
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 1

NebulaFL: Self-Organizing Efficient Multilayer
Federated Learning Framework With Adaptive
Load Tuning in Heterogeneous Edge Systems

Zirui Lian , Jing Cao , Qianyue Cao, Weihong Liu , Zongwei Zhu , and Xuehai Zhou , Member, IEEE

Abstract—As a promising edge intelligence technology, fed-1

erated learning (FL) enables Internet of Things (IoT) devices2

to train the models collaboratively while ensuring the data3

privacy and security. Recently, hierarchical FL (HFL) has been4

designed to promote distributed training in the intricate hierar-5

chical structure of IoT. However, the coarse-grained hierarchical6

schemes usually fail to thoroughly adapt to the hierarchical7

environment, leading to high training latency. Meanwhile, highly8

heterogeneous communication and computation delays due to9

the device diversity (the system heterogeneity) and decentralized10

data distribution due to the decentralized device distribution11

(the data heterogeneity) exacerbate the above challenges. This12

article proposes NebulaFL, a dual heterogeneity-aware multilayer13

FL framework, to support efficient distributed training in IoT14

scenarios. NebulaFL proposes an innovative multilayer archi-15

tecture organization scheme to adapt the complex hierarchical16

heterogeneous scenarios. Specifically, through a finer-grained17

division of the HFL hierarchy, hybrid synchronous-asynchronous18

training is implemented at both the global system and local19

device-layer levels. More importantly, to adaptively build a20

heterogeneity-aware hierarchical training architecture, NebulaFL21

considers the effect of dual heterogeneity in the architectural22

organization scheme to determine the optimal location of devices23

in a multilayer environment. To further improve the training24

efficiency during the training process, NebulaFL employs an aug-25

mented multiarmed bandit technique based on the reinforcement26

learning to adjust the device-layer training load by evaluating the27

dynamic training utility and convergence uncertainty feedback.28

Experiments demonstrate that NebulaFL achieves up to a 15.68×29

speed-up ratio and a 23.94% increase in the training accuracy30

compared to the latest or classic approaches.31

Manuscript received 9 August 2024; accepted 9 August 2024. This work
was supported in part by the National Natural Science Foundation of China
under Grant 62102390; in part by the Special Fund for Jiangsu Natural
Resources Development (Innovation Project of Marine Science and
Technology) under Grant JSZRHYKJ202218; and in part by the National Key
Laboratory of Science and Technology on Space Microwave under Grant
HTKJ2022KL504021. This article was presented at the International
Conference on Compilers, Architectures, and Synthesis for Embedded
Systems (CASES) 2024 and appeared as part of the ESWEEK-TCAD
Special Issue. This article was recommended by Associate Editor S. Dailey.
(Corresponding author: Zongwei Zhu.)

Zirui Lian, Jing Cao, Qianyue Cao, Weihong Liu, and Xuehai Zhou are with
the School of Computer Science and Technology, University of Science and
Technology of China, Hefei 230026, China, and also with the Suzhou Institute
for Advanced Research, University of Science and Technology of China,
Suzhou 215123, China (e-mail: ustclzr@mail.ustc.edu.cn; congjia@mail.ustc.
edu.cn; cqy_1999@mail.ustc.edu.cn; lwh2017@mail.ustc.edu.cn; xhzhou@
ustc.edu.cn).

Zongwei Zhu is with the School of Software Engineering and the School of
Computer Science and Technology, University of Science and Technology of
China, Hefei 230026, China, and also with the Suzhou Institute for Advanced
Research, University of Science and Technology of China, Suzhou 215123,
China (e-mail: zzw1988@ustc.edu.cn).

Digital Object Identifier 10.1109/TCAD.2024.3443715

Index Terms—Automatic layering, edge intelligence, federated 32

learning (FL), heterogeneous training, reinforcement learning. 33

I. INTRODUCTION 34

W ITH the rapid expansion of Internet of Things (IoT) 35

systems, the edge smart devices collect increasing 36

amounts of user data to train the artificial intelligent models. 37

However, gathering the large volumes of the device data for the 38

cloud-based model training introduces huge bandwidth costs 39

and privacy leakage risks. Federated learning (FL) [1], [2] 40

offers an efficient solution by utilizing the secure aggregation 41

technologies and diverse privacy policies [3] for the local 42

model training and aggregation on the distributed devices 43

without the need to upload the raw data. 44

In the traditional FL frameworks, the devices train mod- 45

els with the local data and engage in multiple rounds of 46

synchronous [2] [Fig. 1(a)] or asynchronous [4] [Fig. 1(b)] 47

interactions with the server to aggregate the model parameters. 48

However, at a large scale of devices, this frequent commu- 49

nication results in significant costs and unpredictable delays, 50

especially over the lengthy communication links between the 51

devices and the cloud servers. Recently, hierarchical FL (HFL) 52

solutions based on the IoT layered communication structure, 53

including the cloud servers, the gateway aggregators, and the 54

edge training devices have been extensively studied to mitigate 55

the challenges of the device scalability and communication 56

bottlenecks. As shown in Fig. 1(c), HFL establishes short- 57

range communication between the gateways and devices based 58

on the distance or cost, offloading the immense cloud com- 59

munication load to the gateways closer to the devices, thus 60

reducing the communication overhead. 61

However, deploying HFL in IoT scenarios encounters signif- 62

icant heterogeneity challenges. From a static perspective, while 63

the hierarchical structures reduce communication distances 64

between the devices and gateways, the variance in devices’ 65

configurations (e.g., chips, memory storage, and communica- 66

tion bandwidth) leads to serious straggler problems [5] caused 67

by differences in the execution time, extending the synchro- 68

nization time required for each training round. Additionally, 69

the diverse data distributions on the edge devices, resulted by 70

environmental or user characteristic differences also introduce 71

inconsistencies in training objectives [6], necessitating more 72

training rounds for convergence. From a dynamic perspective, 73

the unpredictability of communication delays during training 74

and variations in computational speed under the resource 75

1937-4151 c© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

https://orcid.org/0000-0002-5104-1852
https://orcid.org/0000-0002-9485-4204
https://orcid.org/0000-0002-0308-0259
https://orcid.org/0000-0003-3607-2631
https://orcid.org/0000-0002-8360-3143

2 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS

Fig. 1. Architectures and communication mechanisms of different FL
frameworks.

