
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 1

MaskedHLS: Domain-Specific High-Level Synthesis
of Masked Cryptographic Designs

Nilotpola Sarma , Graduate Student Member, IEEE, Anuj Singh Thakur ,
and Chandan Karfa , Senior Member, IEEE

Abstract—The design and synthesis of masked cryptographic1

hardware implementations that are secure against power side-2

channel attacks (PSCAs) in the presence of glitches is a3

challenging task. High-level synthesis (HLS) is a promising4

technique for generating masked hardware directly from masked5

software, offering opportunities for design space exploration.6

However, conventional HLS tools make modifications that alter7

the guarantee against PSCA security via masking, resulting in8

an insecure register transfer level (RTL). Moreover, existing HLS9

tools cannot place registers at designated places and balance10

parallel paths in a masked cryptographic design. This is necessary11

to stop the propagation glitches that may hamper PSCA-security.12

This article introduces a domain-specific HLS tool tailored13

to obtain a PSCA secure masked hardware implementation14

directly from a masked software implementation. This tool15

places registers at specific locations required by the glitch-robust16

masking gadgets, resulting in a secure RTL. Furthermore, it17

automatically balances parallel paths and facilitates a reduction18

in latency while preserving the PSCA security guaranteed by19

masking. Experimental results with the PRESENT Cipher’s20

S-box and AES Canright’s S-box masked with four state-of-the-21

art gadgets, show that MaskedHLS produces RTLs with 73.9%22

decrease in registers and 45.7% decrease in latency on an average23

compared to manual register insertions. The PSCA security of24

MaskedHLS generated RTLs is also shown with TVLA test.25

Index Terms—High-level synthesis (HLS), masking, power26

side-channel security, retiming.27

I. INTRODUCTION28

EMBEDDED devices implementing a cryptographic algo-29

rithm are susceptible to power side-channel attacks30

(PSCAs) [1], where an attacker uses the target device’s power31

consumption information to extract the secret values processed32

by the cryptographic algorithm. These attacks exploit the direct33

correlation between the device’s power consumption, which34

is a result of the overall transistor activity, and the compu-35

tations being performed. Masking [2] is a countermeasure36

against such attacks. Masking splits the secret inputs into37

random shares drawn independently from a uniform random38

distribution. Thereafter, all the secret input dependent com-39

putations proceed by processing these shares independently,40

Manuscript received 13 August 2024; accepted 13 August 2024. This
work was supported in part by the Semiconductor Research Corporation
Project under Grant 2022-IR-3170. This article was presented at the
International Conference on Compilers, Architectures, and Synthesis for
Embedded Systems (CASES) 2024 and appeared as part of the ESWEEK-
TCAD Special Issue. This article was recommended by Associate Editor S.
Dailey. (Corresponding author: Nilotpola Sarma.)

The authors are with the Department of Computer Science and Engineering,
Indian Institute of Technology Guwahati, Guwahati 781039, India (e-mail:
s.nilotpola@iitg.ac.in).

Digital Object Identifier 10.1109/TCAD.2024.3447223

re-randomizing computations that cause their recombination. 41

This randomizes the results of intermediate computations, and 42

hence the power consumption. Masking can be applied at the 43

hardware [2], [3], [4] and software levels [5], [6]. 44

Hardware masking must ensure resilience against the asyn- 45

chronous behavior of circuits, such as those caused by glitches 46

that may cause the recombination of shares within the circuit, 47

removing the masking security. There are hardware masking 48

verification tools [3] to verify that a handwritten masked 49

hardware design is secure. However, they are limited in 50

applicability due to gaps in the hardware masking verification 51

theory [7], which prevents the scalability of verification to 52

higher orders. Further, keeping in mind the development of 53

new masking schemes/gadgets, there is an increased need 54

for design-space exploration at the hardware level. Thus, 55

developing secure masked hardware from scratch requires 56

significant expertise in the design, verification, and design- 57

space exploration of masked designs. 58

In contrast, a software masked design is easier to obtain 59

from the algorithmic specification and easily verified [6]. 60

Therefore, ways to obtain masked hardware from the 61

corresponding masked software implementation would be 62

beneficial. This is indeed a possibility as the glitch-resistant 63

hardware masking properties are a superset of the software 64

masking properties. Also, most glitch-resistant hardware- 65

masked gadgets like domain-oriented masking (DOM) [2], 66

HPCs [8], and COMAR [4] have the same structure as 67

their software-masked counterparts with the primary dif- 68

ference being the inclusion of registers to prevent glitch 69

propagation. Thus, in order to generate PSCA-secure masked 70

hardware from masked software, a translation of gadget- 71

masked intermediate code to register transfer level (RTL) is 72

desired. That can be followed by inserting registers at well- 73

defined locations according to the masking gadget used. 74

In this regard, high-level synthesis (HLS), which automat- 75

ically generates RTL hardware from descriptions in C/C++, 76

can be helpful. A few recent works [9] aim to use HLS to 77

convert masked software to masked hardware automatically. 78

In this work, we have shown that all stages of HLS can alter 79

the security of masked circuits. They have been discussed 80

in greater detail in Section IV-A. This suggests the need 81

for a domain-specific HLS tool for masked hardware design 82

focussing on the primary objective of keeping the side-channel 83

security of the circuit intact throughout the HLS process. 84

We propose a domain-specific HLS tool called MaskedHLS, 85

which performs a security-preserving translation of software- 86

level cryptographic implementations into masked hardware. 87

Specifically, the contributions of this work are as follows. 88

1937-4151 c© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

https://orcid.org/0000-0002-8434-3574
https://orcid.org/0009-0007-3986-8447
https://orcid.org/0000-0002-3835-4184

