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Abstract—With the development of wireless communication1

technology, complex and dynamic scenarios pose great challenges2

to the Quality of Service (QoS) of wireless communication,3

especially in indoor scenarios. The quality of beam management4

can be greatly improved if signal ray-tracing module is embedded5

in wireless devices to handle synthetic multipath transmissions6

in real time. In this article, a novel reflection path derivation7

algorithm for ray tracing of signal beams is proposed, which8

builds the core mechanism of the proposed FPGA accelerator for9

ray tracing: by decomposing the computation of the entire ray10

path into mutually independent subproblems associated with the11

respective planes involved in the reflection and implemented by12

independent processing element on FPGAs, the parallelization of13

the entire ray tracing is realized, which significantly improves the14

convergence speed of the ray tracing; meanwhile, a new high-15

level synthesis workflow corresponds to the proposed algorithm16

and hardware architecture is proposed, which opens the door17

on synthesizing embedded hardware dedicated for robust and18

real-time wireless communication. After validation, the method19

proposed in this article can generate FPGA accelerator for20

real-time ray-tracing effectively, which achieves ray-tracing sim-21

ulation in milliseconds.22

Index Terms—Beamforming, FPGA, high-level synthesis23

(HLS), real-time ray tracing.24

I. ENVIRONMENTAL AWARENESS IN WIRELESS25

COMMUNICATION AND RAY TRACING26

W ITH the booming development of communication27

technologies, the resulting increase in frequency and28

bandwidth poses challenges to the robustness of the Quality29

of Service (QoS). For example, in indoor scenarios, due to30

the complexity of the environment (e.g., placement of furni-31

ture, movement of people, etc.), the multipath transmission32

effect caused by multiple reflections of signals on reflection33

planes has a significant impact on beam tracking and link34

maintenance [1]. This effect is especially true for beamforming35

techniques of antenna arrays: by focusing the signal power in36

a specific direction through beamforming to compensate for37
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Fig. 1. Ray-tracing simulation showing the effect on beams when the door is
suddenly opened: Beamformer should re-establish the link between transmitter
(TX) to receiver (RX) that was disconnected by the outage. (a) Before door’s
opening. (b) After door opens.

the path loss due to frequency increase, the signal coverage 38

is greatly enhanced and the data rate is also increased. 39

While this is an advantage over omni-directional antennas, 40

it also introduces complex tracking mechanisms for dynamic 41

targets. When transmitting in complex indoor environments, 42

the multipath effect makes beam management more difficult, 43

and the beamformer (beam management unit) must detect, 44

predict and select the optimal direction for transmission, 45

which is highly dependent on the environment, and once the 46

environment suddenly changes, such as opening the door, 47

causing the original beam configuration to fail, the beamformer 48

has to re-establish the link, which causes link outage and 49

affects the QoS of the communication, as shown in Fig. 1. 50

Therefore, if the wireless devices can sense the dynamic 51

changes in the environment through sensors, such as depth 52

cameras/LiDARs, the impact on signal propagation can be 53

efficiently simulated by the virtualized digital twin, as shown 54

in Fig. 2, in order to derive the optimal beamforming config- 55

urations for current situation. 56

In the field of wireless communication, ray-tracing technol- 57

ogy is widely used due to its low cost and high accuracy, 58

meeting the needs of the virtualized digital twin in wireless 59

devices. In [2], authors experimentally confirmed that ray- 60

tracing simulation results can well match real measurements. 61

In their experiment, 87% of the received signal strengths 62

were predicted with an error of less than 3 dB, and all 63

the simulations had an error of less than 5 dB. In addition, 64

[3] and [4] also made a similar conclusion, that is, the 65

simulation of wireless communication scenarios by ray tracing 66

can accurately extract critical parameters (e.g., received signal 67

strength, path loss, power delay profile, etc.) that matches real 68

measurements, which demonstrates practicality of ray tracing 69

to help in design aspect of wireless communication. 70
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Fig. 2. Digital twin of ray tracing in wireless device (here is the wireless
router): Objects in the scene are organized into dynamic and static, and are
annotated in red and green, respectively. The motion of dynamic objects is
fully explored in the digital twin and the resulting consequences are simulated
by ray tracing, which guides the wireless device to sufficiently master the
possible situations in the dynamic scene and to perform correctly in commu-
nication settings, such as antenna array and beamforming configurations.

