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Abstract—NV-FPGAs have attracted significant attention in1

research due to their high density, low leakage power, and2

reduced error rates. The nonvolatile memory (NVM) crossbar’s3

compute-in-memory (CiM) capability further enables NV-FPGAs4

to execute high-efficiency, high-throughput neural network (NN)5

inference tasks. However, with the rapid increase in network6

size and considering that the parameter size often exceeds7

the memory capacity of the field programmable gate array8

(FPGA), implementing the entire network on a single FPGA9

chip becomes impractical. In this article, we utilize FPGA’s10

inherent run time reprogramming feature to implement over-11

sized NNs on NV-FPGAs. This approach splits NN models12

into multiple tasks for the cyclical execution. Specifically, we13

propose a performance-driven task adapter (PD-Adapter), which14

aims to achieve high-performance NN inference by employing15

the task deployment to optimize settings, such as processing16

element size and quantity, and the task switching to select the17

most suitable switching type for each task. We integrate the18

proposed PD-Adapter into an open-source toolchain and evaluate19

it. Experimental results demonstrate that the PD-Adapter can20

achieve a run time reduction of 85.37% and 76.12% compared21

to the baseline and execution-time-first policy, respectively.22

Index Terms—Compute-in-memory (CiM), neural network23

(NN) inference, nonvolatile field programmable gate arrays24

(FPGAs), nonvolatile memory.25

I. INTRODUCTION26

F IELD programmable gate arrays (FPGAs) have become27

prominent in big data, edge computing, and image pro-28

cessing due to their flexibility and energy efficiency. Their29

inherent programmability enables seamless adaptation to these30

applications’ diverse and evolving requirements, providing31

a cost-effective and highly adaptable solution. Significant32

advances in chip process technology over the past two33

decades have resulted in a downscaling from the micrometer34

to nanometer scale, facilitating the integration of increased35

computational and memory resources to meet the demands36

of large-data applications. However, this progression presents37

considerable challenges for the traditional static random-38

access memory (SRAM)-based FPGAs, primarily due to the39

SRAM’s limited density and substantial leakage power. In40
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Fig. 1. Typical NVM-based CiM architecture. (a) Schematic of a crossbar
architecture. (b) CiM for neural computation.

recent years, emerging nonvolatile memories (NVMs) have 41

offered new avenues for the FPGA design enhancement. 42

Compared to SRAMs, NVMs provide greater scalability, lower 43

leakage power, nonvolatility, and superior error resistance. The 44

feasibility of integrating various NVMs, such as phase change 45

memory (PCM) [1], resistive RAM (RRAM) [2], and mag- 46

netic RAM (MRAM) [3], into FPGA has been successfully 47

demonstrated [1], [4], [5], [6], [7], [8], [9]. 48

Furthermore, the NVM crossbar architecture intrinsically 49

supports in-memory computing [10], [11], [12], [13]. Fig. 1 50

illustrates the ability of the NVM crossbar to execute the 51

matrix-vector multiplication (MVM) operations with signifi- 52

cant parallelism by mapping weights to the conductance of 53

NVM cells and synchronizing vectors with the input voltage. 54

Several research efforts have exploited this characteristic to 55

equip NV-FPGAs with compute-in-memory (CiM) capability. 56

For example, Ji et al. [14] integrated NVM crossbars into 57

FPGA chips. Zha and Li [15] developed an NVM-based 58

multifunctional block by transforming configurable blocks 59

and routing structures. Zhang et al. [16] modified the struc- 60

ture of the on-chip memory, enhancing its computational 61

functionality. These NVM crossbars and peripheral circuits 62

integrated into the FPGA are referred to as CiM blocks. 63

The combination of the CiM block’s high parallel opera- 64

tor execution capability and the FPGA’s flexible function 65

configuration ability allows NV-FPGAs to meet the high- 66

throughput computational demands of the neural network 67

(NN) inference. Fig. 2 illustrates how these studies establish 68

one or more CiM blocks as processing elements (PEs) units 69

essential for NN computation on the NV-FPGA chip. The 70

weight parameters are preprogrammed into the CiM blocks, 71

and during operation, only the input vector representing the 72

feature map is transmitted to the PE units based on the 73
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Fig. 2. CiM-block-based MVM PE implementation in NV-FPGA.

CiM blocks, enabling high-throughput MVM. The CiM block74

enhances NV-FPGAs’ ability to handle the large-scale MVMs,75

leading to higher throughput in the NN inference. However,76

these studies typically assume that the CiM block resources77

in NV-FPGAs are extensive enough to accommodate all the78

NN parameters. As NNs evolve and increase in scale, their79

parameters also increase correspondingly. This enhances their80

ability to learn the complex patterns and perform a broader81

range of tasks, but often exceeds the available resources of82

CiM blocks in NV-FPGAs.83

The inherent run time reprogramming feature of84

FPGAs has been widely applied in run time configurable85

systems and run time context switching systems [17], [18],86

[19], [20]. In this article, we employ this feature to introduce87

an NN inference implementation designed to deploy oversized88

NNs on the resource-limited platforms. We segment the NN89

model into multiple tasks, with each task encompassing the90

implementation of PE for the corresponding layer. These tasks91

are sequentially reprogrammed into the FPGA chip to enable92

the task switching during run time. Task switching is divided93

into two categories based on the content of reprogramming:94

1) “reflash” and 2) “reconfiguration.” As shown in Fig. 3(a),95

reflash refers to task switching that utilizes the PE structure of96

the previous task, only reprogramming the weight parameters97

in the CiM blocks. However, when the PE size of the previous98

task does not meet the computational requirements of the99

current task or is inefficient, task switching needs to be100

achieved through reconfiguration. As shown in Fig. 3(b),101

reconfiguration refers to the task switching that involves102

constructing new PE implementations, entailing changes in103

the weight parameters, the size of the PEs, and the number104

of PEs. The amount of data that needs to be reprogrammed105

is different for these two task switching types, and the time106

cost is also different. We can flexibly design the choice107

between reflash and reconfiguration, aiming to reduce the108

overall run time while implementing the oversized NNs. The109

main contributions are as follows.110

1) We utilize the inherent run time reprogramming feature111

of FPGAs to introduce an NN inference implementation112

tailored for the oversized NNs on the NV-FPGAs.113

2) We propose the performance-driven task adapter (the114

PD-Adapter), aiming to optimize the NN inference115

performance through the strategic task deployment and116

task switching, thereby enhancing both the task execu-117

tion efficiency and the task switching time.118

Fig. 3. Task switching by reflash or reconfiguration. (a) Reprogramming
only the weight parameters used in task n+1. (b) Reprogramming both the
weight parameters and connection.

