDirect in KVStores, we developed a new accessing stack13

called PMRAccess, enabling remote clients to access existing14

KVStores and providing durability for each write request.15

Specifically, we present a low-latency RDMA-based messaging16

mode and a chunk-based PMR management in PMRAccess to17

reduce write latency and improve system throughput. Finally,18

we conducted extensive experiments to evaluate the performance19

of our proposals. We first compared PMRDirect with a few20

remote data-persisting paths to show its effectiveness. Then, we21

evaluated PMRAccess upon two KVStores, including LibCuckoo22

(an in-memory KVStore) and LevelDB (an in-storage KVStore).23

The results showed that PMRAccess outperformed the SSD-24

based accessing stack by up to 6.1× in write throughput and25

36× in write tail latency, and it achieved 1.7× higher write26

throughput and 0.59× lower write tail latency over the PMEM-27

based accessing stack. Further, we conducted a system-to-system28

comparison between the PMRAccess-integrated LibCuckoo and29

Redis, and the results showed our proposal achieved up to 13×30

higher throughputs and 40× lower write latency than Redis.31

Index Terms—Key–value stores (KVStores), persistent memory32

region (PMR), RDMA, write latency.33

I. INTRODUCTION34

KEY–VALUE stores (KVStores) have been extensively35

used to store and manage unstructured data generated36

from a wide range of data-intensive applications. Large37

Manuscript received 30 July 2024; accepted 30 July 2024. This work
was supported in part by the National Science Foundation of China under
Grant 62072419, and in part by ByteDance Inc. This article was presented
at the International Conference on Hardware/Software Codesign and System
Synthesis (CODES + ISSS) 2024 and appeared as part of the ESWEEK-
TCAD Special Issue. This article was recommended by Associate Editor
S. Dailey. (Corresponding authors: Peiquan Jin; Fei Liu.)

Yongping Luo, Peiquan Jin, Xiaoliang Wang, and Zhaole Chu are with
the School of Computer Science and Technology, University of Science and
Technology of China, Hefei 230027, China (e-mail: ypluo@mail.ustc.edu.cn;
jpq@ustc.edu.cn; wxl147@mail.ustc.edu.cn; czle@mail.ustc.edu.cn).

Kuankuan Guo, Peng Xu, Jinhui Guo, and Fei Liu are with the
Applied Research Center (Storage), ByteDance Inc., Beijing 100800,
China (e-mail: guokuankuan@bytedance.com; peng.xu@bytedance.com;
guojinhui.liam@bytedance.com; fei.liu@bytedance.com).

Digital Object Identifier 10.1109/TCAD.2024.3442992

Internet companies like Google, Meta, and ByteDance all 38

employ KVStores at scale. In these KVStores, new data 39

or log entries from clients to the KVStore server are per- 40

sisted into storage, and the associated write latency mainly 41

includes networking and data-persisting latency. Under tradi- 42

tional TCP/IP-based accessing stacks and SSD-based storage, 43

the write latency per request is at least hundreds of microsec- 44

onds [1]. For latency-sensitive scenarios such as financial 45

transaction services, it is necessary to reduce the write latency 46

for higher performance. 47

Recently, some research and industry practices introduced 48

RDMA networking card (NIC) to improve the networking 49

latency [2], [3]. Commodity RDMA NICs can deliver ∼3-µs 50

networking latency and up to 200 GbE networking band- 51

width. Because RDMA only supports accessing main memory, 52

RDMA-based KVStores can only store all data in memory 53

and, therefore, do not support data durability. In addition, 54

storing too much data in memory will increase the DRAM cost 55

(about $5.1 per GB). Some other researchers proposed to use 56

PMEM to reduce persistent latency as PMEM offers ∼120-ns 57

persistent latency [4]. Combined with RDMA NICs, PMEM- 58

based KVStores [5], [6] can reduce the write latency to 59

µs-level while providing data durability. However, commercial 60

PMEM products such as Optane PMEM (about $4.2 per GB) 61

are much more expensive than NVMe SSDs (about $0.2 per 62

GB) [7] and rely on specific costly CPUs. When users deploy 63

PMEM-based KVStores at scale, the total cost is usually 64

unacceptable for many companies. On the other hand, Intel has 65

announced that the original Optane production line is closed, 66

meaning that PMEM-based KVStores will become impractical 67

because of the shortage of PMEM. 68

In this article, we propose to leverage an overlooked 69

feature in the NVMe standard called persistent memory region 70

(PMR) [10] to reduce the latency of write requests from 71

remote clients. PMR is a PMR inside NVMe SSDs. Many 72

commodity NVMe SSDs, such as Starblaze SSD [11] and 73

DapuStor Haishen5 [12], have already supported the PMR 74

technology, e.g., by adding power protection for its control 75

memory buffer (CMB) at low cost. Unfortunately, PMR 76

is not typically exposed and manipulated from userspace 77

with portable interfaces. Although a few works exploited 78

CPU’s functions for accessing PMR [13], [14], no study 79

proposed RDMA-based access to PMR. Unlike existing stud- 80

ies, this article proposes to build a new data-persisting 81

path from RDMA NICs to PMR directly and develop a 82

low-latency accessing stack for KVStores to ensure data 83

durability. 84

1937-4151 c© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

https://orcid.org/0000-0002-3239-2358
https://orcid.org/0000-0002-3871-0548
https://orcid.org/0000-0001-9761-7717
https://orcid.org/0009-0006-4641-9044
https://orcid.org/0009-0007-4202-8537

2 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS

On the other hand, it is not trivial to establish a fast data-85

persisting path from RDMA to PMR. The main challenges86

are: 1) no existing mechanism supports accessing PMR from87

local and remote CPUs simultaneously; 2) it lacks a high-88

performance PMR-based accessing stack for KVStores, which89

can ensure low latency, high throughput, and data durability90

when serving multiple clients simultaneously; and 3) PMR91

is capacity-constrained in commodity NVMe SSDs, and an92

efficient management scheme for PMR is needed.93

To address the above challenges, we modify the Linux94

NVMe driver to expose PMR to the kernel space and95

userspace. Users can access PMR from remote CPUs through96

RDMA Write verbs and local CPUs through memory mapped97

I/O (MMIO). To the best of our knowledge, this is the first98

effort to build a direct high-performance data-persisting path99

from RDMA NICs to the PMR region inside NVMe SSDs.100

Briefly, we make the following contributions in this article.101

1) We develop a new high-performance data-persisting path102

called PMRDirect for remote clients to directly write103

data from an RDMA NIC to the PMR region inside an104

NVMe SSD. We demonstrate that such a data-persisting105

path can offer much lower latency than existing data106

paths (Section III).107

2) We present a new accessing stack called PMRAccess108

for client/server scenarios that utilizes PMRDirect.109

PMRAccess provides low latency and data durability for110

write requests from remote clients to the KVStore server.111

Specifically, we implemented an RDMA-based messag-112

ing mode and a new chunk-based PMR management113

scheme in PMRAccess (Section IV).114

3) We conduct extensive experiments with real RDMA115

NICs and a PMR-enabled NVMe SSD to evalu-116

ate the performance of PMRDirect and PMRAccess.117

PMRAccess offers 0.59×–36× lower latency and118

1.7×–6.8× higher write throughput than alterna-119

tive solutions, including SSD-based and PMEM-based120

accessing stacks. We further conduct a system-to-121

system comparison between the PMRAccess-integrated122

KVStore and Redis, and the results also suggest the123

efficiency of our proposal (Section V).124

II. BACKGROUND AND MOTIVATION125

A. KVStores and Its Write Latency126

Traditional TCP/IP-based KVStores can offer 20–60-µs127

access latency between a client and a KVStore server [15]. The128

high networking latency of TCP/IP-based KVStore accessing129

stacks is owing to three aspects: 1) TCP/IP-based networking130

stacks rely on the CPU to perform networking computation;131

2) KVStores may require several networking round trips to132

finish one request; and 3) the capability of traditional Ethernet133

cards is limited.134

The latency of persisting a write to storage depends mainly135

on devices; the latency value is several milliseconds for HDDs,136

∼100 µs for SATA SSDs, and 10–60 µs for NVMe SSDs.137

Except for device type, the persistent latency differs slightly138

according to how we achieve durability. Users can invoke139

fsync or fdatasync system calls to flush data to storage140

after the write system call that moves data to the page cache.141

TABLE I
DIFFERENT ACCESSING TECHNOLOGIES FOR KVSTORES REGARDING

DURABILITY, TAIL LATENCY (P90), AND STORAGE COST. THE DATA

IS FROM THE EXPERIMENTAL RESULTS IN SECTION V-C
AND PREVIOUS LITERATURE [7]