In this article, the real-time performance of the ray-tracing71

routine impacts greatly on the immediacy of the digital twin,72

i.e., the ray-tracing calculations should be done in milliseconds73

to ensure that the simulation results are correctly and timely74

assisted for the actual beamformer configuration. Reference [5]75

used point cloud data (PCD) as a static simulation scenario76

and utilized NVIDIA frameworks for acceleration. Although77

the computation rate was improved by 49.8 times compared78

with that without GPU acceleration, it is still inapplicable to79

the embedded real-time systems as targeted by this article due80

to the long ray-tracing execution time (487 s). Reference [6]81

also accelerated ray tracing via GPUs, which, although 1682

times faster than using CPUs for computation, still did not83

meet the millisecond simulation requirements targeted by our84

article (ray tracing finished in 8756ms in [6]). Furthermore,85

the experimental results in [7] also showed that rationally86

optimizing the ray-tracing algorithm and parallelizing it using87

GPUs can effectively accelerate the simulation, resulting in the88

computational time consumed for ray tracing being reduced89

to within a few seconds, which, however, clearly falls short90

of the millisecond level of elapsed time in ray tracing that we91

expect.92

For widely used shooting-and-bouncing-rays (SBRs) algo-93

rithm in ray tracing, it is necessary to traverse all reflection94

planes to derive the correct ray-plane intersection points95

given by the incident vectors, which is recursively computed96

until the rays approach the RX to obtain the final set of97

paths. Calculating the intersection of rays and scatters in98

SBR algorithm occupies more than 90% of the computation99

time [8], so if the scatters which are likely to intersect with the100

rays at a certain direction are known in advance, it will speed101

up the computation significantly. For indicating interplane102

visibility relationships, Liu and Guo [9] and Hu et al. [10]103

proposed a new data structure called Virtual Source Tree,104

in which the possible paths can be obtained through routing105

from transmitter (TX) to receiver (RX). While a ray-tracing106

simulation of an outdoor street grid scene can be done in 2107

s if the potential reflection paths obtained by routing in the 108

VST in advance, again, the experimental results of this article 109

clearly did not meet the millisecond timing requirements we 110

propose. 111

Compared with ray tracing in static environments, dynamic 112

scenes lead to more complex ray tracing due to the 113

dynamic changing of positions and attitudes of the reflec- 114

tion planes involved in signal reflection. Hussain and 115

Brennan [11], [12], [13] derived the rules for updating the 116

interplane visualization relations for linear motion in accor- 117

dance with the principles of geometrical optics (GOs) with 118

the assistance of the proposed intravisibility matrix, which 119

greatly improves the ray-tracing efficiency in processing 120

scenes with dynamic motion, resulting in an acceleration of 121

ray tracing for typical urban scenes for V2X application, 122

reducing the processing time to few seconds (indicator τit in 123

the papers). However, compared to the V2X scenarios where 124

vehicles follow fixed paths, indoor scenarios with random 125

object movements (e.g., movement of people, opening and 126

closing of doors, placement of furniture and objects, etc., 127

all affecting the final signal propagation and being simulated 128

by ray tracing) require more complex geometrical processing 129

in order to determine the interplanar visualization relations, 130

which should be implemented in an efficient way for the ray- 131

tracing simulation on the digital twin for real-time processing. 132

From the above discussion of the existing work, it can 133

be concluded that although the ray-tracing algorithms are 134

optimized by improving the data structure and accelerating 135

the ray-tracing routines in parallelization with the support 136

of GPUs, the various ray-tracing methods proposed in the 137

existing work still fail to satisfy the timing requirements (in 138

our article is milliseconds) and computational speeds of real- 139

time ray tracing for the applications that we expect to be 140

applied in the virtualized digital twins in wireless devices. On 141

the one hand, this is due to the angular sweeping mechanism 142

in the implemented SBR algorithm, i.e., the SBR algorithm 143

meaninglessly consumes the vast majority of the runtime for 144

the exclusion of noncritical paths: for example, sweeping the 145

space with one-degree angular interval at TX yields 180 × 146

360 = 64 800 rays. However, the final result leaves only one 147

ray (ideally) as the critical path, which has the lowest path- 148

loss/propagation delay and thus contributes the most to the 149

signal propagation and channel states; the vast majority of the 150

remaining rays are regarded as noncritical paths, which are 151

discarded in the final ray-tracing results, yet the computation 152

of which takes up the vast majority of the runtime. On the other 153

hand, GPU acceleration uses batch processing to parallelize 154

the same operations, which is not suitable for forward-serial 155

ray-tracing computations: coordinates of the next intersection 156

point and the direction in the next round of iteration depend on 157

the forward calculation from the previous round of iterations. 158

And most of the reflections in the batch will not lead the ray 159

to the end point RX, which, however, cannot be eliminated 160

earlier in the forward computation. 161

Therefore, in order to improve the ray tracing applied on 162

embedded wireless devices for real-time simulation, this article 163

first proposes a novel algorithm for reflection path deriva- 164

tion, i.e., the iterative path convergence (IPC) algorithm. By 165
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decomposing the overall derivation of one potential reflection166

path into mutually independent subproblems related to the167

individual planes involved in reflection, the computation of168

the reflection path is parallelized and globally accelerated.169

Meanwhile, since geometric operations, such as projection170

of vectors, are involved in each subproblem routine, we171

propose to instantiate the geometric operations involving each172

plane in the IPC algorithm using independent processing173

elements (PEs) in order to map the parallelization of the IPC174

algorithm to physically parallel circuits on FPGA. The main175

contributions are as follows.176

1) An IPC algorithm for computing signal reflection paths177

is proposed, which is designed for parallel processing of178

the ray paths and easy to implement in hardware;179

2) An high-level synthesis (HLS) workflow is proposed:180

geometric data of the scene is compiled to obtain weak181

visibility relationship networks (WVRN) and used to182

infer potential reflection paths; the IPC algorithm is then183

achieved on FPGA to accelerate ray-tracing speed to184

meet the timing requirement of milliseconds for real-185

time embedded applications;186

3) The idea of embedding real-time ray-tracing platform187

in wireless devices is not to reconstruct the signal188

propagation (e.g., reconstruct radiation pattern) in a tar-189

get scene together with high-precision physical models190

(e.g., frequency bands, path-loss models, reflective plane191

materials and reflection coefficients, etc.), but rather to192

assist in beamforming for faster and more effective beam193

management: by quickly calculating potential signal194

reflection paths, the ray directions can be graded based195

on path length, reflection order, and reflection angle,196

thereby effectively assisting beamforming by filtering197

out the beam steering angle that has the greatest impact198

on signal propagation.199

4) To the best of our knowledge, the HLS workflow200

proposed in this article is not covered by any existing201

work, which opens the door on synthesizing embedded202

hardware dedicated for robust and real-time wireless203

communication, especially for real-time beam manage-204

ment; the objective of our proposed HLS workflow is205

to provide a new solution targeting environment sensing206

and processing in 6G wireless communications aided by207

hardware-software co-design.208

II. ITERATIVE PATH CONVERGENCE ALGORITHM209

The most important aspect of ray tracing is the calculation210

of the reflection paths of the signal between the reflection211

planes. Based on the obtained reflection paths applied to signal212

models one can derive information, such as path loss, phase213

shift, time delay, etc., according to which the beamformer214

(i.e., beam management unit) can adjust the weight matrix215

of the antenna array to achieve beam steering. For an Nth-216

order reflection path (Path1) as shown in Fig. 3, there are217

involved reflection planes {�1,�2, . . . , �N}, set of ray-plane218

intersection points on each planes {s1, s2, . . . , sN} ⊂ S where219

each point sn = [xn, yn, zn]T , n = 1, 2, . . . , N is represented220

by the 3-D coordinates in vector form, and fixed terminals221

Fig. 3. Signal propagation via reflection: Nth-order reflection path (Path1)

with the involved reflection planes {�1,�2, . . . , �n}; another first- and
second-order reflection paths Path3 and Path2 consist of {�1} and {�1, �2}
as reflection planes, respectively.

