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Abstract—To index the increasing volume of data, modern1

data indexes are typically stored on solid-state drives and cached2

in DRAM. However, searching such an index has resulted in3

significant I/O traffic due to limited access locality and inefficient4

cache utilization. At the heart of index searching is the operation5

of filtering through vast data spans to isolate a small, relevant6

subset, which involves basic equality tests rather than the complex7

arithmetic provided by modern CPUs. This article demonstrates8

the feasibility of performing data filtering directly within a9

NAND flash memory chip, transmitting only relevant search10

results rather than complete pages. Instead of adding complex11

circuits, we propose repurposing existing circuitry for efficient12

and accurate bitwise parallel matching. We demonstrate how13

different data structures can use our flexible SIMD command14

interface to offload index searches. This strategy not only frees up15

the CPU for more computationally demanding tasks, but it also16

optimizes DRAM usage for write buffering, significantly lowering17

energy consumption associated with I/O transmission between18

the CPU and DRAM. Extensive testing across a wide range of19

workloads reveals up to a 9× speedup in write-heavy workloads20

and up to 45% energy savings due to reduced read and write21

I/O. Furthermore, we achieve significant reductions in median22

and tail read latencies of up to 89% and 85%, respectively.23

Index Terms—Database systems, databases, flash memories,24

indexes systems, memory, systems.25

I. INTRODUCTION26

CHALLENGES of Indexing Vast Amount of Data: Data27

indexes, such as hash tables and trees, are fundamental28

for quickly retrieving relevant data from vast datasets. As the29

volume of data to be indexed explodes, the size of the index30

is growing significantly large. In many user-facing databases31
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that execute complex queries, index size can even surpass 32

the data being indexed [1]. Given that accessing an index 33

invariably precedes any data retrieval, indexes are commonly 34

pinned in-memory to boost performance. With the introduction 35

of high-speed solid-state drives (SSDs), even systems sensitive 36

to latency—those interfacing directly with users—resort to 37

storing indexes on SSDs and loading them into DRAM on- 38

demand. Upon loading an index block (for instance, a B-Tree’s 39

leaf node or a hash table’s bucket) into DRAM, a subsequent 40

scan through the memory page that contain arrays of candidate 41

entry is necessary to find the matching one. Such a parallel 42

equality test is often accelerated with SIMD instructions. 43

As I/O can easily become the bottleneck, compression and 44

data prefetching are common techniques employed to reduce 45

I/O and hide latency. However, in many workloads indexes 46

exhibit low compressibility, and decompression incurs over- 47

head [1]. Moreover, prefetching can accelerate the replacement 48

of loaded index blocks. In large-scale data systems, where the 49

working set size far exceeds DRAM capacity and the accesses 50

scatter widely, index blocks can be repetitively loaded and 51

evicted from DRAM. Even if all index blocks fit entirely 52

in DRAM, they can still be evicted after context-switching 53

to other processes that might also allocate memory. Another 54

pressing issue is the management of index updates. These 55

updates not only require considerable buffering to mitigate 56

the SSD’s high write costs but also introduce multiple data 57

versions that compete for the limited DRAM cache space with 58

index reads, leading to increased I/O due to more frequent 59

read cache misses. 60

To solve the I/O bottleneck, one can either increase DRAM 61

capacity or I/O bandwidth. However, both approaches bring 62

substantial costs and power consumption. In environments 63

where cost efficiency is as crucial as performance, the focus 64

should not solely be on maximizing index retrieval’s through- 65

put but on enhancing the utility of the retrieved indexes. 66

Perhaps the best way is to fundamentally cut the amount of 67

indexes that need to be transferred from the storage system. 68

There have been numerous innovations in data structures 69

aimed at optimizing data indexing and system-level opti- 70

mizations, such as kernel bypassing, to maximize I/O bus 71

utilization. This article takes a different approach, focusing on 72

the core operation of data indexing: matching a query against 73

a vast array of candidate entries. Within the constraints of 74

today’s von Neumann architecture, this equality test operation 75

occurs in the CPU only after transferring all candidate entries 76

from storage. Yet, this operation, predominantly data-bound, 77
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does not require the complex arithmetic or control flows mod-78

ern CPUs offer and could be executed by simpler hardware79

circuits.80

This leads us to question whether equality tests could be81

integrated deeper into the storage system. While processing82

in memory (PiM) has been explored as a solution to the83

bottleneck between the CPU and DRAM, it does not address84

DRAM’s capacity scaling challenges. Conversely, a NAND-85

flash-memory-based solution offers higher energy efficiency86

and capacity. In this article, we explore this direction by87

introducing the search-in-memory (SiM) chip.88

SiM is based on the architecture of existing triple-level89

cell (TLC) flash memory chip. Instead of introducing a full-90

fledged hardware-based indexing solution, we aim to minimize91

hardware changes and use software to decompose complex92

indexing operations into simple hardware instructions, similar93

to the design philosophy of RISC CPUs. We demonstrate how94

to minimally modify an existing flash memory chip to conduct95

equality tests directly in itself and send only the relevant results96

in response to a search request rather than the entire page to97

fundamentally reduce the I/O traffic.98

In our experiment, we also demonstrate the performance99

characteristics of index search under various workloads, query100

distribution, and system constraints, as well as how SiM101

can improve system efficiency by reducing I/O transmission102

and increasing cache utilization. We make the following103

contributions.104

1) We introduce the SiM chip, a standalone flash memory105

chip minimally adopted from existing chips to real-106

ize on-chip equality tests. SiM features a versatile107

SIMD interface with two primitives: a) search and b)108

gather command (Section III). This interface makes SiM109

adaptable for various data-bound operations, offering110

flexibility and applicability to different scenarios.111

2) Maintaining data integrity is a significant challenge for112

NAND-flash-based on-chip computing. To address this,113

we propose the “Optimistic Error Correction,” which114

optimizes the common case of no errors in single-level115

cell (SLC) pages, while providing a fallback solution for116

rare corner cases (Section IV).117

3) We introduce several system integrations, from gen-118

eral data structures like B+Tree, which is used in119

many systems, to supporting database analytical queries,120

to demonstrate SiM’s generalizability and flexibility121

(Section V).122

II. BACKGROUND AND MOTIVATIONS123

A. SSD’s Parallelism124

As shown in Fig. 1, an SSD is made up of multiple flash125

memory chips that communicate with a central controller via126

high-speed data channels. A chip has several dies, each can127

simultaneously conduct memory operations. Modern SSDs’128

impressive I/O bandwidth is the result of parallel operations129

across multiple chips (i.e., interchip parallelism) and the130

activation of multiple components within a single chip (i.e.,131

intrachip parallelism). However, the degree of parallelism has132

a physical limit. Heat dissipation is becoming increasingly133

Fig. 1. SSD architecture.

