
1

GPU Performance Optimization via Inter-group
Cache Cooperation

Guosheng Wang, Yajuan Du, Weiming Huang

Abstract—Modern GPUs have integrated multi-level cache
hierarchy to provide high bandwidth and mitigate the memory
wall problem. However, the benefit of on-chip cache is far from
achieving optimal performance. In this paper, we investigate
existing cache architecture and find that the cache utilization
is imbalanced and there exists serious data duplication among
L1 cache groups.

In order to exploit the duplicate data, we propose an inter-
group cache cooperation method (ICC) to establish the coop-
eration across L1 cache groups. According the the cooperation
scope, we design two schemes of the adjacent cache cooperation
(ICC-AGC) and the multiple cache cooperation (ICC-MGC). In
ICC-AGC, we design an adjacent cooperative directory table
to realize the perception of duplicate data and integrate a
lightweight network for communication. In ICC-MGC, a ring bi-
directional network is designed to realize the connection among
multiple groups. And we present a two-way sending mechanism
and a dynamic sending mechanism to balance the overhead and
efficiency involved in request probing and sending.

Evaluation results show that the proposed two ICC methods
can reduce the average traffic to L2 cache by 10% and 20%,
respectively and improve overall GPU performance by 19% and
49% on average, respectively, compared with the existing work.

Index Terms—GPU, Cache, Cooperation, Hit Ratio

I. INTRODUCTION

NOWADAYS , GPUs have been widely used in various
fields such as deep learning, data mining, and graphic

processing [1]–[5]. The powerful parallel processing capa-
bilities promote continuous GPU architecture innovations,
aiming at higher performance [6]–[9]. GPU have integrated
configurable multi-level on-chip cache hierarchy to provide
high bandwidth and mitigate the memory wall problem [10],
[11]. Each GPU streaming multiprocessor (SM) in NVIDIA
has a private L1 cache and access the shared L2 cache through
a Network-on-Chip (NoC) [12], [13]. L1 cache plays an im-
portant role in reducing memory bandwidth and latency [14],
[15]. Many cache management schemes have been developed
to make full use of finite cache capacity [16]–[22]. However,
its utilization is still far from satisfactory.

Many existing works focused on cache sharing to improve
GPU performance. In order to benefit from the duplication
among L1 caches, Dublish et al. [23] design a cooperative
caching network among L1 caches to leverage remote band-
width. Ibrahim et al. [24] design a data sharing prediction

Yajuan Du is with the School of Computer Science and Technology, Wuhan
University of Technology, Wuhan 430070, China, and also with the Shenzhen
Research Institute, Wuhan University of Technology, Shenzhen 518000,
China. Yajuan Du is the corresponding author (e-mail: dyj@whut.edu.cn).

Guosheng Wang and Weiming Huang are with the School of Computer
Science and Technology, Wuhan University of Technology, Wuhan 430070,
China. Email: wgsheng@whut.edu.cn, hwm0726@whut.edu.cn

and parallel probing mechanism to optimize inter-core com-
munication. Besides to exploiting locality, some works focus
on reducing or eliminating data replication among caches.
Ibrahim et al. [25] introduce a shared L1 cache organization,
in which each core only cache a non-overlapping slice of
the entire address range. Meanwhile, they propose a Clus-
tered Shared Decoupled L1 cache (CSD-L1), which decouples
the L1 caches from cores and aggregates them into groups
[26].Thus, data duplication is eliminated within each group
and the cache capacity is increased. Xu et al. [27] observe
that there exists high resource contentions in CSD-L1, and
propose ATA-Cache to decouple and aggregate the tag arrays
of multiple L1 caches and co-design a two-level thread-block
scheduling scheme to maximize locality.

In order to optimize GPU performance, this paper first
conducts a series of preliminary studies on existing CSD-L1
architecture. First, we collect the results of L1 and L2 miss
rate, which shows that the L1 cache is vastly under-utilized
and there exists severe bandwidth pressure on the shared L2
cache. Second, we quantify the distribution of duplicate cache
lines among L1 cache groups, which shows that there exists
serious data duplication.

By exploiting the duplication among L1 cache groups, we
propose an inter-group cache cooperation method (ICC). In
ICC, two schemes of ICC-AGC and ICC-MGC are designed
to realize the cooperation in different scopes of cache groups.
In ICC-AGC, the adjacent cache groups cooperation is im-
plemented by integrating an adjacent cooperative directory
table (ACD-Table) and a lightweight interconnection network.
In ICC-MGC, a ring bidirectional interconnection network
is utilized to achieve multiple group cooperation. Besides,
we design the two-way sending mechanism and the dynamic
sending mechanism to balance the probing overhead and
efficiency in ICC-MGC.

The proposed ICC method is evaluated in GPGPUSim-
3.2 using workloads from the Rodinia, Polybench and Mars
benchmark suites. Experimental results show that both of ICC-
AGC and ICC-MGC can increase cache hit rate and improve
GPU performance, significantly. The main contributions of this
paper are summarized as follows.

• We conduct a series of experimental preliminary studies
to analyze the cache utilization and L1 cache duplication
characteristic.

• We propose ICC to exploit the duplication characteris-
tic and we first design ICC-AGC to leverage adjacent
cache groups duplication. In ICC-AGC, an ACD-Table
is designed to perceive the duplication and a lightweight
connection network is integrated for communication.

2

Streaming Multiprocessor

Interconnection Network

Shared L2 Cache
Memory Controller

External Memory

...

Instruction Fetch

Warp Scheduler/Scoreboard/Issuance

SP SFU LD/ST Unit

Register File

Constant Data/SharedTexture
Local Cache

...

Shared L2 Cache
Memory Controller

External Memory

Shared L2 Cache
Memory Controller

External Memory

Streaming Multiprocessor

Instruction Fetch

Warp Scheduler/Scoreboard/Issuance

SP SFU LD/ST Unit

Register File

Constant Data/SharedTexture
Local Cache

Fig. 1. GPU architecture.

• We further design ICC-MGC to exploit the duplicate data
among multiple cache groups. In ICC-MGC, we utilize a
ring bidirectional interconnection network and design the
two-way sending mechanism and the dynamic sending
mechanism to balance the probing latency and efficiency.

• We conduct comprehensive experiments to evaluate the
proposed ICC method in GPGPU-Sim and experimental
results show that ICC-AGC and ICC-MGC can speed
up the overall GPU performance by 19% and 49% on
average, respectively, compared with the existing work.