Users can also write data to storage directly by DIRECT_IO 142

in POSIX interfaces. DIRECT_IO incurs less data copy which 143

makes it faster than fsync, at the cost of page alignment 144

constraint. fdatasync reduces the persistent cost of meta- 145

data in the file system and offers lower latency than fsync. 146

B. RDMA NIC and PMEM-Based KVStores 147

To reduce the high write latency in KVStores, researchers 148

propose many new hardware-oriented techniques that offer 149

tremendous opportunities for low latency and higher through- 150

put. Table I summarizes these techniques in terms of 151

durability, latency (P90), and storage cost. 152

RDMA-Based KVStores: One line of research is RDMA- 153

based networking latency reduction. They leverage the RDMA 154

technique, namely, accessing remote memory directly, to 155

enhance in-memory KVStore accessing. Distributed clients 156

can send requests to the server through RDMA verbs (such as 157

two-sided Send/Recv verbs and one-sided Read/Write/Atomic 158

verbs). Owing to the high networking bandwidth (10–200 159

GbE) and ultralow accessing latency (−3 µs) of RDMA 160

NICs, they can reduce networking latency for two orders 161

of magnitude and improve CPU consumption for 20× [9]. 162

However, RDMA-based in-memory KVStores do not preserve 163

data durability. Since all data are stored in main memory 164

and accessed through RDMA, they offer high performance 165

at the risk of data loss. Nowadays, many real-world storage 166

scenarios, such as financial and healthcare applications, require 167

no data loss after a system crash or power loss event. Besides, 168

storing all data in memory exaggerates the total cost of 169

ownership (TCO), which is crucial for commercial companies. 170

PMEM-Based KVStores: Another line of research is 171

PMEM-based persistent latency reduction. They leverage 172

PMEM as storage-class memory to employ KVStores. 173

Commodity Optane PMEM modules sit on the memory bus. 174

Users can issue memory load and store toward PMEM, similar 175

to DRAM. When users explicitly issue CLFLUSH instructions 176

on a dirty cache line associated with the PMEM address, 177

it can force data into PMEM persistently. The persistent 178

latency of PMEM is roughly 120 ns, which brings KVStore 179

memory-level performance while preserving data durability. 180

Besides, some distributed systems also combine PMEM and 181

RDMA, which can reduce networking latency and persistent 182

latency. However, it is uneconomical to employ PMEM-based 183

KVStores at scale. Building a system equipped with Optane 184

DC PMEM needs a vendor-specific CPU and motherboard, 185

which costs $547 for one 128-GB Optane DIMM and $2517 186

for one Intel Xeon Gold 6242R CPU. As the first pioneer of 187

LUO et al.: HIGH-PERFORMANCE REMOTE DATA PERSISTING FOR KVStores VIA PMR 3

PMEM, the Intel Optane production line will be closed soon188

due to cost-benefit considerations.189

C. NVMe PMR and Its Opportunity190

The NVM express (NVMe) 1.4 introduces the PMR concept191

in 2019 [10]. PMR represents a piece of nonvolatile memory192

located on the NVMe SSD devices. Users can map PMR193

into virtual address space, and then the CPU can issue194

memory read and write requests to PMR through MMIO.195

So far, many commodity NVMe SSDs, such as Starblaze196

SSD [11] and DapuStor SSD [12], have already supported197

the PMR technology, which has received much attention from198

the academia and industry [13], [14], [16], [17]. We can also199

implement PMR by adding power protection to the DRAM200

buffer inside SSDs. Introducing a 128-MB PMR to an 8-TB201

NVMe SSD costs only 0.1% of the SSD price, according to202

an internal estimation at ByteDance. As CMB and PMR are203

functionally equivalent and we can implement PMR by CMB,204

we refer to them only by PMR, as with previous works on205

PMR [13], [14].206

In this article, we propose to leverage PMR to realize207

a low latency, low cost, and portable data-persisting path208

named PMRDirect. In PMRDirect, clients write data directly209

from RDMA NIC to the server-side PMR. As RDMA offers210

low networking latency and PMR guarantees data durability,211

PMRDirect can fulfill our goal.212

III. PMRDIRECT: NEW REMOTE PERSISTING PATH213

A. Overview of PMRDirect214

Enabling the direct path from RDMA NIC to PMR can215

reduce the networking latency and persistent latency of dis-216

tributed write accesses, but it is a nontrivial task. Though217

SPDK [18] provides a userspace driver to access PMR from218

local CPUs and RDMA provides verbs to access remote219

memory directly, users cannot issue RDMA verbs to the PMR220

region due to lacking driver support so far. Specifically, the221

NVMe driver needs to expose the PMR region to the kernel222

space and provide support for pinning the PMR address and223

preparing DMA mappings upon DMA operations; the RDMA224

NIC driver should be able to identify the bus address of PMR.225

In a word, Remote DMA operations toward PMR require226

driver support from both the initiator and target sides.227

We address the above challenges with the following con-228

tributions. First, we resort to a long-standing framework in229

Linux kernel called dma-buf [19]. Dma-buf enables sharing230

buffers for hardware DMA access across multiple devices and231

synchronizing asynchronous hardware accesses. Second, we232

add a patch to the Linux NVMe driver (438 LoC) to expose233

PMR as dma-buf objects. Afterward, we leverage an interface234

in the RDMA library (ibv_reg_dmabuf_mr) to register235

dma-buf objects as remote memory for clients (no LoC to the236

RDMA NIC driver). Finally, remote clients can post RDMA237

verbs to registered PMR buffers like normal RDMA. Besides,238

users can map a dma-buf object into virtual address space239

through mmap, allowing userspace access to PMR.240

The NVMe driver acts as an exporter of dma-buf object241

related to PMR. To operate on a dma-buf object, the242

NVMe driver implements three pairs of kernel functions: 243

{pmr_attach, pmr_detach}, {pmr_map_dmabuf, 244

pmr_unmap_dmabuf}, and {pmr_dmabuf_mmap, 245

pmr_dmabuf_release}. The pmr_attach function is 246

called when other devices (such as RDMA NICs) want to attach 247

the dma-buf object. It exposes PMR memory as a DMA memory 248

pool for later DMA operations. The pmr_map_dmabuf 249

function is called upon DMA operations to pin the buffer for 250

RDMA NIC accessing and prepares the DMA mapping. The 251

pmr_dmabuf_mmap is called when users map this dma-buf 252

object to virtual address space, so it executes corresponding 253

virtual memory mappings. The other three functions are reverse 254

operations, respectively. By adding a new control operation 255

into struct nvme_dev_ioctl, users can allocate a specific size of 256

PMR as a dma-buf object through ioctl system call. Users 257

pass two arguments to ioctl, i.e., a file descriptor (related 258

to the NVMe SSD device) and an allocation size. The control 259

operation allocates the new dma-buf object and returns a file 260

descriptor (related to the dma-buf object) to the users. The 261

latter can be used to register the PMR region for RDMA or 262

mmap it to virtual address space. 263

B. Comparison With Other Remote Persisting Paths 264

Fig. 1 shows other remote data-persisting paths. Fig. 1(a) 265

shows a typical data-persisting path in classical KVStores, 266

which is adopted by NVMe-oF, Redis, and Memcached. A 267

remote client sends data writes to server-side main memory 268

through networking interfaces, such as TCP/IP or RDMA- 269

based networking. The server is responsible for persisting data 270

from memory to SSD. If the SSD supports PMR, an alternative 271

destination of the persisting can be PMR [13], which results 272

in Fig. 1(b). We refer to the remote data path in Fig. 1(a) 273

and (b) as SSDSync and PMRSync. After introducing PMEM 274

as the storage device, we can exploit a data-persisting path 275

from RDMA NIC to PMEM as in Fig. 1(c), which we refer to 276

as PMEMDirect [5], [6], [20]. With DDIO disable,1 RDMA 277

Write verbs upon PMEM address can guarantee durability. 278

In this article, we present PMRDirect as a new remote data- 279

persisting path that offers µs-level latency, as in Fig. 1(d). 280

Advantage of PMRDirect: The advantage of PMRDirect 281