Fig. 2. Conceptual illustration of current consumption in a NAND flash chip.

difficult, even in data centers, as the density of modern flash 134

memory chips increases. Too many parallel operations can 135

result in electric currents that exceed the hardware power 136

budget. 137

B. Bus I/O Can Limit SSD’s Parallelism 138

As shown in Fig. 2, a flash memory command consumes 139

varying amount of current throughout various phases (I/O 140

transfer phase, the read/program phase, and the status phase). 141

To simplify power management, many controllers represent 142

the peak current consumption of a command as its overall 143

current usage [2], [3], [4]. This ensures that the total current 144

consumption of the entire chip does not exceed the power 145

budget when multiple commands are executed concurrently. 146

On the other hand, if the aggregate peak currents is anticipated 147

to exceed the power budget, the controller must restrain from 148

dispatching further commands even if the target flash die 149

is idle. Lowering the peak current of a flash command is 150

therefore critical for ensuring efficient power allocation and 151

parallelism. 152

As SSDs’ capacity increases, more data must be moved in 153

and out, increasing the demand for higher I/O bandwidth [5]. 154

The increased bandwidth requirement is often fulfilled by 155

increasing the I/O clock rate, but such an approach can easily 156

make the I/O phase to become the phase in a flash command 157

that draws the peak current. For instance, transferring a 16-KiB 158

page at a clock frequency of 1.6 GHz can consume up to 50% 159

of a chip’s maximum power budget [2]. 160

Performance scaling through continually increasing the I/O 161

clock rate is not sustainable and there is a need to funda- 162

mentally reduce the bandwidth demand. In fact, as we will 163
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Fig. 3. Commercial SSD.

Fig. 4. SiM-enhanced SSD.