2 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS

1) We have analyzed the impact of HLS optimizations89

and the need for domain-specific HLS for PSCA-secure90

hardware design from masked software (in Section IV).91

2) We have utilized the concept of retiming to insert92

registers in designated locations and balance parallel93

paths with optimal latency and registers for gadget-based94

masked design to protect against glitches (in Section V).95

3) The correctness of MaskedHLS is shown (in96

Section VI).97

4) A thorough experiment with PRESENT Cipher’s S-box98

and the Canright’s AES-256 S-box masked with DOM,99

HPC1, HPC2, and COMAR gadgets shows the useful-100

ness of our approach (in Section VII).101

MaskedHLS is generic enough to work on cryptographic102

implementations using any masking gadget. To the best of our103

knowledge, this is the first work that presents a complete HLS104

flow for masked hardware design from masked software in105

C/C++.106

The remainder of this article is organized as follows.107

The related works are discussed in Section II. Section III108

covers the background needed to understand the working of109

MaskedHLS. Section IV illustrates the impact of HLS on the110

PSCA security of masked designs and the motivates our work.111

Section V discusses the flow of MaskedHLS and its steps112

in greater detail. Section VI discusses the correctness of our113

tool. Section VII discusses the results of using MaskedHLS114

on the selected benchmarks. Finally, Section VIII concludes115

this article.116

II. RELATED WORKS117

Several works on HLS of cryptographic implemen-118

tations have been published [10], [11], [12]. Studies119

like [12] and [13] looked at the effects of various HLS120

optimizations on the side-channel security. However, they do121

not consider masked cryptographic implementations and the122

impact of HLS on the security guaranteed by masking.123

Sadhukhan et al. [9] demonstrated how to generate side-124

channel secure masked hardware in quick time using HLS.125

They used a 3-bit bit-sliced DOM-masked AES S-box and126

generated the Verilog (RTL) for it using the Bambu HLS127

tool [14]. They observed that HLS does not always lead to128

side-channel secure hardware. Consequently, they examined129

the pragmas in the HLS software and came up with certain130

scenarios where an unguided application of pragmas would131

lead to side-channel leakage. They then proposed remedies132

for better application of such pragmas. Recently, a study by133

Pundir et al. [15], highlighted the importance of consider-134

ing security when using HLS for hardware design. These135

works point out that no existing HLS tool considers side-136

channel leakage while performing their code transformation137

procedures. Moreover, generating secure hardware with these138

HLS tools requires a case-by-case examination of all the139

optimizations, which is a challenging task. Thus, there is140

no existing work that develops a domain-specific HLS tool141

for PSCA-secure RTL generation from masked cryptographic142

designs.143

III. BACKGROUND 144

A. Glitch-Resistant Masking 145

Hardware masking of cryptographic algorithms against 146

PSCAs proceeds by splitting the secret inputs into independent 147

random shares. For an affine component of the algorithm, 148

these shares can be computed independently of each other to 149

obtain the output shares. For instance, an ⊕ (XOR) operation, 150

as in c = a ⊕ b, can be split into c0 = a0 ⊕ b0 and c1 = 151

a1 ⊕ b1. Here, a and b are split into two shares initially 152

as (a0, a1) : (a ⊕ r1, r1) and (b0, b1) : (b ⊕ r2, r2), 153

where r1 and r2 are drawn independently from a uniform 154

random distribution. Here, a0, b0, and c0 are 0-shares and 155

a1, b1, and c1 are 1-shares. Thereafter, c0 ⊕ c1 gives the 156

correct value of c. A nonlinear operation like ⊗ (bit-wise 157

multiplication)1 such as in c = a ⊗ b, can be performed using 158

shares a0, a1 and b0, b1. But to perform the multiplication 159

operation, the four terms a0 ⊗ b0, a0 ⊗ b1, a1 ⊗ b0, and 160

a1⊗b1 must be calculated. Two of these computations, a0⊗b1 161

and a1 ⊗ b0, can not be performed without combining the 0- 162

shares with the 1-shares, violating the independence of shares 163

required for secure masking. Hence, these operations need to 164

be carefully remasked. 165

Some algorithmic tricks can be used to mask these nonlinear 166

computations to optimize the amount of remasking. For exam- 167

ple, the SecMult algorithm by Rivain and Prouff [16] proceeds 168

by calculating the term a0⊗b0 separately and then performing 169

masking with a random variable r as (a0 ⊗ b0) ⊕ r. The 170

other terms are computed as (((a1 ⊗ b1) ⊕ (a1 ⊗ b0) ⊕ 171

(a0 ⊗ b1)) ⊕ r) following the parenthesized order. This 172

requires two remasking operations leading to a correct masked 173

design. 174

However, this algorithm does not remain secure in a glitchy 175

circuit. Glitches are the phenomenon of different transition 176

times in the signals of a circuit caused by variations in wire 177

lengths and transistor speeds. As demonstrated in [17], assum- 178

ing that only one share a1 arrives later than the others while 179

all other shares arrive simultaneously, the number of times the 180

gates in the SecMult circuit change value on different values 181

of b reveals a correlation between the power consumption and 182

the value of b. Thus, masking in glitchy circuits should be 183

carefully handled. Several masking schemes were designed to 184

be resistant to glitches [2], [18], [19], [20]. 185

One approach toward glitch-resistant masking of crypto- 186

graphic hardware is replacing all nonlinear operations with 187

gadgets that are provably secure independently as well as in 188

composition. A gadget is an algorithm that takes n m-shares 189

as inputs (where n is the number of inputs to the gadget) and 190

returns a single m-shared output. A gadget-based construction 191

of a masked circuit replaces one or more nonlinear operations 192

with gadgets. Depending on the security guarantees provided 193

by the gadgets, the glitch-robust security of the gadgets in 194

composition can be guaranteed. In the following section, we 195

briefly introduce those gadgets. 196

1In this article, ⊗ and & has been used interchangeably to mean bit-wise
multiplication. ⊕ and ˆ has been used interchangeably to mean bit-wise XOR.

SARMA et al.: MASKEDHLS: DOMAIN-SPECIFIC HLS OF MASKED CRYPTOGRAPHIC DESIGNS 3

(a) (b) (c) (d)

Fig. 1. Masked multiplication gadgets (a) DOMAND, (b) HPC1, (c) HPC2, and (d) COMAR.