{s0, sN+1} ⊂ S which are, respectively, recognized as TX 222

and RX coordinates. Then the plane �n should satisfy the 223

Householder transformation 224

Hn(sn−1 − sn) = α(sn+1 − sn) (1) 225

where Hn is the Householder matrix of plane �n and α is 226

the ratio of the modulus of the incident vector −−−→snsn−1 to the 227

reflected vector −−−→snsn+1 228

α = ||sn − sn−1||
||sn+1 − sn|| . (2) 229

The reversed incident vector −−−→snsn−1 and the reflected vector 230−−−→snsn+1 should, respectively, be related to the normal vector of 231

the plane en as follows: 232

||sn−1 − sn|| = eT
n (sn−1 − sn)

cos θi
(3) 233

||sn+1 − sn|| = eT
n (sn+1 − sn)

cos θr
(4) 234

in which cos θi ≡ cos θr is fulfilled when the reflection at sn 235

exists. Thus, the ratio α in the Householder equation could be 236

derived as 237

α = ||sn−1 − sn||
||sn+1 − sn|| =

eT
n (sn−1 − sn)

eT
n (sn+1 − sn)

= mn

nn
(5) 238

where mn = eT
n (sn−1 − sn) and nn = eT

n (sn+1 − sn) represent 239

the distance from sn−1 and sn+1 to the reflection plane �n, 240

respectively. 241

Substituting (5) into (1), then the intersection point sn could 242

be described after rearranging as 243

sn = (mnI − nnHn)
−1(mnsn+1 − nnHnsn−1) (6) 244

where I represents a 3× 3 identity matrix. 245

Thus, the predicted value of sn+1 can be derived from sn 246

represented by sp
n+1 as 247

sp
n+1 =

1

mn

[
nnHnsn−1 + (mnI − nnHn)sn

]
. (7) 248

Meanwhile, the calculated value of sn+1 described as sc
n+1 249

should satisfy 250

sc
n+1 = (mn+1I − nn+1Hn+1)

−1(mn+1sn+2 − nn+1Hn+1sn) (8) 251
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which formulates a constrained optimization problem as252

minimize∀si∈S,i=1,2,...,N

N∑

n=1

||sp
n+1 − sc

n+1||253

subject to sn ∈ �n, n = 1, 2, . . . , N (9)254

which implies that each intersection point should satisfy the255

minimum difference between the predicted and computed256

values at convergence of the path, where each point is257

constrained to be within the boundary of the corresponding258

plane. Although this constrained optimization problem can be259

solved by transforming it into Karush–Kuhn–Tucker condi-260

tions (KKT conditions) by applying the Lagrange multiplier261

method, the solution process is complex and not conducive to262

FPGA applications. In order to solve the above constrained263

optimization problem efficiently, we design an iterative method264

in the proposed IPC algorithm, where the computation of the265

overall path is decomposed into iterative computation for the266

ray-plane intersection point sn on each scattering plane �n, and267

the computation on each plane is independent to the others:268

the overall solution can thus be transformed into separate269

subproblems that can be solved in parallel for easy hardware270

implementation.271

At each intersection point sn ∈ S satisfies272

sn = f (sn−1, sn+1;�n), n = 1, 2, . . . , N (10)273

namely, the coordinates of the intersection point sn on �n274

are computed from the leading and following points on the275

reflection path (sn−1 and sn+1, respectively), as shown in276

Fig. 3; tn−1 and tn+1 are the projection points of sn−1 and sn+1277

on the plane �n, respectively; ln is the distance between the278

two projection points on the plane and kn is the distance from279

the projection point pn−1 to sn, then the following relation is280

obtained due to the Theorem of Similar Triangles:281

�sn−1tn−1sn ∼ �sn+1tn+1sn ⇒ (11)282

mn

nn
= kn

ln − kn
⇔ kn

ln
= mn

mn + nn
(12)283

sn = tn−1 + kn
tn−1 − sn

||tn−1 − sn|| = tn−1 + ln
mn

mn + nn
el (13)284

with el indicates the direction of the vector −−−−−→tn−1tn+1. Thus, the285

coordinates of the ray-plane intersection point can be obtained286

by the leading and following points on the path, which287

leads to an intuitive solution for the mentioned constrained288

optimization problem: through iterations the new coordinates289

of intersection points s1, s2, . . . , sN in the reflection path PN290

can be updated in parallel (or sequentially in software imple-291

mentations) until the displacement of the new coordinates with292

respect to the old ones is less than threshold εN , which depicts293

computation convergence, as shown in Algorithm 1.294

The IPC algorithm traverses all potential ray paths, where295

each path consists of the index numbers of the planes involved296

in the reflection sorted by the order of the reflection. On the297

reflection path Pi, i = 1, 2, . . . , the first point s0 and last point298

sN+1 are fixed TX and RX coordinates, respectively, and the299

remaining points si, i = 1, 2, . . . , N correspond to ray-plane300

intersections on each plane involved in the reflection. Iterations301

are performed after initializing each point. The stopping rule302

Algorithm 1: IPC Algorithm on One Nth Order Reflection
Path

Input: Terminal points TX and RX, list of bounded reflection
planes � = {�1, �2, ...}, list of potential reflection
paths P = {P1, P2, . . .}, convergence threshold εN

Output: List of confirmed ray paths in exact coordinates Q
1 s0 ← TX
2 sN+1 ← RX
3 Q← ∅
4 while P �= ∅ do
5 path← pop(P)
6 	←∞
7 Initialize intersection points si, i = 1, 2, . . . , N
8 while 	 > εN do
9 for 1 ≤ i ≤ N ‖ do

10 planeIndex← path[i]
11 ω← �[planeIndex]
12 snew

i ← fIntersectionPoint(si−1, si+1;ω)

13 	← 	+ ||snew
i − si||

14 si ← snew
i

15 	← 1
N 	

16 if ∀i ∈ N, si ∈ �[path[i]] then
17 Q← Q ∪ {s0, s1, ..., sN , sN+1}
18

19 return Q

Algorithm 2: Compute Ray-Plane Intersection Point
fIntersectionPoint

Input: Leading and following points sn−1 and
sn+1,respectively; target reflection plane �n