show in this article, a decrease in I/O bandwidth does not164

always result in lower application performance. By filtering165

out unnecessary data transfer at its source, it is possible to166

operate I/O buses at a reduced clock rate while preserving the167

application-perceivable throughput. This article aims to enable168

such a filtering at low cost.169

C. Capacity and Metadata Scaling Must Go Hand-in-Hand170

Recently, improvements in 3D-NAND Flash memory tech-171

nology have made it possible to stack more than 300 layers of172

memory cells [5], each cell storing multiple bits. This increases173

SSD’s capacity to unprecedented levels. However, without174

proportionate scaling of metadata storage, the efficiency of175

retrieving the increased volume of data will be seriously176

compromised.177

SSDs use SLC and TLC modes to encode data and metadata178

differently in order to meet the specific needs of data and179

metadata storage. The speed and durability of SLC mode—180

which stores one bit per cell—make it the preferred method181

for storing metadata. TLC mode—which stores three bits per182

cell—is used for data storage because it has a higher storage183

density.184

Fig. 3 depicts the architecture of a typical commercial SSD.185

A small section of the memory cell encoded in SLC is used to186

store internal metadata or a write buffer, while the remaining187

memory cell encoded in TLC is used to store user data. The188

user data section can transition between SLC and TLC depends189

on capacity usage. Data are stored in SLC if user utilizes190

less than advertised capacity. As more capacity is used, the191

SSD controller transparently converts the SLC-encoded data192

into TLC. However, such an implicit hybrid model does not193

guarantee that the user’s metadata will be accessed optimally.194

In this article, we propose allocating a portion of the user-195

visible capacity to store data indexes, as depicted in Fig. 4. We196

implement the index storage with the SiM chip in SLC mode.197

Although our model has a lower total capacity than using TLC198

mode for the entire user visible capacity, it provides better199

metadata access performance and endurance.200

D. Case for New Chip Optimized for Data Indexing201

There must be a compelling case for designing a new202

hardware solution because it might bring a huge engineering203

cost. Data indexing is frequently the first step in querying204

large data systems, such as file systems, databases, and search205

engines for narrowing down the search space. The process of 206

executing a key query on a typical database index is as follows. 207

First, an in-memory index structure is queried to locate the 208

leaf index pages. These leaf index pages can be, for example, 209

the leaf node of a B-Tree or a bucket in a hash table. Then, 210

the leaf index page is searched to locate the corresponding 211

entry. These indexes are so large that they must be stored 212

on SSDs and loaded into host memory on demand before 213

the CPU can search the query key in the array of candidate 214

entries in the index pages. The search is usually performed 215

using either SIMD or binary search. However, transferring a 216

large number of index pages between SSD and host memory 217

for matching is usually the performance bottleneck. It also 218

consumes significant amount of I/O bandwidth and power. 219

The I/O bottleneck in data indexing between the SSD 220

and host has led to the development of various near-storage 221

processing solutions, which conduct data matching in the SSD 222

controller’s CPU [6], [7]. However, we argue that instead of 223

loading the vast amount of candidate entries into general- 224

purpose processors to match with a small query key; we should 225

reverse the I/O direction by shipping the query key to where 226

the candidate entries are stored. Several PiM proposals have 227

used this approach [8], [9], [10]. However, many proposals 228

incorporate a processing element (PE) into the memory array 229

or a specialized pattern matching accelerator [11] in the 230

peripheral circuit, increasing design complexity and manufac- 231

turing costs. 232

This article demonstrates the feasibility of adapting the 233

existing design of NAND flash chips to enable on-chip index 234

search. We find that index searches can utilize the existing 235

logic gates within a flash memory chip’s peripheral circuits, 236

reducing the need for substantial additional hardware invest- 237

ments. This approach repurposes hardware initially intended 238

for core data storage functionalities. For instance, the registers 239

and logic gates within each page buffer (PB), originally 240

designed for the encoding and decoding of multiple bits within 241

a memory cell, can be repurposed to execute bit-serial matches. 242

Similarly, the page-wide counter, initially devised for verifying 243

data programming, can be adapted for the aggregation of 244

match results. This strategic repurposing of existing circuits 245

introduces new indexing capabilities while maintaining the 246

original functionalities and without significantly affecting the 247

chip’s area or power budget. 248

III. SEARCH-IN-MEMORY 249

We introduce the SiM chip, which integrates vectorized data 250

matching into NAND flash memory. This allows data-bound 251

operations to be executed directly within the SSD, eliminating 252

the need to transfer index pages to the CPU. Rather than 253

viewing index pages as opaque data, SiM treats the page 254

content as an array of fixed-width data. 255

SiM offers a generic SIMD interface, featuring two primary 256

commands: 1) search and 2) gather. The search command 257

compares an input key with the data array in the index page, 258

generating a matching bitmap. Subsequently, the gather 259

command uses this bitmap to extract specific data chunks 260

within an index page, bypassing nonmatching data. This 261
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Fig. 5. Page format and data encoding.

targeted approach reduces the bandwidth waste and excessive262

energy often linked with full page-sized I/O transfers.263

A. SiM Page Format264

As shown in Fig. 5, SiM recognizes a data page as an array265

of 8-byte data slots, a format central to many index structures,266

like the leaf node of a B+Tree or an external hash table’s267

bucket. Thus, a 4-KiB page corresponds to an array with 512268

data slots.1 When a search command is performed, the chip269

matches the 8-byte query key with these slots, returning a270

512-bit bitmap as the match result.271

To reduce wiring overhead in the gather command imple-272

mentation, we group every eight data slots into a chunk. This273

chunk serves as the minimal data transfer unit. Optionally,274

users can treat the first chunk as the page header, using275

it to store metadata, a practice common in many B+Tree276

implementations.277

B. SiM Command Format278

SiM’s search command consists of the target page address279

and two 64-bit arguments: 1) a query key and 2) a mask. The280

mask facilitates the comparison of specific bit ranges, ignoring281

other positions as “don’t care.” In SiM-indexed relational282

database tables, where each row corresponds to an 8-byte283

key and data columns are encoded at specific bit ranges,284

the mask aids in isolating a specific column for matching.285

Fig. 5 demonstrates this by encoding rows into 8-byte data and286

querying based on the gender value, while masking unrelated287

columns. This command format flexibility enables SiM to288

support diverse queries through the BitWeaving technique [12],289

which is widely used in database systems to enable high290

parallelism.291

SiM’s gather command resembles the gather SIMD292

instruction for the CPU: it uses a 64-bit index bitmap to293

indicate the desired chunks within an index page to read294

(a page contains 64 chunks). Compared to transmitting the295

entire page, the gather command can significantly reduce296

the volume of I/O transmission.297

C. Storage and Match Mode298

SiM ensures compatibility with existing flash memory299

chips and preserves their high-density storage functionality by300

introducing minimal additional hardware. It operates in two301

modes: 1) Match Mode and 2) Storage Mode. A flash memory302

page can function in both modes, but their interpretations303

differ.304

1Throughout the rest of this article, we use 4 KiB as the logical page size.

Fig. 6. PB (extension to the existing structure marked in red).

In Storage Mode, the flash memory chip is solely responsi- 305

ble for storing data. It does not interpret the page content. This 306

mode emphasizes high storage density and I/O bandwidth. 307

Consequently, it typically stores multiple bits per memory cell, 308

and the I/O bus operates at a high clock rate. 309

In contrast, Match Mode prioritizes efficient data retrieval. It 310

stores only one bit per cell (SLC) to ensure data reliability, and 311

the I/O bus operates at a lower clock rate. This mode does not 312

compromise latency because on-chip matching significantly 313

reduces the amount of data transfer required. 314

SiM dynamically switches between the two modes based 315

on operational requirements. It utilizes Match Mode for fore- 316

ground indexing operations, taking advantage of its efficient 317

data retrieval capabilities. On the other hand, it employs 318

Storage Mode when writing new data and performing back- 319

ground maintenance, leveraging its high storage density and 320

I/O bandwidth. 321

IV. IMPLEMENTATION 322

A. Extending Existing Circuit 323

Each NAND flash memory plane contains a set of PBs, each 324

associated with a memory bitline, for reading a page from 325

the memory array. Fig. 6 illustrates the typical structure of a 326

NAND flash memory PB, equipped with multiple data latches2
327

and an XOR gate. 328

SiM utilizes the XOR gate for bit matching, in conjunction 329

with the failed bit counting (FBC) circuitry.3 Query key is 330

loaded into Latch 4 and XORed with the memory content 331

stored in Latch 2. The XOR result is stored in Latch 3, where 332

a one-bit signifies a mismatch. SiM’s core data unit, including 333

its query key size and mask size, is 8 bytes (or 64 bits) to align 334

with the FBC’s PB group structure, where every 64 bitlines 335

form a match group. A nonzero count in a PB group indicates 336

a mismatch. Moreover, we add an OR gate to each PB. This 337

allows reading from Latch 2 either when FBC is activated 338

during data programming in Storage Mode or when the current 339

query’s mask bitmap has an active bit in the respective bit 340

2A data latch stores a single bit. Encoding and decoding 3-bit storage
require three latches and an XOR gate.