constraints significantly impact the training progress and the76

timeliness of the model updates. Moreover, as the training77

progresses, the data heterogeneity on the devices at different78

rounds affects the model convergence variably. Consequently,79

the devices’ utility to the global model dynamically change80

over time, presenting a complex challenge to achieving81

efficient HFL.82

Recent HFL schemes optimize training efficiency in com-83

plex hierarchical heterogeneous environments. However, these84

schemes usually lack systematic considerations resulting in85

limited optimization. As shown in Fig. 1(c), classic stud-86

ies [7] propose fully synchronous training mechanism in HFL87

to mitigate the long-distance communication issues in the88

cloud–edge layer training architectures. However, the device89

heterogeneity and unreliable network communication can lead90

to severe straggler problems. Recent research [8] introduces91

a fully asynchronous training mechanisms in HFL to address92

the straggler problem. While considering heterogeneity for93

the architectural organization, the asynchronous method incurs94

significant communication costs due to frequent model param-95

eter transmission and harms the training efficiency due to96

severe inconsistencies in training objectives caused by the97

data heterogeneity. Advanced HFL frameworks introduce98

the hybrid synchronous-asynchronous training mechanisms99

(the cloud-gateway asynchronous and the gateway-device syn-100

chronous) at the global system level [9], [10], significantly101

enhancing the HFL’s training capabilities. However, these102

methods are designed based on the homogeneity assumption103

at the device layer. As the scale and distribution differences104

of the devices under the gateway increase, these efforts still105

fail to mitigate the main impact of the static heterogeneity,106

namely the poor synchronization efficiency at the device level.107

Moreover, all the above studies rarely consider the dynamic108

effects of heterogeneity.109

Considering the shortcomings of the above solutions,110

we propose an improved HFL architecture, NebulaFL as111

shown in Fig. 1(d). Unlike the previous solutions, NebulaFL112

employs a synchronous-asynchronous training mechanism at 113

the global system level, innovatively further divides the 114

devices under per gateway into different logical layers (known 115

as the device-layer), and realizes a hybrid synchronous- 116

asynchronous training mechanism at the device logical layers 117

level. NebulaFL has three advantages: 1) asynchronous train- 118

ing between the logical layer of the device and the gateway 119

interaction mitigates the straggler problem caused by the 120

device heterogeneity; 2) synchronous training within the 121

logical layer mitigates the inconsistency of local training 122

objectives caused by the data heterogeneity; and 3) reduces 123

the communication overhead of frequent model transfers 124

compared to the fully asynchronous training. However, there 125

are two significant challenges to realizing efficient NebulaFL 126

as follows. 127

1) To mitigate the static impacts of heterogeneity, how can 128

we determine the optimal placement of devices under 129

specific gateways and within particular device-layers? 130

2) To alleviate the dynamic effects of heterogeneity, how 131

can we maximize the local training utility of device- 132

layers? 133

Therefore, NebulaFL proposes a series of optimization meth- 134

ods to address the above challenges and nontrivial design ideas 135

as summarized below. 136

1) We designed novel metrics based on the fine-grained 137

data and the system features to evaluate the device 138

utility, guiding NebulaFL’s decision making in hetero- 139

geneous scenarios. 140

2) NebulaFL utilizes the training utility metrics, combined 141

with an improved matching algorithm and the commu- 142

nity detection algorithm to adaptively generate efficient 143

architectural organization schemes while mitigating the 144

impact of the heterogeneity’s static nature, thereby 145

enhancing the system training efficiency. 146

3) NebulaFL employs reinforcement learning-based tech- 147

niques, integrating the training utility and convergence 148

uncertainty factors to adjust the training load of the 149

device logical layers to alleviate the heterogeneity’s 150

dynamic impacts and further improve the system training 151

efficiency. 152

4) Experiments results show that NebulaFL achieves up to 153

15.68 × speedup and up to 23.94% improvement in 154

training accuracy compared to the baselines. 155

II. PRELIMINARY 156

A. Federated Learning and Communication Mechanism 157

FL systems typically consist of an aggregation server and 158

N devices involved in training. Training is initiated after the 159

server broadcasts the training task (model) w. Each device 160

i ∈ N has a local dataset Di, containing the data samples 161

(Xi, yi) = (X1, y1), (X2, y2), . . . , (X|Di|, y|Di|), which |Di| rep- 162

resents totaling samples and Di is non-IID (not independently 163

and identically distributed). The training task defines the 164

loss function for each sample (Xj, yj) as f (w, Xj, yj), and the 165

local loss function for the device i is defined as Fi(w) = 166

(1/|Di|)∑
j∈Di

f (w, Xj, yj). Therefore, the objective of FL will 167

LIAN et al.: NebulaFL: SELF-ORGANIZING EFFICIENT MULTILAYER FL FRAMEWORK 3

be to minimize the total loss across all the devices168

F(w) =
∑

i∈N

|Di|
∑

i∈N |Di|Fi(w). (1)169

Solving Fi(w) involves executing K steps of local iterations170

using the gradient descent on the device locally. The update171

rule for the kth step is as follows:172

wk = wk−1 − η∇Fi(w)k−1 (2)173

where η > 0 is a hyperparameter representing the size of the174

update step. After completing one round locally, the device175

sends the updated parameters to the server for aggregation.176

The aggregation update method can be broadly categorized177

into synchronous and asynchronous updates. Specifically, syn-178

chronous updating means the server has to wait for the updates179

from all the devices in the current round t before performing180

aggregation. The aggregation rule for round t is181

WK,t =
∑

i∈N

|Di|
∑

i∈N |Di|wK,t. (3)182

The asynchronous mechanism does not require waiting for the183

other devices to arrive, and the aggregation rule is: WK,t =184

(1−α)WK,t−1 +αwK,t. It is worth noting that α is introduced185

to alleviate the challenge of the model staleness [4].186

B. Hierarchical Federated Learning187

Long-distance communication in the cloud-device dual-188

layer training architecture causes straggler issues [5] in189

synchronous mechanisms and high communication costs [4]190

in asynchronous mechanisms. Therefore, HFL is proposed to191

solve these problems, and it is divided into three layers: the192

cloud layer, which provides abundant computing resources193

and acts as the brain to build the HFL architecture and lead194

the training process; the gateway layer, consisting of base195

stations and routers, which serves as the intermediary hub196

connecting the cloud and edge devices; and the device layer,197

which contains many heterogeneous devices that are typically198

constrained by resources and privacy concerns.199

Assuming that there are N devices and M gateways, the HFL200

architecture can be represented as a topology graph G(M,N),201

where M � N. Assuming that the set of devices associated202

with the gateway m is defined as Nm, the objective of HFL is203

FHFL(w) =
M∑

m=1

|Dm|
∑M

m=1 |Dm|Fm
HFL(w) (4)204

where Fm
HFL(w) = ∑

i∈Nm
(|Di|/|Dm|)Fi(w) denotes the objec-205

tive on the edge node m. |Dm| is the data size of all the206

samples in Nm. The approach to address the above objectives207

is similar to the synchronous training, represented as WK,t
HFL =208 ∑

m∈M (|Dm|/[
∑

m∈M |Dm|])wK,t
m . For the devices, aggregation209

is typically done using a synchronous mechanism, represented210

as wK,t
m = ∑

i∈Nm
(|Di|/[

∑
i∈Nm

|Di|])wK,t
i .211

III. SYSTEM MODEL AND PROBLEM STATEMENT212

This section first introduces the NebulaFL architecture.213

Then, it describes the problems and challenges. In addition,214

we give the design goals and general ideas for its solution.215

Fig. 2. Training flow in one branch and all the components of NebulaFL. The
device organization scheme contains gateway-device association controller
and device layering controller. The training-load controller serves as a
supplementary weapon for performance enhancement during training.