B. Multiplication Gadgets197

Groß et al. [2] presented DOM of hardware implementations198

of cryptographic algorithms against PSCAs. In a DOM-based199

gadget, each input share corresponds to a domain. DOM200

ensures that the computations corresponding to each share are201

carried out in their corresponding domain, and domains carry202

out computations independently of each other. In this context,203

nonlinear operations require computations across domains,204

and these cross-domain computations require remasking using205

new random values. It was observed that glitches affected the206

combination of cross-domain shares, and hence, registers are207

used at those locations. An example of a DOMAND gate208

(a multiplication gadget for one bit) is shown in Fig. 1(a).209

Here, the products containing cross-domain terms, a0⊗b1 and210

a1 ⊗ b0 are remasked using the same random value r sampled211

from a uniform random distribution after which the outputs of212

the masking gates (XOR) are registered.213

A similar class of nonlinear gadgets were introduced in [3].214

The strategy was to remask the inputs to the gadgets before215

multiplying. The HPC1 gadget, proceeds by refreshing one of216

the inputs of the DOM gadgets (with two operands) using a217

refresh (remasking) gadget. For the computation c = a ⊗ b,218

an HPC1 gadget masks both the shares of the input b as:219

(b0 ⊕ r0) and (b1 ⊕ r0) and puts a register after these masked220

inputs before being input to the DOMAND circuit. The other221

inputs a0 and a1 are put into the DOMAND circuit. The222

HPC1 multiplication gadget is shown in Fig. 1(b).223

In HPC2 [3], all the inputs that have been split into shares of224

two are registered. Thus, one register each is placed after a0,225

a1, b0, and b1 for the computation a ⊗ b in two shares. After226

that the computation is performed as follows: c0 = ((a0⊗r) ⊕227

(b1⊗r))⊕(a0⊗b0) and c1 = ((a1⊗r) ⊕(b0⊗r))⊕(a1⊗b1)228

with registers being placed at all the input shares and four229

intermediate locations. The HPC2 multiplication gadget using230

two shares is shown in Fig. 1(c).231

Fig. 1(d) represents the COMAR gadget for c = a ⊗ b. All232

the input signals are masked with the same mask bit r for the233

0-shares and r′ for the 1-shares. Four fresh mask bits r2 to r5234

are used to mask the nonlinear terms. As shown, the shared235

output is formed as c0 = (((a0⊕r) ⊗(b0⊕r′))⊕r2)⊕(((a0⊕236

r) ⊗ (b1⊕ r′))⊕ r3)⊕ (((a1⊕ r) ⊗ (b0⊕ r′))⊕ r4)⊕ (((a1⊕237

r) ⊗ (b1 ⊕ r′))⊕ r5) and c1 = r2 ⊕ r3 ⊕ r4 ⊕ r5. This gadget238

uses six masked bits which is larger than the HPC2 2-input239

AND gadget. However, all instantiated two-input COMAR-240

AND gadgets in a circuit can use the same six random241

masks.242

C. Retiming Basics 243

Retiming [21] is a widely used technique to change the 244

locations of the registers in a design without affecting the 245

input/output functionality of the design. In the following, we 246

formalize the retiming process. 247

A sequential circuit is represented by a directed graph 248

G(V, E) where each ν ∈ V is a design unit and each eu,ν ∈ E 249

is the edge corresponding to the flow of signal from the output 250

of design unit u to the input of design unit ν for any u, ν ∈ V . 251

Each edge eu,ν ∈ E has an edge weight w(eu,ν) equal to the 252

number of registers in that edge such that w(eu,ν) ≥ 0. Each 253

vertex ν ∈ V has a constant computational delay d(ν) such 254

that d(ν) ≥ 0. 255

Given a circuit represented by a directed graph G(V, E), a 256

path p is a sequence of alternating vertices and edges such 257

that each edge is a fan-out of the previous vertex in the 258

sequence such that: computational delay of the path (d(p)) 259

is the summation of the computational delays of all nodes in 260

the path. Weight of the path p, (w(p)), is the summation of 261

the weights of all the edges e ∈ E in this path. A purely 262

combinational path in a circuit will therefore have w(p) = 0. 263

The clock period (c) of a circuit can thus be written as 264

c = max
p|w(p)=0

d(p). (1) 265

A retiming label, r(ν), associated with each vertex ν ∈ V 266

indicates the number of registers moved from the outputs to 267

the input of the vertex ν associated with the retiming label. 268

Retiming is defined as assigning retiming labels r(u) to all 269

the design units u ∈ V of the circuit. If the edge weights for 270

eu,ν ∈ E in the original circuit, G, changes to an edge weight 271

wr(eu,ν) after retiming, then 272

wr(eu,ν) = r(ν) + w(eu,ν) − r(u). (2) 273

Given a target clock period c, the minimum period global 274

retiming of a circuit produces a retimed circuit subject to the 275

following constraints on the retiming labels. 276

1) Feasibility Constraint (FC): For each edge eu,ν ∈ E, 277

the edge weight wr(eu,ν) in the retimed circuit must be 278

non-negative, i.e., wr(eu,ν) ≥ 0 ∀eu,ν ∈ E. Using (2) 279

r(ν) − r(u) ≤ w(eu,ν) ∀eu,ν ∈ E. (3) 280

2) Critical Path Constraint (CPC): The delay d(p) of all 281

paths p with w(p) = 0 should be less or equal to the 282

clock period after retiming. 283

4 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS

Consider any two nodes u and ν in G. There can be multiple284

paths from u to ν. The minimum number of registers on any285

path from u to ν is W(u, ν).286

Let the computational delays of all n paths from u to287

ν having W(u, ν) registers be d(p1), d(p2), . . . , d(pn). Then,288

D(u, ν) is289

D(u, ν) = n
max
i = 1

d(pi). (4)290

With D(u, ν) > c for all paths from u to ν, r(ν) −291

r(u) + w(u, ν) ≥ 1 must hold to make the critical path’s292

computational delay ≤ c. Formally, the CPC can be restated293

as: for all paths from u to ν with D(u, ν) > c294

r(u) − r(ν) ≤ w(u, ν) − 1. (5)295

Thus, the objective of retiming is to identify the retiming296

labels r for all vertices that satisfy the constraints in (3)297

and (5). These can be solved using all pairs’ shortest path as298

described in Section V.299

IV. ANALYSIS OF THE IMPACT OF HLS ON PSCA300

SECURITY301

In this section, we first explore the impact of HLS302

optimizations on the PSCA security of masked hardware303

implementations. Following that, we discuss the need for304

automated optimal register insertion during the translation305

from masked software to masked hardware.306

A. Impact of HLS on Power Side-Channel Security307

HLS carries out various optimizations that can be used to308

obtain a area/latency-optimized RTL from C/C++ code. Thus,309

given a gadget-based masked software code, HLS converts it310

to an RTL design applying these optimizations. We observe311

that the optimizations performed by HLS during this process312

impacts the PSCA security of a masked design. Using case313

studies of VivadoHLS [22] and Bambu [14], we present a few314

instances illustrating this observation.315

1) HLS Front-End: The HLS front-end consists of the C316

compilation stage which translates the C/C++ code into an317

intermediate representation (IR) using a compiler like GCC or318

LLVM. This phase applies optimizations like expression sim-319

plification, code motion, reassociation, etc. that may hamper320

the security guarantees of the C-level masked implementation.321

Below we present a few instances of such optimizations and322

illustrate how they hamper the side-channel security of the IR.323

Reassociation: LLVM compiler reassociates some of the324

intermediate computations causing insecure recombination325

of shares within the algorithm. [9] identified this in the326

Bambu HLS tool. For the C code in Listing 3 and its327

interpretation in Fig. 3(a), the XOR gates i1 and i2 are328

required after the cross-domain products p2 and p3 for secure329

masking. However, LLVM shifts the XOR gates to mask330

the products p1 and p4 instead. The absence of these XOR331

gates at the outputs of p2 and p3 results in an insecure332

circuit. Specifically, y0 in Listing 3 is computed as y0 =333

((a0 ⊗ b1) ⊕ z) ⊕ (a0 ⊗ b0), ensuring that cross-domain334

computations are masked before recombination. Reassociation335

Listing 1. DOMAND expression

Listing 2. Resource-shared DOMAND

causes the computation to be carried out as y0 = ((a0 ⊗ 336

b0) ⊕ z) ⊕ (a0 ⊗ b1) instead. We were unable to stop this 337

optimization by LLVM using the Bambu tool version 0.9.6 338

with #pragma HLS _interface 〈variable〉 none_registered as 339

done in [9]. 340

Expression Balancing in GCC: C/C++ code is often written 341

as a sequence of operations, resulting in a long chain of 342

operations at RTL after HLS. This can increase the delay in the 343

design. By default, VivadoHLS rearranges the operations using 344

associative and commutative properties. This rearranges oper- 345

ators to construct a balanced tree, reducing delay. However, 346

such an optimization might hamper the security of the masked 347

circuit. In Listing 1 for example, we have the DOMAND 348

software masked code which gets reassociated into the expres- 349

sion: y0 = ((a0 ⊗ b0) ⊕ z) ⊕ (a0 ⊗ b1) as a result of 350

these optimizations by GCC. For integer operations expression 351

balancing is enabled by default but can be disabled using 352

the #pragma HLS EXPRESSION_BALANCE off directive as 353

shown in Listing 2. For floating-point operations, expression 354

balancing is disabled by default but may be enabled using the 355

#pragma HLS EXPRESSION_BALANCE. 356

Thus, it is clear that the designer needs precise knowledge 357

of all the optimizations to avoid such consequences. 358

2) HLS Backend—Scheduling and Resource Allocation: 359

After the preprocessing stage, based on the target clock 360

period, the scheduler decides the number of time steps and 361

the scheduled time of each operation. For example, if the 362

target clock is 10 ns for the example in Listing 2, all the 363

operations are scheduled in one clock by VivadoHLS as shown 364

in Fig. 2(b). A single-clock operation-chained datapath will 365

be generated for the single-cycle schedule of Fig. 2(b). It is 366

pointed out in [23], that such an operation chaining in the 367

datapath also introduces side-channel vulnerabilities in the 368

RTL. However, when the target clock is set to 1 ns, the design 369

is scheduled in 2 time steps as shown in Fig. 2(c). The actual 370

datapath depends on the resource optimization of the HLS 371

tool. By default, most of the HLS tools generate a pipelined 372

SARMA et al.: MASKEDHLS: DOMAIN-SPECIFIC HLS OF MASKED CRYPTOGRAPHIC DESIGNS 5

(a) (b) (c) (d) (e)

Fig. 2. Example: (a) CDFG of the behavior in Listing 3, (b) schedule for 10 ns, (c) schedule for 1 ns, (d) pipelined design, (e) resource-shared design, and
(f) controller for resource-shared design.

Fig. 3. (a) Software-masked DOMAND hardware realization. (b) Hardware-
masked DOMAND circuit with masking and balancing registers.

design as the one in Fig. 2(d) generated from the schedule373

in Fig. 2(c). On the other hand, a user can specify resource374

constraints to restrict the area of the generated hardware.375

VivadoHLS allows the specification of resource bounds using376

pragmas like #pragma HLS resource_allocation for a function377

or operation to restrict its number of instances. Consider378

the Listing 2.2 The number of multiplier instances has been379

restricted to 2 (line number 10). This results in a circuit with a380

datapath as shown in Fig. 2(e) where the resources are shared381

in a time-division multiplexed manner.382

To control the execution of the datapath, a controller FSM383

as shown in Fig. 2(f) will also be generated by the HLS tool.384

Here, in state S1, the controller will assign 〈M0M1M2〉 = 000385

to execute the operations scheduled in state S1. Similarly, it386

will assign 〈M0M1M2〉 = 111 in S2 to execute the operations387

scheduled in S2. Such controller FSM may further introduce388

glitches in the datapath as shown in [24]. The PSCA security of389

the generated RTL may be compromised due to these glitches.390

Thus, additional analysis is needed for such a controller.391

3) Discussion: Thus, it is evident that masked designs are392

restrictive in terms of allowing for design-space exploration393

via rearrangement and resource sharing. Additionally, the yet394

unexplored security vulnerabilities of the HLS optimizations395

on various other cryptographic implementations present a vast396

range of possible security vulnerabilities. However, the steps in397

converting masked software to masked hardware for state-of-398

the-art masking schemes like DOM [2], HPC [8], COMAR [4]399

primarily require an operation by operation conversion into400

RTL from the IR. This should be followed by the insertion401

of registers at proper locations in the design to stop leakage402

2Listings 1–3 are different representations of the same DOMAND behavior.
We took three variations to illustrate the various security implications of HLS.