3SSDs store data by injecting electric charges into flash memory cells until
they reach a predetermined charge level. After every program operation, the
cell states are verified and recorded in Latch 3. A one-bit denotes a mismatch,
releasing a small current. The FBC sums these currents, determining if the
misprogrammed cells exceed a set limit. Every 64 PBs are grouped and all
currents from the group’s PBs are combined using an analog counter, with
the current magnitude indicating the count value [13], [14].
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Fig. 7. SiM’s chip-level design.

position in Match Mode. Fig. 7 shows SiM’s chip design,341

incorporating a new signal, match mode, to switch between342

Storage Mode and Match Mode.343

B. On-Chip Matching Workflow344

The controller initiates on-chip matching using the345

page-open command, which specifies the target page346

address. Upon receiving this, SiM loads the target page from347

flash memory into Latch 1. Since SiM permits simultaneous348

memory reading and bit matching from a previous round,349

active data from the previous round might still be in Latch350

2. If so, the newly read data is held in Latch 1 until the351

page-close command moves it to Latch 2. The next round352

then begins with Optimistic Error Correction for data integrity353

(refer to Section IV-C2).354

After the initialization, SiM can receive multiple search355

command for batch matching. Each search command acti-356

vates the deserializer to duplicate and forward the 64-bit query357

key to Latch 4 of each PB. In the next clock cycle, Latch 2 and358

Latch 4 contents are XORed, and the result is stored in Latch359

3. A replicated 64-way mask signal, representing the 64-bit360

mask of the query, is linked to every PB. If both the XOR361

result in Latch 3 and the mask signal are active, a small current362

flows through the FBC switch, signaling a mismatch. The363

FBC’s analog counter then aggregates the 64 match signals.364

If there is a mismatch, it emits a nonzero value, which is365

identified using a 1-bit voltage comparator. A bitmap of size366

M = 512, denoting match results from M PB groups (with367

each group having 64 PBs), is generated. These results are368

stored in latches for synchronization and later transferred to369

the I/O bus.4370

SiM performs a gather command as follows. First, the371

target page is loaded from the flash memory into the L1372

latch. Next, the column decoder deserializes the 64-bit index373

bitmap, converting it into the entire page, and then sequentially374

transmits the selected chunks onto the I/O bus. It is common375

4Unlike normal data transfer, which sends approximately equal numbers of
zero and one bits, the bitmap from the SiM chip mostly comprises zero bits
due to the typically low number of matches. This sparsity reduces power con-
sumption during data transmission over modern I/O bus protocols operating
in Low-Tapped Termination, like NV-LPDDR4 [15], which consumes power
only when transmitting one bits.

for a search command to be immediately followed by a 376

gather command. In such cases, since the page content 377

is already loaded into the PBs, the gather command can 378

initiate data transmission without delay. 379

C. Data Integrity 380

1) Data Randomization: In modern SSDs, it is a common 381

practice to randomize the stored data to ensure data reliability. 382

This randomization process involves XORing the data bits 383

with a deterministically generated random bit stream, which 384

is derived from a seed determined by the page address. When 385

reading a page, the data is de-randomized using the same 386

procedure to recover the original data values. In SiM, the 387

query key is randomized within the deserializer using the 388

same seed that was used to randomize the target page. Since 389

the random stream is canceled out when XORed twice, we 390

can perform bit matching in the PB without de-randomizing 391

the target data page. Unlike conventional randomization, we 392

initialize the seed for each chunk using the chunk address. 393

This enables us to de-randomize noncontiguous chunks in the 394

gather command. 395

2) Optimistic Error Correction: In order to perform on- 396

chip matching without transmitting the full page to the SSD 397

controller, we adopt an optimistic approach of sampling a few 398

bytes at the beginning of the page for errors. This approach 399

is based on two rationales. First, a recent work in in-flash 400

computing [16] has characterized real chips and found that 401

the SLC pages we adopt, which store one bit per cell, exhibit 402

no errors for extended periods of time. Second, another recent 403

work has demonstrated the feasibility of sampling a portion 404

of a page to determine its overall stability [17]. 405

Our optimistic approach is as follows. Before writing a 406

logical page to the flash memory, we prepend a verification 407

header to verify data integrity during subsequent page reads. 408

This verification header includes the current timestamp and an 409

8-byte predetermined magic number. Additionally, we prepend 410

an 8-byte CRC checksum calculated over the first chunk and 411

the two aforementioned fields. 412

When the page-open command loads the page content 413

from the flash memory, both the verification header and the 414

first chunk are transmitted to the controller. The controller 415

verifies the chunk using the CRC checksum. If a mismatch 416

is detected, the controller initiates a full page read to retrieve 417

the entire page from the PB. The page is then processed 418

by a dedicated ECC chip, similar to a normal page read. If 419

an uncorrectable error is detected, the controller adjusts the 420

sensing voltage using the magic number and performs read- 421

retries up to a specified maximum number of times [17]. 422

Our optimistic error correction approach optimizes the 423

common case of error absence in SLC pages while providing 424

a fallback solution for corner cases. Additionally, if the age of 425

the page, indicated by the write timestamp in the verification 426

header, exceeds a safety margin, the page is also read out for 427

error correction and placed in a refresh queue to be rewritten 428

at a later time, ensuring data reliability. 429

3) Concatenated Error Correction: In addition to the ver- 430

ification header, we also assign a 4-byte ECC parity to each 431
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chunk, which is checked in the controller upon loading. The432