Output: Ray-object intersection point (sn) on the given plane
�n

1 tn−1 ← Projection of sn−1 on �n
2 tn+1 ← Projection of sn+1 on �n
3 mn ← ||sn−1 − tn−1||
4 nn ← ||sn+1 − tn+1||
5 ln ← ||tn+1 − tn−1||
6 el ← tn+1−tn−1

ln
7 sn ← tn−1 + ln

mn
mn+nn

el
8 return sn

ensures that the error of the coordinates calculated for each 303

intersection points finally converges to εN . Calculating and 304

updating the new coordinates of the intersection points on 305

each reflection plane is implemented in parallel, without any 306

demand on the order of reflections. The function fIntersectionPoint 307

calculates new coordinates of the intersection points on the 308

given reflection plane by the leading and following points, 309

as shown in Algorithm 2 and (10)–(13). The error between 310

the newly computed coordinates and the old coordinates 311

for each point is accumulated and averaged for fitting the 312

iterative stopping rule indicated by εN . After the ray path 313

has converged, it is necessary to ensure that each intersection 314

point is within the boundary of the corresponding plane in 315

order to determine the validity of the given potential path. All 316

potential paths given by the list P are checked for validity 317

and further recorded by the list Q only for confirmed paths, 318

which is returned for subsequent processing. As an example to 319

demonstrate the convergence of iterative paths, a third-order 320
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Fig. 4. Example for IPC algorithm: With fixed TX and RX the reflection
paths will gradually converged: clearly the intersection converges as the
iterations proceed. (a) Reflection path derivation using IPC. (b) Convergence
in computing intersection points.

reflection path is shown in Fig. 4. The purpose of the IPC321

is to derive the coordinates of the ray-plane intersections in322

each of the planes based on an ordered sequence of reflection323

planes (here is TX → {�1 → �2 → �3} → RX) in the324

space connecting the TX and RX. After each intersection has325

been initialized, a round of path iteration is launched: the326

intersection point s0
1 on the plane �1 is updated to a new value327

s1
1 based on the current coordinates of TX and s0

2, while at the328

same time s0
2 is computed to an updated value s1

2 based on s0
1329

and s0
3, and s0

3 is updated to a new value s1
3 based on s0

2 and330

RX. The average displacement of each intersection point in331

this path does not satisfy the iteration convergence threshold332

εN = 0.1 at this point, and thus the next round of iteration is333

launched. The exact reflection path and its nodes coordinates334

are obtained after five rounds of iterations, as shown in Fig. 4.335

The IPC algorithm discussed above allows the forward serial336

path derivation procedure to be fragmented by disassembling337

one given potential reflection path into independent geometri-338

cal calculation fIntersectionPoint for each planes involved in the339

reflection, which allows the derivation of the path to break340

through the limitation of the order of the ray-plane intersection341

points, and thus allows the path to be computed in parallel342

until the convergence is achieved.343

III. VALIDATION AND PERFORMANCE OF IPC ALGORITHM344

In order to validate the proposed IPC algorithm, this345

section uses software to compare and analyze the performance346

of the proposed IPC algorithm and the widely used SBR347

algorithm in ray tracing in terms of computational accuracy348

and speed, respectively. In order to simplify the validation349

process, this section uses 2-D closed contours regarded as350

TABLE I
CONFIGURATIONS OF GENERATED SHAPES

Fig. 5. L-shaped room with dynamic slide walls captured in four time steps:
Dynamic sidewalls E23 and E34 are affected by the dynamic vertex V3, which
expands a new area (marked with a red shaded region) for signal propagation
at each time step; newly established signal propagation link at each time step
is denoted by red dotted lines. (a) Time step 0: Original signal propagation
pattern. (b) Time step 1: Environment changing leads to a new first-order
reflection path in ray tracing. (c) Time step 2: Environment changing leads to
a new line-of-sight path in ray tracing. (d) Time step 3: Environment changing
leads to a new second-order reflection path in ray tracing.

the top views of indoor scenarios as the simulation environ- 351

ments for the validation of path derivation; meanwhile, in 352

order to ensure that the validation results are generalizable, 353

100 sets of randomly generated closed contours of different 354

shapes are tested which makes to cover the L-, T-, U- and 355

convex-polygon-shaped rooms in a (numerically) 10 × 10 356

square-shaped environment, which is used to imitate the 357

common room shapes in real-world. The configurations is 358

shown in Table I. 359

In addition, one vertex in the closed contour is freely 360

selected so as to make it move according to a certain trajectory 361

in time steps, which is equivalent to the attitude change of 362

the two edges adjacent to this vertex and is used to imitate 363

the dynamics of the environment, as shown in Fig. 5. The 364

transmitter TX and receiver RX are randomly placed within 365

the generated 2-D closed contour and the reflection paths 366

are computed, respectively, using the proposed IPC algorithm 367

and SBR algorithm, which are realized in software using 368

Python. The performance of the respective algorithms will be 369

compared in terms of accuracy and speed of path derivation 370

(only the case of 3rd-order or lower reflections are considered 371

due to the high-reflection loss for RF signals in GHz-band) as 372
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TABLE II
SOFTWARE SETTINGS FOR VALIDATIONS

Fig. 6. Computational errors in ray paths derivation: Angular errors on TX
and RX sides are depicted, respectively, to (a) dynamics of environment and
(b) complexity of environment. Accuracy of ray tracing via IPC algorithm
is compared with the results obtained by SBR algorithm with one-degree
sweeping interval.

indicated by the time step (i.e., dynamics of the scene) and373

the number of edges of the closed contour (i.e., complexity374

of the scene), respectively. The software settings are shown in375

Table II.376

A. Accuracy in Path Derivation377

The accuracy of the reflection path computation is expressed378

in terms of the angular error between the direction of the379

ray computed by the respective algorithms at TX and the380

theoretical ray direction computed using GOs, in order to avoid381

the ambiguity associated with using actual units (e.g., meters)382

to describe the coordinates of ray-plane intersections and the383

corresponding displacement errors.384

As can be seen in Fig. 6(a), the angular error obtained using385

the SBR algorithm with one-degree sweeping interval is about386

10 degrees, whereas the result obtained by convergence in387

the proposed IPC algorithm can be improved by five orders388

of magnitude in terms of accuracy, which fully demonstrates389

the advantages of the proposed IPC algorithm. Besides, the390

simulation accuracy of the IPC algorithm does not vary widely391

with the dynamics and complexity of the environment, which392

is robuster compared to the SBR algorithm that has an angular393

error ranges from 3 degrees to 30 degrees, as shown in394

Fig. 6(b).395

B. Ray-Tracing Simulation Speed396

For the convergence speed of the computation, the397

advantages of the proposed IPC algorithm can be clearly398

demonstrated in Fig. 7(a) and (b): by obtaining the potential399

reflection paths in advance, the IPC algorithm can improve400

the ray-tracing speed by more than two orders of magnitude401

compared to the SBR algorithm; although the IPC algorithm402

is not accelerated in parallel (due to software implementation403

using Python), it still achieves milliseconds of elapsed time404

in the software ray-tracing implementation. It can be noticed405

that as the environment becomes more complex (more edges)406

Fig. 7. Elapsed time in ray paths computation: The software-implemented
IPC algorithm achieves a speedup of about 200 times compared to the SBR
algorithm for ray tracing within 2-D closed contours. (a) Ray-tracing elapsed
time to the dynamics of environment. (b) Ray-tracing elapsed time to the
complexity of environment.