over other remote data-persisting paths lies in three aspects. 282

1) Compared to SSDSync, it offers µs-level low latency 283

and provides data durability. 284

2) Compared to PMEMSync, it reduces the high cost 285

of building a storage cluster that supports PMEM. 286

Evaluation in Section 5 shows that the latency of 287

PMRDirect is lower than PMEMSync under larger than 288

256-byte writes. 289

3) PMRDirect exploits peer-to-peer DMA between RDMA 290

NIC and PMR-enabled NVMe SSD, which liber- 291

ates memory bandwidth to applications. If a node is 292

equipped with multiple NVMe SSDs and RDMA ports, 293

PMRDirect is also advantageous for extending multiple 294

highly isolated direct data paths. 295

1Intel DDIO is a feature that makes the processor cache the primary
destination and source of I/O data rather than access main memory.

4 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS

Fig. 1. Illustration of PMRDirect and other remote persisting paths. (a) SSDSync. (b) PMRSync. (c) PMEMDirect. (d) PMRDirect.

Fig. 2. Structure of PMRAccess. PMRAccess provides basic key–value
operations for KVStores under client/server architecture.

Potential of PMRDirect: We can utilize PMRDirect to296

reduce the write latency of distributed systems that serve297

latency-sensitive applications such as financial transactions.298

Taking the chunk-based storage system at ByteDance as an299

example, when a client writes a piece of data to a single-300

node ChunkServer, the ChunkServer needs to persist data into301

storage before acknowledging it to the client. PMRDirect is302

promising for reducing this latency to µs-level, improving303

upstream service quality. A second use case of PMRDirect can304

be optimizing the well-known Raft consensus protocol [21].305

Some KVStores require the Raft consensus protocol to ensure306

consistency. A log entry in the Raft protocol is deemed307

committed only if most nodes have persisted it in their local308

log file. Therefore, the latency of remote data-persisting paths309

reflects the write latency of committing a new state in a310

distributed system. PMRDirect is promising to reduce the write311

latency of Raft-based distributed systems.312

IV. PMRACCESS: PMRDIRECT-BASED ACCESSING313

STACK FOR KVSTORES314

To showcase the capability of PMRDirect, we propose to315

use PMRDirect to improve the accessing latency of existing316

KVStores, which results in our PMRAccess. Consider a317

KVStore server that serves a certain number of clients on318

different nodes. Clients send PUT/UPDATE/GET/DELETE319

requests to the server regarding any individual key–value pair,320

and the server then processes requests and sends results back321

to clients. If clients require write requests to be durable upon322

acknowledgment, the long write latency is always unavoidable.323

We present a PMRDirect-enabled KVStore accessing stack324

called PMRAccess to address this problem. The overview325

structure of PMRAccess is shown in Fig. 2. PMRAccess326

is KVStore-independent, which means it can provide data 327

durability and low access latency for both in-memory KVStore 328

and persistent KVStore without durability requirements from 329

the back-end KVStore. 330

A. Challenges of PMRAccess 331

PMRAccess leverages the PMRDirect remote data- 332

persisting path to transport data directly from client-side 333

RDMA NIC to server-side PMR, avoiding the long persistent 334

latency exposed by NVMe SSD. However, several challenges 335

should be overcome before PMRAccess becomes a full- 336

fledged KVStore accessing stack. 337

Challenge 1: How to reduce latency involved with KVStore 338

requests with more efficient one-sided RDMA Write verbs? 339

Supporting requests in accessing persistent KVStore requires 340

two-sided primitives. A complete KVStore request can be 341

divided into three phases: 1) the client posts a request to the 342

server; 2) the server accesses KVStore (might generate I/O 343

to retrieve or persist data); and 3) the server acknowledges 344

the client. The three phases are strictly ordered and require 345

the involvement of both sides. Thus, it is straightforward 346

to implement two-sided RDMA verbs. However, two-sided 347

RDMA verbs exhibit higher latency than one-sided RDMA 348

verbs. In addition, using two-sided RDMA verbs requires two 349

round trips for each request from the client’s perspective, 350

one for sending the request and the other for receiving its 351

acknowledgment. Therefore, the first challenge is how to use 352

one-sided RDMA Write verbs to reduce write request latency. 353

Challenge 2: How to manage memory effectively for PMR 354

with limited capacity under multiple clients? Currently, the 355

PMR capacity is constrained. Therefore, the PMR space left 356

for storing persistent data is limited to MB-level. If multiple 357

clients write data to PMR simultaneously, one should be 358

concerned about write stall due to high write contention of 359

RDMA writes and PMR capacity shortage. Thus, PMRAccess 360

should overcome this challenge. First, it has to persist data in 361

PMR to SSD asynchronously and reclaim them for later usage. 362

Second, it has to reduce the write contention of multiple clients 363

while maximizing PMR utilization. Finally, it can recover 364

from system crashes or power loss events and guarantee the 365

durability of data writes. 366

B. RDMA Write-Based Messaging Mode 367

Previous works have proposed customized messaging 368

modes for client/server scenarios, such as FaSST [22] and 369

CatFish [23]. FaSST relies on the RDMA Send-based mes- 370

saging mode, which incurs two network round trips per 371

LUO et al.: HIGH-PERFORMANCE REMOTE DATA PERSISTING FOR KVStores VIA PMR 5

Fig. 3. Send-based messaging versus write-based messaging in RDMA.

request. CatFish proposes using one-sided RDMA verbs, but372

it maintains a central messaging queue to serve all clients and373

processes each request asynchronously, which increases the374

request latency. In contrast, we propose using RDMA Write375

verbs to reduce the network round trips to one per request,376

and the server processes request synchronously.377

In the RDMA Send-based messaging mode [Fig. 3(a)], the378

client posts an RDMA Send verb to the server-side NIC, and379

then the client has to block and wait for the verb to complete.380

After the Send verb, the client posts an RDMA Recv verb381

and waits for completion. The Send and Recv verbs on each382

side cannot overlap as they will block the CPU and poll for383

a completion event. In addition, the receiver RDMA NIC has384

to ensure that a Recv verb has been posted before a Send verb385

arrives. Therefore, one request takes two network round trips.386

In our RDMA Write-based messaging mode [Fig. 3(b)], the387

client sends two RDMA writes to the server-side memory388

addresses: one for the data request and the other to set a389

server-side flag that marks a data request that reaches the390

server. The two writes are combined in one RDMA Write391

verb and signal once to reduce network latency. Afterward,392

the client starts waiting for the server to set its local flag (as393

shown in SendReq in Algorithm 2). When the server finds394

its local flag is set, it parses and executes the new request.395

The server returns the result to the client and sets a client-side396

flag with a single RDMA Write verb. Our RDMA Write-based397

messaging mode overlaps the latency of waiting for a Write398

verb to complete with the server-side acknowledgment to come399

back. Therefore, it can reduce both the network round trip per400

request and round trip latency.401

C. PMR Management402

In PMRAccess, PMR is used to buffer writes for multiple403

clients. As the capacity of PMR is limited (e.g., only 8404

MB in DapuStor Haishen5 [12]), we need to design a PMR405

management mechanism to reduce write contentions between406

multiple clients and batch-write data to the SSD efficiently,407

ensuring high PMR utilization efficiency.408

RDMA-based locks are much slower than memory atomic409

operations [24]. Thus, we need to use a private PMR region410

for each client to reduce coordination costs. When the private411

PMR region becomes full, we must flush all its data to412

Fig. 4. PMR management scheme in PMRAccess. (a) Chunk-based PMR
management. (b) Structure of a writing chunk.