A. Framework Overview 216

Unlike the traditional HFL, NebulaFL employs an asyn- 217

chronous aggregation mechanism at the gateway-to-cloud 218

stage and introduces an additional logical layer per gateway. 219

Devices within the same layer perform synchronous training, 220

and asynchronous aggregation is used between the device logi- 221

cal layers. Furthermore, the topology of the system is G(M,H,N), 222

where H represents the number of device layers. Meanwhile, 223

the training optimization components are designed, including 224

device-gateway association controller, device layering con- 225

troller, and training load controller. As shown in Fig. 2, we 226

comprehensively demonstrate a branch training process in 227

NebulaFL and the included optimization components. 228

The upper part of Fig. 2 shows the shift of NebulaFL from 229

the synchronous training of HFL to an asynchronous approach 230

across the cloud, gateway, and device layers while maintaining 231

the synchronization of the device layer training. During the 232

training round, devices initially perform K steps of local 233

training. Subsequently, the devices within the same logical 234

layer transmit their latest models to a gateway or a leader node 235

with optimal communication capabilities (e.g., [9]) for the 236

intralayer synchronous aggregation. Subsequently, the gateway 237

model aggregates updates from the various logical layers 238

asynchronously. After completing R rounds of asynchronous 239

iteration, the gateway forwards the aggregated model to the 240

cloud for the global asynchronous aggregation. The global 241

model is then immediately distributed to all the devices 242

through the gateway for the next round of training. This 243

training process continues for T rounds or until the target 244

accuracy (TA) is achieved. 245

To support the NebulaFL’s structure, we introduces three 246

successive optimization components as illustrated in the 247

lower part of Fig. 2. During the structure organization 248

round, devices receive pretraining instructions from the 249

cloud launcher and transmit necessary structure organization 250

information to the cloud server via nearby gateways. It is 251

important to note that, to maintain the original intent of FL, we 252

have carefully designed this information so as not to violate 253

4 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS

the privacy and security. And then the cloud server designs the254

structure organization using an association and an hierarchical255

controller. It then broadcasts the structure information to all the256

devices, specifying the layer (h) each device (i) is in within the257

gateway (m). During a training round, each gateway includes258

a load controller to increase the training load of high-utility259

devices, thereby accelerating the training progress.260

B. Problem Statement and Motivation261

This work focuses on the complete training time needed to262

reach the TA. Therefore, cost analysis of training latency and263

convergence efficiency is crucial.264

System Cost Model: For the NebulaFL topology G(M,H,N),265

the time cost of completing a training round comes from three266

primary sources: 1) device computation latency; 2) device267

transmission delay; and 3) additional idle overhead for the268

device synchronization. We model the latency to estimate269

the theoretical time required for a training round. Specifically,270

the computational latency of each device i is primarily271

influenced by the training load Ki, the training hyperparam-272

eter batchsize BS, the computation frequency fi, and the273

number of clock cycles Ci required for one iteration. The274

theoretical device latency for one iteration gateway round275

(R) is UCmp
i (r) = �(Ki/BS)� ∗ (Ci/fi). Second, the theoretical276

communication latency UCom
i (r) is mainly determined by277

the device bandwidth Bi and the size of the transmitted278

information model size |W|, additional auxiliary information279

ε, represented as UCom
i (r) = (|W + ε|/Bi). Since, NebulaFL280

performs the device layering at the end level, where the281

intralayer communication is synchronous, the latency for each282

device layer h is determined by the longest time spent by283

any device within that layer, i.e., Uh(r) = maxi∈h(U
Cmp
i (r) +284

UCom
i (r)). Therefore, the total time consumption Usystem of the285

entire training process can be formalized as286

Usystem =
T∑

t=1

Pt
m ·

∑

h∈H

Uh(r) ∀m (5)287

where Pt
m is a binary variable indicating whether the gateway288

m is involved in the global aggregation at the global round t.289

Data Cost Model: The convergence efficiency of the model290

is impacted by the data heterogeneity across the devices,291

typically due to the inconsistent optimization objectives [6]292

of the local models on different devices. Let’s consider under293

what conditions FL with the data heterogeneity can achieve294

the accuracy of a centralized model. Using the classic FL295

algorithm FedAvg, we define the device layer-aggregated296

model in the rth round of NebulaFL as wfedavg
h,r .297

1) Assume That: wfedavg
h,r = w∗

r is true and Ph
Dtrain

= PDtest ,298

where Ph
Dtrain

refers to the train set distribution at the299

layer h and PDtest means the distribution of the balanced300

test set. According to the solution rule of (3), we can301

get302

wfedavg
h,0 =

∑

i∈N

|Di|
∑

i∈N |Di|wi
0 = |N| ∗ |Dtest|

|N| ∗ |Dtest|w0 = w∗
0.303

(6)304

2) Inductive Assumption: Assume wfedavg
h,r = w∗

r is true for 305

r = k (k ∈ Z+) and Ph
Dtrain

= PDtest . We can get 306

wfedavg
h,k+1 = wfedavg

h,k − η∇
wfedavg

h,k

N∑

i=1

L

(
F
(

Xi; wfedavg
h,k

)
, yi

)
307

= w∗
k − η∇w∗

k
L

(
F
(
Xi; w∗

k

)
, yi) = w∗

k+1. (7) 308

Therefore, it can be proved by mathematical induction that FL 309

recovers the accuracy of the model when the data distribution 310

of the train set Ph
Dtrain

for each layer is approximately uniformly 311

distributed set PDtest . Similarly, the above conclusions still hold 312

for the group of devices associated with the edge gateway m. 313

Since, the model training object typically aims to minimize 314

test loss, this implies that regardless of the device association 315

or device tiering, when the data distribution within a region 316

tends toward balance, it is possible to recover or approach 317

the optimal accuracy under the IID conditions. In NebulaFL, 318

there are primarily two regions: a) the region formed by all 319

the devices under the gateway and b) the region formed by 320

each device layer within the gateway. Therefore, the difference 321

in data distribution within the two regions can be used to 322

quantify the system’s overall data cost Udata. In other words, 323

the higher the degree of data heterogeneity, the greater the 324

cost and the longer the time required to achieve the TA. We 325

present specific quantitative data distribution metrics to derive 326

Udata in Section IV-A. 327

Training Objective: The system topology G(M,H,N) is crucial 328

for minimizing the aforementioned system and data costs. 329

However, satisfying both simultaneously is challenging. For 330

instance, devices within the same group may have lower 331

system costs. However, the data distribution within the same 332

group might not be complementary, which is a common 333

scenario in the real world. Therefore, we define V as a certain 334

join relation in the topology, where V(m,h,i) denotes that the 335

ith device is partitioned into the hth device layer and that this 336

device layer is connected to the gateway m. Our ultimate goal 337

is to find a device organization structure GV that minimizes the 338

total cost CostV as much as possible, formalized as follows: 339

min
w∈{wt : t∈[0,T]}

CostGV
 min
{
βUdata + (1 − β)Usystem

}
(8) 340

s.t.

⎧
⎨

⎩

FHFL
(
wT

) − FHFL(w∗) ≤ ε

Vm,h,i ∈ {0, 1} ∀m, h, i
∑M

m=1
∑H

h=1 Vi,h,m = N ∀m, h, i
(9) 341

where w∗ is the ideal optimal model parameter. β determines 342

which cost the optimization objective is more inclined toward 343

minimizing. It is worth noting that the load parameter K in 344

the training algorithm affects the system cost and data cost of 345

the heterogeneous training system and needs to be carefully 346

tuned. Hence, to achieve the above objectives, we propose the 347

NebulaFL framework to obtain the optimal G∗
V and K∗ from the 348

perspectives of the system design and algorithm optimization, 349

respectively, to alleviate the cost challenges faced by the 350

NebulaFL simultaneously. 351

IV. NEBULAFL DESIGN 352

This section focuses on the NebulaFL’s system design, 353

which aims to enhance the model’s time-to-accuracy 354

LIAN et al.: NebulaFL: SELF-ORGANIZING EFFICIENT MULTILAYER FL FRAMEWORK 5

performance. Given the complexity of solving (8), NebulaFL355

employs three sequential optimization components: 1) train-356

ing utility evaluation; 2) architecture design solutions; and357

3) training load tuning. Evaluating training utility is funda-358

mental for the subsequent steps. The final two steps address359

the static and dynamic effects of heterogeneity optimally.360

A. Training Utility Metrics361

Despite various metrics for measuring the data heterogeneity362

in FL, methods relying on the data summaries (e.g., [12] and363

Section III-B) pose privacy risks. While the algorithms like364

Oort [11] use training loss effectively for the device selection,365

they lack deep insights into the data distribution. Moreover,366

gradient-based metrics often focus only on the immediate367

gradients [13], ignoring long-term gradient dynamics and368

diverse data learning capabilities.369

NebulaFL utilizes fine-grained gradient information from R370

rounds of local training on the edge devices to overcome these371

limitations for the data feature modeling. Inspired by the core-372

set [14] concept, this method captures gradient variations to373

reflect the data feature and model convergence. Specifically,374

we collect gradients from E epochs of local training (where375

each epoch e involves training on the entire dataset D of the376

device and E = �K/|D|�) and obtain the cross-batch gradient377

feature (σ) and the epoch-based gradient feature (ϕ):378

1) Cross-Batch Feature σi: The gradient vector for the kth379

batch in the eth epoch of training is represented as ge
k,i.380

Therefore, the cross-batch difference features σi for each381

device i is defined as the average difference in gradients within382

a round with the specific formula383

σ e
i = 1

Ke,i

Ke,i∑

k=1

(∇ge
k,i − ∇ge

k−1,i

)
, for e ∈ [1, E]. (10)384

2) Round-Based Feature ϕi: For the device i, its round-385

based difference feature ϕi measures the cumulative gradient386

difference from the 1 to the eth epoch. Let ˆ∇ge
i =387

(1/Ke,i)
∑Ke,i

k=1 ∇ge
k,i be the average gradient vector for the388

device i at the end of the eth epoch, and the calculation formula389

for ϕe
i is390

γ e
i = ˆ∇ge

i − ˆ∇ge−1
i , for e ∈ [1, E] (11)391

where ∇ge
0,i and ˆ∇g0

i represents the zero gradient vector.392

Therefore, by integrating the σi and ϕi, we can get the data393

distribution features Γi394

Γi = flatten
([

σ 1
i , σ 2

i , . . . , σE
i , γ 2

i , . . . , γ E
i

])
(12)395

where flatten(·) operation converts the gradient tensors into396

the 1-D vectors. Γi analyses the data distribution in two397

ways: 1) cross-batch variance to evaluate the training data398

heterogeneity and model adaptability and 2) round-based399

variance to assess the impact of the data distribution on400

the long-term model learning. Notably, by focusing on the401

gradients of the final layer, Γ can indirectly capture the data402

distribution characteristics while reducing the dimensions and403

simplifying the analysis.404

In addition, we evaluate the impact of the system hetero- 405

geneity on the training efficiency. Given the hyperparameters, 406

the pretraining process is iterated repeatedly to obtain the 407

average computation time Ucmp
i required to perform a round 408

of local training. Second, the communication delay is also 409

obtained during the pretraining process, which mainly consists 410

of the device transmission delay UCom
i and the propagation 411

delay RTTi,m (obtained by tools, such as ping or Traceroute). 412

Considering the uplink from the device to the gateway, the 413

communication time from the device i to the gateway m is 414

UCom
(i,m) = UCom

i + [RTT(i,m)/2]. Thus, the delay feature per 415

device
(i,m) = Ucmp
i +UCom

(i,m) and the total delay vector to all 416

the gateways m �i can be obtained 417

�i = [

(i,1),
(i,2), . . . ,
(i,M)