the ray tracing’s elapsed time slowly increases. When the 407

number of edges is low, the L- and convex-polygon-shaped 408

rooms dominate. When the number of edges grows to seven 409

there is a significant speedup of the ray tracing due to the 410

fact that it is at the boundary between the number of edges 411

of the L-shaped and the T/U-shaped, so that convex-polygon- 412

shaped rooms dominate, which in turn makes the computation 413

of reflection paths easier; as the number of edges continues 414

to grow, the T/U-shaped rooms gradually dominate, which 415

makes the ray-tracing environment complex and thus leads to 416

a further increase in the elapsed time. 417

From the above analysis and comparison of the performance 418

of the IPC algorithm and the SBR algorithm for ray tracing in 419

2-D scenes, it can be concluded that the proposed IPC algo- 420

rithm compresses the ray-tracing elapsed time in milliseconds 421

while maintaining high-computational accuracy, which shows 422

the expectation and feasibility of further accelerating the IPC 423

algorithm using FPGAs. 424

IV. HARDWARE ARCHITECTURE OF RAY-TRACING 425

PLATFORM ON FPGAS 426

The IPC algorithm proposed in this article can greatly 427

accelerate the ray path convergence process with the help 428

of computational parallelization. If the IPC algorithm is 429

implemented using an FPGA, the parallel subroutines in 430

the algorithm can be mapped to the intrinsic parallelism 431

of the logic circuits, giving full play to the advantages of 432

FPGAs: compared to the batch-based parallel acceleration of 433

GPUs, FPGAs are more flexible solutions due to the high 434

degree of freedom in functional implementation and efficient 435

tradeoffs between resource utilization and timing constraints. 436

For example, when the timing constraints of a ray-tracing 437

platform for virtual digital twins of wireless devices are 438

violated, i.e., the ray tracing does not converge fast enough to 439

meet the design requirements, the ray tracing can be physically 440

accelerated by adding logic function modules to share the 441

computational efforts. This approach is not available to GPUs, 442

which demonstrates the unique freedom of implementation 443

provided by FPGAs. 444

The hardware architecture adapted to the IPC algorithm 445

implemented on FPGA proposed in this article is shown 446

in Fig. 8. The ray-tracing platform implemented in FPGA 447

consists of three main modules: 1) the PE matrix; 2) the 448

PE scheduler; and 3) the coordinates updater-buffer. In this 449
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Fig. 8. Module architecture of the real-time ray-tracing platform on FPGA.

Algorithm 3: Halving-Comparison in Proportion
Operations of (13)

Input: mn, nn, lnin (13)
Output: Proportion ln

mn
mn+nn

1 L← (mn + nn)/2; B← L
2 Lp ← ln/2; Bp ← Lp
3 while Ł > 0 do
4 L← L/2; Lp ← Lp/2
5 if B < mn then
6 B← B+ L; Bp ← Bp + Lp
7 else
8 B← B− L; Bp ← Bp − Lp
9