3) We integrate the proposed PD-Adapter into an open- 119

source FPGA synthesis toolchain and evaluate its 120

effectiveness on the CiM block-equipped NV-FPGA 121

platform. 122

The remainder of this article is organized as follows. 123

Section II reviews the preliminaries of NV-FPGA and sum- 124

marizes the related work. Section III shows motivation 125

examples to briefly explain the task deployment and switching. 126

Section IV details the implementation of the oversized NNs 127

on the NV-FPGAs. Section V presents the evaluation results, 128

followed by the conclusion in Section VI. 129

II. PRELIMINARIES AND RELATED WORK 130

In this section, we first introduce the background of the 131

FPGA architecture and programming techniques. Then, we 132

summarize the related works involving CiM and run time 133

switching on the NV-FPGAs. 134

A. FPGA Architecture and Programming Techniques 135

Fig. 4 illustrates a conventional island-style FPGA architec- 136

ture, which primarily consists of the configurable elements, 137

including configurable logic blocks (CLBs), connection boxes 138

(CBs), and switch boxes (SBs). Each of these components 139

contains a series of memory cells, and the required logi- 140

cal functions are achieved by preprogramming the memory 141

cells. To accommodate escalating computational and buffering 142

requirements, contemporary FPGAs incorporate heteroge- 143

neous resources like the block random access memories 144

(BRAMs) and digital signal processors (DSPs) directly onto 145

the FPGA die. CLBs can implement both the combinational 146

and sequential logics. SBs and CBs, strategically positioned 147

throughout the FPGA chip, facilitate versatile connectivity 148

among the computational units, memory resources, and I/O 149

interfaces. Due to the advantages of nonvolatility, high density, 150

and near-zero leakage power, emerging NVMs are proposed 151

to replace the current SRAMs in FPGA platforms, leading to 152

designs of nonvolatile FPGAs [3], [21], [22]. Furthermore, the 153

NVM-based CiM blocks are introduced to enhance the FPGA’s 154

processing capability, utilizing the electrical characteristics 155

of the NVM crossbars to achieve highly parallel, low-power 156

in-situ computation operations [14], [15], [16]. Like the tradi- 157

tional resources, such as DSPs and CLBs, the CiM blocks are 158

distributed throughout the FPGA. 159
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Fig. 4. Typical island-style FPGA architecture [23].

The applications will be implemented on the FPGA by160

the logic and physical synthesis. In the logic synthesis stage,161

high-level logic functions are converted into basic logic162

elements that can be implemented with the physical blocks.163

This stage involves optimization to minimize the number164

of logic elements and enhance the circuit efficiency. The165

physical synthesis stage maps the logic elements onto the166

FPGA’s physical resources by placing these elements into167

the appropriate physical blocks and generating the routing to168

connect them. The final output of the synthesis process is the169

bitstream files that record the configuration data for the FPGA170

platform.171

The traditional model of the FPGA usage involved con-172

figuring the device once, typically during the system startup,173

after which the FPGA would perform its designated function174

without change. However, as computing demands grew, espe-175

cially in fields requiring adaptability and real-time processing,176

the concept of run time reprogramming emerged. Run time177

reprogramming allows an FPGA to be reconfigured while it178

is still operational, enabling dynamic adaptation to different179

tasks or algorithms without the need to power down or180

restart the system. Additionally, modern FPGAs support partial181

reprogramming as illustrated in Fig. 5, which allows for182

Fig. 5. Partial reconfiguration on FPGA. By utilizing the ICAP and partial
PRC, configuration data are fetched from memory, enabling the dynamic
alteration of the functionality of associated reconfiguration modules (RMs).