]
. (13) 418

The methods for obtaining the system and data character- 419

istics occur during the pretraining phase. Due to the system 420

and data fluctuations, reorganizing the devices during training 421

is often necessary [15]. NebulaFL’s flexibility allows it to 422

obtain the organizational features from the previous training 423

round easily. For instance, the data characteristics can be 424

computed from the previously transmitted parameters, and 425

the latency characteristic
(i,m) corresponds to the previous 426

training round’s duration. 427

B. Architecture Design Solutions 428

In this section, we utilize the data characteristics Γi and 429

the delay features �i from Section IV-A to measure distances 430

between the devices and servers or among devices. Then, 431

we introduce algorithms for the unified device-gateway asso- 432

ciation and adaptive device layering, focusing on the static 433

effects of heterogeneity. The distance calculation is defined as 434

follows: 435

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Γm = 1
|Nm|

∑
i∈Nm

Γi

J(i,m) = 1
2 KL

(
Γm||Γm||2 | Γi||Γi||2

)
+ 1

2 KL
(

Γi||Γi||2 | Γm||Γm||2
)

Utils(i,m) = J(i,m) ∗
(

θm
�i[m]

)I(θm≤�i[m])∗δ

(14) 436

where �m represents the average gradient characteristics of 437

all the devices associated. We use the Jensen–Shannon diver- 438

gence [16], a method that measures the similarity between 439

the two probability distributions, to calculate the similarity of 440

information vectors between the devices and gateways. This 441

allows us to quantify the overall data cost of the system, 442

J(i, m). The information vectors utilize the data distribution 443

features Γi obtained in the previous section rather than the 444

privacy-sensitive data summaries. Utils(i,m) signifies the train- 445

ing utility of the device i being associated with the gateway m. 446

θm stands for the maximum delay among the devices in �i[m] 447

that are within the top (H/N) of the delay. I is the indicator 448

function, implying whether the delay of a device exceeds a 449

certain threshold. The experiments will discuss the penalty 450

factor δ as a hyperparameter. 451

1) Device-Gateway Association: According to (8), the goal 452

of the device-gateway association is to minimize the latency 453

between the devices under the same gateway and to balance 454

the data distribution among the gateways. Previous studies 455

6 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS

Fig. 3. Introduction to architecture organization processes and algorithms.

usually assume that the gateways possess the data [10], [12]456

and can serve as the data clustering centers for efficient457

device association. However, gateways usually lack training458

data, so the traditional one-time clustering methods cannot459

associate all the devices. In addition, the new data from460

the newly associated devices can change the existing data461

distribution under the gateway, thus affecting the subsequent462

device association decisions.463

Given that the devices and gateways are distinct entities464

without direct connections between similar types, we frame465

this challenge as a bidirectional graph-matching problem466

and improve the Gale–Shapley algorithm [17] to address467

it. In our modification, the matching dynamic reflects the468

interplay between “suitor” and “sued” found in the Gale–469

Shapley algorithm. However, unlike the original one-to-one470

matching approach, our enhancement allows a gateway to471

connect with the multiple devices. A straightforward device-472

gateway association process is shown in Fig. 3 (Stage 1), and473

the complete algorithm workflow is as follows.474

Compute the Preference List: Before each iteration,475

NebulaFL calculates the training utility Utils(i,m) of the devices476

in the unmatched pool concerning the gateways according477

to (14) and generates an ordered preference list where the478

devices with higher utility values are ranked higher. We479

further introduce a preference factor to limit the number of480

devices associated with a gateway by controlling the associated481

devices’ total data samples |Dm|. This prevents a few gateways482

are associated with all the devices. Specifically, during each483

round of association, we update Utils(i,m) = D̂m × Utils(i,m),484

where D̂m = 1 + (|Dm|/|D|), to prevent the gateway overload.485

|D| is the total global data sample. Thus, for each device486

and gateway, the preference list is denoted as Plisti =487

{Utils{i,m}|m = 1, 2, . . . , M} and Plistm = {Utils{i,m}|i =488

1, 2, . . . , Nm}, respectively.489

Perform the Matching Process: Initially, when no gateways490

are matched with any devices, we set J(i,m) and D̂ to 1, as the491

gateways do not have any data characteristics. Subsequently,492

we divide all the devices in the unmatched device pool into493

multiple batches, with each batch containing the same number494

of devices as there are gateways. Devices iteratively send495

matching requests to their highest-priority gateway based on 496

their preference list Plisti. Gateways then decide whether to 497

accept the match based on their preference list Plistm. In 498

each round, each gateway accepts one device according to 499

its preference list Plistm. If a gateway has already matched 500

with a device but prefers a new incoming device, it will 501

replace the original device and return the replaced device to the 502

unmatched device pool. After completing a round of matching, 503

the devices that failed to match, update their preference lists 504

and send matching requests to the next preferred gateway 505

in the subsequent iteration. This process repeats until all the 506

devices are successfully matched with a gateway. 507

2) Device Layering: Similar to the association algorithm, 508

layering aims to achieve near uniform latencies for the 509

devices within the same layer while maximally balancing 510

the data distribution across the device layers. The Louvain 511

community detection algorithm [18] is efficient for automati- 512

cally constructing the communities through the “modularity” 513

optimization. Considering each device layer as an unique 514

community, we have developed an improved Louvain algo- 515

rithm tailored for the device layering. A straightforward device 516

layering process is shown in Fig. 3 (Stage 2), and the complete 517

algorithm workflow is as follows. 518

Weighted Network Construction: Construct a fully con- 519

nected weighted network for all the devices under each 520

gateway, where the nodes in the network correspond to the 521

devices and the weights of the edges are derived from Utils(i,j). 522

Notebly, Utils(i,j) can be equated to the “distance” between the 523

devices i and j, as defined by (14). After that, we introduce 524

a simplification mechanism: connections between any two 525

devices i and j are discontinued if Utils(i,j) surpasses the global 526

average utility Utils. 527

Modularity Optimization: Louvain’s algorithm detects com- 528

munity structure by optimizing the network’s modularity. 529

Modularity is used to measure the quality of community 530

partitioning operations. We define the layered modularity of 531

devices under each gateway m as follows: 532

Qm = 1

2 ˆUtils

∑[

Utils(i,j) − EiEj

2 ˆUtils

]

�
(
ci, cj

)
(15) 533

where Ei and Ej are the degrees of nodes i and j, respectively, 534

ˆUtils is the sum of all the edge weights in the network, and ci 535

and cj are the communities to which nodes the i and j belong, 536

respectively, and � is the Colonic function, which is 1 when 537

ci = cj and 0 otherwise. 538

The iterative process begins with each node being assigned 539

to a community that contains only itself. Next, during the 540

community migration phase, each node is iteratively checked 541

and moved to a neighboring community if it improves the 542

modularity Qm. Once further improvement of modularity by 543

moving nodes is no longer possible, the network reduction 544

phase begins, where the current communities are merged into 545

single nodes to form a simplified network with edge weights 546

summing up all the edges within the community before the 547

merge. This process is repeated on the simplified network 548

until the modularity degree reaches its maximum, ultimately 549

resulting in the original network being divided into different 550

layers. 551

LIAN et al.: NebulaFL: SELF-ORGANIZING EFFICIENT MULTILAYER FL FRAMEWORK 7

C. Training Load Adjustment552

Building on the previous design, NebulaFL is divided553

into multiple asynchronous device layers, with synchronous554

training within each layer. To further improve the training555

efficiency of NebulaFL, optimizing the training load can556

further reduce data and system costs. Although increasing the557

training load on the devices is commonly used to enhance558

efficiency and reduce communication costs, the recent studies559

indicate that uneven device loads can lead to client-drift [6],560

affecting the effectiveness of synchronized training.561

Therefore, overall training load adjustment based on the562

device-layer becomes a key strategy to improve the efficiency563

of NebulaFL. Considering the dynamic effects of dual hetero-564

geneity in the training process, it is necessary to introduce an565

intelligent agent that adjusts the training load based on the566

real-time feedback from the training. We extend the above idea567

with a reinforcement learning-based multiarm slot machine568

(MAB) strategy [19], where the goal is to learn the distribution569

of rewards for each arm and maximize the total expected570

reward after a series of actions. In NebulaFL, the training571

performance may vary with the device performance and data572

distribution across the training rounds, and the MAB algorithm573

can adapt to these changes in real time by constantly “trying574

out” different load configurations to maximize the training575

gains. MAB faces the problem of finding the optimal balance576

between exploration and utilization, which is solved using the577

extended UCB algorithm [19] as follows.578

1) Define Combined Rewards: In order to accurately579

implement a multiarmed slot machine (MAB) and effectively580

capture the dynamics of the training process, we introduce581

a combined reward (CR) mechanism that combines both the582

data reward (DR) and the system reward (SR). This concept583

draws on the treatment of training loss in Oort [11], which584

holds that a higher training loss reflects the training value of585

the device in the current configuration. Specifically, for the586

hth device layer, the DR DRh is defined as the ratio of the587

average training loss of the layer to the average loss of the588

entire gateway expressed as589

DRh(t) =
1

Rh

∑
r∈Rh

L(h,r)
(
wt

)