SSD and reclaim it, blocking the client until it vacuums 413

its PMR region and incurring high tail latency. Besides, a 414

large private PMR region will limit the maximum number of 415

connected clients, and a small private PMR region will limit 416

the throughput of clients. To avoid this problem, we propose a 417

chunk-based PMR management for multiple clients, as shown 418

in Fig. 4(a). We divide the PMR space into identical small 419

chunks. Initially, all chunks are empty chunks. When a new 420

client connects to the server, it allocates an empty chunk (➊) 421

as a writing chunk. Then, it sends data write requests to this 422

chunk and preserves durability by it. The client maintains the 423

usage of a writing chunk until it contains no more space. 424

Then, the client sends a CHUNKALLOC request to the server 425

to transfer ownership of its writing chunk to the server. The 426

server adds the old chunk into a queue and allocates a new 427

empty one for the client (➊). We store states of all chunks in 428

a concurrent bitmap [Meta in Fig. 4(a)], where 0 represents 429

an empty chunk, and 1 represents a writing chunk or a flush 430

chunk. 431

The server processes flushing chunks with a background 432

thread. A flushing chunk is first passed to the KVStore for 433

potential usage (some KVStores support writing in a batch, 434

and they can utilize the flushing chunk ➋). Afterward, it is 435

added to an asynchronous I/O (AIO) Queue to persist to an 436

in-SSD log file (➌). When a flushing chunk reaches SSD, the 437

server modifies its state back to an empty chunk (➍), and then 438

it can be allocated again. As we persist chunk to SSD in a 439

background manner, the long persisting latency is hidden from 440

clients. When all empty chunks are used up, clients with no 441

available PMR chunks will wait for the server to release new 442

empty chunks (line 17 in Algorithm 2). In such situations, 443

the throughput of PMRAccess will be limited by the SSD 444

write bandwidth. This behavior is common in many existing 445

systems, such as RocksDB, which also uses rate-limit and 446

write-stall policies to postpone the client’s requests. 447

6 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS

Algorithm 1: Operations for Client

1 Function GET(key):
2 req.op = GET; req.key = key; req.val = NULL;
3 res = SendReq(req, pmrchunk + off);
4 return res;
5 Function PUT(key, val):
6 req.op = PUT; req.key = key; req.val = val;
7 res = SendReq(req, pmrchunk + off);
8 off = off + 8 + key.size + val.size;
9 return;

10 Function CHUNKALLOC():
11 req.op = CHUNKALLOC;
12 req.key = pmrchunk; req.val = NULL;
13 pmrchunk = SendReq(req, pmrchunk + off);
14 off = 0;
15 return pmrchunk;
16 Function SendReq(req, pmr_addr):
17 rdma_post_write(req, req.len, pmr_addr);
18 rdma_post_write_signaled(1, 1, &server_flag);

// wait for write completion
19 rdma_poll_complete();
20 while client_flag == 0 do
21 nop; // wait for server
22 end
23 client_flag = 0;
24 return parse(client_buf);

We depict the structure of a writing chunk in Fig. 4(b).448

The write requests in a writing chunk are represented as an449

entry. Each entry comprises a 1-byte operation field, a 3-byte450

key-length field, a 4-byte value-length field, and a variable-451

length byte sequence containing the key–value pair. The last452

valid write request in a writing chunk has a NUL terminator453

character followed, which separates the entry area and empty454

area for the server upon recovery. For all write operations, the455

client will append the request with a terminator right at the456

position to override the last terminator. For nonwrite requests,457

the client will not proceed to the entry area to reuse it later.458

D. Operations459

PMRAccess provides basic database access operations460

(PUT/GET/UPDATE/DELETE) for clients to access server-461

side KVStore (Algorithm 1). When a client connects to462

the server, the server spawns a new thread to serve this463

client exclusively. This thread runs the ProcessRequest464

function as listed in Algorithm 2. ProcessRequest is465

a dead loop that processes new requests iteratively. Basic466

KVStore operations invoke interfaces provided by the back-467

end KVStore. Clients send operations to the server by RDMA468

Write-based messaging mode in Section IV-B. For write469

requests, PMRAccess requires no durability assurance from470

the KVStore itself, as write requests are either stored in471

PMR chunks or flushed to the in-SSD log file. Therefore, the472

KVStore is unnecessary to persist log entries or data writes to473

SSD immediately.474

PMRAccess also provides a CHUNKALLOC operation to475

allocate a free chunk from the PMR address space. Before a476

client can send basic operations to the server, it should check477

whether the client owns a writing chunk with enough free478

space. If not, it sends a CHUNKALLOC request to the server.479

Algorithm 2: Operations for Server (Serve One Client)

1 Function ProcessRequest(db):
2 while True do
3 while server_flag == 0 do
4 nop; // wait for client
5 end
6 server_flag = 0;
7 req = parse(pmrchunk);
8 switch req.op do
9 case GET do

10 res = db.get(req.key);
11 end
12 case PUT do
13 res = db.put(req.key, req.val);
14 end
15 case CHUNKALLOC do
16 add req.key to flushing AIO queue;
17 pmrchunk = find an empty chunk;
18 res = pmrchunk;
19 end
20 end
21 rdma_post_write(res, res.len, &client_buf);
22 rdma_post_write_signaled(1, 1, &client_flag);