10 return Bp as ln
mn

mn+nn

case, the PE matrix consists of various different mutually450

independent PEs related to the individual planes participating451

in the reflection in the target environment. The function of452

each PE corresponds to fintersectionPoint in the IPC algorithm, as453

shown in Algorithm 2, and is used to compute the coordinates454

of the ray-plane intersections in a given reflection plane from455

the leading and following points. As a result of the geometric456

preprocessing, the reflection planes in the scene are extracted457

with critical information, such as plane equations, normal458

vectors, and boundary points, which can be considered as459

constants during the ray-tracing process, thereby reducing the460

size of the circuit. Thus, geometric operations in PE, such461

as calculating vector projections, can be physically realized462

by combinational blocks or small-scale sequential blocks:463

multiplication operations for constants can be realized using464

the shift-add principle, while division/proportion operations465

can be realized using halving-comparison in order to balance466

the size of circuits and the speed of computation, as shown467

in Algorithm 3. In Algorithm 3 the denominator mn + nn is468

fitted to the numerator mn by halving successively in iterations,469

and by mapping the same action to the coefficients ln the470

displacement of the intersection point with respect to the471

projection point of the preceding point on the plane is obtained472

as ln(mn/[mn + nn]), and then the actual coordinates of the473

intersection point can be computed according to (13). As only 474

addition, subtraction and shift operations are involved, it can 475

be easily converted into sequential logic circuit implemented 476

in each PE. 477

According to the previously mentioned, if all potential 478

reflection paths obtained based on geometrical preprocessing 479

of the target scene can be rationally used for scheduling the 480

PE matrix, the ray-tracing simulation can be accomplished in 481

the shortest possible elapsed time. Hence, the PE scheduler 482

uses a finite state machine or ROM to save the derived 483

scheduling sequence by which the PE matrix is scheduled 484

and manipulated. The coordinates updater-buffer buffers the 485

newly calculated intermediate coordinates in each round of 486

path iteration so that it can be used in the next round of 487

the IPC iteration. As mentioned earlier, the purpose of our 488

proposed embedded real-time ray tracing is to quickly and 489

accurately compute the reflection paths that contribute the 490

most to signal propagation, which will guide the beamformer 491

for efficient beam management. Therefore, instead of deriving 492

all possible reflection paths completely, we selectively buffer 493

the intermediate values in path iterations according to the 494

following principles. 495

1) Priority of Reflection Order: First order reflections are 496

prioritized over second order, and so forth. 497

2) Priority of Path Lengths: Only one intersection per 498

reflection plane is buffered, which indicates the best 499

reflection path through this plane. 500

Based on the above principles, an upper limit of FIFOs can 501

be set in the HLS workflow, i.e., only storing coordinates 502

up to the number of reflection planes, which can greatly 503

reduce the amount of memory/registers and make the final 504

on-chip resource utilization greatly reduced. For example, for 505

a target environment with nine reflection planes as shown 506

in Fig. 5, the reflection needs to be buffered up to 1665 507

coordinates (9 first-order, 72 second-order, and 504 third-order 508

intersection points), whereas if only the intersection of the best 509

reflection paths involved is selected for each reflection plane 510

then only 9 coordinates should be buffered, which is equivalent 511

to releasing 99.46% of the FIFO capacity and makes the on- 512

chip performance better. 513

The ray-tracing platform implemented on FPGA based on 514

the IPC algorithm can be obtained by instantiating the PE 515

matrix, PE scheduler and coordinates updater-buffer, which 516

pursues a further parallelization and acceleration for the 517

reflection path derivation. As stated earlier, FPGA-based real- 518

time ray tracing is deployed to provide the beam management 519

with a fast response to dynamic environmental changes more 520

than providing a complete and accurate simulation of signal 521

propagation, with the runtime workflow shown in Fig. 9. 522

When sensors (e.g., depth camera/LIDAR) detect a change 523

in the environment, the ray-tracing wrapper in the embedded 524

wireless device activates the real-time FPGA-based ray-tracing 525

platform to launch ray-tracing simulations for the instanta- 526

neous scene, and the results are used to assist further in beam 527

management for robust beam- forming and tracing. Applying 528

the proposed IPC algorithm and parallelizing the mapping of 529

the algorithm using FPGAs makes it possible to reduce the 530

ray-tracing time to milliseconds (e.g., about 1 ms as shown 531
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Fig. 9. Runtime workflow of embedded wireless device with FPGA-based
real-time ray-tracing platform.

Fig. 10. Overview of the proposed HLS workflow for real-time ray tracing.

in Section VI), which allows the beamformer to achieve an532

instantaneous response to the environmental changes, thereby533

effectively improving the robustness of the beam management.534

V. HIGH-LEVEL SYNTHESIS WORKFLOW535

Aiming to automate the process from the acquired 3-536

D PCD of the target scene to the final RTL modules,537

so that the resulting FPGA implementation has high effi-538

ciency and flexibility, this article designs a novel HLS539

workflow for the hardware architecture of the proposed ray-540

tracing platform on FPGAs. The overall workflow is shown541

in Fig. 10.542

After geometric preprocessing of the captured 3-D PCD543

successfully extracted critical information (e.g., plane equa-544

tions, normal vectors, and boundaries, etc.) for the main planes545

that may be involved in signal propagation, the HLS workflow546

begins. The first step is to derive all potential reflection paths at547

each time step in the given dynamic scene: by using the Simple548

Funnel algorithm [15], [16], [17] on the cross section of the549

3-D target scene in the direction perpendicular to the ground550

to extract the interplane weak visibility relations, a WVRN551

can be generated, as shown in Fig. 11. In the WVRN, if two552

nodes are linked by an edge, which indicates that the planes553

corresponding to these two nodes are weakly visible, i.e., each554

of the two planes has at least one pair of points that are directly555

visible (Line of sight, LOS), then it is possible that there is556

a reflection path between these two planes denoted by the557

nodes. All potential reflection paths are derived separately by558

time step by routing over the WVRN using A*-algorithm [18],559

leading to the final scheduling sequence used for the control560

of PEs. The PE scheduling problem is similar to the open-561

job shop scheduling problem (OSSP) [19] in that a definite562

number of jobs (i.e., derived potential paths in WVRN) are563

assigned time slots to a known number of machines (i.e., PEs)564

for the sequences of operations (i.e., PEs in the iteration) [20]565

with same computation time of each path calculation, which566

can be achieved by genetic algorithm (GA) [21] to perform 567

heuristic search for a balance between the complexity of the 568

algorithm and success rate of the PE scheduling, as shown in 569

Fig. 12 570

LF
def=

n∑

i=1

|Tlatest(Pathi)− Tearliest(Pathi)|. (14) 571

The objective of PE scheduling is to minimize the latency 572

factors (LFs) of different PEs in the same path while achieving 573

the shortest makespan, as defined in (14). That is, it is required 574

that each PE operation involved in iterating the same path 575

should be completed in the same time slot (or the nearest time 576

slots) to achieve the maximum parallelization of the distributed 577

PEs. Iteration can be accelerated by duplicating highly utilized 578

PEs, but at the cost of increased on-chip resource utilization, 579

which is not a critical factor for performance in our proposed 580

FPGA implementation (see Section VI). Hence, a three-pass 581

scheduling procedure is applied: 1) initializing the scheduling 582

sequence by GA-algorithm; 2) applying PE duplications to 583

expand the “room” for the parallelization of path computation; 584

and 3) by ASAP-scheduling the blank timeslots are scheduled 585

to achieve shorter makespan. 586

After compiling and routing the WVRN, the potential 587

reflection paths and the critical information about the reflection 588

planes corresponding to each path are obtained, which are 589

used to, respectively, generate the PE scheduler and PEs, as 590

discussed in the previous section. Finally, input and output 591

interfaces are added to the generated ray-tracing platform to 592

accommodate the embedded main system and system bus, thus 593

realizing the eventual ray-tracing platform in RTL modules 594

for further logic synthesis and subsequent processing for the 595

final FPGA configuration. The proposed HLS workflow allows 596

the target scene to be hardwarized on FPGAs in the form 597

of FPGA modules aiming at fast reflection path derivation 598

in milliseconds. As shown in Fig. 9, although the processing 599

of the target scene using the HLS workflow to generate a 600

scene-specific FPGA ray-tracing platform imposes a higher 601

overhead compared to the accelerator using software program 602

(e.g., GPU-accelerated ray tracing, etc.), the resulted FPGA- 603

based real-time ray-tracing platform has better performance at 604

runtime (see Section VI). Once the system is (re)configured, 605

high speed and high-accuracy real-time ray tracing can be 606

achieved at runtime, which is not affected by the overhead of 607

the (re)configuration process. 608

VI. PERFORMANCE OF GENERATED FPGA PLATFORM 609

FOR RAY TRACING 610

In this section the ray-tracing platform on FPGA via 611

the proposed HLS workflow for a given indoor scene is 612

validated, an experimental platform as shown in Fig. 13 is 613

constructed. The augmented ICL-NUIM dataset [22], [23] 614

as shown in Fig. 14 is used as the target scene for ray 615

tracing to compare the performances of different algorithms 616

(SBR and proposed IPC) and platforms (multicore CPU and 617

FPGA). The preprocessing program filters out the planes 618

with an area larger than a quarter of one square meter for 619

ray tracing, while the rest of the small-area planes will be 620
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Fig. 11. Deriving dynamic weak visibility relationship networks (WVRN) from 3-D scene. (a) Original 3-D dynamic scene: Side walls �1, �2, �3 and �6
work as static scatters whereas �4 and �5 as dynamic scatters. (b) Dynamic scatters �4 and �5 move to new positions, which leads to environmental changes
in next frame. (c) Corresponding dynamic WVRN, where the red edges indicate weak visibility relationships (WVR) that change with the environment while
green edges represent static WVR.