Listing 3. DOMAND C code

due to glitches. For the DOMAND circuit in Fig. 3(b), the 403

registers r01 and r10 are required as shown in Section III. 404

Thus, it may not be advisable to use a generic HLS tool to 405

directly generate PSCA secure masked hardware. Instead, the 406

HLS process seeking to leverage the software-level masking 407

security must focus on the optimal insertion of registers. In 408

the next section, we discuss how this can be optimally done. 409

B. Motivation of Our Work 410

Given a software-level masked implementation of a crypto- 411

graphic algorithm, we need to add registers in specific places 412

in order to stop the propagation of glitches. HLS tools have 413

pragma directives to allow such annotation. 414

However, there is no guarantee that an HLS tool will not 415

choose to enforce these pragmas due to the other constraints. 416

For example, the Bambu HLS Version 0.9.6 ignored the 417

#pragma HLS none_registered when applied on our example 418

in Listing 3. Further, a design may have many parallel paths. 419

To preserve the latency of the circuit, after the insertion 420

of registers in specific paths, the parallel paths would also 421

require register insertion. For example, consider the circuit 422

given in Fig. 3(a). This circuit corresponds to the DOMAND 423

software specification in Listing 3. DOM-masked hardware 424

requires the insertion of registers r01 and r10, as shown in 425

Fig. 3(b). With only these two registers, the inputs to the 426

gates y0/y1 have different latency. This will results in incorrect 427

circuit behavior. Thus, the balancing registers r00 and r11 428

must be inserted. Fig. 3(b) is the circuit corresponding to an 429

HLS-C input annotated as in Listing 4. For bigger circuits, 430

6 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS

Fig. 4. Example to illustrate the need for optimal register balancing in
masked circuits.

there may be many parallel paths. Therefore, register anno-431

tations that facilitate register insertion in parallel paths need432

automation.433

For register insertion in multiple locations, the number of434

balancing registers and the design latency must be minimized435

as well. Consider the circuit in Fig. 4. Let us assume that the436

registers numbered 4, 5, 9, and 12 are required by a masking437

scheme for security. To insert registers 4 and 5, registers 1–3438

and 6–8 need to be inserted to balance the parallel paths.439

Now, inserting registers 9 and 12 will require the insertion of440

registers 10 and 11 to balance the paths at gates 11 and 12.441

Thus, a total of 12 registers need to be inserted, resulting in442

an overall latency of 2. However, careful examination of the443

circuit reveals that registers 1, 2, 7, 8, 10, and 11 can be444

optimized out. With the other 6 registers (3–6, 9, and 12) the445

circuit has an overall latency of 1 and all the parallel paths in446

the circuit are balanced. This illustrates the need for optimal447

register balancing in masked circuits.448

In our opinion, modern HLS tools perform too many449

optimizations which are counter-productive for PSCA secure450

hardware generation. There should be one-to-one translation451

from the C code to RTL. Moreover, register insertion and452

balancing are the most important measures to stop the propa-453

gation of glitches while maintaining minimum register usage454

and latency. None of the existing HLS tools can do these455

tasks in an automated way. This calls for a domain-specific456

HLS tool for masked designs. Such a tool would not create457

vulnerabilities due to HLS and retain the security properties458

required while performing register balancing automatically. In459

this work, we have developed an automated register balancing460

approach at behavioral level using the concept of retiming [21].461

The concept of retiming is presented in Section III-C.462

V. PROPOSED MASKEDHLS FLOW463

A common approach toward masking cryptographic imple-464

mentations is to replace the unmasked operations in the overall465

implementation with masked gadgets. The state-of-the-art466

masked gadgets like DOMAND, HPC1, HPC2, and COMAR467

discussed in Section III-B have locations for the insertion of468

registers. These masking gadgets at hardware and software469

differ only in the presence of registers for the hardware470

case. The registers ensure glitch-resistant masking. Thus, in471

conversion from software to hardware-masked designs we472

need to annotate the software-masked code with directives for473

the placement of registers. In VivadoHLS we could realize this 474

by defining a template class template < classT > T reg(Tx) 475

and using it akin to a function call. In addition to inserting 476

registers in specific locations, we also need to identify an 477

optimal number of pipelined states and the registers required 478

to balance parallel paths as discussed above. Our proposed 479

MaskedHLS does exactly that while ensuring the PSCA- 480

security of its output. 481

The input to MaskedHLS is a software implementation 482

of a cryptographic algorithm that has been masked using 483

gadgets. The gadgets have locations for register insertion for 484

glitch-robust masking and these locations are indicated in 485

the input software implementation using annotations. Given 486

these inputs, MaskedHLS identifies the minimum possible 487

pipeline stages in the circuit satisfying all necessary register 488

requirements specified by the annotations. In the next step, 489

the register balancing module of MaskedHLS identifies all 490

locations in parallel paths where registers need to be added. 491

This produces an annotated C code on which MaskedHLS 492

performs a one-to-one translation into RTL code with registers 493

inserted in all the places as required by masking as well 494

as balancing. Finally, MaskedHLS creates a pipelined RTL 495

design. The overall flow of MaskedHLS is shown in Fig. 6. 496

The steps are discussed in detail below. 497

A. Register Balancing at Behavioral Level 498

Given an unmasked software implementation in C/C++, 499

the masked software is obtained by replacing the nonlinear 500

operations with the corresponding gadgets according to the 501

masking scheme. The masking gadget/scheme specifies where 502

registers must be inserted to maintain PSCA security in 503

the corresponding hardware. These locations are indicated 504

by annotations in the C/C++ input as 〈lhs of operation〉 505

= reg(〈rhs of operation〉). We need to put a register in 506

those locations and balance parallel paths automatically, with 507

minimum pipelined stages. To do so, the annotated C code is 508

converted into an abstract syntax tree (AST). This AST has 509

the same structure as the graph definition of the sequential 510

circuits described in Section III-C. We develop a method that 511

creates a special model of the AST and utilizes retiming logic 512

on it to achieve the above goal. 513

Let us consider that the target clock period is c in hardware 514

implementation. For a given software code, the target clock 515

period is always known. The AST is modified as follows to 516

create the HLS model. 517

1) Adding Source and Sink Nodes: A source node is added 518

to the AST for all the inputs with edge weights 0, and 519

a sink node is added for all the output nodes with edge 520

weights 0. 521

2) Adding a Back-Edge: A directed edge is added from the 522

sink node to the source node. 523

Such a model will allow us to add the additional registers 524

in the back edge, and later, balancing will move them into 525

the desired locations. In the created HLS model, we make the 526

following changes to enable register balancing. 527

1) Adding Dummy Nodes: After each node ν ∈ V , which 528

has an annotation for a register insertion succeeding it, 529

a dummy-node ν′ is inserted. 530

SARMA et al.: MASKEDHLS: DOMAIN-SPECIFIC HLS OF MASKED CRYPTOGRAPHIC DESIGNS 7

(a) (b) (c) (d)

Fig. 5. (a) AST before retiming. (b) HLS-model with back edge. (c) HLS-model after retiming (retiming labels shown in parenthesis). (d) Final circuit after
removing dummy nodes and back edge.

Fig. 6. Flow of MaskedHLS tool.