// wait for write completion
23 rdma_poll_complete();
24 end

The old writing chunk address is embedded in the request. 480

The corresponding serving thread on the server processes this 481

request according to Algorithm 2. It works as follows: 1) pass 482

the old chunk to the back-end KVStore for potential usage; 483

2) add the old chunk to the AIO queue; and 3) allocate a new 484

chunk by changing its state in the Meta array from 0 to 1. 485

E. Recovery 486

Because only server-side threads can modify the Meta 487

bitmap, and these writes are all atomic, writes to PMR are 488

failure-atomic. In addition, we leverage dma-buf framework 489

to handle the coherent issue of CPU accessing PMR with 490

RDMA NIC, which guarantees that local writes reach PMR 491

space before RDMA NIC accesses it. Writing chunks are only 492

modified by RDMA Write verbs, where data goes from RDMA 493

NIC to PMR directly. The semantic of RDMA Write verb 494

guarantees that when the terminator character reaches PMR, 495

the data requests are valid. 496

When encountering power loss or system crash, we need 497

to recover the PMR area. It proceeds as follows: 1) scan the 498

Meta bitmap to gather all writing chunks and flushing chunks; 499

2) write each flushing chunk to the in-SSD log file and clear 500

their Meta state; 3) scan each writing chunk to locate the first 501

terminator, write all valid data requests to the log file, and clear 502

their bits; and 4) replay the log to the KVStore. To reduce the 503

log file size, we checkpoint the KVStore and then reclaim the 504

in-SSD log file. Note that the log file in PMRAccess differs 505

from the internal WAL of the KVStore. If we use PMRAccess 506

on a persistent KVStore, it may contain such a WAL file 507

that persists logs periodically, but when serving a purely in- 508

memory KVStore, the log file in PMRAccess is all we have 509

for durability. 510

LUO et al.: HIGH-PERFORMANCE REMOTE DATA PERSISTING FOR KVStores VIA PMR 7

V. PERFORMANCE EVALUATION511

In this section, we conduct experiments to answer the512

following questions about our design.513

1) How does PMRDirect perform when compared with514

other remote data-persisting paths? Does PMRDirect515

compare against PMEMDirect? The results are reported516

in Section V-B.517

2) Can PMRAccess reduce the write latency of remote518

writes on KVStores? Can PMRAccess work efficiently519

on both in-memory KVStores and in-storage KVStores520

while providing data durability? Can PMRAccess help521

reduce the tail latency? The results are reported in522

Section V-C.523

3) Can PMRAccess still work well in a system-to-system524

comparison? For example, can a PMRAccess-enabled525

KVStore outperform the well-known Redis? The results526

are shown in Section V-D.527

4) Does the RDMA Write-based messaging mode out-528

perform the classical RDMA Send-based messaging in529

terms of average latency and write bandwidth? The530

results are shown in Section V-E.531

5) Can PMRAccess fully exploit the PMR capacity, and532

how does it impact the overall bandwidth? The results533

are shown in Section V-F.534

A. Settings535

We conduct all experiments on two physical machines: one536

node serves as the storage server node, and the other is the537

client node. Each node has two Intel Xeon Gold 6240 CPUs.538

Each CPU has 18 cores and a shared 24-MB L3 Cache. There539

are 32-kB L1I cache, a 32-kB L1D cache, and a 1-MB L2540

cache per core. For networking, each node is equipped with a541

single-port 100 GbE Mellanox MCX515A-CCAT RDMA NIC542

to connect the server and client node back to back. The server543

node also has four 128-GB Optane PMEM DIMMs on each544

socket and one 3.20-TB DapuStor NVMe SSD [12] with an545

8-MB on-chip PMR region.546

Each node is running Linux with a 5.14.0 kernel. The547

Optane PMEM modules are configured into the app-direct548

mode and exposed as particular Device DAX (devdax)549

character devices. The DapuStor NVMe SSD is exposed to550

the users as an NVMe block device, and we install the ext4551

filesystem on it. For accessing PMEM from remote RDMA552

NICs, we map the devdax devices into virtual memory and553

register it for RDMA. For accessing PMR, we obtain the file554

descriptor through ioctl to the NVMe device. We map the555

file descriptor into virtual memory using mmap to support556

local accesses. For RDMA writes to PMR, we register PMR557

memory by the ibv_reg_dmabuf_mr interface and then558

issue RDMA verbs.559

B. Performance of PMRDirect560

This experiment aims to demonstrate the performance upper561

bound of our PMRDirect data path. We compare four remote562

data-persisting paths as elaborated in Section III-B. As we563

need not manipulate data, we reuse target address space as we564

care more about the latency and bandwidth metrics.565

Fig. 5(a) shows the client-side request latency. Under small 566

requests, PMRDirect and PMEMDirect exhibit similar write 567

latency, which is 1.63 µs per 64-byte request. PMRSync shows 568

56% more write latency than PMRDirect because it needs to 569

persist data from host memory to PMR, twice as much as 570

PCIe transactions as in PMRDirect. SSDSync exhibits 16-µs 571

write latency to persist data into SSD, 10× that of PMRDirect. 572

As the request size increases, PMRDirect achieves the lowest 573

write latency. As the write request size increases 64 times, the 574

write latency only increases for 94%, which is 3.1 µs at a 575

4-kB write request. PMRSync shows roughly 1 µs more write 576

latency than PMRDirect. The latency of PMEMDirect starts 577

rising after 256 B. As the write requests increase to 4 kB, it 578

needs 13 µs to directly finish a write request from RDMA 579

to PMEM. The write latency does not increase because write 580

requests to NVMe SSD are amplified to 4 kB due to filesystem 581

block size. 582

We measure the maximum write bandwidth of 583

four competitors under 64 B, 256 B, 1 kB, and 4 584

kB report results in Fig. 5(b). In practice, it needs 585

32/16/12/32 clients to saturate the max write bandwidth for 586

PMRDirect/PMEMDirect/SSDSync/PMRSync, respectively. 587

PMRDirect achieves the highest write bandwidth under 588

different request sizes. As the request size increases to 256 B, 589

the maximum write bandwidth increases by 2.7×. The value 590

reaches 2.6 GB for requests larger than 1 kB. Following 591

PMRDirect, PMRSync exhibits a 33% lower write bandwidth 592

than PMRDirect as a penalty for copying data up and down 593

in terms of PCIe transactions. The max write bandwidth 594

in PMEMDirect is only half of PMRDirect because of the 595

low write bandwidth of commodity Optane PMEM. While 596

for SSDSync, its max write bandwidth increases linearly 597

as the request size. It exhibits 30-MB write bandwidth at 598

64-B write requests. This bandwidth reaches 1.2 GB at 4 kB 599

requests, which is almost the peak write bandwidth of our 600

NVMe SSD. 601

PMRDirect is a direct data path from RDMA NIC to 602

PMR and will not occupy the memory bus. Therefore, it 603

cannot be affected by other processes that occupy the memory 604

bus bandwidth. To verify that, we measure the max write 605

bandwidth of four data paths in the shadow of a bandwidth- 606

stealing process that occupies server-side memory bandwidth 607

(16 threads do random writes concurrently). We report the 608

bandwidth loss compared with Fig. 5(b) in (c). It reveals 609

that remote data-persisting paths, except PMRDirect, are 610

more or less affected by the bandwidth-stealing process. The 611

max write bandwidth of PMEMDirect/SSDSync/PMRSync 612

drops by 23%/3%/13%, respectively. Fig. 5(c) shows that 613

PMRDirect occupies no memory bandwidth and can scale the 614

overall bandwidth linearly with more PMR-enabled NVMe 615

SSDs. 616

C. Performance of PMRAccess 617

PMRAccess is a KVStore accessing stack that provides 618

low latency and data durability for accessing any existing 619

KVStores from distributed clients. We use PMRAccess to 620

provide primary accesses for two types of KVStores, including 621

8 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS

(a) (b) (c)

Fig. 5. Performance comparison between PMRDirect and three remote data-persisting paths: SSDSync, PMRSync, and PMEMDirect. (a) Average latency.
(b) Max bandwidth. (c) Bandwidth loss.

LibCuckoo and LevelDB. We aim to demonstrate that our622

PMRDirect data path is effective in optimizing KVStores.623

Competitors: We compare the following KVStore accessing624

stacks, including SyncAccess, GroupAccess, PMEMAccess,625

and PMRAccess, all providing data durability for each write626

request. Though they differ in how to guarantee durability627

when sending write requests, these accessing stacks adopt628

identical messaging modes and provide identical functionali-629

ties for accessing KVStores. In a word, the comparison is fair630

in terms of network latency.631

1) PMRAccess: Using RDMA Write-based messaging632

mode and PMRDirect data path, clients send write633

requests to the server while preserving WAL durability634

by PMR. WAL records in PMR are persisted to SSD at635

the unit of a Chunk.636

2) SyncAccess: Using RDMA Write-based messaging637

mode and SSDSync data path, clients send write requests638

to the server while preserving WAL durability by persist-639

ing data to SSD before acknowledging clients (adopted640

by Redis [8]).641

3) GroupAccess: WAL records from different clients are642

grouped and persist to SSD in a batch as in LevelDB.643

GroupAccess can reduce write amplification under644

multiple-client scenarios (adopted by LevelDB [25]).645

4) PMEMAccess: Using RDMA Write-based messaging646

mode and PMEMDirect data path, clients send write647

requests to the server while preserving WAL durability648

by PMEM (adopted by FlatStore [5]).649

Back-End KVStores: We compare these four accessing650

stacks under two types of KVStores: 1) LibCuckoo and651

2) LevelDB. It includes both in-memory KVStore and in-652

storage KVStore to make the comparison diverse. LibCuckoo2
653

is a high-performance, concurrent hash table. LibCuckoo654

stores key–value pairs in memory and guarantees no durability.655

LevelDB3 is a fast key–value storage library written at Google656

that provides an ordered mapping from string keys to string657

values. It stores primary data in storage devices and guarantees658

durability through log files. LevelDB can control the durability659

of each write operation by setting its write option to persist660

a WAL record. However, the performance is poor when661

providing data durability for each write.662

Workloads: Because PMRAccess focuses on write oper-663

ations, we choose the Load Only, YCSB-A, and YCSB-B664

2LibCuckoo: https://github.com/efficient/libcuckoo
3LevelDB: https://github.com/google/leveldb