The rest of this paper is organized as follows. In Section II,
we review the background of existing GPU cache hierarchy
and the architecture of existing CSD-L1, and we illustrate the
preliminary study and the results of cache hit rates and data
duplication, which motivates the design of the cooperation
scheme. Section III presents the details of the proposed ICC
method and Section IV demonstrates the experimental setup
and evaluation results. Section V presents the related works
and Section VI concludes this paper.

II. BACKGROUND AND MOTIVATION

In this section, we first review the background of GPU
architecture and then illustrates the existing cache architecture
of CSD-L1. Finally, we demonstrate the preliminary study
details which motivated our work.

A. GPU Architecture and Cache Hierarchy

The NVIDIA GPU architecture is composed of Streaming
Multiprocessors (SMs), as shown in Fig. 1. All SMs are con-
nected to the shared L2 cache via the on-chip interconnection
network. Each SM contains many CUDA cores (i.e., Streaming
Processors or SPs), which are the functional units and can
execute one instruction per cycle. All SPs within a SM share
an instruction fetch/decode unit, a L1 cache and a large register
file that can be scheduled flexibly. Each thread in a SM can
be allocated a specific number of registers depending on the
number of executed threads.

GPU has been integrated conventional multi-level cache
hierarchy to alleviate memory wall problem in the Fermi
architecture [6]. The local caches within a SM consist of
constant cache, texture cache, shared cache and data cache.
All SMs share the banked L2 cache through a NoC, which

C
or

e
C

S
D

-L
1

Shared L2 Cache

Group 0

0 1

...

...

...

...

...

Group 1

k

...

...

Group n

...

...
k+1k-1 2k-1 nk nk+1

0 1 k-1 k k+1 nk nk+12k-1 (n+1)k-1

(n+1)k-1

Intra Group
Sharing Exclusive address range

...

Crossbar Crossbar Crossbar

Fig. 2. The architecture of CSD-L1.

0

0.2

0.4

0.6

0.8

3DConv bfs gaussian gemm gsmt pvc ss syrk Average

M
is

s
ra

te

L1 cache L2 cache

Fig. 3. L1 and L2 cache miss rate in existing CSD-L1 architecture.

have a higher latency compared to local caches. The L2 cache
is divided into multiple storage partitions, also called cache
banks, and communicate with DRAM through the memory
controller. The private L1 caches and common L2 cache are
responsible for reducing traffic to the interconnection network.

B. Clustered Shared Decoupled L1 Cache

To efficiently utilize the valuable L1 caches, Ibrahim et al.
[26] propose CSD-L1, details of which is shown in Fig. 2.
In CSD-L1, the L1 caches are decoupled from SMs and
aggregated into multiple independent groups, i.e., there is no
communication among these cache groups. The decoupled L1
caches are shared and accessed by the SMs through a NoC.
Therefore, the grouped L1 caches can share a wider address
range and sufficiently cache more blocks by eliminating du-
plicate data blocks among previous private L1 caches. Specif-
ically, for a coalesced L1 data cache read request generated
by an SM, the request is routed to the responding L1 cache
through the NoC according to the missed address.

C. Preliminary Study

In order to study GPU efficiency under existing cache
architecture of CSD-L1, we perform a preliminary study and
run eight workloads using GPGPU-Sim to study the cache
behaviors and characteristics. We mainly collect statistics
about cache miss rate, L1 cache utilization and the proportion
and distribution of duplicate data among cache groups.

1) Cache Miss Rate.: Fig. 3 depicts the miss rate of L1 and
L2 cache in CSD-L1. The x-axis represents the workload, and
the last term is the mean of all workloads. We can obtain two
critical observations.

First, the L1 miss rate is high for some workloads, for
instance, the miss rate reaches as high as 64% for bfs which

3

0

0.2

0.4

0.6

0.8

1

3DConv bfs gaussian gemm gsmt pvc ss syrk Average

D
up
li
ca
te
pr
op
or
ti
on

0 1 2 3-4 5-7

Fig. 4. Proportion of duplicate data among L1 cache groups.

0

0.2

0.4

0.6

3DConv bfs gaussian gemm gsmt pvc ss syrk Average

D
up
li
ca
te
pr
op
or
ti
on

Fig. 5. The adjacent groups duplicate data proportion.

with poor temporal locality. The average L1 miss rate is 39%
for all workloads, which shows that CSD-L1 cannot make full
use of L1 cache optimally.

Second, the average L2 cache miss rate for all workloads
reaches 9.8% which is much lower than that of L1 cache.
We observe that the L2 miss rate for many workloads is less
than 4% , and for gaussian and syrk, the L2 miss rate is even
less than 1%. Combined with the large capacity and shared
characteristics of L2 cache, we speculate that there may be
many common cache blocks among L1 caches.

2) Duplicate Data Characteristics: In order to uncover
the characteristics of duplicate data among L1 cache groups,
we collect the duplication proportion and distribution of data
between adjacent caches and all caches.

Duplicate data proportion. We calculate the proportion
of duplicate cache lines among L1 cache groups to analyze
the sharing behavior. The results shown in Fig. 4 depict the
duplicate proportion of cache lines with different levels. The
x-axis represents the individual workloads and the y-axis
represents the duplicate proportion of multiple series. There
exist five possible intervals for y-axis: ”0”, ”1”, ”2”, ”3-4”
and ”5-7”. We merge the adjacent ranges with relatively small
overall proportions, such as ”3-4” represents the cache lines
with 3 or 4 duplicates in remote grouped L1 cache. Series ”0”
indicates that current missed L1 cache line is not duplicated
in remote L1 cache groups.

Fig. 4 demonstrates that workloads other than bfs have more
than 50% duplicate cache lines and the average duplication
is 56%. The proportions of the four duplication intervals are
22%, 14%, 12%, and 6%, respectively, which indicate that
there are a lot of duplicate cache lines among L1 cache groups.

Duplication between adjacent cache groups. We quantify
the proportion of duplicate data between adjacent groups, by
mainly calculating the requests that can be serviced by the
left and right cache groups. The proportion results are shown
in Fig. 5, and the x-axis represents the workload and the
last item is the average. Specifically, gsmt has the highest
duplication between adjacent groups, with a ratio of 48%,

indicating that nearly half of the read miss requests in current
cache group can be serviced in the adjacent cache groups.
The lowest duplication proportion is 10% for gemm. The
others workloads exhibit similar duplication proportion, and
the duplication ratio of all workloads is 27%. Analyzing the
distribution of duplicate cache blocks in a cache group can
provide novel insights for us to optimize CSD-L1 and explain
the performance changes of different workloads.