2) Assigning Computational Delay to Nodes: The nodes ν,531

after which registers must be added, and the dummy532

nodes ν′ are assigned computational delay of d(ν) =533

c and d(ν′) = c, respectively. All other nodes u ∈ V534

apart from the ones assigned a computational delay of535

c in the previous step are assigned computational delay536

d(u) = 0.537

Any path p involving the edge eν,ν′ , will have a delay538

of 2c. Therefore, such a path will fail to meet the target clock539

period of c. Hence, a register must be inserted in that path at540

the location between ν and ν′ to meet the CPC required for541

minimum period global retiming as defined in Section III-C.542

By virtue of retiming, a register will be added in the parallel543

paths as well.544

For the example in Listing 3, a HLS model is constructed in545

Fig. 5(a). One dummy node is inserted following each white-546

colored node (cross-domain nodes) and colored white as in547

Fig. 5(b). Assuming the target clock period is 1, all white-548

colored nodes are assigned the computational delay d(ν) = 1.549

For all other nodes, the computational delay d(u) = 0.550

B. Finding the Maximum Number of Register Annotations in551

Path552

Among all the paths in the HLS model between the source553

node and the sink node, the maximum number of annotations554

for register insertion, thereafter referred to as maximum extra555

regs, is identified using a depth first search (DFS). Before556

being translated to RTL, the HLS model should contain these557

many registers in all parallel paths between source and sink.558

Therefore, maximum extra regs will determine the latency of559

the generated RTL. These extra registers are added as weight560

in the back edge between the source and the sink. For all other561

edges, the edge weight is assigned to zero. The HLS model is562

obtained from the C code, which initially had no registers.563

C. Calculation of Retiming Constraints564

For each node, we consider the retiming label r(ν). FCs are565

calculated for each edge eu,ν and CPCs are calculated for each566

TABLE I
FCS FOR THE CIRCUIT IN FIG. 5(B)

TABLE II
CPCS FOR FIG. 5(B)

(a)

(b) (c)

(d)

Fig. 7. (a) DOMAND-composed circuit. (b) Part of a circuit with two register
insertions in series. (c) Register insertion in series. (d) Register insertion in
series using an extra register.

path from u to ν such that D(u, ν) > 1. For the HLS model 567

in Fig. 5(b), the FCs are shown in Table I and some of the 568

CPCs are shown in Table II. 569

D. Inserting Registers in Series 570

In gadget based masking a situation may thus arise where 571

a single path contains two locations where registers need to 572

be inserted. Consider the two DOMAND gadgets composed 573

with each other in Fig. 7(a). To make the Gadget1-Gadget2 574

combination composable, the registers r20 and r21 must be 575

inserted as shown in Fig. 7(b). The target clock is c = 1. If 576

we want to insert registers after gates 1 and 2 then we have to 577

specify retiming constraints on both of them, thus, inserting 578

8 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS

a dummy node after each of them, as shown in Fig. 7(c).579

Now the d(ν) values for the nodes become d(1) = 1, d(1d) =580

1, d(2) = 1, and d(2d) = 1. The D(u, ν) values are now:581

D(1, 1d) = 2, D(1d, 2) = 2, and D(2, 2d) = 2. Thus, these582

3 edges e1,1d, e1d,2, and e2,2d violate the CPCs. Hence, 3583

registers are placed into the circuit at locations where w =584

1 in Fig. 7(c). Here, the register between nodes 1d and 2585

is not needed, and as a result, the circuit is not balanced586

with minimum latency. The adding dummy nodes step from587

Section V-A is updated by the addition of these steps to588

address this issue as follows.589

1) A redundant register at the edge between 1d and 2 is590

deliberately inserted into the HLS model. This causes591

the critical path from 1d → 2 to break into two paths592

that meet the target clock c = 1. This register is later593

removed after retiming.594

2) To ensure that this register is not moved by retiming,595

it is locked with two nodes at its input and output,596

respectively. After the dummy node 1d, two other nodes597

R1i and R1o are inserted. Similarly for node 2d.598

3) Register-lock constraints are added for each R.599

r(RIn) == r(ROut). This constraint ensures that the600

number of registers moved into the edge eRIn,ROut equals601

the number of registers moved out of this edge. This602

means registers can move across this edge without603

affecting the existing edge weight; thus, it locks the604

register.605

This results in the AST in Fig. 7(d) and the subsequent steps606

can be performed on it.607

E. Finding the Retiming Labels608

To find the values of retiming labels that satisfy these609

constraints, we construct a constraint graph as follows.610

1) For each retiming label r(ν), a node ν′ is created.611

2) If N is the number of nodes in the circuit, a N + 1th612

node is created.613

3) For each inequality r(u) − r(v) ≤ k, an edge v′ → u′
614

from the nodes v′ to u′ of weight k is drawn. It is possible615

that k < 0 for some set of retiming labels.616

4) For each node v′ ∈ V ′, an edge N + 1 → v′ from the617

nodes N + 1 to the v′ with weight 0 is drawn. At this618

point, the graph is guaranteed to not contain any negative619

edge cycle as shown in Lemma 2.620

Using Lemma 1, the shortest path from N + 1 to any node621

v′ will give the correct retiming label corresponding to v′.622

Since, there are no negative weight cycles in the constraint623

graph G′ (as shown in Lemma 2), we can apply the Dijkstra’s624

single-source shortest path algorithm to obtain the retiming625

labels r(v). The retiming labels obtained as a solution for626

the HLS model in Fig. 5(b) are shown (within parenthesis)627

for each vertex in Fig. 5(c). The retiming labels satisfying all628

the constraints will give us the correct locations in the circuit629

where registers have to be inserted. The register balanced630

design obtained using these r(v) values is shown in Fig. 5(d).631

After retiming, all dummy nodes and edges are removed.632

MaskedHLS will generate a register balanced C code from633

this HLS model. The register balanced, annotated C code,634

corresponding to Listing 3 is shown in Listing 4. It may be635

Listing 4. DOMAND with register annotations.