1
H

∑
h∈H Lh(wt)

(16)590

where Rh denotes the interaction count between the hth device591

layer and the gateway. L(h,r)(wt) denotes the average training592

loss of the hth device layer in the tth round of iterations over593

the rth round of the gateway iterations. Lh(wt) is the average594

loss of the hth device layers in round t.595

Similarly, the SR of the hth device layer is defined as the596

ratio of the average delay of the device layer h over s rounds597

of iterations to the average delay of the gateway, i.e.,598

SRh(t) =
1
Sh

∑
s∈Sh

U(h,s)

1
H

∑
h∈H Uh

(17)599

where U(h,s) is the average delay of the hth device layer in the600

sth iteration. Uh is the average delay of the hth device layer601

over all the iterations. Thus, the CR is a combination of the 602

DR and the SR, which we set 603

CRh(t) = SRh(t)

DRh(t)
. (18) 604

2) UCB Selection Strategy: The UCB strategy considers 605

the historical average returns of the selection process (utiliza- 606

tion) as well as the uncertainty (exploration) to compute the 607

upper confidence bound value to make a decision. The UCB 608

upper bound for each device layer h is calculated as follows: 609

UCBh(t) = CRh +
√

2ln�(t)

�h(t)
(19) 610

where CRh represents the average CR up to the current 611

round. This means that the adjustment of the load depends on 612

the estimation of long-term rewards, in order to reduce the 613

impact of short-term system volatility. �(t) represents the total 614

number of selections up to round t, and �h(t) represents the 615

number of times device layer h has been selected. Notably, 616

a device layer may be constantly rewarded for having a high 617

CRh(t). The UCB algorithm introduces an exploratory factor 618

through
√

([2ln�(t)]/[�h(t)]), which provides the device layer 619

that is rewarded less often with the opportunity to catch up 620

with the other device layers in order to resolve the uncertainty 621

factor in the convergence process. 622

3) Define “Arms”: An increase in load is considered a 623

reward for the device layer, and each “arm” indicates whether 624

or not a load reward is applied. NebulaFL sorts the device 625

layers in descending order by UCB(t) and looks for the max- 626

imum interval, finding all device layers before the maximum 627

interval and rewarding them. In each round, the load of the 628

selected device layer is increased to Kh ∗ (1 + π), while the 629

load of the unselected device layer is decreased to Kh∗(1−π), 630

ensuring that the load never falls below the initial level. π 631

as a hyperparameter will be discussed in the experiments. In 632

addition, �(t) and �h(t) are updated accordingly. 633

Navigating the Tradeoff: The CR in (18) achieves a balance 634

between DR and SR. As the model improves, the CR reduces 635

the DR per round through feedback on the training load, since 636

the training loss decreases over time. However, during the 637

convergence, training loss can overfit and remain nearly con- 638

stant [20], making it difficult to limit the load for the devices 639

with high DRs. The SR effectively addresses this by increasing 640

with the training load, which raises the computational delays. 641

This increase in SR then reduces the CR, preventing the 642

training load from continuously rising. Fig. 4 shows the more 643

precise feedback tuning process. 644

V. EXPERIMENT 645

A. Implementation and Setup 646

1) Experimental Platform: Due to the limited number of 647

the physical devices, we first build a heterogeneous simulation 648

platform to conduct the comparative experiments involving 649

many devices. Subsequently, we build a realistic physical 650

platform to implement NebulaFL. 651

Simulation Platform Setup: We set up the simulation plat- 652

form on a computing cluster of eight Nvidia A100 and 653

8 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS

Fig. 4. Device layer-based feedback load tuning method (load controller).

TABLE I
DATASET STATISTICS AND TASK CONFIGURATIONS

four Nvidia V100 GPUs. The platform configuration includes654

Ubuntu 20.04, CUDA 11.4, and Python 3.9. We implemented655

the NebulaFL framework using the PyTorch distributed com-656

munication library and compared it with the advanced HFL657

methods. We used an FL discrete event network simulator [21],658

which extracts the real latitude and longitude from different659

devices to obtain a realistic latency distribution. To simulate660

network uncertainty, we added the log-normal latency on the661

top of the average delay of each local training round, similar662

to what is done in Async-HFL. In this setup, we built three663

heterogeneous edge systems for different training tasks as664

shown in Table I “devices.”665

Physical Platform Setup: We constructed a physical plat-666

form to validate the effectiveness of our approach in the667

real-world scenarios. As shown in Table II, we utilized Nvidia668

Jetson TX2 devices with three different computing frequencies669

and Jetson Xavier NX devices with two different frequencies,670

highlighting the computational heterogeneity. Additionally, we671

deployed three gateways and one server across four PCs. All672

the devices are connected via WLAN to a 100 Mb/s Ethernet673

network. By applying the bandwidth limitations, each device674

is configured with different network interface bandwidths to675

simulate a realistic edge environment. All the devices are set676

up using JetPack 5.1.3, which includes Ubuntu 20.04, CUDA677

11.4, and PyTorch 1.8.678

2) Data and Model Setup: As shown in Table I, we con-679

duct experimental evaluations on the four typical datasets,680

referencing similar work [7], [9], [10], including MNIST [22],681

FMNIST [23], CIFAR10 [24], and Shakespeare [25]. For the682

data heterogeneity, we employ two commonly used partition-683

ing methods [26]: 1) Bias and 2) Dir. In bias (2), each device684

is assigned two preferred classes while maintaining an equal685

data volume across the devices. In contrast, Dir(0.5) uses the686

TABLE II
DEVICE CONFIGURATION ON PHYSICAL PLATFORMS

Dirichlet distribution parameters to flexibly adjust the statis- 687

tical heterogeneity, resulting in different clients having varied 688

sample sizes and class distributions. We trained the MNIST 689

and FMNIST datasets using the SimpleCNN [27] and the 690

CIFAR10 dataset using the ResNet18 [28] and VGG11 [29]. In 691

addition, since the Shakespeare is the textual data, a two-layer 692

LSTM is used for the training. 693

3) Baseline Setup: Based on the above platform and data 694

configurations, we compare NebulaFL with six classical or 695

state-of-the-art HFL methods. HierFAVG is an HFL scheme 696

based on communication latency, performing synchronous 697

aggregation at both the gateway and cloud levels. FedCH 698

is a latency-based HFL scheme that performs synchronous 699

aggregation at the gateway and asynchronous aggregation 700

in the cloud, using a random device selection method 701

called FedCH-random. Additionally, we combine it with the 702

state-of-the-art device selection algorithm Oort, referred to 703

as FedCH-Oort, to optimize for data heterogeneity. Hier- 704

SAFA is another latency-based HFL scheme that performs 705

semi-asynchronous aggregation at the gateway layer and asyn- 706

chronous aggregation in the cloud. The semi-synchronous 707

period, which is a challenging hyperparameter, is set to the 708

optimal result from our experiments. Async-HFL is a state-of- 709

the-art fully asynchronous FL scheme, carefully optimized for 710

device association schemes and device selection in hierarchical 711

asynchronous training. The NebulaFL scheme proposed in 712

this paper, along with its extension NebulaFL+, includes a 713

multi-arm bandit-based device workload adjustment controller, 714

supporting the ablation study of NebulaFL. 715

4) Hyperparameters and Metrics: For a fair comparison, 716

all the experiments used consistent hyperparameters, such as 717

SGD as the optimizer, a learning rate of 0.01, a batch size of 718

32 per client, and a momentum of 0.9. In each round, devices 719

perform 100 local iterations (with NebulaFL+ implementing 720

adaptive adjustment) before aggregating with the gateway. 721

The edge gateway interacts with the cloud server every ten 722

communication rounds. With a carefully designed association 723

mechanism, the framework reassociates every 20 rounds. 724

B. Experimental Results 725

1) Model Convergence Accuracy: Table III compares the 726

highest accuracy achieved by various HFL baseline methods 727

within a specific time threshold (TT) and assesses the speed- 728

up ratio relative to the fully synchronous baseline HierFAVG 729

upon reaching the TA. 730

Compared to the other training schemes, the NebulaFL 731

method achieved the best training accuracy and speed-up ratio 732

(data highlighted in bold) across most tasks, thanks to its 733

improved HFL architecture that balances the latency and data 734

LIAN et al.: NebulaFL: SELF-ORGANIZING EFFICIENT MULTILAYER FL FRAMEWORK 9

TABLE III
CONVERGENCE ACCURACY AND SPEEDUP RATIO OF ALL HFL METHODS ARE EVALUATED IN VARIOUS TASKS

Fig. 5. Convergence process and accuracy performance of different HFL methods under different tasks. (a) MNIST. (b) FMNIST. (c) CIFAR. (d) Shakespeare.