(a) (b) (c)

Fig. 6. Throughputs of different accessing stacks on LibCuckoo. (a) Load
only. (b) YCSB-A. (c) YCSB-B.

query workload, which stands for write-intensive, read–write 665

balanced, and read-intensive workloads. Key–value pairs are 666

64-byte, composed of 16-byte string key and 48-byte value. 667

For larger value sizes, readers can refer to Section V-D for 668

detailed comparison under various value sizes. We populate 669

each KVStore with 128M key–value pairs. Then, we measure 670

the overall throughput and latency for each workload. 671

1) Load Only: This workload consists of 100% PUT 672

operations with randomized new keys. 673

2) YCSB-A: This workload consists of 50% GET operations 674

and 50% UPDATE operations. All keys follow the 675

Zipfian distribution. The skewness value of Zipfian 676

is 0.9. 677

3) YCSB-B: This workload consists of 95% GET opera- 678

tions and 5% UPDATE operations. Similarly, all keys 679

followed the Zipfian distribution. 680

Performance on LibCuckoo: This experiment evaluates 681

PMRAccess in LibCuckoo, a purely in-memory Data Store 682

that supports no durability. All accesses to KVStore come to 683

memory, but WAL records for each write request are persisted 684

by each accessing stacks with their strategies. 685

The throughputs of different accessing stacks on LibCuckoo 686

are shown in Fig. 6. We report the Load Only result in 687

Fig. 6(a). Under a single client, PMEMAccess outperforms 688

PMRAccess by 34%. As we increase the client number, 689

PMRAccess outperforms PMEMAccess and reaches 1.059 690

Mops/s, 2.3×/14×/27× that of PMEMAccess, SyncAccess, 691

and GroupAccess. Under the YCSB-A workload, the through- 692

puts are higher than the load-only workload. Under 32 clients, 693

PMRAccess is 3.2×/47×/23× better than PMEMAccess, 694

SyncAccess, and GroupAccess. Under YCSB-B workloads, 695

the gap between different competitors starts to narrow down. 696

LUO et al.: HIGH-PERFORMANCE REMOTE DATA PERSISTING FOR KVStores VIA PMR 9

(a) (b) (c)

Fig. 7. Tail latency of different accessing stacks on LibCuckoo. (a) One
client. (b) Eight clients. (c) Sixteen clients.

(a) (b) (c)

Fig. 8. Throughput of different accessing stacks on LevelDB. (a) Load only.
(b) YCSB-A. (c) YCSB-B.

Both PMEMAccess and SyncAccess suffer from multiple-697

client contention on hardware resources. Under 32 clients,698

PMRAccess achieves 5.9×/6.5×/3.8× total throughput of699

PMEMAccess, SyncAccess, and GroupAccess, respectively.700

The tail latency of PUT operations with different accessing701

stacks on LibCuckoo is in Fig. 7. We report the tail latency702

of four accessing stacks under 1 client [Fig. 7(a)], 8 clients703

[Fig. 7(b)], and 16 clients [Fig. 7(c)]. PMRAccess maintains704

the best Min latency, 50%, 90%, and 99% tail latency. Under705

one client, PMRAccess reduces latency to 3 µs, followed by706

PMEMAccess, which is 4 µs. Meanwhile, the PUT latency707

of SyncAccess is roughly 16 and 80 µs for GroupAccess.708

PMEMAccess maintains the best 99.9% tail latency at about709

136 us, which is 80% less than PMRAccess, by storing all710

WAL records in PMEM. As we increase the client number,711

PMRAccess maintains its advantage at 99% tail latency. Under712

16 clients, the 50% latency of PMRDirect is only 8%, 0.7%,713

and 1.6% of PMEMAccess, SyncAccess, and GroupAccess,714

respectively.715

Performance on LevelDB: To evaluate PMRAccess in716

LevelDB, we choose the following system configurations.717

All competitors follow identical configurations to make the718

comparison fair. Each competitor is allocated with fixed719

memory and set with CGroups. The memory size is 4 GB, a720

third of the dataset, to ensure that requests are served from721

memory and persistent storage. The block cache size is 256722

MB, and the Memtable size is 64 MB. In addition, for each723

write operation, the sync option is set to false, which means724

that LevelDB does not explicitly guarantee durability.725

The throughputs of different accessing stacks on LevelDB726

are shown in Fig. 8. The overall throughput of accessing727

LevelDB is far less than that of LibCuckoo, as most of728

LevelDB’s data resides in SSD. In the Load Only workload,729

(a) (b) (c)

Fig. 9. Tail latency of different accessing stacks on LevelDB. (a) One client.
(b) Eight clients. (c) Sixteen clients.

PMRAccess achieves the highest throughput, which is 120 730

Kops/s under one client. When we increase the client num- 731

ber, PMRDirect’s throughput increases to 430 Kops/s. The 732

peak throughput of PMRAccess is 2.68×/7.1×/7.8× that of 733

PMEMAccess, SyncAccess, and GroupAccess, respectively. 734

The tail latency of PUT operations with different accessing 735

stacks on LevelDB is shown in Fig. 9. Similar to the tail- 736

latency results on LibCuckoo, PMRAccess is the best among 737

all competitors in terms of the Min, 50%, 90%, and 99% tail 738

latency. Specifically, under one client, the 50% tail latency 739

of PMRAccess is 2.5 µs, which is only 45%/3.8%/1.7% of 740

PMEMAccess, SyncAccess, and GroupAccess, respectively. 741

In addition, PMRAccess keeps the 90% latency less than 742

3 µs and 99% latency less than 6 µs, which is 36× faster 743

than SyncAccess and even 0.5× faster than PMEMAccess. 744

When we increase the client number to 16, PMRAccess’s 745

write latency increases slightly within 1 µs, which proves that 746

PMRAccess has good performance isolation between multiple 747

clients. SyncAccess and GroupAccess are bad in LevelDB as 748

they waste CPU resources and SSD bandwidth on persisting 749

WAL. 750

To sum up, PMRAccess provides extremely low write 751

latency to 3 µs per remote write request, which is up to 752

36× better than SyncAccess/GroupAccess and 4× better than 753

PMEMAccess. It can also maintain the best 50%, 90%, 754

and 99% tail latency for both LibCuckoo and LevelDB. 755

Regarding the throughput, PMRAccess achieves a high 756

1-Mops/s throughput on LibCuckoo and 430-Kops/s through- 757

put on LevelDB and guarantees each remote write-request 758

is durable. It achieves up to 18× higher throughput than 759

SyncAccess/GroupAccess and a 1.5× higher throughput than 760

PMEMAccess. Moreover, PMRAccess is also advantageous 761

for performance isolation between clients and can keep high 762

scalability when the number of remote clients increases. 763

D. System-to-System Comparison 764

Further, we conduct a system-to-system comparison to 765

demonstrate the advantage of our proposal. We integrate 766

PMRAccess into LibCuckoo and compare it with Redis [8] 767

with two durability levels, including Redis-Strong and Redis- 768

Everysec. Redis-Strong represents Redis with a durability 769

guarantee for each write request; Redis-Everysec represents 770

Redis with a durability guarantee for every second. We allocate 771

identical hardware resources for each system, such as thread 772

number and NIC resources. 773

10 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS

(a) (b) (c) (d)

Fig. 10. Throughput and latency comparison between our system (LibCuckoo-PMRAccess) and Redis under different clients. (a) PUT. (b) GET. (c) One
client. (d) Sixteen clients.