updating partial areas on the chip. The reprogramming time 183

is proportional to the size of the reprogramming data. Both 184

reflash and reconfiguration can be achieved through the partial 185

programming. The former only requires programming the data 186

within the PE, while the latter involves the programming of 187

both the PE’s data and related CLBs and SBs. 188

B. NV-FPGA With Compute-in-Memory 189

In nonvolatile FPGAs, SRAM-based memory cells are 190

replaced with NVM-based memory cells. Several researchers 191

have focused on the architecture design of nonvolatile FPGAs, 192

such as PCM-based FPGA, STT-RAM-based FPGA, and 193

RRAM-based FPGA. Architectures are proposed for the non- 194

volatile CLBs [24], nonvolatile SBs [25], and nonvolatile 195

BRAMs [7]. Furthermore, some works have leveraged the in- 196

memory computing characteristics of NVM by introducing 197

NVM-based CiM function blocks into the FPGA chips. On 198

the one hand, some research efforts are enhancing the existing 199

CLBs or BRAMs to equip them with the CiM capabilities. 200

For instance, Zha and Li [15] presented liquid-silicon, which 201

employs the NVM-based crossbar tiles for both the sum-of- 202

product logic and storage functions, effectively replacing the 203

traditional CLBs, BRAMs, and routing resources. Likewise, 204

Zidan et al. [26] proposed M-Cores, a concept that integrates 205

the memory, analog computing, and digital computing within 206

a fundamental tile, replacing the conventional CLBs, BRAMs, 207

and DSPs with the M-cores array. Zhang et al. [16] adapted 208

a typical CiM architecture to a dual-port two-bank BRAM 209

architecture to bridge the architectural gap between the CiM 210

and the BRAM. On the other hand, the CiM function can 211

also be achieved by integrating the NVM-based heterogeneous 212

blocks into the FPGA chip. For example, Ji et al. [14] intro- 213

duced FPSA, an architecture that integrates the ReRAM-based 214

crossbar blocks into the FPGA chip to realize the high- 215

precision, high-parallelism NN computation. Moreover, they 216

proposed a spatial-to-temporal mapper to map the NN model 217

to the CiM blocks. These works demonstrate the potential of 218

combining FPGAs with CiM, where the high programmability 219

and customizable processing capacity of FPGAs are melded 220

with the high parallel and low power processing advantages of 221
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Fig. 6. Two types of PE duplication: MPD and PD.

CiM. These works significantly enhance the data processing222

speed and efficiency, while reducing the latency, which is223

particularly beneficial for the big data and high-performance224

computing tasks.225

C. Run Time Switching on NV-FPGA226

Run time switching technology is extensively employed in227

NV-FPGAs. Huai et al. [5] and Zhang et al. [27] introduced228

a run time reconfiguration mechanism to distribute appli-229

cation writes on the NVM-based BRAMs for the purpose230

of wear leveling. Subsequently, Zhang et al. [28] developed231

a solution for configuration switching and run time data232

reserving. These approaches generate multiple configuration233

files during the offline stage and reconfigure them during234

the run time stage to achieve wear leveling. As a result,235

some studies have integrated considerations of synthesis time,236

and reconfiguration cost into the configuration file generation237

process. Xue et al. [29] proposed an algorithm to maximize238

the routing path reuse, with the aim of reducing the write load239

to the NVM cells and improving the reconfiguration efficiency.240

Zhao et al. [30] introduced a correlation-guided placement241

approach to accelerate the configuration file list generation242

processing.243

In this article, we utilize the run time switching technology244

feature to implement the oversized NNs on the CiM-equipped245

NV-FPGAs. Compared to the related works, our focus lies on246

how to achieve higher performance under the resourced lim-247

ited conditions, by simultaneously considering the execution248

efficiency and switching cost.249

III. MOTIVATION250

For the oversized NN inference, we segment the NN model251

into multiple tasks, each encompassing the implementation252

of its respective PE. These tasks are switched at run time253

through reprogramming. Different tasks may have different PE254

sizes. It is possible to increase task parallelism by duplicating255

PEs, especially for the tasks with smaller PE sizes. Fig. 6256

depicts two types of PE duplication: 1) maximum-parallelism257

duplication (MPD) and 2) partial duplication (PD). MPD258

duplicates PEs as much as possible to achieve the highest259

parallelism, aiming for the reduced execution time. However,260

MPD increases the switching time due to the need for261

reprogramming a larger amount of data, potentially surpassing262

the benefits derived from the reduced execution time. PD263

takes into account the task switching time cost to determine264

the number of duplications, which will be elaborated in265

Section IV-B1.266

Fig. 7. Run time with different duplication settings.

Fig. 8. Run time with different task switching decisions.

Fig. 7 demonstrates the effect of varying PE duplication 267

numbers on the run time. The purple line represents the 268

maximum number of PEs that can be deployed within the 269

available FPGA resources. Due to the different PE sizes of 270

each task, the maximum number is also different. As MPD 271

aims to achieve the greatest parallelism, it aligns with the 272

available maximum number. MPD achieves shorter execution 273

time by increasing parallelism. However, due to the non- 274

negligible task switching time, MPD may not always be the 275

optimal choice for the task deployment. In this example, the 276

increased task switching time to enhance the parallelism has 277

already exceeded the benefits it offers in the execution time, 278

resulting in a longer run time. Therefore, it is necessary to 279

consider the switching time in the task deployment. 280

Furthermore, FPGA offers flexible task switching types 281

for the NN inference, reconfiguration and reflash. In our 282

preliminary experiments with MobileNetV2, we compare three 283

approaches: full usage of reflash (FRF), full usage of reconfig- 284

uration (FRC), and partial usage of reconfiguration (PRC). As 285

Fig. 8 illustrates, FRF leads to longer execution time than the 286

others. The reason is that the reflash only updates the weight 287

parameters and cannot modify the PE structure, necessitating 288

an universal PE to meet the minimum requirements for the 289

adjacent tasks. This results in reduced execution efficiency for 290

the tasks using smaller PEs than the universal one. On the other 291

hand, FRC restructures PE for each task, achieving higher 292

execution performance but exhibiting longer switching time. 293

This is because restructuring PE involves not only updating 294

the weights of the CiM blocks but also reprogramming the 295

connections, usually involving the larger programming data. 296

However, since the NN inference performance is determined 297
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Fig. 9. Implementing oversized NN on NV-FPGAs.