distribution. Additionally, the comparison between NebulaFL735

and NebulaFL+ showed that the adaptive load balancing at736

the device layer also played a significant role. Specifically,737

for the MNIST dataset, Async-HFL, and NebulaFL reached738

the best accuracy of 97.35% and 97.19% in the bias and dir739

partitions, respectively. At the same time, Async-HFL and740

NebulaFL had comparable speeds in the bias and dir partitions,741

achieving the best speed-up ratios of 12.65 and 15.68× relative742

to HierFAVG, thanks to the asynchronous advantage of Async-743

HFL conducting more iterations within a specific TT.744

However, the underlying success factors for these two meth-745

ods differ significantly. With complex datasets like CIFAR-10746

and Shakespeare, Async-HFL’s convergence advantage dimin-747

ishes, particularly in the bias partition, indicating its limitation748

with the complex datasets despite its effectiveness with749

simpler ones like MNIST. This suggests the need for the750

synchronous training mechanisms for more complex datasets.751

NebulaFL enhances convergence efficiency by implementing752

synchronous training within the device layers under the same753

gateway. Furthermore, FedCH-random and FedCH-Oort show754

stable training across all the tasks, with speed-ups of 5.77755

and 12.29×, respectively, in FMNIST’s Dir partition training.756

However, they only consider latency during the association757

process, overlooking how the data distribution affects accu-758

racy. Additionally, Hier-SAFA’s challenge in optimizing its759

semi-period hyperparameter leads to poorer accuracy.760

2) Model Convergence Behavior: We further studied the761

convergence behavior of the above methods. These training762

tasks employed a biased partitioning method. As shown in763

Fig. 5(a) and (b), NebulaFL excels in accelerating MNIST764

and FMNIST tasks, maintaining a significant performance765

advantage throughout training. Async-HFL performs well on766

these simpler datasets due to its rapid asynchronous iterations. 767

FedCH’s convergence fluctuates due to its latency-based rules 768

but stabilizes with more iterations. HierFAVG, using a fully 769

synchronous strategy, achieves high-quality iterations but suf- 770

fers from the straggler issues limiting its iteration count and 771

slowing down training. For the complex tasks like CIFAR-10 772

and Shakespeare [Fig. 5(c) and (d)], convergence is naturally 773

slower and more complex. Here, the performance heavily 774

depends on how the algorithms handle the data heterogeneity, 775

communication bottlenecks, and synchronization. Async-HFL 776

and Hier-SAFA struggle with the Shakespeare task and often 777

fail to reach TA in time. In contrast, FedCH-random performs 778

better, particularly with the Oort device selection algorithm 779

that considers the latency and data heterogeneity. NebulaFL 780

and its extensions consistently deliver the best overall results. 781

3) Analysis of Time Savings: Fig. 6 compares the training 782

time required for various HFL methods to achieve the target 783

accuracies across different tasks. Blue � and red � represent the 784

training times for different target accuracies, while the black 785

× indicates failure to reach the target within the given time. 786

The position of the blue stars highlights NebulaFL’s significant 787

time efficiency advantage across all the tasks with the red stars 788

showing its robust convergence in later training stages. For 789

example, on the MNIST dataset, NebulaFL saved up to 1.56× 790

the training time compared to the next best method, Async- 791

HFL, and up to 6.6× compared to the least efficient baseline. 792

The introduction of step size adjustment in NebulaFL+ further 793

enhanced these savings. For the challenging CIFAR-10 dataset, 794

NebulaFL reduced training time by 1.42× compared to the 795

next best method, FedCH-Oort. Meanwhile, asynchronous 796

methods (Async-HFL) and methods with random associations 797

10 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS

Fig. 6. Time spend to achieve TA under different tasks.

(HierFAVG or Hier-SAFA) failed to reach the TA within the798

allocated time.799

4) Analysis of Communications Savings: We record the800

communication overhead in Fig. 7, which is defined as the801

total amount of the model information transmitted during the802

training. Blue (�) and red (�) indicate the communication803

overhead needed to achieve a specific TA. Communication804

savings are generally related to the training rounds and805

the duration of rounds. Compared to Async-HFL, NebulaFL806

achieves higher quality per training round, reducing the807

number of rounds needed for the convergence and thus808

saving the communication costs. While the asynchronous809

communication requires more rounds than the synchronous810

training, it promotes rapid convergence, reducing the total811

latency. In the CIFAR10 training task, NebulaFL reduced812

communication overhead by at least 618.75 MB compared813

to the next best method, FedCH-Oort. For FedCH and Hier-814

SAFA, the lack of consideration for data heterogeneity requires815

more iterations, leading to increased communication overhead.816

For example, in the MNIST and FMNIST training tasks,817

FedCH’s communication overhead increased by 2398.92 and818

3103.12 MB compared to NebulaFL.819

5) Analysis of Robustness: Fig. 8(a) shows the conver-820

gence behavior after 20 000 s of training on MNIST with821

a 20% dropout rate per round. When devices drop out, the822

synchronization mechanism cannot detect it immediately, often823

requiring a long wait time. We set the synchronization wait824

time due to device dropout to 1.2×, the maximum device825

delay under normal operation. The asynchronous baseline826

shows a more significant convergence effect because when827

a device drops out, the fully asynchronous method (Async-828

HFL) does not affect the other devices. In contrast, NebulaFL829

limits the impact to a synchronous device layer under the830

gateway. Additionally, NebulaFL may become the preferred831

choice for the large-scale hierarchical training systems with the832

random offline devices due to its high performance in the com-833

plex tasks. To further validate NebulaFL’s high performance834

in larger systems, we conducted CIFAR10 training using835

SimpleCNN on 500 nodes and achieved similar convergence836

results as shown in Fig. 8(b). The results once again demon-837

strate NebulaFL’s effectiveness in large-scale operations.838

6) Hyperparametric Ablation: We explore the effects of839

the utility penalty factor δ in (14) and the load factor π840

in Section IV-C, respectively. The δ moderates the data841

and statistical heterogeneity among the devices and affects842

the utility value Utils(·). Fig. 9(a) and (b) show that the843

Fig. 7. Communication spend to achieve TA under different tasks.

Fig. 8. Robustness analysis. (a) Impact of device drops. (b) Impact of large
scale devices. (a) MNIST with SimpleCNN. (b) Cifar10 with SimpleCNN.