(a) (b) (c) (d)

Fig. 11. Throughput and latency comparison between our system (LibCuckoo-PMRAccess) and Redis with different request sizes. (a) PUT IOPS. (b) 50%
tail latency. (c) 90% tail latency. (d) AVG latency.

Fig. 10 shows the throughput and latency of three persis-774

tent KVStores under multiple clients. As Fig. 10(a) shows,775

under the PUT workload, LibCuckoo-PMRAccess achieves776

a 13.9× higher throughput than Redis-Strong and a 7.2×777

higher throughput than Redis-Everysec with 32 clients. For the778

GET workload, LibCuckoo-PMRAccess achieves 7 Mops/s,779

about 38× higher than Redis-Strong/Redis-Everysec. The tail780

latency of LibCuckoo-PMRAccess is reported in Fig. 10(c)781

and (d). LibCuckoo-PMRAccess achieves the best Min latency782

and the 50%/90%/99% tail latency. Specifically, the 90% tail783

latency of LibCuckoo-PMRAccess is 2.3%/7.7% of Redis-784

Strong/Redis-Everysec. LibCuckoo-PMRAccess exhibits 3-µs785

90% tail latency, almost as fast as one RDMA Write verb.786

LibCuckoo-PMRAccess’s 99.9% tail latency is worse than787

Redis-Everysec as it puts more pressure on SSDs.788

Fig. 11 shows the throughput and latency of three persistent789

KVStore under request size varied from 64 B to 4 kB. At790

a small request size, LibCuckoo-PMRAccess is 15× better791

than Redis. As the request size increases to 1 kB, the PUT792

throughput of LibCuckoo-PMRAccess is 2.89× and 6.06×793

of Redis-Everysec and Redis-Strong throughput. Under 4794

kB requests, LibCuckoo-PMRAccess’s PUT throughput is795

4.5× and 8.8× that of Redis-Everysec and Redis-Strong.796

For Tail latency, LibCuckoo-PMRAccess maintains lower than797

3.8-µs 50% latency and 4.3-µs 90% tail latency, which is798

48× lower than that of Redis-Strong and 9× lower than799

that of Redis-Everysec. In addition, LibCuckoo-PMRAccess’s800

50%/90% tail latency increases slightly with the request size,801

and the 50% tail latency of Redis-Strong increases from 127 802

to 234 µs. Fig. 11(d) reports the average latency of the three 803

KVStores. The average latency of Redis-Strong is 3.36× and 804

12.8× higher than that of Redis-Everysec and LibCuckoo- 805

PMRAccess under small request sizes. 806

In summary, the PMRAccess-enabled KVStore, LibCuckoo- 807

PMRAccess, achieves up to 13× higher throughputs and 40× 808

lower 50%/90% tail latency than Redis under small request 809

sizes. Although the throughput improvement of LibCuckoo- 810

PMRAccess decreases with the increase of the request size, 811

LibCuckoo-PMRAccess still outperforms Redis. 812

E. Benefits of the RDMA Write-Based Messaging Mode 813

In this experiment, we compare our RDMA Write-based 814

client/server messaging mode with the RDMA Send-based 815

messaging mode to demonstrate its efficiency in reducing the 816

request latency for remote clients. 817

Our RDMA Write-based messaging mode reduces the aver- 818

age latency of client/server requests to 2.1–3.5 µs, which is 819

only 26% of the latency observed with the RDMA Send-based 820

messaging mode. Additionally, it can improve the multiclient 821

write bandwidth by at least 3.1×. As the size of the write 822

request increases, our RDMA Write-based messaging can 823

maintain low request latency under 3.6 µs and achieve up to 824

9-GB/s write bandwidth. Given that one RDMA Send verb 825

takes about 4 µs and one RDMA Write verb takes about 2 µs, 826

the results suggest that our messaging mode can reduce both 827

LUO et al.: HIGH-PERFORMANCE REMOTE DATA PERSISTING FOR KVStores VIA PMR 11

Fig. 12. Performance of different messaging modes: (a) average write latency
and (b) total write bandwidth.

Fig. 13. Average PMR utilization ratio of PMRAccess under different
configurations (darker colors mean higher utilization ratios).

the number of network round trips and the latency of each828

round trip between the clients and the server.829

F. PMR Utilization and Write Bandwidth830

To uncover the PMR utilization of PMRAccess, we measure831

the real-time utilization ratio of PMR chunks under write-832

intensive workloads. We use LibCuckoo as the back-end833

KVStore engine and report the PMR utilization on the server834

side and the total write bandwidth on the client side. We835

evaluated various configurations, including the number of836

parallel clients and key–value request size, with the number837

of clients ranging from 1 to 64 and the request size ranging838

from 64 B to 1 kB.839

Fig. 13 shows the average PMR utilization ratio under840

different configurations. With a small request size and a841

low number of clients, the PMR utilization ratio remains842

below 10%. As the number of clients increases to 64, the843

PMR utilization rises to between 50% and 80%, even with844

a small request size. When the number of clients exceeds845

24, and the request size is larger than 512 B, the real-846

time PMR utilization ratio reaches 100% most of the time.847

Fig. 14 shows the write bandwidth of all clients under various848

configurations. The write bandwidth increases accordingly as849

the client number and request size grow to a certain extent.850

However, once the average PMR utilization reaches about851

80%, the write bandwidth either plateaus or slightly decreases.852

To sum up, large write requests or excessive parallel clients853

tend to exhaust the PMR and eventually bottleneck the overall854

bandwidth.855

Fig. 14. Total write bandwidth of PMRAccess under different configurations
(darker colors mean higher write bandwidths).