by both the execution and switching time, exclusively relying298

on either reconfiguration or reflash is not the optimal solution.299

This inspires us to propose a strategic task switching approach,300

which utilizes PRC to reduce the overall run time.301

IV. IMPLEMENTING OVERSIZED NEURAL NETWORK302

ON NONVOLATILE FPGAS303

In this section, we detail the implementation of the oversized304

NNs on the NV-FPGAs. In Section IV-A, we outline the main305

idea and describe the formulation of the NN inference imple-306

mentation. In Section IV-B1, the task deployment approach is307

presented. In Section IV-B2, the task switching approach is308

presented.309

A. Neural Network Inference Implementation on NV-FPGAs310

Main Idea: CiM function blocks integrated into the NV-311

FPGAs allow the high-throughput NN inference. However,312

implementing the entire network within the FPGA is imprac-313

tical, especially when faced with the limited resources or large314

network scales. We exploit the inherent run time reprogram-315

ming to implement the oversized NNs on the CiM-equipped316

NV-FPGAs by segmenting the network into multiple tasks.317

As shown in Fig. 9, in the offline stage, the computational318

graph of the NN model is partitioned into several tasks.319

Following this, these tasks are fed into a PD-Adapter to adapt320

the FPGA chip for high run time performance through the321

task deployment and switching. The main idea of the PD-322

Adapter is to achieve a shorter total run time by finding a323

tradeoff between the reprogramming and execution time. Task324

deployment focuses on optimizing the deployment settings,325

including the PE size and the number of PEs to improve the326

execution efficiency. Task switching focuses on selecting a327

switching type for each task to shorten the reprogramming328

time. The two phases alternate iteratively multiple times to329

pursue the minimal run time. These processes create a run time330

implementation solution, including the deployment settings331

and switching decisions. Deployment settings are used to332

generate corresponding bitstream files through the synthesis333

tools. Switching decisions consist of a series of task switching334

types. In the run time stage, bitstream files are programmed 335

into the FPGA chip according to the task switching decisions. 336

Problem Formulation: The NN inference implementation 337

can be formulated as a directed cycle graph G, where the 338

vertices represent the task deployment settings and the edges 339

indicate the task switching types. Each vertex v is assigned 340

a value, denoting the execution time, represented as v.val. 341

Each edge e has a value representing the task switching 342

time denoted as e.val. The total run time of all the tasks 343

is represented as
∑

(v.val + e.val). Different switching types 344

lead to varying e.val, while different PE sizes and duplication 345

numbers affect the task’s execution efficiency, resulting in 346

different v.val. Specifically, the v and e interact with each 347

other. Reconfiguration reconstructs the CiM blocks and routing 348

resources to match the PE requirement of the task, usually 349

enhancing the execution efficiency and thus reducing the exe- 350

cution time, which means a small v.val. However, due to the 351

changed connections in CiM by reconfiguration, programming 352

the FPGA chip requires a longer time, resulting in a large e.val. 353

Conversely, reflash only updates the weight parameters and 354

cannot modify the PE structure, thus requiring an universal PE 355

to meet the minimum requirements for the adjacent tasks. This 356

results in reduced execution efficiency for tasks using smaller 357

PEs than the universal one, thereby causing a larger v.val. As 358

shown in (1), we identify suitable deployment settings v and 359

a task switching type e to minimize the overall run time of all 360

the tasks 361

min
(∑

(v.val + e.val)
)

362

s.t. v, e ∈ G. (1) 363

Time Model: Time models are employed to calculate the 364

values of the vertices and the edges, which represent the 365

execution time (v.val) and the reprogramming time (e.val), 366

respectively. 367

The execution time model as shown in (2), involves the 368

following components. ReqCom represents the number of 369

times the PE being called in the task. For example, in CNNs, 370

this corresponds to the sliding window movements of the 371

kernel on the feature map; in the recurrent NNs, it relates to the 372
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sequence window movements; and in the attention mechanism,373

it pertains to the focus area movements. Para indicates the374

task’s PE parallelism, which is represented by the number of375

duplications due to the lack of the data dependencies within376

the task. Freq denotes the operating frequency of the task,377

as reported by the EDA tool following logic and physical378

synthesis flow. A higher Freq signifies faster processing speed,379

resulting in a shorter execution time. NCyc denotes the number380

of clock cycles required for a single CiM operation381

TimeExe =
⌈

NReqCom

Para

⌉

∗ 1

Freq
∗ NCyc. (2)382

The task switching time model as shown in (3) and (4),383

calculates the switching time for reflash and reconfiguration384

types. Both reflash and reconfiguration require the repro-385

gramming of corresponding information, i.e., the reflash and386

reconfiguration files into the FPGA chip. Therefore, the387

numerator represents the data size that needs to be repro-388

grammed, while the denominator (SpeedProg) represents the389

reprogramming speed.390

For reflash, only the weight in the CiM block needs to be391

updated. The time model can be formulated according to (3).392

Size indicates the number of CiM blocks required by a PE.393

Para represents the parallelism, which indicates the number394

of PE blocks that can be duplicated. Size ∗ Para denotes the395

required number of CiM blocks by a task. MCiM represents396

the memory size of a single CiM block.397

For reconfiguration, as the PE is restructured, the associated398

CLB, routing resources, and BRAM resources need to be399

reprogrammed. In typical island-style FPGAs, the heteroge-400

neous modules are interspersed among the CLBs and routing401

resources, demonstrating a linear relationship in quantity. As402

shown in (4), MCLB, MSB, MCB, and MBRAM represent the403

memory sizes of CLB, SB, CB, and BRAM, respectively. We404

utilize the preset parameters α, β, γ , and δ to quantify the405

relationship with the number of CiM blocks406

TimeRf = Size ∗ Para ∗ MCiM

SpeedProg
(3)407

TimeRc = Size ∗ Para ∗ (MCiM + αMCLB + βMSB + γ MCB + δMBRAM)

SpeedProg
.408

(4)409

B. Performance-Driven Task Adapter410

The PD-Adapter is composed of the task deployment and411

switching phases. In the task deployment phase, the focus is412

on optimizing the deployment settings, including the PE size413

and the number of PEs as detailed in Section IV-B1. In the task414

switching phase, the focus is on selecting a switching type for415

each task to shorten the run time as detailed in Section IV-B2.416

The two phases alternate iteratively to optimize and achieve417

the minimal run time.418

1) Task Deployment: Task deployment is employed to419

determine the optimal deployment settings for the given task420

switching decisions. Each task is sequentially switched and421

executed on the FPGA chip during the run time stage. In the422

task list, the PE structure changes following a task switch423

via reconfiguration, while reflash only updates the weight424

Fig. 10. Task deployment group.