noted that registers are added in the designated locations and 636

in all parallel paths. 637

F. Generating Pipelined RTL Design 638

The final phase of MaskedHLS takes the register-annotated 639

C-code obtained from the previous step and generates RTL 640

from it. This translation of C-code to Verilog is done via a 641

one-to-one mapping from the AST at C to RTL. The tool 642

places registers according to the annotations in the C-code. 643

Our tool does not apply any optimizations in the process. This 644

effectively creates a pipelined RTL design with the number of 645

pipeline stages equal to the maximum number of registers in 646

a path (as identified in Section V-B). 647

VI. CORRECTNESS OF MASKEDHLS 648

In this section, we prove the correctness of our regis- 649

ter balancing approach in MaskedHLS. We also show that 650

MaskedHLS add minimum number of pipelined stages. 651

Lemma 1: The shortest path from N + 1 to v′ in the 652

constraint graph will give the retiming label satisfying the 653

constraints. 654

Proof [(By Induction) Base]: There is a direct edge form 655

N+1 to each vertex v′ with weight 0. If this edge is the shortest 656

path from N + 1 to v′, then the retiming label r(v′) = 0. It 657

means there will be no registers moved across v′. 658

Now, assume the shortest path to v′ is through u′, i.e., N + 659

1
0−→ u′ −k−→ v′ is the shortest path. The edge eu′,v′ came from 660

the retiming constraint r(v′) − r(u′) ≤ −k. The retiming label 661

of u′ must be 0. So the value of the shortest path to v′, i.e., 662

−k will satisfy the constraint. 663

Inductive Step: Now assume we have another vertex u′ in 664

the constraint graph with a direct edge to v′ with the edge 665

weight wu′,v′ = l. Let the shortest path to u′ of length −m 666

(from the base case m ≥ 0) already exist and be equal to the 667

value of the retiming label of u′: r(u′) = −m. Therefore, given 668

this node u′, the shortest path from N + 1 to v′ either passes 669

through u′ or does not. 670

Case I: The shortest path from N + 1 to v′ is the path 671

N + 1
0−→ v′. The direct edge from N + 1 to v′ is the shortest 672

path. Therefore, w(N +1
−m−−→ u′ l−→ v′) ≥ w(N +1

0−→ v′) =⇒ 673

−m + l ≥ 0. Putting the value of r(u′) = −m in this equation 674

we get: l + r(u′) ≥ 0 =⇒ 0 − r(u′) ≤ l =⇒ r(v′) − r(u′) ≤ l 675

which is the constraint on the vertex v′. Hence, the constraint 676

is satisfied in this case. 677

SARMA et al.: MASKEDHLS: DOMAIN-SPECIFIC HLS OF MASKED CRYPTOGRAPHIC DESIGNS 9

Case II: The shortest path from N + 1 to v′ is N + 1
−m−−→678

u′ l−→ v′. So the shortest path’s weight is −m+ l. Here, r(v′) =679

−m+l. Now, we have to show that the constraint on v′, r(v′)−680

r(u′) ≤ l is satisfied with the retiming constraints. Putting681

the value r(v′) = −m + l in the constraint’s RHS we have682

r(v′)−r(u′) =⇒ −m+ l−(−m) =⇒ l which is ≤ l. Hence,683

the constraint for this case is satisfied.684

To find the correct set of retiming labels, a solution to the685

constraint graph must be found. The shortest path algorithm686

can be used for that purpose. For shortest path to give a687

solution, which is a correct set of retiming labels, the graph688

should contain no negative weight cycles as otherwise no689

solution can be reached using shortest path.690

Lemma 2: The constraint graph contains no negative weight691

cycles.692

Proof Idea: We start by considering a hypothetical negative693

weight cycle C in the constraint graph, the weight of which694

is: wC = ∑
i wi,i+1, where wi,i+1 denotes the weight of the695

edge ei,i+1 in C. We observe that for any cycle C in the696

HLS model, there is one or more (due to CPCs there may697

be multiple edges in the constraint graph corresponding to698

one edge between two nodes in the HLS model) cycle in the699

constraint graph derived from that cycle. Also, since there are700

no loops in the input circuit, thus the only cycles in the HLS701

model will contain the edge esink,src. Hence, for each cycle702

in the constraint graph, there exists an equivalent path in the703

HLS model from src → sink. The weights along this path704

represent the number of registers moved across the vertices in705

the path, which is the total number of registers contained in the706

path. Since a circuit cannot have a path from input to output707

with a negative number of registers, the sum of weights along708

the path must be non-negative. By removing the edge esink,src709

from cycle C, we obtain a path from source to sink in the710

HLS model. The sum of weights along this path must also be711

non-negative. However, the weight of cycle C is negative. This712

leads to a contradiction. Thus, our initial assumption of the713

existence of a negative weight cycle in the constraint graph is714

false.715

At this point, it is noteworthy that our register balancing716

procedure will always terminate with a solution. It will never717

be the case that an infeasible set of constraints is generated718

for which there is no solution possible. As discussed in719

Section V-B, we identify the maximum number of registers720

needed in a path and assign that as the weight of the edge721

between the source and the sink. These registers adequately722

satisfy all constraints. In Lemma 3 we prove the termination723

of our procedure.724

Lemma 3: Register balancing will always terminate with725

a solution resulting in the same latency as the number of726

registers inserted into the back edge.727

Proof: Let the circuit obtained via register balancing using728

our method be C. Let the maximum extra regs value we have729

obtained after the DFS of the AST with the annotations be m.730

For a minimal latency circuit, we need to have a circuit with731

m registers in all parallel paths. Say our circuit C has m + k732

registers in a parallel path after register-balancing. Then, our733

circuit C will have an un-optimal latency. We have to prove734

that such a scenario will never be reached by our register 735

balancing procedure. So let us assume there is a path p after 736

retiming with a weight w(p) = m + k for some k > 0. Then, 737

for this path src → vi → vi+1 → · · · → vN → sink, following 738

from the convention of retiming rules in Section III-C where 739

weight of each edge before retiming is w(ej,j+1) and after 740

retiming are wr(ej,j+1), we have: 741

wr(esrc,vi) = r(vi) − r(src) + w(esrc,vi) 742

wr(evi,vi+1) = r(vi+1) − r(vi) + w(evi,vi+1) 743

· · · 744

wr(evN ,sink) = r(sink) − r(vN) + w(evN ,sink). 745

Adding them all, we get the weight of the path w(p) to be, 746

wr(esrc,vi) + wr(evi,vi+1) + · · · 747

+ wr(evN ,sink) = w(p) = r(sink) − r(src) 748

=⇒ r(sink) − r(src) = m + k. 749

Since we must move the registers from the sink → src 750

edge into the path p via retiming, therefore r(src) = −m. 751

r(sink) = 0. Therefore, following from above, r(sink) − 752

r(src) = m + k =⇒ 0 − (−m) �= m + k, which is a 753

contradiction. Thus, our initial assumption is wrong. Hence, 754

retiming results in a circuit with an optimal latency. 755

Lemma 4: Retiming does not change the PSCA security of 756

the circuit. 757

Proof: The retiming procedure only inserts registers at 758

the locations annotated in the input C code and the locations 759

requiring balancing. Introducing registers at locations other 760

than the locations annotated (balancing registers) does not 761

compromise the security. Since we lock all the existing 762

registers using register locking constraints, retiming will not 763

move any existing registers. Therefore, there is no removal, 764

insertion or movement of any circuit components during 765

register-balancing that can impact the security guaranteed by 766

masking. Hence, retiming does not impact the PSCA security 767

of the circuit. 768

A. Complexity Analysis 769

The complexity of MaskedHLS is upper bound by the com- 770

plexity of the register-balancing procedure. The calculation of 771

the D and W matrices together takes O(n3) time where n is 772

the number of nodes in the AST of input. This is because 773

they can be obtained using all pairs shortest-path. Following 774

that, the FCs are obtained for each edge of the graph in 775

O(n2) [as the number of edges in a graph is O(n2)] and CPCs 776

for each edge eu,v where D(u, v) > c which is at most 777

O(n2). These constraints are then modeled using a constraint 778

graph which is linear in the number of constraints which is 779

O(n2). These constraints are solved again using the Dijkstra’s 780

algorithm on the constraint graph which takes O(n3) (i.e., V + 781

E, |V| = n) here n is the number of nodes in the original 782

HLS model. Therefore, the time complexity of the balancing 783

procedure is O(n3) in the number of nodes in the retiming 784

model n. 785

10 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS

TABLE III
RESULTS FOR MASKEDHLS

VII. EXPERIMENTAL RESULTS786

A. Implementation and Benchmark Details787

MaskedHLS makes use of Pycparser [25] to parse the788

AST of the input C-code on which the balancing procedure789

and the one-to-one transformation to RTL are performed.790

We have tested MaskedHLS on four different variants of the791

PRESENT Cipher’s 4-bit S-box [26] and Canright’s AES-792

256 S-box [27] masked using four different gadgets: 1) the793

DOMAND gadget; 2) the HPC1 gadget; 3) the HPC2 gadget;794

and 4) the COMAR gadget, respectively. The source code of795

MaskedHLS is available on github.3796

B. MaskedHLS Synthesis Results797

Table III presents the results of MaskedHLS on all the798

eight test-cases. The runtime of MaskedHLS is dependent on799

the number of nodes being processed. Specially, MaskedHLS800

takes an average of 54 s on the AES S-box designs with801

an average of 1795 nodes; and an average of 0.48 s on802

the PRESENT S-box designs with an average of 422 nodes.803

AES_COMAR took a significantly longer time to synthesize804

using MaskedHLS due to the higher number of constraints805