δ = 1, 2, 5 setting maintains robust accuracy. In contrast, 844

δ = 0 causes the system to prioritize the data distribution, 845

leading to longer training time per round. When δ = 10, 846

the system over-penalizes slower devices, thus increasing the 847

number of training rounds required. Therefore, an appropriate 848

δ can improve the convergence efficiency. Fig. 9(c) and (d) 849

also investigate the tuning of π , and the results show that 850

the accuracy initially improves as π increases but decreases 851

beyond a certain threshold. This suggests that there exists an 852

appropriate π range that improves accuracy without causing 853

the performance degradation [6] due to longer training time 854

per round or increased load on the device layer. 855

7) Results on Physical Platform: We trained the CIFAR10 856

dataset using a larger VGG11 model on a physical platform. 857

The runtime is set to 8000 s, with each gateway executing 858

R = 10 rounds per cloud cycle and each device performing 859

local training for E = 2 epochs. The hyperparameters were 860

consistent with those used in the simulation experiments. 861

Fig. 10(a) and (b) summarize the convergence process over 862

wall-clock time (recording 15 time-accuracy points for each 863

method), while Fig. 10(c) and (d) display resource consump- 864

tion. Notably, because of the limited number of devices, each 865

device could be allocated enough training data, resulting in 866

relatively similar performance across the methods. However, 867

NebulaFL still demonstrated a significant convergence advan- 868

tage. As shown in Fig. 10(b), NebulaFL+ achieved 80% 869

accuracy in less than 1755 s, whereas the next best baseline 870

took over 2806 s to reach the same accuracy. 871

Regarding time consumption as shown in Fig. 10(c), 872

NebulaFL used the least training time across various data 873

heterogeneity levels and maintained stable performance as 874

heterogeneity changed. Regarding communication resource 875

consumption, NebulaFL generally incurred lower overhead 876

due to its faster convergence. For example, at a Dir(0.6) 877

data heterogeneity level, NebulaFL saved 1.1 GB of traffic 878

LIAN et al.: NebulaFL: SELF-ORGANIZING EFFICIENT MULTILAYER FL FRAMEWORK 11

Fig. 9. Performance at different penalty factors δ and load tuning factors π . (a) δ value in CIFAR10. (b) δ value in MNIST. (c) π value in CIFAR10. (d) π

value in MNIST.

Fig. 10. Left two figures: convergence performance on physical platform. Right two figures: resource consumption on physical platform. (a) CIFAR10 with
Dir(0.3). (b) CIFAR10 with Dir(0.6). (c) Time consumption. (d) Communication overhead.