chunk-level ECC is stored alongside the page-level ECC433

parity. This arrangement forms a concatenated code, a classic434

technique for enhancing data reliability [18]. In our case, this435

arrangement enables the gather command to perform fine-436

grained error correction without the need to load the entire437

page to the controller.438

D. Hardware Overhead439

We add the mask signal to each PB to control the FBC440

switch in match mode and an OR gate to enable the FBC441

in data programming in storage mode. We also modify the442

column decoder to transmit specific chunks within a page443

and adjust the deserializer to distribute the input data across444

all page bits. Given that modern NAND flash chips support445

reading specific portions of a page (i.e., Random Data Out)446

and generate test data patterns for reliability tests [19], our447

modifications to the column decoder and deserializer are448

minimal. Considering the PB and decoder account for under449

9% of the total chip area [11], we estimate that SiM adds450

around 3% to the overall area overhead.451

E. Batch Matching452

SiM offers the capability of batch matching to maximize453

the utility of a page read from the flash memory (the page454

read latency accounts for the largest portion in the overall on-455

chip matching process, so conducting multiple matching can456

amortize the page read latency). We implement a deadline-457

based command scheduler to evaluate the effectiveness of this458

approach. Each command is associated with a deadline upon459

submission. The scheduler holds the submitted commands in460

a queue until their respective deadlines expire. At that point,461

the scheduler searches for other commands in the queue that462

target the same page and submits them together as a batch.463

We evaluate the scheduler in Section VII-E.464

V. SYSTEM INTEGRATIONS465

This section demonstrates how SiM’s versatile interface466

makes it possible to integrate it into various data-intensive467

systems.468

A. Database Primary Index469

The Primary index in a relational database maps the primary470

key of a table to a pointer indicating the storage location of471

the corresponding data row. It is usually implemented with472

a B+Tree, as shown in Fig. 8. The internal nodes of the473

B+Tree can usually fit within the DRAM, while the leaf474

nodes often require on-demand reading from disk [20]. A475

leaf node page typically begins with a header that stores476

metadata, including a validity bitmap, counters for empty slots,477

compression information, and sibling pointers. Following the478

header is a compact array of keys and values.479

The arrangement of keys and values within the leaf nodes480

is essential to efficient search of query key on the CPU. For481

instance, keys can be stored contiguously or sorted to facilitate482

SIMD parallel search and binary search, respectively. The leaf483

Fig. 8. SiM-enhanced database primary index.

TABLE I
SIM- VERSUS NON-SIM-BASED PRIMARY INDEX

nodes can be directly stored in SiM, effectively replacing the 484

process of on-demand disk I/O and in-CPU search with a 485

search command to SiM. A leaf node can span multiple SiM 486

pages. For example, an 8-KiB leaf node can store its key array 487

in one SiM page and its value array in another SiM page. 488

A leaf node search involves a search command that targets 489

the first page, followed by a gather command that targets 490

the second page. These two commands can be internally 491

pipelined to reduce latency. Storing keys and values separately, 492

as opposed to storing them in the same page, increases the 493

parallelism of key search and prevents unnecessary loading of 494

the value when a key is not found. 495

Table I presents a back-of-the-envelopment comparison of 496

the worst-case energy consumption and latency in data transfer 497

between a conventional disk-based B-Tree and an SiM-based 498

B-Tree. The comparison focuses solely on the data transfer 499

from the flash memory chip’s PB to the SSD controller, 500

excluding transfer to the host OS. In the absence of SiM, the 501

entire key and value pages must be read, resulting in an I/O 502

size of 8 KiB. However, with SiM, the search command 503

sends a 64-byte bitmap, while the gather command sends 504

a 64-byte chunk. The flash chip operates in Match Mode 505

with a bus clock frequency of 40 MHz, whereas without 506

SiM, the clock frequency defaults to 1600 MHz for higher 507

bandwidth. Consequently, the peak current of the high-speed 508

bus is thirteen times greater than that of the low-speed bus. 509

Energy consumption is 22 times higher without SiM. However, 510

the latencies of the two approaches are comparable. This 511

comparison demonstrates that SiM’s data reduction improves 512

energy efficiency and performance due to enhanced goodput. 513

B. Database Secondary Index 514

A secondary index is a data structure in a database that 515

maps the values of one or multiple columns to the primary 516

key of a table, enabling efficient retrieval of rows based on 517

specific column values without the need for a full table scan. 518

Fig. 9 illustrates an example user table with its secondary 519

index stored on SiM. Following the key encoding scheme used 520

in MySQL [23], each row is transformed into an 8-byte key, 521
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Fig. 9. Example encoding of a table for SiM.

Fig. 10. Example usage of SiM: filtering a secondary index.