parameters. Therefore, adjacent tasks switched by reflash share 425

the same deployment setting. As illustrated in Fig. 10, we 426

group the task list based on the boundaries defined by the 427

tasks with reconfiguration. Within a task group, the first task 428

is reconfigured, while the switching type of the remaining 429

tasks is reflash. Consequently, tasks within a group share the 430

same deployment setting. Due to the varying computational 431

demands of different tasks, different deployment settings 432

can significantly affect the efficiency of the task execution. 433

Therefore, a task deployment strategy is proposed, aiming for 434

higher execution efficiency while considering the switching 435

time by determining the PE deployment settings. The PE size 436

indicates the required number of CiM blocks. An insufficient 437

PE size will lead to mapping failure, while a large PE 438

size could result in resource wastage. To ensure that all 439

the tasks within the group are successfully mapped with 440

minimal resource consumption, the width and height of the 441

task deployment, i.e., Sizewidth and Sizeheight are set to the 442

maximum values of the width and height of each task in the 443

group. The PE size is set according to (5), Gbegin represents 444

the first task in the group, and Gend denotes the final task 445

within the group 446

Sizewidth = max
(
Task

[
Gbegin : Gend

]
.width

)
447

Sizeheight = max
(
Task

[
Gbegin : Gend

]
.height

)
. (5) 448

The number of duplications is an important parameter 449

to consider when deploying a task, as it determines the 450

parallelism of the task. The size of the feature map dictates 451

the computational requirements of each task. When redundant 452

FPGA resources are available, higher parallelism can be real- 453

ized by duplicating PEs, consequently shortening the execution 454

time. However, an increased duplication number necessitates 455

additional resources as demonstrated in (3) and (4), thereby 456

increasing the reprogramming time. As demonstrated in (6), 457

determining the number of PE duplications is formulated 458

as an integer programming problem. In this model, Para 459

signifies the task parallelism, corresponding to the number of 460

PE duplications. All the tasks in the group accumulate the 461

execution time. Since, the first task uses the reconfiguration 462

type, the calculation of TimeRf begins with the second task in 463

the group, following Gbegin. The constraint’s lower bound is 1, 464

indicative of the minimum requirement that at least one PE is 465

deployed, while the upper limit corresponds to the maximum 466

number of PEs the FPGA architecture can accommodate. 467

By solving (6), the optimal value for Para is determined, 468

yielding the shortest total time under the current schedule 469
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while adhering to the constraints470

min

⎛

⎝
Gend∑

i=Gbegin

TimeExe[i] +
Gend∑

i=Gbegin+1

TimeRf[i] + TimeRc

⎞

⎠471

s.t. Para ∈
[

1 :

⌊
ResTol

ResPE

⌋]

. (6)472

2) Task Switching: In NV-FPGAs, the task switching can473

be achieved by reflash or reconfiguration. The amount of data474

that needs to be reprogrammed for these switching types is475

different, resulting in different switching time as demonstrated476

by (3) and (4). As shown in Fig. 10, the change in the477

switching type can also lead to changes in the group, thereby478

affecting the execution time. For example, when there is a479

significant difference in PE size between the adjacent tasks,480

reconfiguring can create a perfect match for the PEs of these481

tasks, thereby increasing the execution efficiency. However,482

this approach can lead to a potentially large switching time. We483

can flexibly make the switching type choice between reflash484

and reconfiguration, aiming to reduce the overall run time. The485

decision-making problem has a complexity of (m · 2)n, where486

m denotes the number of deployment settings each task can487

support, 2 represents the two types of switching, and n is the488

number of tasks. Utilizing the simulated annealing (SA) [31]489

method, we can find an optimal schedule with a short total run490

time for this problem. SA is a heuristic algorithm that employs491

a probabilistic acceptance mechanism and uses a random492

search to explore different solutions, gradually converging on493

the optimal solution.494

As shown in Algorithm 1, the algorithm explores the495

optimal solution by maintaining the two lists, dList and496

sList, and continuously updates the information in these497

lists. sList records the switching decisions, i.e., the switching498

type between the tasks. dList records the task’s deployment499

settings, and dList is updated in the manner mentioned in the500

task deployment phase. During the run time stage, task[i] is501

deployed according to the setting in dList[i], and switches to502

the next task using the switching type in sList[i].503

At the beginning, the algorithm creates dList and sList, and504

randomly initializes them (lines 1–6). afterward, the algorithm505

enters the exploration-and-evaluation stage (lines 11–42). In506

this stage, the algorithm makes task deployment decisions507

based on the current sList and the corresponding dList. The508

current sList and dList are then evaluated to calculate the time509

cost (lines 13–17). The algorithm calculates the execution time510

(line 14) by (2) and computes the switching time (line 15)511

by (3) and (4).512

Subsequently, a switching type is randomly selected from513

sList for reassignment to generate a new solution, labeled as514

sListTry (lines 19–28). In the process of generating the sListTry,515

we add a series of constraints. There are some tasks that516

bring benefits or penalties when combined with each other.517

Therefore, we implement these constraints through a combo518

check process (lines 23 and 24). We combine these tasks to519

form a combo that adheres to specific beneficial or detrimental520

patterns. Combinations that yield benefits are termed affinitive521

combo, while those that incur penalties are called antagonistic522

combo.523

Algorithm 1 Task Switching Algorithm
Require: Task List tList, Initial Temperature T0, Final

Temperature Tf , Cooling Rate γ ;
Ensure: Switching List sList, Deployment List dList;

1: Build Switching List sList and dList with tList;
2: for i = 0 to len(tList) − 1 do
3: Randomly initial a switching type for sList[i];
4: Randomly initial a deployment setting for dList[i];
5: end for
6: T = T0;
7: for i = 0 to len(tList) − 1 do
8: Find the Affinitive Combo for tList[i];
9: Find the Antagonistic Combo for tList[i];