compared to the next best baseline, FedCH, to reach a TA879

of 78%. This efficiency is attributed to the NebulaFL’s device880

organization scheme, which accounts for the dual heterogene-881

ity. Additionally, NebulaFL+ performed even better, thanks to882

intelligent load adjustment.883

C. Discussion: Overhead and Privacy884

1) Overhead Analysis: The main reasons for additional885

overhead are the architectural organization and load-tuning886

process. In terms of computational overhead, given the limited887

number of devices and gateways, the Gale–Shapley matching888

algorithm and the Louvain layering algorithm that we use889

in our experiments can be solved in a very short period890

ranging from 3 to 10 s by utilizing the abundant computational891

power in the cloud infrastructure. As far as the communication892

overhead is concerned, it mainly consists of exchanging the893

device characteristics, data attributes, and training loss metrics894

each round. However, compared to the transmitted model895

parameters (MB/GB), this overhead (kB) is negligible.896

2) Privacy Discussion: NebulaFL optimizes the training897

architecture to enhance performance but is orthogonal to898

privacy-preserving algorithms like differential privacy and899

homomorphic encryption. Differential privacy can be applied900

at the device level by adding noise during local training,901

maintaining training efficiency, and can be independently902

integrated with NebulaFL. Furthermore, NebulaFL’s hierarchi-903

cal architecture, with distributed gateways, reduces the risk904

of single-point privacy breaches. The information sent from905

gateways to the server is aggregated model data, not raw data,906

further minimizing potential risks.907

VI. RELATED WORK908

FL [2] trains distributed models on the edge devices to909

create privacy-preserving intelligent systems and is considered910

a leading technique in the edge intelligence research [31].911

FedAvg [2] introduced a synchronous training mechanism, and912

subsequent research has focused on optimizing the data het- 913

erogeneity [32] or the system heterogeneity [33]. Innovations 914

in algorithms and system design, such as asynchronous com- 915

munication [34], weak synchronization mechanisms [35], and 916

semi-asynchronous methods [30], have improved the training 917

efficiency. Device Selection [11] can also enhance the training 918

efficiency and reduce the communication stress. However, 919

these approaches must address the IoT network challenges, 920

like long-distance and unreliable wide-area communication. 921

HFL [36] addresses the above challenges with several 922

approaches. HierFAVG [7] deploys an HFL scheme to tackle 923

long-distance communication challenges by incorporating 924

gateways, ensuring synchronized aggregation at both the gate- 925

way and the cloud levels. On the other hand, FedCH [9] 926

adopts a device performance-based HFL approach, moving to 927

asynchronous communication between the gateways and the 928

cloud to address the straggler issues and optimize the number 929

of layers. HiFlash [10] follows a similar communication mech- 930

anism to FedCH, explicitly focusing on minimizing the model 931

version inconsistencies during asynchronous updates. Async- 932

HFL [8] offers a fully asynchronous FL model, establishing 933

the benchmarks for the device association and selection in 934

asynchronous training despite ongoing challenges in asyn- 935

chronous interactions. HierFedML [37] and [38] also explore 936

the system cost minimization in multiaccess edge computing 937

(MEC) environments to minimize the training loss and round 938

delay. Meanwhile, strategies like HACCS [12] concentrate on 939

the data distribution, grouping clients with similar data patterns 940

to tackle statistical heterogeneity. 941

However, the works above often assume that the devices 942

under the same gateway tend to be homogeneous, adopting 943

synchronous or weakly synchronous aggregation for training, 944

inevitably leading to inefficient training bottlenecks. Unlike 945

these works, this article focuses on leveraging the IoT’s nat- 946

urally existing hierarchical architecture to design the efficient 947

communication mechanisms, construct more fine grained and 948

efficient device organization schemes, and related the training 949

optimization algorithms. 950

12 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS

VII. CONCLUSION951

This article proposes NebulaFL to improve the training952

efficiency in hierarchical IoT scenarios through a finer-grained953

self-organizing layering scheme and load adaptive tuning.954

Specifically, NebulaFL tackles two critical issues as follows.955

1) Optimal device placement by designing the device956

association schemes and device layering methods con-957

sidering the static impact of dual heterogeneity.958

2) Adjusting the training load of the lowest device layer by959

considering the dynamic impact of dual heterogeneity.960

Experiments show that NebulaFL significantly enhances the961

training accuracy and speed in both the simulated and physical962

systems while greatly reducing the communication costs.963

NebulaFL can be widely applied to various scenarios, such964

as online training of recommendation systems, multi-device965

collaborative inference systems, and lifelong learning systems,966

regardless of device configurations, model structures, or train-967

ing algorithms. While NebulaFL offers many advantages,968

differences in hardware and operating systems may require969

additional compatibility adjustments. We plan to use con-970

tainerization tools like Docker to simplify deployment and971

will continue to address engineering challenges in real-world972

deployments to enhance NebulaFL’s usability. We hope the973

NebulaFL framework will provide guidance and inspiration974

for distributed training across large-scale devices in the IoT.975

REFERENCES976

[1] D. Wu, W. Yang, H. Jin, X. Zou, W. Xia, and B. Fang, “FedComp:977

A federated learning compression framework for resource-constrained978

edge computing devices,” IEEE Trans. Comput.-Aided Design Integr.979

Circuits Syst., vol. 43, no. 1, pp. 230–243, Jan. 2024.980

[2] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. Y. Arcas,981

“Communication-efficient learning of deep networks from decentralized982

data,” in Proc. Artif. Intell. Stat., 2017, pp. 1–10.983

[3] B. Mao, J. Liu, Y. Wu, and N. Kato, “Security and privacy on 6G984

network edge: A survey,” IEEE Commun. Surveys Tuts., vol. 25, no. 2,985

pp. 1095–1127, 2nd Quart., 2023.986

[4] C. Xie, S. Koyejo, and I. Gupta, “Asynchronous federated optimization,”987

2019, arXiv:1903.03934.988

[5] T. Li, A. K. Sahu, M. Zaheer, M. Sanjabi, A. Talwalkar, and V. Smith,989

“Federated optimization in heterogeneous networks,” in Proc. Mach.990

Learn. Syst., 2020, pp. 429–450.991

[6] J. Wang, Q. Liu, H. Liang, G. Joshi, and H. V. Poor “Tackling992

the objective inconsistency problem in heterogeneous federated993

optimization,” in Proc. Adv. Neural Inf. Process. Syst., 2020,994

pp. 7611–7623.995

[7] L. Liu, J. Zhang, S. H. Song, and K. B. Letaief, “Client-edge-cloud996

hierarchical federated learning,” in Proc. IEEE Int. Conf. Commun.997

(ICC), 2020, pp. 1–6.998

[8] X. Yu et al., “Async-HFL: Efficient and robust asynchronous federated999

learning in hierarchical IoT networks,” in Proc. 8th ACM/IEEE Conf.1000

Internet Things Design Implement., 2023, pp. 236–248.1001

[9] Z. Wang, H. Xu, J. Liu, Y. Xu, H. Huang, and Y. Zhao, “Accelerating1002

federated learning with cluster construction and hierarchical aggrega-1003

tion,” IEEE Trans. Mobile Comput., vol. 22, no. 7, pp. 3805–3822,1004

Jul. 2023.1005

[10] Q. Wu et al., “HiFlash: Communication-efficient hierarchical federated1006

learning with adaptive staleness control and heterogeneity-aware client-1007

edge association,” IEEE Trans. Parallel Distrib. Syst., vol. 34, no. 5,1008

pp. 1560–1579, May 2023.1009

[11] F. Lai, X. Zhu, H. V. Madhyastha, and M. Chowdhury, “Oort: Efficient1010

federated learning via guided participant selection,” in Proc. Oper. Syst.1011

Design Implement. (OSDI), 2021, pp. 1–18.1012

[12] J. Wolfrath, N. Sreekumar, D. Kumar, Y. Wang, and A. Chandra,1013

“HACCS: Heterogeneity-aware clustered client selection for accelerated1014

federated learning,” in Proc. IEEE Int. Parallel Distrib. Process. Symp.1015

(IPDPS), 2022, pp. 985–995.1016

[13] Z. Li et al., “Towards effective clustered federated learning: A peer- 1017

to-peer framework with adaptive neighbor matching,” IEEE Trans. Big 1018

Data, early access, Nov. 17, 2022, doi: 10.1109/TBDATA.2022.3222971. 1019

[14] R. Tiwari, K. Killamsetty, R. Iyer, and P. Shenoy, “GCR: 1020

Gradient coreset based replay buffer selection for continual learn- 1021

ing,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., 2022, 1022

pp. 99–108. 1023

[15] N. Wang, R. Zhou, L. Su, G. Fang, and Z. Li, “Adaptive clustered 1024

federated learning for clients with time-varying interests,” in Proc. 1025

IEEE/ACM 30th Int. Symp. Qual. Service (IWQoS), 2022, 1026

pp. 1–10. 1027

[16] B. Fuglede and F. Topsoe, “Jensen-Shannon divergence and Hilbert 1028

space embedding,” Int. Symp. Inf. Theory, 2004, p. 31. 1029

[17] L. E. Dubins and D. A. Freedman, “Machiavelli and the Gale- 1030

Shapley algorithm,” Amer. Math. Month., vol. 88, no. 7, pp. 485–494, 1031

1981. 1032

[18] P. De Meo, E. Ferrara, G. Fiumara, and A. Provetti, “Generalized 1033

Louvain method for community detection in large networks,” in Proc. 1034

11th Int. Conf. Intell. Syst. Design Appl., 2011, pp. 88–93. 1035

[19] A. Garivier and E. Moulines, “On upper-confidence bound policies for 1036

non-stationary bandit problems,” 2008, arXiv:0805.3415. 1037

[20] Z. Lian, J. Cao, Z. Zhu, X. Zhou, and W. Liu, “GOFL: An accurate and 1038

efficient federated learning framework based on gradient optimization 1039

in heterogeneous IoT systems,” IEEE Internet Things J., vol. 11, no. 7, 1040

pp. 12459–12474, Apr. 2024. 1041

[21] E. Ekaireb et al., “ns3-fl: Simulating federated learning with 1042

ns-3,” in Proc. Workshop ns-3, 2022, pp. 97–104. 1043

[22] L. Deng, “The MNIST database of handwritten digit images for machine 1044

learning research [best of the web],” IEEE Signal Process. Mag., vol. 29, 1045

no. 6, pp. 141–142, Nov. 2012. 1046

[23] H. Xiao, K. Rasul, and R. Vollgraf, “Fashion-MNIST: A novel 1047

image dataset for benchmarking machine learning algorithms,” 2017, 1048

arXiv:1708.07747, 1049

[24] A. Krizhevsky and G. Hinton, “Learning multiple layers of features from 1050

tiny images,” Dept. Comput. Sci., Univ. Toronto, Toronto, ON, Canada, 1051

Rep. TR-2009, 2009. 1052

[25] S. Caldas et al., “LEAF: A benchmark for federated settings,” 2018, 1053

arXiv:1812.01097. 1054

[26] Q. Li, Y. Diao, Q. Chen, and B. He, “Federated learning on non-IID 1055

data silos: An experimental study,” in Proc. IEEE 38th Int. Conf. Data 1056

Eng. (ICDE), 2022, pp. 965–978. 1057

[27] P. Sermanet and Y. LeCun, “Traffic sign recognition with multi-scale 1058

convolutional networks,” in Proc. Int. Joint Conf. Neural Netw., 2011, 1059

pp. 2809–2813. 1060

[28] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image 1061

recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2016, 1062

pp. 770–778. 1063

[29] K. Simonyan and A. Zisserman, “Very deep convolutional networks for 1064

large-scale image recognition,” 2014, arXiv:1409.1556. 1065

[30] W. Wu, L. He, W. Lin, R. Mao, C. Maple, and S. Jarvis, “SAFA: 1066

A semi-asynchronous protocol for fast federated learning with low 1067

overhead,” IEEE Trans. Comput., vol. 70, no. 5, pp. 655–668, May 2021. 1068

[31] B. Liu, N. Lv, Y. Guo, and Y. Li, “Recent advances on federated learning: 1069

A systematic survey,” 2023, arXiv:2301.01299. 1070

[32] M. Ye, X. Fang, B. Du, P. C. Yuen, and D. Tao, “Heterogeneous feder- 1071

ated learning: State-of-the-art and research challenges,” ACM Comput. 1072

Surv., vol. 56, no. 3, pp. 1–44, 2023. 1073

[33] O. R. A. Almanifi, C. O. Chow, M. L. Tham, J. H. Chuah, and 1074

J. Kanesan, “Communication and computation efficiency in federated 1075

learning: A survey,” Internet Things, vol. 22, Jul. 2023, Art. no. 100742. 1076

[34] C.-H. Hu, Z. Chen, and E. G. Larsson, “Scheduling and aggre- 1077

gation design for asynchronous federated learning over wireless 1078

networks,” IEEE J. Sel. Areas Commun., vol. 41, no. 4, pp. 874–886, 1079

Apr. 2023. 1080

[35] J. Cao et al., “FedStar: Efficient federated learning on heterogeneous 1081

communication networks,” IEEE Trans. Comput.-Aided Design Integr. 1082

Circuits Syst., vol. 43, no. 6, pp. 1848–1861, Jun. 2024. 1083

[36] J. Yan, T. Chen, B. Xie, Y. Sun, S. Zhou, and Z. Niu, “Hierarchical 1084

federated learning: Architecture, challenges, and its implementation in 1085

vehicular networks,” ZTE Commun., vol. 21, no. 1, pp. 38–45, 2023. 1086

[37] Z. Xu et al., “HierFedML: Aggregator placement and UE assignment for 1087

hierarchical federated learning in mobile edge computing,” IEEE Trans. 1088

Parallel Distrib. Syst., vol. 34, no. 1, pp. 328–345, Jan. 2023. 1089

[38] Y. Cui, K. Cao, J. Zhou, and T. Wei, “Optimizing training efficiency 1090

and cost of hierarchical federated learning in heterogeneous mobile-edge 1091

cloud computing,” IEEE Trans. Comput.-Aided Design Integr. Circuits 1092

Syst., vol. 42, no. 5, pp. 1518–1531, May 2023. 1093

http://dx.doi.org/10.1109/TBDATA.2022.3222971

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Helvetica-Condensed-Bold
 /Helvetica-LightOblique
 /HelveticaNeue-Bold
 /HelveticaNeue-BoldItalic
 /HelveticaNeue-Condensed
 /HelveticaNeue-CondensedObl
 /HelveticaNeue-Italic
 /HelveticaNeueLightcon-LightCond
 /HelveticaNeue-MediumCond
 /HelveticaNeue-MediumCondObl
 /HelveticaNeue-Roman
 /HelveticaNeue-ThinCond
 /Helvetica-Oblique
 /HelvetisADF-Bold
 /HelvetisADF-BoldItalic
 /HelvetisADFCd-Bold
 /HelvetisADFCd-BoldItalic
 /HelvetisADFCd-Italic
 /HelvetisADFCd-Regular
 /HelvetisADFEx-Bold
 /HelvetisADFEx-BoldItalic
 /HelvetisADFEx-Italic
 /HelvetisADFEx-Regular
 /HelvetisADF-Italic
 /HelvetisADF-Regular
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