Duplication among all cache groups. We further study the
distribution of the duplicate data with detailed experiments to
break down and quantify the distribution of duplicate data
among L1 cache groups. According to the remote group
duplication proportion and distribution of the eight workloads,
we summarize three duplication patterns of weak duplication,
moderate duplication and strong duplication and demonstrate
four typical workloads detail in Fig. 6. For each sub-graph, the
x-axis represents the groups that incur an L1 cache read miss
request, and y-axis indicates the remote L1 cache groups. At
the (x, y) coordinate, the darker the color in the square, the
higher proportion of group x and y are duplicated. From Fig. 6,
we make the following observations.

For gsmt and 3DConv, they exhibit weak duplication pattern
as shown in Fig. 6(a). The duplication among L1 cache groups
is poor or even non-existent duplication for some groups.

Fig. 6(b) demonstrate moderate duplication pattern corre-
sponding to syrt, due to the high duplication among even-
numbered groups, the overall duplication is much higher than
weak duplication pattern. gsmt and pvc both present moderate
duplication pattern as shown in Fig. 6(c). Different from the
pattern details in Fig. 6(b), the cache groups that close to
the current cache group show a relatively high duplication
ratio in gsmt and pvc, and the color becomes lighter as the
group distance increases, indicating that the duplication ratio is
getting lower. The duplication distribution is relatively uniform
and high among the groups for bfs, gaussion and ss, and they
all demonstrate strong duplication pattern as shown in Fig. 6.

In summary, we can obtain two common observations. First,
the utilization of on-chip bandwidth is imbalanced. The miss
rate of L1 cache groups is high while the miss rate of L2
cache is poor. Second, there exists many duplicate cache lines
among L1 cache groups.

The duplication characteristics inspire us to explore and
design an efficient inter-group cache cooperation schemes to
optimize GPU performance. There are two challenges. The
first is how to perceive the valid duplication among L1 cache
groups. And the second is how to design the interconnection
network to provide low overhead and latency.

By exploiting above observations, we optimize the CSD-L1
architecture to leverage duplicate data among L1 cache groups
and propose inter-group cache cooperation (ICC) methods to
improve GPU performance. Considering the high complexity
and overhead of cache groups connection and the duplica-
tion ratio between adjacent groups, we firstly propose the
Adjacent Group Cooperation, named ICC-AGC (details in
Section III-B). Since the duplication characteristics of each
workloads are different, we expand the cooperation scope to
fully utilize the bandwidth of L1 cache and duplication in more
cache groups, we further propose Multiple Group Cooperation,

4

Fig. 6. Distribution of duplicate data among L1 cache groups.

C
or

e
C

S
D

-L
1

Shared
L2

Cache

Group 0

0 1

...

...

...

...

...

Group 1

k

...

...

Group n

...

...
k+1k-1 2k-1 nk nk+1

0 1 k-1 k k+1 nk nk+12k-1 (n+1)k-1

(n+1)k-1

CrossbarCrossbar Crossbar

...

...

...

...

...

...
...

The proposed ICC method

Cooperation
Network

0 k ik 1 1+k 1+ik k-1 2k-1 (1+i)k

nk (n-1)k (i+1)k 1+nk 1+(n-1)k 1+(i+1)k (n+1)k-1 nk-1 (2+i)k
Perception

Module
and Arbiter

(a)

Q1 Q2 Q3 Q4

From
Remote To Remote To Local

From
Local

Q8 Q7 Q6 Q5

To L2From L2 From
Remote

To
Remote

L1
Data

Arbiter1
MUX

MSHR

Arbiter2 Perception
Module

Requests

Responses

Original

Added in ICC

(b)
Fig. 7. The overview of the proposed ICC method, the key components of which are denoted in blue. (a) The architectural overview of ICC. (b) The L1
cache node in ICC.

named ICC-MGC (details in Section III-C).

III. THE PROPOSED ICC METHOD

In this section, we first describe the overview architecture
of our proposed ICC method. Next, we demonstrate the
design and implementation details of ICC-AGC and ICC-
MGC, respectively. Then we show the workflow of ICC-AGC
and ICC-MGC. Finally, we analyze the hardware overhead and
latency of our proposed ICC schemes.

A. Overview of ICC Architecture

Fig. 7a shows the whole architecture of ICC, which mainly
contains three components: the cooperation interconnection
network, the perception module and the arbiters. The network
enables the data transfer among cooperative L1 cache groups.
The perception module is used to probe states of the current
L1 cache while the two arbiters are responsible to decide how
to implement inter-group cooperation in detailed situations.
Besides, four buffer queues are integrated in each L1 cache
to temporarily store requests or responses from the intercon-
nection network, as shown in Fig. 7b. With these components,
ICC can effectively leverage duplicate data among L1 cache
groups to improve GPU performance.

Set n

Set 1

Tag Index Offset

067111263

ACD-Table Set 0
Right TagLeft TagHash ValueValid

11Value01

01Value10

10Value21

...Hash Map

Compare

Fig. 8. The design of ACD-Table.

B. The Design of ICC-AGC

ICC-AGC mainly contains three components of an
Adjacent-group Cooperation Directory Table (ACD-Table) as
the perception module, the adjacent cooperation interconnec-
tion network (AdjNet) to be responsible for the adjacent L1
cache groups communication, and priority arbiters to deter-
mine the priority of requests responses.

1) ACD-Table: As shown in Fig. 8, ACD-Table is organized
as a multi-way set-associative structure. Each entry in ACD-
Table records the information of a cache block from an
adjacent L1 cache group. The entry is composed of a hashed
tag and a bitmap. We hash the 52 bits virtual page tags to an
20-bit tag for a 64-bit virtual address using 4KB page. The

5

L1 2kL1 0 ...L1 k L1 5k

L1 (n-2)kL1 nk ...L1 (n-1)k L1 6k

L1 k
Cooperation

Scope

Req/Res
L1 0 L1 k L1 2k

Req/Res

Req/Res

Req/Res

Fig. 9. The design of AdjNet.