10: end for
11: while T > Tf do
12: dList = Deployer(sList);
13: for i = 0 to len(tList) − 1 do
14: tList[i].TExe = CalTExe(dList[i], sList[i]);
15: tList[i].TSw = CalTSw(dList[i], sList[i]);
16: end for
17: CostCur = ∑len(tList)

i=0 (tList[i].TExe + tList[i].TSw);
18: sListTry = sList;
19: while true do
20: sListTmp = sListTry;
21: Randomly select an index of sListTmp;
22: Change the State of sListTmp[index];
23: sListTmp ⇐ Affinitive Combo of tList[index];
24: FlagAnta = AntaComboCheck(sListTmp);
25: if FlagAnta == “Pass′′ then
26: sListTry ⇐ sListTmp;
27: break;
28: end if
29: end while
30: dListTry = Deployer(sListTry);
31: for i = 0 to len(tList) − 1 do
32: tListTry[i].TExe = CalTExe(dListTry[i], sListTry[i]);
33: tListTry[i].TSw = CalTSw(dListTry[i], sListTry[i]);
34: end for
35: CostTry = ∑len(tList)

i=0 (tListTry[i].TExe+tListTry[i].TSw);
36: �Cost = CostTry − CostCur;
37: if Random(0, 1) < exp(−�Cost/T) then
38: sList ⇐ sListTry;
39: dList ⇐ dListTry;
40: end if
41: T = γ T;
42: end while
43: return sList, dList;

Fig. 11(a) shows the mode of affinitive combo. For some 524

NN models, such as VGG, in order to maintain the consistency 525

of the kernel’s feature extraction method among different 526

layers, some adjacent layers have the same kernel size. This 527

results in two adjacent tasks having the same PE size. Combo 528

tasks that require the same PE size are named affinitive combo. 529

Within affinitive combos, all tasks except the first are set to 530

switch via reflash to minimize the switching time. For the first 531
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Fig. 11. Pattern of affinitive combo and antagonistic combo. (a) Pattern of
affinitive combo. (b) Pattern of antagonistic combo.

task in an affinitive combo, the switching type, either reflash532

or reconfiguration is determined by the algorithm.533

Fig. 11(b) shows the pattern of an antagonistic combo.534

Within a group, tasks are switched using reflash. Therefore,535

all the tasks in a group share the same deployment setting.536

According to (5), the determined PE size must meet the PE537

requirements of all the tasks in the group. However, shared538

PE size may exceed the available resources. For example,539

resource shortages can occur when grouping together a task540

with a large width and a task with a large height. We define541

an antagonistic combo as a situation where the grouping of542

the tasks necessitates an oversized PE.543

The algorithm looks for the affinitive and antagonistic544

combo for each task (lines 7 and 10). In the process545

of generating sListTry, the algorithm randomly changes the546

reprogramming type of the indexth task in the temporary547

switching list sListTmp to produce an adjacent switching list,548

sListTry (lines 20–22). To ensure sListTry meets the combo549

constraint, first, we change all the sList entries corresponding550

to the affinitive combo of the current position to the reflash551

type (line 23). Subsequently, an antagonistic combo check552

is performed (lines 24–28). The AntaComboCheck() function553

checks whether there is an antagonistic combo in sListTmp, and554

this process is repeated until sListTmp no longer contains any555

antagonistic combo.556

Afterward, the new switching list sListTry invokes the task557

deployment (line 12). By solving (6) and (5), the related558

optimal deployment settings list dListTry is obtained. The559

algorithm evaluates the execution and switching time using560

sListTry and dListTry, and calculates the cost of the new561

solution (lines 31 and 34). A negative �Cost indicates that562

sListTmp has a shorter run time, and the algorithm will accept563

this trial. Conversely, a positive �Cost means that sListCur564

is worse than the current solution, and the algorithm will565

accept it with a probability P = e(−�Cost/T) (line 37).566

This probability P decreases as the number of iterations of567

the algorithm increases. Initially, the algorithm tolerates bad568

TABLE I
PARAMETERS OF NV-FPGA ARCHITECTURE

solutions by allowing a worse sList, which aids in avoiding 569

premature entrapment in the local optima. As the temperature 570

progressively decreases, the algorithm’s acceptance of inferior 571

solutions diminishes, ultimately leading to the identification 572

of the global optimum. The efficacy of this method hinges 573

on striking a balance between the exploration and precise 574

optimization. 575

V. EVALUATION 576

In this section, we introduce experimental setup, report 577

evaluation results, and give discussions. 578

A. Experiment Setup 579

We have implemented the proposed PD-Adapter and inte- 580

grated it into the open-source FPGA toolchain VTR [33]. 581

We utilize the Pytorch [34] tool for the model description 582

and the task segmentation, and employ Yosys [35] for logic 583

synthesis. The architectural parameters of the NV-FPGA can 584

be found in Table I. Computational BRAM is utilized as 585

the CiM Block, which is based on the Altera Stratix-IV-like 586

device,1 with a crossbar size of 64×64. In the foundational 587

experiments presented in Section V-B, the FPGA size is 588

set to the minimum necessary for deploying any layer of 589

the NN model. The Xilinx internal configuration access port 590

(ICAP) technique is employed for the partial reprogramming 591

to achieve the task switching. The bitstream files are stored in 592

off-chip double-data-rate (DDR) memory and reprogrammed 593

via the Xilinx AXI HWICAP interface [32]. Details of the 594

benchmark NN models are provided in Table II, with the 595

benchmarks encompassing NNs ranging from 1M to 100M 596

in terms of the weight count. To validate the generalizability 597

of our method across different resource availabilities, we 598

conducted evaluations on the FPGAs of varying scales as 599

referenced in Section V-C. 600

We compare the following implementations. 601

1) Baseline: Task switching types are set to reflash. The 602

size of the deployment is set to satisfy the minimum size 603

requirement of any layer. No additional decisions are 604

made regarding the task switching or task deployment. 605

1The integration of computational BRAM is realized
by modifying the architecture definition file in line with
k6FracN10LB_mem20K_complexDSP_customSB_22nm.xml [16], [33]. The
design of the crossbar structure and delay information in the CiM block is
based on MNSIM [36].
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Fig. 12. Run time with all tested implementations.