and the encoded keys are stored compactly in a SiM page.522

To perform a query that retrieves all female users, the target523

value (e.g., female represented by 0x01) is encoded into the524

query key, and a mask is constructed based on the position of525

the target column. SiM produces a match bitmap, allowing us526

to retrieve the user IDs of the matched keys using a gather527

commandover the same page.528

C. Database Range Queries529

A range query in a database table aims to find all k such that530

U > k ≥ L. SiM narrows the search space in two steps. First,531

it decomposes the range query into upper-bound and lower-532

bound queries. The upper-bound query U > k is transformed533

into 2�log2(U)� − 1 > k, where 2�log2(U)� corresponds to the534

smallest value larger than U that is a power of two. The lower-535

bound query k ≥ L is processed by transforming it into an536

upper-bound query of “k < L” and then applying a bitwise537

NOT operation to the obtained bitmap. The final result of the538

range query is obtained by performing a bitwise AND operation539

between the two subqueries.540

Fig. 10 illustrates a secondary index for finding users with541

a specific range of the salary column in the same table. The542

salary and user ID are encoded in big endian into an 8-543

byte key, resembling the bit-sliced index used in analytical544

databases [24]. The range query “select * from User545

where 2000 < salary < 7000” is decomposed into546

upper-bound and lower-bound queries. In Fig. 10, the upper-547

bound query is transformed into “salary <= 8191.” By548

examining the most significant bits, we determine that the 0th549

to 2nd bits of both 7000 and 8191 are zero. Any integer with550

the 0th to 2nd bits being zero is guaranteed to be smaller than551

8191. The 0th to 2nd bits in the query key are set to zero while552

masking out the rest of the bit positions. The search returns 553

the bitmap 110 because 800 and 4000 satisfy the conditions. 554

The lower-bound query is transformed into “Not (salary 555

<= 1023),” which returns the bitmap 011. Combining the 556

two subqueries give the final result: 010. 557

Although the result encompasses more elements than the 558

actual range, it effectively reduces the search space for 559

subsequent fine-grained filtering. We make the design choice 560

of only implementing exact equality matching over exact range 561

search because this allows us to repurpose existing circuitry in 562

the hardware implementation without the need for additional 563

circuits, as further discussed in Section IV-B. There is no bit 564

dependencies in exact equality matching. Thus, the matching 565

can be finished in one pass, and the interbit wiring cost can 566

be saved. 567

Nevertheless, users have the flexibility to conduct multipass 568

comparisons to achieve their desired level of confidence. This 569

can be achieved by masking out the previously compared MSB 570

bit region and recursively compare the masked-out number. 571

Furthermore, in the field of data analytics, precise results are 572

often unnecessary. When the keys are uniformly distributed, 573

our approximate range query can have low error rates [24]. 574

D. Redistributing Data 575

Many data structures used in disk-based systems partition 576

and redistribute data to improve performance. For instance, 577

when a B-Tree or extendible hash table becomes full, it 578

splits a full node or bucket into two. LSM-Trees perform 579

compaction when a level reaches its capacity. Log-structured 580

data structures require periodic garbage collection to free up 581

space. In database systems, the join operation combines data 582

from multiple tables using a hash table, which necessitates 583

partitioning the dataset to ensure efficient data access during 584

queries. These operations involve reading data from disk and 585

rearranging them in memory. Data redistribution can result in 586

high temporary memory usage and CPU spikes, especially in 587

log-structured storage where data for the same partition can 588

be scattered across multiple files. This can cause significant 589

performance issues for frontend user services. Because of its 590

significance, there have been calls for specialized hardware 591

acceleration [25]. However, with SiM, data redistribution 592

can be performed incrementally by keyspace partitioning. 593

Partitioning the key space using a specific bit slice from the 594

key, similar to a radix tree, allows us to locate a particular 595

partition using the search command and collect the data 596

using the gather command. By gathering one partition at 597

a time, we can avoid loading data that do not belong to the 598

specific partition, effectively reducing the I/O and memory 599

overhead. 600

VI. EXPERIMENTS 601

A. Experimental Setup 602

1) Hardware: We implement the search command and 603

gather command by defining two new NVMe commands. 604

We encode the SiM-specific payloads in NVMe’s vendor- 605

specific dataset management (DSM) opcode and extend 606

NVMe’s kernel driver to parse the new command formats. 607
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TABLE II
HARDWARE PARAMETERS

Fig. 11. SiM and baseline setup in the experiment.

We prototyped and simulated SiM on Amber [26], a high-608

fidelity SSD emulator. Table II shows the hardware parameters609

we used. The I/O bandwidth for SiM’s match command is610

configured 80 MT/s (NV-DDR3’s timing mode 1), which is611

10% of the typical bandwidth for full-page I/O. This setting612

can lower the I/O bus’s operation current5 and the peak power.613

Thanks to the reduced I/O volume, the latency and the energy614

is minimally effected. I/O requests are scheduled in a first-615

come–first-serve manner, but a deadline-based scheduler is616

also evaluated in Section VII-E.617

2) Data Structure: We create a generic index that consists618

of an in-memory top-level index and a collection of disk pages,619

each containing a compact array of key–value pairs. The top-620

level index maps a key to its on-disk page, as shown in Fig. 11.621

If it is implemented as a B-Tree, the on-disk pages correspond622

to the leaf nodes. If implemented as a hash table, on-disk623

pages correspond to hash buckets. The on-disk page is then624

loaded into the operating system’s page cache, from which the625

value can be searched. The on-disk index is set to 650 MiB,626

taking 65% of the simulated SSD’s capacity. We ensure that627

there is enough spare space to prevent SSD space reclamation,628

allowing for a more focused evaluation.629

3) Baseline Setup: Our baseline is the traditional CPU-630

centric architecture, which reads entire pages from disk and631

stores frequently accessed pages in the page cache. SiM, on632

the other hand, bypasses the page cache by sending a search633

5While higher timing modes typically incur higher operational current as
in Table I, we set the I/O bus current consumption of the baseline also to
5mA assess the inclusion of advanced power optimization [15].

TABLE III
QUERY CONCENTRATION IN DIFFERENT DISTRIBUTIONS

command to the on-disk page address of a key specified by the 634

in-memory index, determining the key’s position in the page, 635

and retrieving the desired values using a gather command. 636

As we will see later, bypassing the page cache effectively frees 637

it up for other uses, such as write buffering. Thanks to the small 638

transmission size, SiM communicates with the host OS entirely 639

through NVMe’s command interface (i.e., MMIO) and bypass 640

the conventional DMA procedures. Note that this article lacks 641

direct comparison with ParaBit [27] and CoX-PM [11] due 642

to differing application scenarios and difficulties in accurately 643

reproducing their proprietary environments. 644

4) Workloads: We customize the Yahoo! Cloud Serving 645

Benchmark (YCSB) [28], [29] and subject the index to various 646

query distributions and read/write patterns to evaluate it across 647

various application scenarios. Using Linux’s CGroup, we 648

downscale the page cache size to various ratios of the on-disk 649

index size. The term Cache Coverage refers to this ratio. For 650

example, a Cache Coverage of 50% indicates that the page 651

cache size is 325 MiB, which is 50% of the on-disk index size 652

(650 MiB). A Cache Coverage of 0% indicates that caching 653

is disabled. 654

We begin collecting statistics only after the initial data has 655

been loaded into the SSD and the workload has run for 30% of 656

its designated length to ensure the system reaches steady state. 657

We disable periodic cache flushing of dirty pages to better 658

understand the systems’ sensitivity to varying cache sizes. 659

5) Query Distribution: Table III illustrates query concen- 660

tration across different distributions. In many online services, 661

it is common for a small number of queries to dominate 662

the workload. This phenomenon is modeled using Zipf’s 663

distribution for both skewed (α = 0.5) and very skewed 664

(α = 0.9) scenarios, alongside a uniform distribution for 665

comparison. The uniform distribution shows an even spread, 666

whereas the very skewed distribution (α = 0.9) shows 667

a significant dominance of the top queries, with the most 668

frequent accounting for 17% of the total workload. 669

VII. RESULTS 670

A. Overall Speedup 671

Fig. 12 displays SiM’s overall speedup in terms of query 672

per second (QPS)6 compared to the baseline. The y-axis 673

represents the varying percentage of read requests in the 674

workload. 100% indicates a completely read-only workload, 675

while 20% indicates a write-intensive workload. The x-axis 676

depicts different cache coverage. 0% disables the page cache 677

and directs all I/O to the SSD. 10% and 25% would be 678

the typical configuration for real-world system to balance 679

6A workload’s QPS is a measure of its throughput calculated as the number
of queries divided by the completion time (excluding the first 30% of queries
designated as warmup period).
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Fig. 12. SiM’s query-per-second speedup over baseline.