20-bit hash map is enough to eliminate hash conflict and save
space efficiently. The bitmap contains 3 bits, corresponding
to the valid tag of local, left and right L1 cache group. Left
adjacency cache group is set to have a higher priority and the
first L1 cache’s left L1 cache is the last L1 cache of the same
cluster. The valid tag of ’1’ indicates that the corresponding
cache line is stored. To balance the trade-off of searching
overhead and hardware requirements, we set the same number
of sets and ways as L1 cache. The update of ACD-Table
is done by its adjacent cache groups. When a cache block
in the adjacent cache groups is modified or inserted, its tag
information in ACD-Table is simultaneously updated .

2) AdjNet: Fig. 9 shows the structure of the interconnection
network. The overall structure of AdjNet is similar with a bi-
directional ring, but the scope is limited to the adjacent L1
cache groups. For example, the adjacent cache groups of group
1 is group 0 and group 2, and the cache L1 k can communicate
with cache L1 0 and cache L1 2k through AdjNet. ICC-AGC
can benefit from AdjNet in the two following reasons. On
the one hand, adjacent cooperation does not require much
bandwidth from the interconnected network, which controls
implementation overhead. On the other hand, L1 caches only
need to process requests from adjacent cache groups, which
controls the request traffic to the interconnection network, thus
ensuring efficient data transmission. In the following article,
we define a request that is sent to remote groups through
cooperation network as a cooperative request.

3) Priority Arbiter: In ICC, we commonly integrate 4
buffer queues in the L1 cache to complete request processing
(details in Fig. 7). The request queues, Q2 and Q6, are respon-
sible for buffering cache access requests from remote groups
and to remote groups, respectively. The response queues, Q3
and Q7, are used to buffer the replies from interconnection
network. Specifically, the element in Q3 would be sent to the
remote group, and that in Q7 would be received from the
remote group.

Due to the added buffer queues for requests and responses, it
is necessary to integrate two arbiters to determine the source of
processing when L1 cache reads and writes data. Specifically,
the L1 cache needs to handle the requests from the local and
remote groups in an orderly manner. Since the L1 cache can
only process one cache request in one cycle, it is necessary to
integrate a priority arbiter to arbitrate the two types of requests,
and the details of priority arbiter are shown in Fig. 10. In order
to balance fairness and bandwidth allocation, the arbiter fetch
requests from Q1 and Q2 in a round-robin manner. Similarly,
a response priority arbiter is also integrated to process data
from the L2 cache and remote groups in an orderly manner.

Round
Robin
Arbiter

L1 Data
CacheFrom Local

Group

From Remote
Group

Request Queue

Request Queue

Fig. 10. The design of priority arbiter.

Details of one node

0 ...k

...

MulNet

2k ik3k

MNQ=3MNQ=7

Network Key Request Assist Request

Request
Queues

Dynamic
SendingArbiters

Two-way
Probing

nk (n-1)k (n-2)k (n-3)k (i+1)k

Fig. 11. An example for MulNet.

C. The Design of ICC-MGC

In order to benefit from more duplicate data, ICC-MGC
is designed to increase the cooperation scope among L1
caches. In ICC-MGC, a Multiple Group Cooperation Network
(MulNet) is developed to be responsible for the multi-group
cache communication. Meanwhile, we design the two-way
sending mechanism and the dynamic sending mechanism as
the perception module to balance the trade-off of probing
overhead and efficiency.

1) MulNet: Considering that each L1 cache is directly
connected to the other L1 caches, the interconnection network
would be extremely complex, and also incur expensive hard-
ware overhead. In addition, it is necessary to design a flexible
and scalable network to handle a large number of cooperative
requests and responses. A bidirectional ring network topology
with channel queues is suitable for the connection of multiple
cache groups with consecutive physical location. Specifically,
each L1 cache directly connect to adjacent groups, and the
remote L1 caches can communicate with each other through
the forwarding of adjacent cache groups. Each L1 cache
integrates 2 ports for communication and 4 queues to buffer
the cooperative data. Two queues with 5-entry are designed
to house the cooperative requests and responses from remote
groups, and the other two queues are responsible for buffer the
requests that missed in local cache, and responses to remote
groups. Furthermore, the number of cooperation groups is
limited to 8 which can effectively mitigate network congestion
and resource contention. Due to the independent transmission
of cooperative requests and responses, it is enough to set 5-
entry for each queue.

2) The Two-way Sending Mechanism: In ICC-MGC, as the
groups cooperation scope has expanded, the limited capacity
table structure of ACD-Table cannot be used to perceive
duplicate cache lines of remote groups. Therefore, the two-

6

way sending mechanism was proposed to achieve duplication
probing and perception.

Specifically, taking cache L1 k as an example, when a
missed request was send to MulNet, the MulNet generate two
cooperative requests, and forward requests in two directions,
respectively. Two cooperative requests are set with a maximum
number of queries (MNQ), which is used to limit the request
probing range.

Assumes that the request in the counterclockwise direction
is Rk, and the request in the clockwise direction is Ra. Rk

is used to quickly return probing results, so its MNQ value
is set to 2, that is, up to 2 remote caches can be queried. Ra

traverses all cache groups in the entire MulNet, so its MNQ
value is set to 7 (there are 8 cache groups).

If the requests hit the L1 cache of the remote group, the
cooperative reply is immediately returned to the cache L1 k
of the source group of the request. Otherwise, the MNQ value
is decremented by 1. If MNQ is greater than 0, the cooperative
requests is forwarded to the next remote cache group along the
original direction until the request hits or the MNQ reaches 0.

When a cooperative request returns, in order to reduce the
return time, we first calculate the distance among the remote
cache group and the source cache group in the two return
directions, and then choose the direction with the smaller
distance to return. In most cases, L1 k receives two cooperative
replies corresponding to Rk and Ra respectively. If both
requests hit the remote cache, L1 k adopts the reply that
arrives first in time and discards the reply that arrives later.
If Rk misses within the MNQ range, L1 k would receive a
cooperative reply carrying miss information, and then L1 k
sends the read miss request to L2 to prevent Ra from also
missing. Normally, the reply corresponding to Rk reaches
L1 k earlier. Thus cache L1 k would receive the valuable
preprocessing information.

3) The Dynamic Sending Mechanism: In ICC-MGC, the
duplication ratio of remote cache groups cannot be predicated
in advance. Therefore, if requests have poor duplication rate in
remote cache groups, blindly sending missed requests to Mul-
Net would hurt overall performance. On the one hand, a large
number of requests miss waste valuable L1 cache bandwidth.
Meanwhile, local cache read miss request that always missed
in remote cache still need to go to L2 cache, resulting in a lot
of meaningless additional overhead. Therefore, the dynamic
sending mechanism is proposed to arbitrate whether to use
ICC schemes based on the program execution status.