TABLE II
INFORMATION OF BENCHMARKS

2) Execution-Time-First Policy (Exe-First): Task switching606

types are set to reconfiguration. To optimize execution607

time, it adopts MPD.608

3) Our (TD): This approach exclusively implements task609

deployment. To emphasize the optimization impact of610

these deployment settings, all the task switching types611

are set to reconfiguration.612

4) Our (TS): This approach exclusively implements task613

switching. For a clearer illustration of their optimization614

impact, all the task deployment settings adhere to MPD.615

5) Our (TD+TS): This approach realizes PD-Adapter,616

optimizing both the task switching and deployment617

collaboratively to pursue a shorter run time.618

B. Evaluation Results619

Fig. 12 displays the run time of all the tested implementa-620

tions in all the benchmarks with the data normalized to those621

of the Baseline. Although Exe-First decreases the geometric622

mean of run time by 38% compared to the Baseline, nearly623

half of the benchmarks exhibit poor performance. This is624

attributed to the fact that these NN models have similar PE625

requirements in consecutive layers, or some tasks exhibit lower626

computational demands, making the performance benefits of627

using reconfiguration during the task switching less apparent.628

Moreover, reconfiguration results in increased task switching629

time due to the reprogramming of routing resources and630

configurable resources related to the PE structure. Our (TD)631

in comparison with Baseline and Exe-First, achieves a run632

time reduction of 38.73% and 74.38%, respectively. This is633

attributed to the fact that Our (TD) utilizes a task deployment634

to strategically determine the number of PE duplications, 635

thereby avoiding a significant increase in switching time 636

arising from the pursuit of the execution efficiency. Our 637

(TS), considering the execution time, intelligently selects task 638

switching types. As shown in Table III, it employs reconfig- 639

uration to enhance the execution efficiency, thereby reducing 640

run time by 63.18% compared to Baseline. Our (TD+TS) 641

considering both the task switching and the task deployment, 642

achieves a run time reduction of 85.37% and 76.12% compared 643

to the Baseline and Exe-First, respectively. As shown in 644

Table III, although both Our (TS) and Our (TD+TS) employ 645

the task switching, the differences in the task deployment 646

lead to significant differences in their choice of switching 647

types. They are collaboratively optimized to achieve better 648

performance. 649

To provide further details, we use AlexNet as an illustrative 650

example to demonstrate its specific reduction in run time as 651

depicted in Fig. 13. The AlexNet model is segmented into 652

eight tasks according to its layers, and we present the execution 653

time and the task switching time of each task. Each task in 654

the Baseline exhibits the same switching time, as all the task 655

switching types are set to reflash. To ensure all the tasks can 656

be mapped without restructuring PE, the PE size is set to the 657

maximum height and width among the tasks, resulting in a 658

noticeable waste of resources. It is evident that Tasks 1–4 have 659

a markedly long execution time. Compared with Exe-First, 660

Our (TS) widely selects switching types. In cases, such as 661

Tasks 2 to 3, Tasks 4 to 5, Tasks 6 to 7, and Tasks 8 to 1, 662

Our (TS) selects reflash. Although reflash incurs a reduction 663

in execution performance, its advantages in reducing the task 664

switching time are more pronounced, leading to a shorter total 665

run time. Furthermore, by employing the task deployment, Our 666

(TD) makes a tradeoff between the parallelism and switching 667

time. Therefore, the total execution time is longer compared to 668

the Exe-First policy and Our (TS). However, this shortening of 669

the switching time leads to greater performance improvement. 670

Our (TD+TS) utilizes both the task deployment and switching 671

collaboratively. 672

C. Discussions 673

1) Run Time With Different Datesets: Across various 674

datasets, the computational requirements of NNs differ sig- 675

nificantly. This variation is due to the different input sizes, 676

where the smaller input sizes lead to less computation for 677
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TABLE III
NUMBERS OF REPROGRAMMING IN ALL TESTED IMPLEMENTATIONS. (RC: RECONFIGURATION, RF: REFLASH)

Fig. 13. Detailed run time of AlexNet.

a single inference, significantly increasing the proportion of678

the task switching time. Table IV illustrates the run time of679

different policies on the MNIST [37], COCO-Medium [38],680

and ImageNet [39] datasets. Input sizes for these datasets681

are as follows: MNIST (28, 28), COCO-Medium (96, 96),682

and ImageNet (224, 224). Observations indicate that as the683

input size increases, the performance improvement of Exe-684

First and Our becomes more pronounced. This occurs because685

an increase in size results in higher computation for each layer,686

thus enhancing the benefits of reconfiguration in terms of the687

execution time, potentially outweighing the switching costs.688

Conversely, when computational demand decreases and the689

number of switches remains constant, the overall proportion of690

switching time increases, thus accentuating the advantage of691

reflash. Our (TD+TS) accounting for both the computational692

demands and the switching time, exhibits stable performance693

across various datasets.694

2) Run Time With Different FPGA Scales: Different695

networks exhibit varying computational resource demands, and696

we accordingly allocate FPGA size based on these require-697

ments. We use “scale” to represent the relative size of physical698

and logical resources, and the layout size is shown in Table V.2699

We conduct tests under different FPGA scales. The 1× scale700

is defined as the size necessary to meet the needs of all the701

layers with reflash, as the CiM block constitutes the resource702

bottleneck in the NN inference. Consequently, we evaluate the703

run time of Baseline, Exe-First, and Our under the FPGA704

scales of 1.2, 1.5, 2, and 4× specifically for the CiM block. All705

the benchmark results are calculated for the geometric mean706

and are normalized to the 1× scale of the Baseline.707

Fig. 14 shows the run time under different FPGA scales.708

The results indicate that as the FPGA scale increases, Exe-709

First can duplicate more PEs, thereby shortening the run710

2Under the k6FracN10LB_mem20K_complexDSP_customSB_22nm.xml
architecture [16], [33], the width is the same as the height.