performance and hardware cost. We make several observations680

from Fig. 12.681

1) The baseline supported with cache performs 8%–20%682

better than SiM in read-only workloads. This is to683

be expected, given that SiM bypasses the page cache684

and requires additional cycles for on-chip matching,685

whereas the baseline may avoid I/O by searching the686

pages stored in the page cache directly. One possible687

solution is to send search commands to the same page in688

batches to amortize the latency of reading from NAND689

flash memory—a technique evaluated in Section VII-E.690

Another option is to cache the retrieved keys. This691

fine-grained management can make better use of cache692

space than traditional page-level caching, but it can693

significantly complicate index designs.694

2) SiM outperforms 3×–9× in write-intensive workloads.695

This is because SiM does not use read caching, so696

the cache can be used for write buffering. Because697

writes are significantly more expensive than reads on698

SSDs, increasing write buffering can improve overall699

performance and extend SSD lifespan. This is consistent700

with the design of many modern database engines, such701

as RocksDB, where read requests bypass page cache to702

avoid prematurely evicting dirty pages from cache.703

3) When cache coverage is zero, all I/O goes directly to704

the SSD, and the locality difference in query distribution705

has no effect on performance. When cache coverage is706

high (75%), SiM has few performance advantages over707

the baseline because the cache is large enough to absorb708

page updates that would otherwise be evicted under low709

cache coverage.710

B. Energy Consumption711

Fig. 13 compares SiM’s energy consumption with the base-712

line. This analysis favors the baseline because it only considers713

Fig. 13. SiM’s energy consumption over baseline.

the energy consumption of the NAND flash chip, ignoring the 714

energy consumption of the CPU and DRAM, which are diffi- 715

cult to accurately characterize. It also equalizes the baseline’s 716

bus I/O current consumption with SiM’s to incorporate recent 717

power optimization for high-frequency I/O bus [15]. Even 718

with these assumptions, SiM still reduces energy consumption 719

by 10%–45% at typical cache coverage levels (10%–50%). 720

A cache coverage of 75% is only a reference as it does 721

not account for the significant DRAM energy consumption 722

required to provide a large memory space. SiM’s ability to 723

lower write traffic is what accounts for the lower energy use, 724

as further explored in Fig. 16(a). 725

SiM’s ability to reduce read I/O also contributes to energy 726

savings. In contrast to the baseline, which sends complete key 727

and value pages (each 4 KiB) to the host OS via the PCIe 728

bus, SiM only transmits the result bitmap (64 B) from the 729

key page and the necessary chunk (64 B) from the value page 730

for a random point query, where only one chunk is needed. 731

This strategy decreases data transmission over the PCIe bus by 732

64 times. In the internal I/O bus, SiM needs to transfer another 733

256 B for integrity verification upon page open, but this still 734

reduces I/O by 21 times. This is why, despite using a 10-times 735

slower bus timing mode, SiM can reduce I/O transmission 736

delay and bus active time by 2.1 times. 737

SiM’s I/O reduction lowers queuing delays and shortens 738

the SSD’s active period. These benefits effectively offset the 739

additional energy consumed by SiM for on-chip matching 740

operations. 741

C. Read Latency 742

Fig. 14 compares SiM’s median read latency reduction to 743

the baseline. This reduction varies from 30% to 89% across 744

workloads, whether skewed or uniformly distributed. Note that 745

this analysis inherently favors the CPU-centric baseline, as 746
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Fig. 14. SiM’s median read latency reduction.

Fig. 15. SiM’s tail read latency reduction.

we omit the CPU’s search time for locating the target key747

after key pages have been loaded into host OS’s memory.748

In contrast, for SiM, we include the latency incurred by on-749

chip matching operations. Despite this discrepancy that could750

advantage the baseline, SiM still demonstrates superior latency751

improvements.752

In read-only workloads, SiM outperforms the baseline753

particularly when the baseline is allocated less cache. This can754

be attributed to the longer I/O transmission of the full page755

transfer. Fig. 16(b) zooms in on the comparison of median read756

(a)

(b)

Fig. 16. Detailed comparison at 40% Read, Random Dist. (a) Amount of
writes relative to no caching. (b) Median read latency.

latencies between SiM and the baseline under a random query 757

distribution and a 40–60 read–write workload. Here, error bars 758

denote the 25th and 75th percentiles, with SiM demonstrating 759

narrower error bars. This suggests a more consistent response 760

time, which is crucial for services directly interacting with 761

users. 762

In write-intensive workloads, SiM has lower read latency 763

than the baseline in mid-range cache coverage where the write 764

set size exceeds the cache capacity. In this case, new writes can 765

evict both clean and dirty pages. Clean page eviction degrades 766

read performance due to cache misses, whereas dirty page 767

eviction causes lengthy queueing delays for read operations. 768

SiM’s cache bypass strategy, as discussed in Section VII-A, 769

alleviates this effect. 770

D. Tail Read Latency 771

Fig. 15 presents the tail read latency (99th percentile) 772

improvements SiM achieves over the baseline. Although the 773

variability between the 25th and 75th percentile latencies 774

is less for SiM, in rare cases, SiM may exhibit signifi- 775

cantly higher latency compared to the baseline, particularly 776

in workloads where read requests are infrequent and highly 777

skewed. Closer examination reveals differing write patterns: 778

the baseline experiences consistent write activity, whereas SiM 779

may face sporadic peaks in write demand. This is attributed 780

to SiM’s page cache being primarily composed of dirty pages 781

from data writes. Consequently, initiating a new write could 782

trigger a chain reaction of writing back dirty pages, potentially 783

delaying read requests substantially. In contrast, the baseline 784

system’s page cache contains some clean pages fetched from 785

the SSD, which can be evicted immediately to buffer data 786

writes, avoiding such corner cases. 787
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Fig. 17. QPS speedup of batch submission (top) and merge probability
(bottom).