In ICC-MGC, the average data access time is monitored
in real time to measure the efficiency of inter-group cache
cooperation. We denote the average access time of the requests
that send to the MulNet as TMGC , and the average access time
of the requests that directly go to L2 as TL2. We calculate
TMGC by Formula 1:

TMGC = Rh ∗ Th +Rm ∗ (Tm + TmL2
) (1)

In Formula 1, Rh and Rm represent the hit rate and the miss
rate respectively, and the subscript represents which structure
they belong to, ICC-MGC or L2. Th and Tm represent the
average access latency on hits and misses respectively, and

L1 Cache miss

Stop

Yes

Valid？

No

Lookup
Directory

To Adjacent
Group

To L2
Cache

Return DataReturn
Data

Yes

No

Hit ?

(a)

L1 Cache miss

Stop

Yes

Valid？

No

Query Tags

Send two
way requests

To L2
Cache

Return DataReturn
Data

Yes

No

Dynamic Sending
Condition ?

(b)
Fig. 12. The workflow of ICC schemes. (a) The workflow of ICC-AGC. (b)
The workflow of ICC-MGC.

the subscript represents which structure they belong to, ICC-
MGC or L2.

The dynamic sending mechanism is executed in a fixed
period, and each period is divided into a sampling phase and
an execution phase. The basic unit of the mechanism is the
number of requests per period. The number of requests in
the sampling phase is 256, and the number of requests in the
execution phase is 4096. During the sampling phase of each
period, a L1 cache read miss request would be sent to MulNet
to access remote groups, and the perception module act as an
arbiter to determine requests processing method in the next
execution stage according to the response time. Specifically,
if TMGC <TL2, it means that cache lines can be obtained
efficiently through MulNet in next execution phase, and the L1
cache read miss requests would be sent to MulNet. Otherwise
the requests would directly go to L2 cache.

D. The Workflow of ICC

In this part, we present the workflow details of ICC-AGC
and ICC-MGC in Fig. 12. Next, we take cache L1 k in cache
group 1 as an example to illustrate the workflow details in
ICC-AGC and ICC-MGC, respectively.

1) The Workflow of ICC-AGC: Fig. 12(a) depicts the work-
flow in ICC-AGC. Assuming a read request, Re, was fetched
from Q1 or Q2 and missed in local L1 cache. Then Re

would be recorded in MSHR (Miss Status Holding Registers)
which is responsible for recording and merging requests that
L1 cache missed. In the baseline architecture, Re would be
buffered in Q5 then directly go to L2 cache. However, in AGC-
L1, Re would firstly check the ACD-Table in L1 k to determine
next process. On a miss in ACD-Table, Re would be forwarded
to L2 cache as usual. On a hit in ACD-Table, it indicates that
the missed cache block exists in the adjacent cache group on
the left or right. In this case, Re would be buffered in Q6 and
wait to be sent to the corresponding L1 cache group according
to the bitmap of the entry through AdjNet.

Suppose that the bit map is ’001’, this indicates that the L1
2k which is located in the right of L1 k can service Re or has
stored the requested cache block. Re would buffered in Q1,
which is located inside L1 2k. At this point, Re needs to wait

7

until it is selected by the Arbiter1 in L1 2k, after which L1 2k
would push the cache data corresponding to Re into Q3. The
cache block is passed back over the network and buffered at
Q7 which is located in L1 k. In summary, a complete adjacency
cache access process is realized. After that, check the validity
of the cache block, as some data is invalid because it has been
modified or evicted. If it is valid, wait for the response arbiter
to be selected and written to the L1 k. Otherwise, the cache
block would be discarded and Re be pushed to Q5 waiting to
go to L2 cache.

2) The Workflow of ICC-MGC: Fig. 12(b) depicts the
processing workflow of cache requests in ICC-MGC. Different
from AGC-L1, for an L1 cache miss request, Re, L1 cache
firstly checks the dynamic request flag to decide whether to
send Re to MulNet. The initial stage is set as the sampling
stage, and the dynamic request flag is true. In other stages,
the dynamic request flag is modified based on the real-time
monitoring results. If the cooperation flag is false, it means
that the latency in ICC-MGC is high and Re should be sent
to L2 directly. Otherwise, Re would be sent to MulNet.

Assumes that L1 3k received Re from MulNet, Re would be
pushed in Q2 and the MNQ value Re decrease 1. The Arbiter1
in L1 3k fetch requests from Q1 and Q2 in a round robin. On
Re hit in cache 3k, the response data block would be pushed
in Q3, and send the reply to L1 k. Otherwise, Re would be
directly pushed into Q6 which would send forward through
MulNet. In a case of MNQ is 0, a miss reply would be returned
to the original L1 k. Similar to ICC-AGC, when receiving a
data response from mote group, the L1 k also checks the the
validity information to determine whether adopt the response.

E. Overhead Analysis

This section analyzes the overhead on hardware require-
ments and time delays involved in ICC.

1) The Overhead of ICC-AGC: The hardware requirement
is mainly from the AdjNet and the ACD-Table. Two communi-
cation ports are integrated for each L1 cache to be responsible
for receiving and sending cooperative data, respectively. There
are 2 requests queues and 2 responses queues both with 5-entry
to buffer the cooperative data from adjacent groups. The wide
of each entry in request queues is 8 Bytes, while the wide of
each entry in response queues is 128 Bytes. The total overhead
of 4 buffer queues is 1288 Bytes.

The structure configuration of ACD-Table is the same as
that of L1 cache, with 4-way and 32-set. Each entry requires
20 bits to store the hashed tag, and 3 bits to record the validity
of two adjacent L1 cache and itself. Therefore, the hardware
requirement by each ACD-Table is 368 Bytes. In summary,
the total increased hardware overhead for each L1 cache is
1656 Bytes.

The time overhead is mainly increased by the two processes
of ACD-Table lookup and L1 cache group communication. For
the first issue, there is additional one cycle for the L1 cache
read miss request that also missed in ACD-Table. Also, it will
take L1 cache one cycle to service cooperative requests from
adjacent groups. But on a hit of ACD-Table will speed up data
access compared with directly go to L2, which will mitigate

overall latency. The entries in ACD-Table are updated and
inserted by the adjacent L1 cache, which is not in the critical
path. For the second issue, the cooperative requests can be sent
during one cycle and would not occupy extra ports. Thus, there
is little time delay for communication.