generated during register balancing due to a higher number of806

critical paths in the design for AES_COMAR compared to the807

other AES S-box designs. The major part of the time is taken808

in register balancing.809

In Table III, the number of registers annotated initially for810

gadgets (#ann_regs) and the number of additional registers811

inserted by MaskedHLS for balancing (#bal_regs), the total812

number of registers (#total_regs) and the lines of code in input813

C (#C) and RTL (#RTL) are also shown. As seen in Table III,814

the runtime of MaskedHLS on a 6-core Intel i7-8700 CPU815

operating at 3.20 GHz is less than 1 s for all PRESENT816

S-boxes and less than two min for all AES S-boxes.817

The generated RTLs from MaskedHLS were synthesized818

to netlists using Synopsys design compiler (DC) using the819

TSL18FS120 cell library from Tower Semiconductor Ltd. at820

180 nm technology node. To ensure that the downstream syn-821

thesis tool does not impact the security of the generated RTL822

via optimizations, we added commands (like set_dont_touch)823

in the synthesis script. To compare the area and latency824

overhead due to balancing, the gadget-based masked c-codes825

for all designs sans the registers were synthesized to RTL.826

These, too, were converted to netlist using the Synopsys DC827

with the same library. The area and latency data from the DC’s828

synthesis report were obtained for both versions of the designs829

while constraining the circuit to use only and, xor and invert830

3https://github.com/nilotpolas/MaskedHLS

TABLE IV
AREA AND TIMING OVERHEAD COMPARISON WITH DESIGNS WITHOUT

REGISTERS

TABLE V
COMPARISON OF REGISTER AND LATENCY SAVINGS USING MASKEDHLS

AND MANUAL METHODS

gates and registers wherever necessary. Table IV shows the 831

comparison of total area and timing for all the designs against 832

the versions without registers. It may be observed that the area 833

has increased by 2.97 and 6.85× on an average for PRESENT 834

S-boxes and AES S-boxes, respectively, after inserting the 835

register. We have also added area and timing results for the 836

AES S-box and PRESENT S-box designs in their native form 837

(without masking) to show the area overhead due to masking 838

(first row in each set of results in Table IV). The area overhead 839

of Masking is 5.9, 9.4, 11.5, and 9.5× for PRESENT S-box 840

masked using DOM, HPC1, HPC2, and COMAR, respectively. 841

For the Canright’s AES S-box masked using DOM, HPC1, 842

HPC2, and COMAR, the area overhead due to masking is 33.1, 843

56.3, 41.3, and 48.9×, respectively. This increase in area is 844

because of the additional registers added by HLS. This is also 845

due to the fact that the technology mapping for a pipelined 846

design does not allow for much area optimization versus the 847

combinatorial circuits of the designs without registers which 848

get largely optimized. The clock period (in ns) for designs 849

generated by MaskedHLS is less due to the pipeline stages 850

added through registers. 851

C. Register Balancing Results 852

MaskedHLS optimizes balancing registers and hence leads 853

to a decrease in the number of registers in the RTL versus 854

the circuit derived via conventional methods as discussed in 855

Section IV-B. As can be seen in Table V, on an average over 856

both PRESENT S-box and AES S-box designs combined, 857

MaskedHLS results in an RTL with 73.9% lesser number of 858

registers and 45.7% less latency while ensuring PSCA-security 859

versus the conventional approach where registers are placed 860

in all parallel paths manually without any optimization as 861

SARMA et al.: MASKEDHLS: DOMAIN-SPECIFIC HLS OF MASKED CRYPTOGRAPHIC DESIGNS 11

Fig. 8. T-values for: (a) PRESENT_unmasked. (b) PRESENT_DOMAND. (c) PRESENT_HPC1. (d) PRESENT_HPC2. (e) PRESENT_COMAR. (For each
design, the x-axis contains T-values and the y-axis contains the number of sample points per plaintext.)

Fig. 9. TVLA values versus the number of traces: (a) PRESENT_ unmasked. (b) PRESENT_DOMAND. (c) PRESENT_HPC1. (d) PRESENT_HPC2.
(d) PRESENT_COMAR. (For each design, the x axis contains T-values and the y-axis contains the number of traces for which that TVLA value was observed.)

Fig. 10. TVLA values versus the number of traces. (a) AES_unmasked. (b) AES_DOMAND. (c) AES_HPC1. (d) AES_HPC2. (e) AES_COMAR. (For each
design, the x-axis contains T-values and the y-axis contains the number of sample points per plaintext.)

proposed in this work. This result affirms our objective of862

obtaining minimum latency and registers.863

D. PSCA Security Analysis864

It is necessary to verify that the output produced by865

MaskedHLS is indeed secure. We performed the test-vector866

leakage analysis (TVLA) [28] of the power traces of RTL867

obtained through MaskedHLS and compared them with those868

of unprotected (unmasked) design. Each RTL design was com-869

piled into netlist using Synopsys DC and TSL18FS120 cell870

library. Then, the netlist was simulated using a testbench in the871

Synopsys VCS simulator. The switching activity of the circuit872

was dumped into the value change dump (VCD) file. We873

then used Synopsys PrimeTime, which used netlist generated874

through DC and VCD file generated through VCS compiler,875

giving the power traces in fast signal database (FSDB) format.876

After that, Synopsys Custom WaveView tool was used to877

extract power traces in CSV format from the FSDB file. On878

this data, we applied the conventional TVLA method [28]879

to obtain the t-values. The t-value corresponding to one880

plaintext for all PRESENT designs is shown in Fig. 8. Clearly,881

the unprotected design is leaking. Among the PRESENT882

S-box designs, PRESENT_HPC1 and PRESENT_COMAR883

are more secure compared to PRESENT_DOMAND and884

PRESENT_HPC2 whose t-value exceeded ‖4.5‖ in 18% and 885

16% cases, respectively. 886

We extracted power traces ranging from 5000 to 100 mil- 887

lion. The objective was to check how good the protection was. 888

The higher the number of traces for which the t-value does 889

not cross the threshold of ‖4.5‖, the more secure the design 890

is. Fig. 9 shows the trend of TVLA-values for this experiment 891

for the PRESENT designs. The unprotected design crosses 892

the ‖4.5‖ mark for around 6000 traces. Whereas the COMAR 893

and HPC1-masked designs are secure upto 1.3 million traces. 894

The threshold value crosses the ‖4.5‖ mark for around 220 895

thousand traces for DOMAND and around 600k for HPC2. 896

HPC2 uses lesser random variables as compared to HPC1 as 897

shown in Fig. 1(c). The design with COMAR is the most 898

secure among all gadgets available. The experimental results 899

are aligned with the theoretical analysis of the gadgets. 900

We also performed TVLA on the output of VivadoHLS [22] 901

on the DOMAND and COMAR masking gadget protected - 902

PRESENT S-box. It can be seen in the results in Fig. 11(a) 903

and (b) that the security is significantly lesser (20k and 800k 904

traces, respectively), in terms of number of traces to obtain a 905

correlation, compared to MaskedHLS output (≥ 200k traces 906

and ≥ 1.3 million traces, respectively). We observed similar 907

results for PRESENT S-box using other gadgets (HPC1 and 908

HPC2). However, due to space limitations, we could not add 909

12 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS

Fig. 11. TVLA values versus number of traces for: (a) PRESENT_DOMAND
and (b) PRESENT_COMAR, both synthesized using VivadoHLS.

all results. This reaffirms our motivation for a domain-specific910

tool for PSCA-secure designs. Also, to test the efficacy of911

our tool on bigger benchmarks, we have tested MaskedHLS912

on the Canright’s AES S-box [27] masked using the DOM,913

HPC1, HPC2, and COMAR gadgets. The TVLA results914

show that the key could not be revealed up to 1 million915

traces for AES_DOMAND, 30 million traces for AES_HPC1,916

40 million traces for AES_HPC2, and 100 million traces917

for COMAR as shown in Fig. 10. The result for COMAR918

corresponds to the claims reported in the original proposal919

of the COMAR gadget [4]. Thus, our experiments clearly920

show that MaskedHLS generates PSCA-secure RTL from the921

masked software code.922

VIII. CONCLUSION923

Secure masked hardware design is a nontrivial task that924

requires significant time and expertise. Therefore, obtaining925

masked hardware from masked software using HLS is ben-926

eficial. We have shown that the existing HLS actually does927

not guarantee the PSCA security of the generated RTL. To928

address this shortcoming, we have developed MaskedHLS to929

generate PSCA secure RTL from the masked software version930

of the cryptographic designs. Experiments with two S-boxes931

for four gadgets show that MaskedHLS save on an average932

73.9% of registers and 45.7% of latency as compared to933

the conventional processes. The TVLA analysis affirms the934

PSCA security of generated RTLs. The state-of-the-art PSCA-935

secure hardware design [7] focuses on reducing the number of936

registers, design latency and randomness. In this regard, having937

minimum balancing registers is crucial. MaskedHLS generates938

RTL that uses minimum latency and registers to achieve939

PSCA security. In future, we plan to integrate randomness940

optimization strategies into MaskedHLS.941

ACKNOWLEDGMENT942

The authors would like to thank Sujeet Narayan Kamble943

and Mr. Thockchom Birjit Singha for their help in the944

implementation of some parts of MaskedHLS.945

REFERENCES946

[1] P. Kocher, J. Jaffe, and B. Jun, “Differential power analysis,” in Proc.947

AICC, 1999, pp. 388–397.948

[2] H. Groß, S. Mangard, and T. Korak, “Domain-oriented masking:949

Compact masked hardware implementations with arbitrary protec-950

tion order,” Cryptol. ePrint Arch., IACR, Bellevue, WA, USA,951

Rep. 486/2016, 2016.952

[3] G. Cassiers, B. Grégoire, I. Levi, and F.-X. Standaert, “Hardware private 953