To mitigate this issue, implementing an I/O scheduler788

that gives priority to reads over writes could prevent read789

starvation. Alternatively, preempting writes in favor of reads—790

a strategy proposed for ultralow-latency SSDs [30]—could791

also be effective. Future research should explore replacing792

our current first-come–first-serve I/O scheduling with more793

sophisticated strategies to assess their impact on reducing tail794

latency.795

E. Batch CiM Submission796

Section IV-E introduces a deadline scheduler aiming to797

reduce NAND flash memory’s read latency by batching798

search command for identical pages. Each search com-799

mand is assigned a deadline of 4 μs, which constitutes 25% of800

the 16-μs read latency for SLC memory. The upper heatmap801

of Fig. 17 presents the query-per-second improvement when802

using the deadline scheduler, compared to SiM’s performance803

without it. The lower heatmap indicates the probability that a804

query will target the same page as another unexpired query805

in the scheduler. As the concentration of queries increases,806

indicated by a rising Zipf’s α value, the probability of multiple807

queries targeting the same page increases, resulting in a808

3.7-fold boost in throughput at α = 1.3 for purely read-only809

workloads. However, such an α value is way beyond what a810

normal workload would exhibit. Setting a longer expiration811

time can also improve throughput, but at the expense of812

prolonged latency. We conclude that the deadline scheduler813

is ineffective for low-latency SSDs because the overhead814

outweighs the benefits.815

F. Sensitive Analysis on Full-Page Read Ratio816

While SiM excels in precise data retrieval, the need for full-817

page reads remains crucial. For instance, indices in read-heavy818

analytic databases require summing data across entire pages.819

Similarly, the write-optimized LSM-Tree index, while needing820

efficient support for random point queries, also necessitates821

compaction—a garbage collection process that reads indices822

in full pages for merging. This leads us to assess how823

variations in the volume of full-page reads affect overall824

performance across different query distributions and in both825

read- and write-dominant workloads. Fig. 18 illustrates the826

relative query-per-second speedup of SiM compared to the827

baseline where all reads are full-page (on the left-most side of828

the x-axis). Observe that as the proportion of SiM reads within829

Fig. 18. QPS speedup versus full-page read ratio.

the workload increases, so does performance. This effect is 830

evident in both read- and write-dominant scenarios, though 831

more markedly in the latter. On the other hand, the influence 832

of varying query distributions on this trend appears minimal. 833

VIII. RELATED WORKS 834

Numerous research efforts have been made on minimizing 835

data transfers through early data filtering, which can be 836

broadly classified into near-storage computing approaches— 837

such as SmartSSD or custom circuits attached to flash memory 838

controllers [31]—and on-chip computing approaches like SiM. 839

Near-storage computing reduces I/O between the host and 840

SSD, whereas on-chip computing reduces data movement from 841

within the SSD itself. On-chip approaches can be analog-based 842

or digital-based. Analog approaches, such as Tseng et al. [9], 843

are well suited for error-tolerant applications like machine 844

learning but fall short for the precise data matching required 845

in indexing. Digital approaches, like Parabit [27] and Flash 846

Cosmos [16], use the existing flash memory sensing mech- 847

anisms for bulk bitwise operations, such as AND and OR 848

across flash pages. SiM also utilizes the existing PB circuits 849

but has a different programming model. Unlike Parabit and 850

Flash Cosmos, where both operands are page-sized and must 851

be preprogrammed into the same NAND block prior to the 852

computation, SiM operates with a small query and a page 853

for comparison, making it more efficient to deal with small, 854

dynamically loaded operands. 855

CoX-PM [11] incorporates error correction and pattern 856

matching circuits into the NAND flash memory. SiM, on 857

the other hand, chooses not to perform on-chip error cor- 858

rection due to its complexity, instead relying on Optimistic 859

Error Correction on SLC pages and the SSD controller’s 860

existing ECC chips. SiM also opts not to evaluate complex 861

pattern matching in hardware, instead using software to 862

decompose complex queries into elementary instructions that 863

are cheaper to implement in hardware. ICE [10] integrates 864

8-bit integer multiplication into the peripheral circuits for 865

on-chip vector matching. Unlike CoX-PM and ICE, SiM 866

strives to repurpose existing circuits and minimize addi- 867

tional circuits to reduce hardware testing costs and accelerate 868

adoption. 869

IX. CONCLUSION 870

This article introduced the SiM chip, a novel solution 871

aimed at overcoming the bottleneck in data indexing through 872
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on-chip data matching. SiM introduces simple yet versatile873

commands for fine-grained data searching and gathering.874

These commands, despite their simplicity, enable complex,875

data-intensive operations found in various data structures to be876

accelerated. SiM’s command structure allows for cost-effective877

implementation with minimal modifications to existing circuit878

designs. Furthermore, SiM can be combined with readily879

available high-capacity NAND flash memory chips to create880

a hybrid SSD that effectively realize the principle of data-881

metadata separation.882

SiM has undergone extensive testing under a variety of883

workload and system constraints. Evaluation shows up to 9×884

speedup in write-intensive workloads and up to 45% energy885

savings due to reduced read and write I/O and better utilization886

of host’s cache space. SiM reduces median and tail read887

latency by up to 89% and 85%, respectively. As a future work,888

we aim to integrate SiM technology into actual key–value889

and relational database systems to enhance their efficiency in890

garbage collection and range queries. Developing a hardware891

prototype is also planned.892
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