2) The Overhead of ICC-MGC: For the hardware imple-
mentation overhead, we mainly integrate a MulNet and ar-
biters. Each L1 cache can process and forward the cooperative
requests, so each L1 cache is required to be equipped with
2 communication ports, which are responsible for sending
and receiving cooperation data (requests or responses, respec-
tively). Similar to ICC-AGC, each L1 cache also requires
2 arbiters and 4 queues. The 4 buffer queues totally bring
additional 1288 Bytes hardware overhead. It is worth noting
that the dynamic request arbiter does not require additional
hardware overhead, and it is enough to modify the relevant
processing logic of L1 cache.

In terms of the time delay in ICC-MGC, extra time overhead
is cause by the dynamic sending mechanism and remote
requests delay. Specifically, during the execution phase, the
L1 cache would check the dynamic request tag that calculated
during the sampling phase to decide whether the request
should be sent to MulNet in current phase, and this process
would take one cycle. When the communication port is not
occupied, it takes one cycle for the L1 cache to communicate
with adjacent cache groups.

IV. EVALUATION

In this section, we first demonstrate the experiment en-
vironment of GPGPU-Sim, the system configurations and
benchmarks. Next, we present and analyze the experimental
results. Finally, we show the sensitivity studies.

A. Experimental Setup

GPGPU-Sim [28] is a cycle-level GPU performance simu-
lator and can simulate the performance of GPU architecture
accurately. We have extended GPGPU-Sim-3.2 to implement
our proposed two ICC schemes. We not only model the
interconnection network and cache request mechanism but
calculate the execution latency exactly.

The important components parameters of modeled GPU
system for the experiment are shown in Table I and other
parameters are the default values.

We select a various set of workloads from Rodinia [29],
Polybench [30], Mars [31], Tango [32] and SHOC [33] bench-
mark suits. The workloads come from multiple fields such as
graph algorithms, linear algebra, and data mining, and the
source, description, and dataset size of each workload are
shown in Table II.

In order to validate the effectiveness of our proposed
optimization ICC schemes, we demonstrate the performance
of four different architectures including Baseline (private L1
cache), CSD-L1, ICC-AGC and ICC-MGC.

• Baseline: In traditional GPU cache hierarchy, L1 cache
is private to each SM and independent of each other.

• CSD-L1 [26]: CSD-L1 is a state-of-the-art GPU cache
optimization scheme based on cluster group sharing.

8

TABLE I
THE SIMULATED GPU SYSTEM CONFIGURATION

Components Configuration
GPU System 1.4 GHz core clock, 32 cores (SMs), SIMD

width = 32
Resources/SM 1536 threads, 32768 registers, 48 warps
L1 Data Cache 16KB, 4-way, 32 sets, 128B per block

L2 Cache 768 KB, 8-way, 64 sets, 128 bytes per block
DRAM 924 MHz memory clock, 16 DRAM-banks, 4

bank-groups/MC

TABLE II
WORKLOADS FROM DIFFERENT BENCHMARKS

Suit Workloads Suit Workloads
Rodinia bfs Polybench 2mm
Rodinia gaussion Polybench syrk
Rodinia backprop (bp) Polybench gsmt
Rodinia needle Mars ss
Rodinia cfd Mars pvc
Rodinia lud Tango AlexNet (AN)

Polybench 3DConv SHOC triad
Polybench gemm SHOC reduction

• ICC-AGC: ICC-AGC is the proposed cache cooperation
scheme between adjacent cache groups.

• ICC-MGC: ICC-MGC is the proposed cache cooperation
scheme among multiple cache groups.

B. Experimental Results

We present the evaluation results of our optimized ICC
schemes including the L1 miss rate, the traffic of L2 cache,
the overall GPU performance, and the power consumption.

1) Cache Hit Rate: We present the hit rate results of cache
read requests from two aspects, one is the local L1 cache
hit rate, and the other is the hit rate of remote L1 cache. In
ICC-AGC and ICC-MGC, a local L1 cache read miss request
is usually sent to the network as a cooperative request to
accelerate data access through inter-group cooperation. Similar
to the definition of L1 local cache hit rate, we define the ratio
of the number of cooperative requests hitting in remote L1
caches to the total number of local L1 cache read miss requests
as the remote L1 cache hit rate.

a) Remote cache hit ratio: Fig. 13 shows the hit ratio
of remote L1 cache, where x-axis represents the workload,
y-axis represents the hit ratio, and the last item on x-axis
represents average. For all workloads, the average remote
cache hit ratio for ICC-AGC and ICC-MGC are 19% and
32%, respectively. Among them, AN demonstrates the highest
hit ratio with 50% and 80% in ICC-AGC and ICC-MGC,
respectively, indicating that most cooperative requests can be
serviced by adjacent cache groups. For most workloads like
syrk, cfd, 3DConv, gauss, gsmt and ss all present higher remote
cache hit ratio. Therefore, most cooperative requests in these
workloads can obtain the data from remote caches, which
can effectively mitigate the L2 cache pressure. For gsmt, the
data duplication ratio between adjacency groups is the highest
(details in Section II-C), so the remote hit ratio in ICC-AGC
is higher. But there is a large difference in remote hit ratio

0

0.2

0.4

0.6

0.8

1

3D
Con

v bf
s

ga
us

sio
n
ge

m
m

gs
m

t
pv

c ss
sy

rk bp

ne
ed

le cfd lud 2m
m AN

red
uc

tio
n

tri
ad

M
ea

n

re
m

ot
e

hi
t r

at
e

AGC-L1 MGC-L1

Fig. 13. The hit ratios of remote L1 cache in ICC. As existing methods do
not support remote access, there are no compared results.