circuits: From trivial composition to full verification,” IEEE Trans. 954

Comput., vol. 70, no. 10, pp. 1677–1690, Oct. 2021. 955

[4] D. Knichel and A. Moradi, “Composable gadgets with reused fresh 956

masks—First-order probing-secure hardware circuits with only 6 957

fresh masks,” Cryptol. ePrint Arch., IACR, Bellevue, WA, USA, 958

Rep. 1141/2023, 2023. 959

[5] J. Blömer, J. Guajardo, and V. Krummel, “Provably secure masking of 960

AES,” in Proc. SAC, 2004, pp. 69–83. 961

[6] A. Moss, E. Oswald, D. Page, and M. Tunstall, “Compiler assisted 962

masking,” in Proc. CHES, 2012, pp. 58–75. 963

[7] T. Moos, A. Moradi, T. Schneider, and F.-X. Standaert, “Glitch-resistant 964

masking revisited: Or why proofs in the robust probing model are 965

needed,” IACR Trans. Cryptograph. Hardw. Embedded Syst., vol. 2019, 966

no. 2, pp. 256–292, 2019. [Online]. Available: https://tches.iacr.org/ 967

index.php/TCHES/article/view/7392 968

[8] G. Cassiers and F.-X. Standaert, “Trivially and efficiently composing 969

masked gadgets with probe isolating non-interference,” IEEE Trans. Inf. 970

Forensics Security, vol. 15, pp. 2542–2555, 2020. 971

[9] R. Sadhukhan, S. Saha, and D. Mukhopadhyay, “Shortest path to secured 972

hardware: Domain oriented masking with high-level-synthesis,” in Proc. 973

ACM/IEEE DAC, 2021, pp. 223–228. 974

[10] S. Inagaki, M. Yang, Y. Li, K. Sakiyama, and Y. Hara-Azumi, 975

“Examining vulnerability of HLS-designed Chaskey-12 circuits to power 976

side-channel attacks,” in Proc. 23rd ISQED, 2022, p. 1. 977

[11] E. Ozcan and A. Aysu, “High-level synthesis of number-theoretic 978

transform: A case study for future cryptosystems,” IEEE Embedded Syst. 979

Lett., vol. 12, no. 4, pp. 133–136, Dec. 2020. 980

[12] L. Zhang, D. Mu, W. Hu, Y. Tai, B. Jeremy, and R. Kastner, 981

“Memory-based high-level synthesis optimizations security explo- 982

ration on the power side-channel,” IEEE Trans. Comput.-Aided 983

Design Integr. Circuits Syst., vol. 39, no. 10, pp. 2124–2137, 984

Oct. 2020. 985

[13] S. C. Konigsmark, D. Chen, and M. D. Wong, “High-level syn- 986

thesis for side-channel defense,” in Proc. IEEE 28th ASAP, 2017, 987

pp. 37–44. 988

[14] C. Pilato and F. Ferrandi, “Bambu: A modular framework for the high 989

level synthesis of memory-intensive applications,” in Proc. 23rd FPL, 990

2013, pp. 1–4. 991

[15] N. Pundir, S. Aftabjahani, R. Cammarota, M. Tehranipoor, and 992

F. Farahmandi, “Analyzing security vulnerabilities induced by high- 993

level synthesis,” ACM J. Emerg. Technol. Comput. Syst., vol. 18, no. 3, 994

pp. 1–22, 2022. 995

[16] M. Rivain and E. Prouff, “Provably secure higher-order masking of 996

AES,” in Proc. CHES, 2010, pp. 413–427. 997

[17] B. Bilgin, “Threshold implementations: As countermeasure against 998

higher-order differential power analysis,” Ph.D. dissertation, Res. Inf., 999

Univ. Twente, Enschede, The Netherlands, May 2015. 1000

[18] S. Nikova, C. Rechberger, and V. Rijmen, “Threshold implementa- 1001

tions against side-channel attacks and glitches,” in Proc. ICICS, 2006, 1002

pp. 529–545. 1003

[19] E. Prouff and T. Roche, “Higher-order glitches free implementation 1004

of the AES using secure multi-party computation protocols,” in Proc. 1005

CHES, 2011, pp. 63–78. 1006

[20] B. Bilgin, B. Gierlichs, S. Nikova, V. Nikov, and V. Rijmen, 1007

“Higher-order threshold implementations,” in Proc. ASIACRYPT, 2014, 1008

pp. 326–343. 1009

[21] K. K. Parhi, VLSI Digital Signal Processing Systems: Design and 1010

Implementation. New York, NY, USA: Wiley, 2007. 1011

[22] “AMD; Vivado HLS,” 2022. [Online]. Available: https://www.xilinx. 1012

com/products/design-tools/vivado.html 1013

[23] S. Inagaki, M. Yang, Y. Li, K. Sakiyama, and Y. Hara-Azumi, “Power 1014

side-channel attack resistant circuit designs of ARX ciphers using high- 1015

level synthesis,” ACM Trans. Embedded Comput. Syst., vol. 22, no. 5, 1016

pp. 1–17, 2023. 1017

[24] A. Raghunathan, S. Dey, and N. K. Jha, “Register transfer level power 1018

optimization with emphasis on glitch analysis and reduction,” IEEE 1019

Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 18, no. 8, 1020

pp. 1114–1131, Aug. 1999. 1021

[25] E. Bendersky, “PyCParser C parser and AST generator written in 1022

Python,” 2012. [Online]. Available: https://pypi.org/project/pycparser/ 1023

[26] A. Bogdanov et al., “PRESENT: An ultra-lightweight block cipher,” in 1024

Proc. 9th Int. Workshop CHES, Vienna, Austria, Sep. 2007, pp. 450–466. 1025

[27] D. Canright, “A very compact S-box for AES,” in Proc. Int. Workshop 1026

Cryptograph. Hardw. Embedded Syst., 2005, pp. 441–455. 1027

[28] G. Becker et al., “Test vector leakage assessment (TVLA) methodology 1028

in practice,” in Proc. ICMC, 2013, p. 13. 1029

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Helvetica-Condensed-Bold
 /Helvetica-LightOblique
 /HelveticaNeue-Bold
 /HelveticaNeue-BoldItalic
 /HelveticaNeue-Condensed
 /HelveticaNeue-CondensedObl
 /HelveticaNeue-Italic
 /HelveticaNeueLightcon-LightCond
 /HelveticaNeue-MediumCond
 /HelveticaNeue-MediumCondObl
 /HelveticaNeue-Roman
 /HelveticaNeue-ThinCond
 /Helvetica-Oblique
 /HelvetisADF-Bold
 /HelvetisADF-BoldItalic
 /HelvetisADFCd-Bold
 /HelvetisADFCd-BoldItalic
 /HelvetisADFCd-Italic
 /HelvetisADFCd-Regular
 /HelvetisADFEx-Bold
 /HelvetisADFEx-BoldItalic
 /HelvetisADFEx-Italic
 /HelvetisADFEx-Regular
 /HelvetisADF-Italic
 /HelvetisADF-Regular
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