Fig. 12. PE scheduling: Aims to maximize parallelization for PE matrix.
Makespan can be effectively reduced by duplicating PEs that have a high-
utilization frequency: duplicated PE1∗ makes the calculation of Path3
executed without latency, which further guides Path12 to be scheduled earlier
and reduces the total makespan in path iterations.

Fig. 13. Hardware validation platform: the platform for real-time ray tracing
is synthesized on PC and implemented on the target FPGA (Intel Cyclone IV
E, EP4CE115F29C7). The Raspberry Pi is used as a post-processor for the
rays extracted from the FPGA ray-tracing platform.

Fig. 14. Target scene of living room environment: (a) PCD of ICL-NUIM
Dataset is used as static background environment where the introduced human
body (in red) moves around to create a dynamic scene and (b) 25 extracted
planes involved in signal reflection by the geometric preprocessing for further
ray tracing.

considered purely as blockages, which do not participate621

in the calculation of reflections. A moving human body is622

introduced in the static living room scene, which results in623

Fig. 15. Ray tracing in indoor scene with dynamic blockage (human body):
The environment changes dynamically as the human body moves, while the
TX (red point) and RX (blue point) are fixed in position to depict the influence
of environmental change on signal propagation via ray tracing. (a) Time step
1. (b) Time step 5. (c) Time step 8. (d) Time step 9.

dynamic changes of the target environment. Four of the ten 624

time steps sampled from the scene are shown in Fig. 15, 625

which depict typical dynamic movement in position. As the 626

geometric information of the reflection planes is extracted, the 627

ray-tracing platform proposed in this article is implemented on 628

FPGA according to the mentioned workflow. In order to fully 629

demonstrate the performance of the IPC algorithm and the 630

corresponding FPGA acceleration, the optimization approach 631

for FIFO utilization mentioned in Section IV is not used in this 632

section, i.e., iterative computation of ALL possible reflection 633

paths on FPGAs using the IPC algorithm is performed in order 634

to demonstrate the upper bound of accuracy and the lower 635

bound of speed of the algorithm’s implementation on FPGAs. 636

Besides, the SBR algorithm is transplanted into rational RTL 637

modules implemented on the same FPGA, the functional block 638

diagram of which is shown in Fig. 16. Both of the hardware 639

implementations are achieved by 32-bits word length in arith- 640

metic calculations. In order to make floating-point geometric 641

operations efficiently implementable on FPGAs, the coordinate 642

values in which the operations are performed in FPGAs are 643

all scaled up by a factor of one thousand, which corresponds 644

to a coordinate precision of millimeters. Meanwhile, the ray- 645

tracing simulation for the same scenario is accelerated on a PC 646

using multicore CPU (32-bits float point numbers in arithmetic 647
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Fig. 16. SBR algorithm achieved on FPGA: The RTL module consists of
an intersection points calculator, a direction vector generator, and a stopping
condition detector. For the given initial point TX, the intersection calculator
traverses all the planes in the scene, calculates the set of intersection points
in the given direction, and selects the one with the shortest distance to be
the starting point of the next segment of rays in the reflective path; the
direction vector generator calculates the direction of the next segment of rays,
and repeats the cycle until it reaches the stopping condition to complete the
ray tracing in one sweeping direction. The ray tracing of the whole space
is completed by traversing all the sweeping vector stored in the memory
block. In order to avoid the use of IP cores provided by vendors, such
as DSPs, which makes the comparison of on-chip resource utilization with
the IPC implementation complicated, this section uses combinational logic
to implement general-purpose multipliers and divisors, such as Wallace tree
multipliers.

TABLE III
UTILIZATION OF ON-CHIP RESOURCES FOR IPC AND SBR

IMPLEMENTATIONS ON FPGA

calculations) with hardware and software parameters as shown648

in Table II. By comparing the simulation results obtained by649

different algorithms implemented on different platforms, the650

performance of each implementation is demonstrated in terms651

of simulation accuracy and speed.652

A. Ray-Tracing Accuracy653

By comparing the simulation results of the ray directions654

on the TX and RX sides with the theoretical results, which655

have been calculated by GOs, the accuracy of the ray tracing656

is derived. In each time step the rays obtained by the657

simulations (IPC and SBR, respectively) and the theoretical658

results are calculated in vectors to obtain the angular errors,659

which are then averaged to obtain the performance of ray-660

tracing accuracy as shown in Fig. 17. It is clear that the661

use of the IPC algorithm can improve the accuracy of ray662

tracing implemented on FPGAs by a factor of more than 100663

compared to the implementation of the SBR algorithm. More664

detailed comparisons are shown in Fig. 18. Demonstrating665

the ray direction by azimuth and elevation for a given time666

step on the TX and RX sides, the ray-tracing accuracy of667

the IPC and SBR algorithms implemented on the FPGA can668

be derived, respectively. It is clear that the IPC algorithm669

demonstrates advantages in terms of accuracy: the simulation670

results obtained by the IPC algorithm are all very close to the671

theoretical results, whereas the SBR algorithm spreads the rays672

around the theoretical results in clusters. Furthermore, when673

the ray directions are not gathered, the SBR algorithm tends674

Fig. 17. Angular errors in direction of simulated rays on TX and RX sides:
The FPGA-based IPC implementation has a significant advantage in terms of
ray-tracing accuracy, as it can reduce the angular error with respect to the GO
to less than 0.1 degrees.