0

0.2

0.4

0.6

0.8

1

3D
Con

v bf
s

ga
us

sio
n
ge

m
m

gs
m

t
pv

c ss
sy

rk bp

ne
ed

le cfd lud
2m

m AN

red
uc

tio
n

tri
ad

M
ea

n

L
1

ca
ch

e
hi

t r
at

e

Baseline CSD-L1 AGC-L1 MGC-L1

Fig. 14. The hit ratios of local L1 cache.

for syrk between ICC-AGC and ICC-MGC, which will affect
the overall cache access latency. Both ICC-AGC and ICC-
MGC have poor hit ratios in gemm, bp, lud, 2mm and triad,
thus the overall performance improvement is limited. Also,
the remote hit rate in reduction is zero, indicating that there
is no duplication across different cache groups. Overall, the
remote cache hit rate in ICC-MGC is higher than that in ICC-
AGC, which translate into much higher improvement in overall
performance (details in Section IV-B3).

b) Local cache hit rate: Fig. 14 depicts that ICC-AGC
and ICC-MGC can effectively increase the local L1 cache hit
rate and the average improvement is 15% and 18% compared
with baseline, respectively. For most workloads, both ICC-
AGC and ICC-MGC get a certain improvement compared with
CSD-L1, and ICC-MGC has a higher improvement.

Specifically, for syrk and AN, Fig. 13 shows that the remote
cache hit rate of ICC-MGC is closed to 70% and 80%, so
ICC-MGC can greatly improve the L1 cache hit rate. Since
ICC-AGC only focus on the adjacent groups cooperation, the
remote cache hit rate in syrk is only 18%, so the overall hit
rate of the L1 cache is not significantly improved.

For workloads with a high L1 cache hit rate in CSD-L1,
such as 3DConv , its local cache hit rate is 75%, and the
remote cache hit rate in ICC-MGC is 41%. However, since
the read miss requests in the above workload account for a
small proportion of the total requests, the L1 cache hit rate is
only improved by 2%. For workloads with a low L1 cache hit
rate in CSD-L1, such as bfs, cfd and needle, there are much
further local hit ratio increment than CSD-L1. Specifically,
for bfs, the local cache hit rate is only 36%, indicating that
cache miss occurs frequently, even if the hit rate of remote
cache in ICC-AGC and ICC-MGC are poor(18% and 25%,
respectively), but ICC methods can also significantly improve

9

0

0.2

0.4

0.6

0.8

1

1.2

3D
Con

v bf
s

ga
us

sio
n
ge

m
m

gs
m

t
pv

c ss
sy

rk bp

ne
ed

le cfd lud 2m
m AN

red
uc

tio
n

tri
ad

M
ea

n

L
2

ca
ch

e
tr

af
fi

c
Baseline CSD-L1 AGC-L1 MGC-L1

Fig. 15. The normalized results of L2 cache traffic.

0.6

1.1

1.6

2.1

2.6

3.1

3D
Co
nv bf

s

ga
us
sio
n
ge
m
m
gs
m
t
pv
c ss

sy
rk bp

ne
ed
le cfd lud

2m
m AN

red
uc
tio
n
tri
ad
M
ea
n

IP
C

Baseline CSD-L1 AGC-L1 MGC-L1
4.8

Fig. 16. The normalized results of overall performance compared to baseline.

the L1 cache hit rate. For reduction, there is no local cache
hit ratio improvement due to the high miss ratio caused by
specific cache access pattern.

2) L2 Cache Traffic: We collect statistics on the traffic of
L1 cache groups to shared L2 cache. The traffic results are
shown in Fig. 15, and all results are normalized based on
Baseline. From Fig. 15, we obtain the following observations.

Overall, both ICC-AGC and ICC-MGC can effectively
reduce the L2 cache traffic and the traffic is reduced by on
average of 10% and 20% compared with CSD-L1, respectively.
The L2 traffic reduction shows that both ICC-AGC and ICC-
MGC can take advantage of the inter-group cache cooperation
and enhance the L1 cache to handle more missing requests,
thus reducing the requests sent to L2 cache.

There are considerable traffic reduction for workloads with
high remote hit ratio, such as syrk and AN in ICC methods
compared with CSD-L1, especially in ICC-MGC. Specifically,
for syrk, the L2 traffic in ICC-MGC is significantly reduced,
which is 35% lower than that in CSD-L1. The main reason
is that the remote cache hit rate in ICC-MGC is high (nearly
70%), so that most missed requests can be obtained through
inter-group cache cooperation. For gemm, due to the poor
remote cache hit rate in ICC-AGC and ICC-MGC (only 5%
and 16% respectively), the L2 traffic is only reduced by 7%
and 18% compared to CSD-L1, respectively. However, there
is little or non traffic reduction in reduction, because there are
no duplication and remote group to service the cooperative
requests.

3) Overall Performance (IPC): We use IPC (Instruction
per Cycle) to represent the overall GPU performance. Fig. 16

0

0.5

1

1.5

3D
Con

v bf
s

ga
us

sio
n
ge

m
m

gs
m

t
pv

c ss
sy

rk bp

ne
ed

le cfd lud 2m
m AN

red
uc

tio
n

tri
ad

M
ea

n

L
1

ca
ch

e
re

ad
 la

te
nc

y

Baseline CSD-L1 AGC-L1 MGC-L1

3.3
2.2

2.0

Fig. 17. The normalized results of L1 data cache read latency.

shows the normalized results of IPC based on Baseline. The
horizontal axis represents each workload, and the last term is
the average performance. Overall, ICC-AGC and ICC-MGC
provide a modest improvement in performance by varying
degree for each workload compared to Baseline and CSD-
L1. Specifically, compared to CSD-L1, ICC-AGC and ICC-
MGC can provide an additional 19% and 49% performance
improvement on average, respectively. ICC-AGC and ICC-
MGC perform differently for each workload and we observe
several characteristics as following.

First, for AN, ICC-MGC has the greatest performance im-
provement, the performance is 4.8x more than that of baseline,
and 3x more than that of CSD-L1. The hit ratio of remote
groups is high (nearly 80% in ICC-MGC and 50% in ICC-
AGC), which can significant reduce the traffic of L2 cache
and fully utilize remote cache bandwidth. Also, syrk, cfd and
ss all get significant performance improvement for the large
duplication of remote cache groups.

Second, for gmst, CSD-L1 demonstrate performance degra-
dation, while ICC-AGC and ICC-MGC can greatly improve
the overall performance compared with CSD-L1 (31% and
53%, respectively). The main reason for the difference in gsmt
is the high proportion of duplication between adjacent L1
cache groups (48%). In addition, there are a large number of
identical cache lines among L1 cache groups (the duplication
of ”3-4” and ”5-7” account for 22% and 32%, respectively), so
most cooperative requests in ICC-MGC can be hit in the closed
cache group, resulting in an overall performance improvement
of 53% compared to CSD-L1.