VI. RELATED WORK 856

Traditional KVStores, such as Memcached, Redis [8], and 857

Cassandra, are extensively used by commercial companies. 858

With TCP/IP-based networking stacks and HDD/SSDs as 859

storage devices, the write latency to KVStores for remote 860

clients is usually hundreds of microseconds. 861

As the development of high RDMA NICs, many pioneers 862

exploit the potential of reducing the networking latency 863

in KVStores [3], [9] and transaction execution [22], [26]. 864

However, RDMA supports accessing memory only; therefore, 865

those RDMA-based KVStores store all data in DRAM and 866

ignore data durability. Besides, the advent of PMEM brings 867

new strategies for the durability of KVStores. Recently, 868

many researchers propose PMEM-based Indexes [27], [28] 869

and PMEM-based KVStore [4], [5]. Most of them exploit the 870

characteristics of commodity PMEM, such as low latency and 871

high bandwidth, to achieve high performance while ensuring 872

data durability. Unfortunately, PMEM is too expensive com- 873

pared to SSDs, and the Optane production line is closed. 874

So far, few studies have used PMR to improve storage and 875

file systems. SineKV [13] first used PMR in KVStores to 876

boost the durability of local WAL entries. Horae [14] used 877

PMR to reduce the write order constraints of traditional file 878

systems. X-SSD [16] proposed to use PMR for SSDs and 879

integrated the database logging replication service into SSDs 880

by Nontransparent Bridging networking. Unlike all the above 881

techniques, our proposal opens up a new path that enables 882

remote clients to write data to NVMe PMR directly, ensuring 883

µs-level low latency while preserving data durability with low 884

storage cost. 885

VII. CONCLUSION 886

In this article, we proposed to use NVMe PMR to build 887

a new data-persisting path called PMRDirect to enable low- 888

latency data writes from distributed clients. Further, we 889

designed an accessing stack called PMRAccess for KVStores 890

to reduce the latency of remote data writes. The experi- 891

ments on real RDMA NICs and a PMR-enabled NVMe SSD 892

showed that PMRDirect achieved the lowest write latency and 893

the highest write bandwidth. Moreover, when evaluated on 894

LevelDB, PMRAccess outperforms the SSD-based accessing 895

stack by up to 6.1× in write throughput and 36× in write 896

latency. 897

12 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS

REFERENCES898

[1] A. Dragojevic, D. Narayanan, M. Castro, and O. Hodson, “FaRM:899

Fast remote memory,” in Proc. 11th USENIX Symp. Netw. Syst. Design900

Implement. (NSDI), 2014, pp. 401–414.901

[2] B. Li et al., “KV-direct: High-performance in-memory key-value store902

with programmable NIC,” in Proc. 26th SOSP, 2017, pp. 137–152.903

[3] H. Lim, D. Han, D. G. Andersen, and M. Kaminsky, “MICA: A holistic904

approach to fast in-memory key-value storage,” in Proc. 11th USENIX905

Symp. Netw. Syst. Design Implement. (NSDI), 2014, pp. 429–444.906

[4] L. Vogel, A. van Renen, S. Imamura, J. Giceva, T. Neumann, and907

A. Kemper, “Plush: A write-optimized persistent log-structured hash-908

table,” Proc. VLDB Endowment, vol. 15, no. 11, pp. 2895–2907, 2022.909

[5] Y. Chen, Y. Lu, F. Yang, Q. Wang, Y. Wang, and J. Shu, “FlatStore:910

An efficient log-structured key-value storage engine for persistent911

memory,” in Proc. 25th Int. Conf. ASPLOS, 2020, pp. 1077–1091.912

[6] T. Li, D. Shankar, S. Gugnani, and X. Lu, “RDMP-KV: Designing913

remote direct memory persistence based key-value stores with914

PMEM,” in Proc. Int. Conf. High Perform. Comput., Netw., Storage915

Anal., 2020, pp. 1–14.916

[7] K. Huang, D. Imai, T. Wang, and D. Xie, “SSDs striking back: The917

storage jungle and its implications to persistent indexes,” in Proc. CIDR,918

2022, pp. 9–12.919

[8] “Redis.” 2023. [Online]. Available: https://redis.io/920

[9] C. Mitchell, Y. Geng, and J. Li, “Using one-sided RDMA reads to build921

a fast, CPU-efficient key-value store,” in Proc. USENIX ATC, 2013,922

pp. 103–114.923

[10] “Persistent memory region.” NVMe. 2023. [Online]. Available: https://924

nvmexpress.org/specification/nvm-express-base-specification/925

[11] “Starblaze OC SSD.” Starblaze. 2023. [Online]. Available: https://www.926

starblaze-tech.com/en/lists/content/id/137.html927

[12] (DapuStor Corp., Shenzhen, China). Dapustor Haishen5 PCIe928

Gen5 Enterprise SSDs. (2023). [Online]. Available: https://www.929

storagereview.com/news/dapustor-haishen5-pcie-gen5-enterprise-ssds-930

announced931

[13] F. Li, Y. Lu, Z. Yang, and J. Shu, “SineKV: Decoupled secondary932

indexing for LSM-based key-value stores,” in Proc. IEEE 40th ICDCS,933

2020, pp. 1112–1122.934

[14] X. Liao, Y. Lu, E. Xu, and J. Shu, “Write dependency disentanglement935

with HORAE,” in Proc. 14th USENIX Symp. OSDI, 2020, pp. 549–565.936

[15] I. Zhang et al., “The Demikernel datapath OS architecture for 937

microsecond-scale datacenter systems,” in Proc. ACM SOSP, 2021, 938

pp. 195–211. 939

[16] S. Lee et al., “X-SSD: A storage system with native support for 940

database logging and replication,” in Proc. Int. Conf. Manag. Data, 2022, 941

pp. 988–1002. 942

[17] X. Liao, Z. Yang, and J. Shu, “RIO: Order-preserving and CPU-efficient 943

remote storage access,” in Proc. 18th Eur. Conf. Comput. Syst. (EuroSys), 944

2023, pp. 703–717. 945

[18] “Interfaces to access PMR through SPDK.” SPDK. 2023. [Online]. 946

Available: https://spdk.io/doc/nvme_8h.html 947

[19] “Buffer sharing and synchronization.” Linux. 2023. [Online]. Available: 948

https://docs.kernel.org/driver-api/dma-buf.html 949

[20] X. Wei, X. Xie, R. Chen, H. Chen, and B. Zang, “Characterizing and 950

optimizing remote persistent memory with RDMA and NVM,” in Proc. 951

USENIX ATC, 2021, pp. 523–536. 952

[21] D. Ongaro and J. Ousterhout, “In search of an understandable consensus 953

algorithm,” in Proc. USENIX ATC, 2014, pp. 305–319. 954

[22] A. Kalia, M. Kaminsky, and D. G. Andersen, “FaSST: Fast, scal- 955

able and simple distributed transactions with two-sided RDMA 956

datagram RPCs,” in Proc. 12th USENIX Symp. OSDI, 2016, 957

pp. 185–201. 958

[23] M. Xiao, H. Wang, L. Geng, R. Lee, and X. Zhang, “Catfish: Adaptive 959

RDMA-enabled R-tree for low latency and high throughput,” in Proc. 960

IEEE 39th ICDCS, 2019, pp. 164–175. 961

[24] Q. Wang, Y. Lu, and J. Shu, “Sherman: A write-optimized distributed 962

B+tree index on disaggregated memory,” in Proc. SIGMOD, 2022, 963

pp. 1033–1048. 964

[25] “LevelDB.” 2023. [Online]. Available: https://github.com/google/leveldb 965

[26] A. Kalia, M. Kaminsky, and D. G. Andersen, “Design guidelines for 966

high performance RDMA systems,” in Proc. USENIX ATC, 2016, 967

pp. 437–450. 968

[27] Y. Luo, P. Jin, Q. Zhang, and B. Cheng, “TLBtree: A read/write- 969

optimized tree index for non-volatile memory,” in Proc. IEEE 37th 970

ICDE, 2021, pp. 1889–1894. 971

[28] Y. Luo, P. Jin, Z. Zhang, J. Zhang, B. Cheng, and Q. Zhang, “Two 972

birds with one stone: Boosting both search and write performance for 973

tree indices on persistent memory,” ACM Trans. Embed. Comput. Syst., 974

vol. 20, no. 5s, pp. 1–25, 2021. 975

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Helvetica-Condensed-Bold
 /Helvetica-LightOblique
 /HelveticaNeue-Bold
 /HelveticaNeue-BoldItalic
 /HelveticaNeue-Condensed
 /HelveticaNeue-CondensedObl
 /HelveticaNeue-Italic
 /HelveticaNeueLightcon-LightCond
 /HelveticaNeue-MediumCond
 /HelveticaNeue-MediumCondObl
 /HelveticaNeue-Roman
 /HelveticaNeue-ThinCond
 /Helvetica-Oblique
 /HelvetisADF-Bold
 /HelvetisADF-BoldItalic
 /HelvetisADFCd-Bold
 /HelvetisADFCd-BoldItalic
 /HelvetisADFCd-Italic
 /HelvetisADFCd-Regular
 /HelvetisADFEx-Bold
 /HelvetisADFEx-BoldItalic
 /HelvetisADFEx-Italic
 /HelvetisADFEx-Regular
 /HelvetisADF-Italic
 /HelvetisADF-Regular
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