to miss these independent directions, in which the signal can 675

still propagate via reflection. 676

B. Ray-Tracing Speed 677

As can be concluded from Fig. 19, accelerating the ray- 678

tracing algorithm using an FPGA has a clear advantage in 679

simulation speed: 680

FPGA-based SBR implementation can increase the sim- 681

ulation speed by nearly 500 times relative to single-core 682

CPU implementations, reducing the simulation elapsed time to 683

around 200 ms. Nevertheless, the IPC algorithm is accelerated 684

by the FPGA to compress the ray-tracing elapsed time to 685

around 1 ms, which shows a much greater advantage in 686

simulation speed. Similarly, the acceleration ratios shown in 687

Fig. 20 also demonstrate the advantages of the IPC algo- 688

rithm implemented on FPGA, which achieves a speedup of 689

about 181 times compared to SBR algorithm implemented on 690

FPGA. Such a large class of speedups is partly due to the 691

proposed IPC algorithm: by decomposing the derivation of 692

each path into mutually independent subroutines consisting of 693

the respective planes in which the reflections are involved, it is 694

possible to change the path iteration from a sequential process 695

of derivation according to the order of reflection of each 696

intersection point to parallel implementations, which acceler- 697

ates the convergence of the paths; Besides the IPC algorithm is 698

further accelerated using FPGAs: the PE matrix can well map 699

the respective independent subroutines of the IPC algorithm, 700

which in combination with rational PE scheduling can achieve 701

timing optimization and thus further accelerate the ray-tracing 702

procedure. 703

C. Discussions and Conclusion 704

From the above comparisons, it can be concluded that 705

the implementation of the IPC algorithm on FPGA has a 706

great advantage over PC simulators in terms of accuracy 707

and speed of embedded real-time ray tracing for wireless 708

communications. Moreover, the decrease in ray-tracing speed 709

for more complex scenarios can be balanced by increasing the 710

scales of the PE matrix, which gives the embedded system 711

design a higher degree of freedom to make tradeoffs. Besides, 712

refer to Table III resource utilization varies between 4%-43%, 713

depending on the movement trajectory of dynamic objects. 714

Forcing the logic synthesizer to generate PEs for all reflection 715
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Fig. 18. Direction of rays: Black crosses indicate the theoretical values calculated by GOs theory, the blue triangles represent the results calculated by the
proposed FPGA-based IPC implementation while the red circles indicate the results simulated by SBR algorithm implemented on same FPGA board; light
green circle indicates the ten-degree tolerance centered on the result of the GO calculation. Although a few isolated rays are missed due to the quantization
error (i.e., the error caused by using integers instead of floats for arithmetic operations) of FPGAs, it is clear that the results obtained using the IPC algorithm
are very close to the theoretical results, which are all located within the corresponding tolerances. However, the SBR algorithm suffers from more significant
errors: due to the ray-sweeping mechanism of the SBR algorithm, the resulting ray-tracing results are presented as a set of clusters of rays in the neighborhood
of the theoretical results, which require further processing to acquire the unique true result; due to the accumulation of errors in the SBR algorithm caused
by the forward serial operation according to the reflection orders, a large number of independent rays are mistakenly discarded, which needs a finer sweeping
interval for compensation. (a) Time step 1, TX side. (b) Time step 1, RX side. (c) Time step 5, TX side. (d) Time step 5, RX side. (e) Time step 8, TX side.
(f) Time step 8, RX side. (g) Time step 9, TX side. (h) Time step 9, RX side.

planes can lead to a final resource utilization of up to 43%,716

demonstrating the worst-case condition, which is four times717

that of SBR but still achieves a speedup of over a factor of718

hundreds for SBR, as shown in Fig. 20. Since the architecture719

of the ray-tracing platform proposed in this article is designed720

in register transfer level, the synthesized logic circuits can721

also be transplanted to the most advanced state-of-the-art722

FPGA chips for implementation toward greater optimization723

and better performance. Moreover, with the implementa-724

tion flexibility of FPGAs tradeoffs can be made between725

ray-tracing accuracy, speed, and on-chip resource usage. As726

shown in Fig. 18, these isolated scattered rays depict the727

details of the signal propagation in the target scene compared728

to the concentrated paths, and thus the ray-tracing accuracy729

should be optimized in favor of the scattered-direction rays. 730

An early stopping strategy should therefore be adopted for 731

freezing the paths that show concentrated trend in the first 732

few rounds, which is used to provide available PEs for the 733

computation of the paths in the scattered directions. Similarly, 734

the reduction in simulation speed and increase in resource 735

utilization caused by the growing complexity of the target 736

scenario can still be counterbalanced by dynamically adjusting 737

the computational accuracy using early stopping strategy: 738

freezing the computation of paths that clearly tend to be 739

invalid (e.g., intersections are outside of the boundaries of the 740

planes) saves PE-occupancy to be provided for rational path 741

derivations, thus accelerating path convergence without loss of 742

robustness. 743
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Fig. 19. Run time of ray-tracing simulation on different platforms: Generally
speaking, the IPC algorithm is faster than the SBR algorithm implemented
on the same platform. Accelerating the IPC algorithm using an FPGA
can significantly speed up ray-tracing computation, resulting in simulation
convergence time reduced to approximately 1 ms for each time step.

Fig. 20. Acceleration ratios of the proposed FPGA-based ray-tracing platform
via IPC algorithm.

VII. CONCLUSION744

In this article, the IPC algorithm for improving ray-745

tracing accuracy and facilitating parallelization on FPGA for746

acceleration is first proposed. The HLS workflow proposed747

in this article then obtains RTL-level modules that can be748

implemented on FPGAs by processing the geometric data of749

a given dynamic scene: compiling weak visibility relationship750

networks (WVRN) for each time step of the scene and routing751

in WVRN to obtain potential reflection paths; generating752

the IPC-based PEs and the corresponding control modules753

to achieve real-time ray-tracing platform on FPGAs. With754

the help of the IPC algorithm proposed in this article, the755

FPGA-implemented ray-tracing platform is validated to greatly756

parallelize the process of deriving the reflection paths, improve757

the ray-tracing speed while increasing the computational758

accuracy, and realize an assistance platform for environmental759

awareness of wireless communications demanding to complete760

the ray tracing in milliseconds. Although the ray-tracing761

accuracy and speed have been improved by FPGAs, there762

are still shortcomings, such as the geometric processing763

in the workflow, is very time-consuming and the resource764

utilization of RTL modules should further be optimized,765

etc., which will continue to be improved in subsequent766

work.767
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