time. However, at 1.2 and 1.5× scales, the run time remains 711

identical to that at 1×. This occurs since Baseline is limited to 712

updating the weight data of PEs during operation and cannot 713

modify the size of PEs, while the CiM resources increase by 714

�1.2�× and �1.5�×. Our (TD+TS) balancing execution time 715

and switching, can duplicate more PEs when computational 716

demands are high and reduce the number of duplications or 717

choose reflash type when the computational demands are low, 718

thus making reasonable use of the FPGA resources. As a 719

result, it achieves better performance as the scale increases. 720

3) Lifetime Evaluation: The proposed run time switching 721

mechanism involves frequent task switching during the run 722

time stage, which could potentially lead to the lifetime issues. 723

We evaluate the lifetime of all the implementations using a 724

round-Robin approach for wear leveling. For each reconfigu- 725

ration, the PEs are reassigned to another adjacent CiM blocks 726

to avoid excessive use of certain CiM blocks. As shown in 727

Fig. 15, compared to Baseline and Exe-First, Our (TD+TS) 728

achieves a higher lifetime. For Baseline and Exe-First, the 729

PE duplication in the deployment setting is set to MPD. 730

Consequently, the unused resources are insufficient for effec- 731

tive wear leveling. Due to the fact that Our (TD+TS) does not 732

occupy all the CiM resources at PE duplication for the tasks 733

with small computational requirements, it reduces the number 734

of writes. At scales of 1.2 and 1.5×, the excess resources 735

are insufficient to allow the Baseline to duplicate PEs, thus 736

achieving a lifetime increase of 1.2 and 1.5×, respectively. 737

Furthermore, we also validated another Baseline-based policy 738

incorporating lifetime considerations, namely Baseline-OPL, 739

which does not perform the PE duplication to reserve more 740

spare resources to realize wear leveling. However, its lifetime 741

improvement was still inferior to Our (TD+TS). 742

4) Comparison With DSP-Based PE Implementation: The 743

proposed run time task switching mechanism utilizes the 744

partial programming technique to reprogram the weight 745
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TABLE IV
NORMALIZED RUN TIME WITH DIFFERENT DATESETS

TABLE V
FPGA LAYOUT SIZE FOR DIFFERENT NN MODELS

Fig. 14. Run time with different FPGA scales.

Fig. 15. Lifetime evaluation.

data and PE structure information multiple times, which746

introduces the reprogramming time costs. Additionally,747

the data throughput of the DDR memory interface748

with the partial programming technique is lower than that of749

the standard DDR memory interfaces, which might affect the750

performance [32], [40]. For example, the data throughput of751

Fig. 16. Run time with different PE implementations.

AXI HWICAP is 400 MB/s [32], while the standard DDR 752

memory interface can reach up to 2226 MB/s [40]. Therefore, 753

we set up a control group called no reprogramming (NRP), 754

which uses DSPs for PE instead of CiM blocks. NRP schedules 755

the NN operations sequentially without reprogramming during 756

the run time, allowing the data to be loaded with higher 757

throughput using the standard DDR memory interface. As 758

shown in Fig. 16, compared to NRP, Our (TD+TS) has a 759

shorter run time. Although NRP does not require reprogram- 760

ming and has higher data throughput, Our (TD+TS) achieves 761

a shorter execution time due to the high computational density 762

of CiM blocks and their efficient utilization. This advantage of 763

Our (TD+TS) becomes more pronounced as the computational 764

load increases. 765

5) Run Time With Different Task Partition Methods: The 766

PD-Adapter supports various task partition schemes. In the 767

base experiment, tasks are divided by the layer, assuming 768

FPGA resources can meet the needs of any single layer. As the 769

network scale increases, FPGA resources may become insuf- 770

ficient, necessitating a finer-grained task partition method. We 771

design the hybrid-granularity partition (HGP), which partitions 772

tasks at both the layer and the channel levels. HGP divides 773

the largest layouts, which are the computational bottlenecks, 774

into multiple subtasks at the channel level to eliminate the 775

resource constraints. As shown in Fig. 17, Our (TD+TS) still 776

shortens the run time the most. It is worth noting that Our 777

(TD+TS) with HGP achieves a shorter run time compared 778

to the layer-based partitioning method, as it partitions the 779

operations required for the large layers, which may be resource 780

demanding but have low computational loads like the FC 781

layers. This results in a slight increase in execution time but 782

an overall shorter run time. 783
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Fig. 17. Run time with different task partition methods.

VI. CONCLUSION784

This article utilizes the inherent run time reprogramming785

feature of FPGA to implement oversized NNs on the CiM-786

equipped NV-FPGAs. A PD-Adapter is proposed, comprising787

the task deployment and task switching phases. In the task788

deployment phase, the focus is on optimizing the deployment789

settings. In the task switching phase, the focus is on wisely790

selecting a switching type for each task. These phases co-791

optimize task execution efficiency and task switching time792

cost. Finally, we have integrated the proposed PD-Adapter into793

an open-source toolchain for evaluation. The evaluation results794

demonstrate that it achieves 85.37% and 76.12% reductions in795

run time compared to the Baseline and Exe-First, respectively.796
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