Third, both ICC-AGC and ICC-MGC have relatively small
performance improvements for gemm (8% and 16%, respec-
tively). The low proportion and random distribution charac-
teristics of duplicate data are the main reasons, which also
result in ICC-MGC with a larger cooperation scope performing
better than ICC-AGC. For reduction, there is no performance
improvement in ICC-AGC and even little performance degra-
dation in ICC-MGC compared with CSD-L1. On the one hand,
the high miss ratio and irregular access pattern significantly in-
fluence cache groups cooperation efficiency. With the specific
design of perception module in ICC-AGC and ICC-MGC, ICC
methods can maintain the overall performance improvement
of CSD-L1 for irregular and replication intensive workloads.
For other workloads, both ICC-AGC and ICC-MGC deliver
good performance improvements, and ICC-MGC outperforms
ICC-AGC in many workloads.

10

0.8

0.9

1

1.1

1.2

1.3

3D
Con

v bf
s

ga
us

sio
n
ge

m
m

gs
m

t
PVC SS

sy
rk bp

ne
ed

le cfd lud
2m

m AN

red
uc

tio
n

tri
ad

M
ea

n

P
ow

er
 c

on
su

m
pt

io
n

Baseline CSD-L1 AGC-L1 MGC-L1

Fig. 18. The normalized results of power consumption.

4) L1 Cache Read Latency: To further analyze the perfor-
mance details, we collect data on the L1 data cache average
read latency, and the results are normalized compared to
baseline (shown in Fig. 17). Compared with CSD-L1, ICC-
AGC can effectively reduce the L1 cache read latency for most
workloads, and bring 10% reduction on average, specifically.
While there is little latency reduction in ICC-MGC on average.
We observe that workloads with high duplication demonstrate
a higher latency reduction in both ICC-AGC and ICC-MGC.
Specifically, gsmt presents the highest improvement in ICC-
AGC and ICC-MGC and can obtain 24% and 33% cache
access latency reduction than that in CSD-L1. It is expect
that cfd, gaussian, AN and 2mm all demonstrate effectively
cache access latency reduction in ICC-AGC and ICC-MGC,
because there is a large number of repeatedly cache access
and duplication across L1 caches.

Note that there are none latency reduction or even latency
increment than CSD-L1 in reduction and syrk, especially
in ICC-MGC. For reduction, the most reason is the poor
duplication across L1 cache blocks (the remote hit ratio nearly
0) and the high local L1 cache miss rate. For syrk, there are
great latency increment in ICC-MGC and the increase is nearly
120% than that in CSD-L1, which may caused by the large
(nearly 70%) and normalized duplication proportion across L1
caches, shown in Fig. 5. Different with AN, the remote hit ratio
difference between ICC-AGC and ICC-MGC in syrk is much
larger than that in AN, which will take up more latency to
service cooperative requests from remote groups.

5) Power Consumption: We use GPUWattch [34] to esti-
mate the power consumption of our proposed ICC methods.
The energy consumption results of the four structures are
shown in Fig. 18, and all results are normalized based on
Baseline. Compared with Baseline, the energy consumption
in ICC-AGC changes very little, but there is 3.1% power
consumption increment on average in ICC-MGC. Compared
with CSD-L1, ICC-MGC increases energy consumption by
10% and 13% in lud and triad respectively, and ICC-AGC
increases energy consumption by 7.3% in triad. With the
poor remote duplication and low local hit rate, the cooper-
ative requests in ICC methods cannot efficiently serviced by
remote groups. Therefore, the additional overhead and power
consumption of ICC methods have been exposed. But with the
specific perception module, the power overhead of ICC-MGC
is limited. Both optimization methods induce little energy

0

0.5

1

1.5

2

2.5

IPC L1 hit rate L2 traffic

N
or

m
al

iz
ed

 r
es

ul
ts

AGC-32
AGC-64
AGC-128
AGC-256
MGC-32
MGC-64
MGC-128
MGC-256

(a)

0

0.5

1

1.5

2

2.5

IPC L1 hit rate L2 traffic

N
or

m
al

iz
ed

 r
es

ul
ts

AGC-256

AGC-512
AGC-1024

AGC-2048
MGC-256

MGC-512

MGC-1024
MGC-2048

(b)
Fig. 19. Effect of GPU core count and L2 cache traffic on IPC, L1 hit rate
and L2 traffic, respectively. (a) Effect of GPU core count. (b) Effect of L2
cache capacity.

consumption of other workloads. Specifically, for ss, the power
consumption in ICC-AGC and ICC-MGC is lower than that
in CSD-L1. This is mainly because the cooperation among L1
cache groups reduces the requests to shared L2 cache, so lower
traffic to L2 cache leads to lower pressure and congestion to
NoC, thereby, alleviating the power consumption caused by
other components and reducing overall power consumption.

C. Sensitivity Studies

In this part we analyze the sensitivity of ICC schemes to
the GPU core count and the L2 cache size.

1) Effect of GPU Core Count: In order to explore the
possible impact of different GPU cores on the architecture of
ICC-AGC and ICC-MGC, we set the number of GPU cores to
32, 64, 128 and 256 respectively for experiments. We mainly
collect statistics on IPC, L1 cache hit rate and L2 cache traffic,
and the experimental results are shown in Fig. 19a, and all
results are normalized based on their respective baselines. The
x-axis represents the specific indicator of IPC, L1 hit rate and
L2 traffic. The y-axis represents the normalized results. Each
indicator contains eight results, representing 2 architectures,
ICC-AGC and ICC-MGC, with 4 numbers of 32, 64, 128,
256. The name of each result in the legend is consist of the
specific ICC method and the number of GPU cores.

As shown in Fig. 19a, on increasing the number of GPU
cores from 32 to 256, we observe that the average GPU per-
formance also increased steadily, and most workloads exhibit
similar performance improvement. The main reason for this
improvement is that as the number of GPU cores increases, the
proportion of duplicate data blocks among L1 cache group also
increase, providing more opportunities for cooperative requests
to hit in other cache groups, thereby increasing the cooperative
requests hit rate. Therefore, a large number of missing requests
can be serviced , which improves L1 bandwidth utilization
and reduces L2 traffic, resulting in a higher performance
improvement with larger cores.

In Fig. 19a, we observe that most workloads exhibit rela-
tively stable improvements in L1 cache hit rates in ICC-AGC
and ICC-MGC. On average, ICC-MGC has a higher L1 cache
hit rate than that in ICC-AGC, mainly because ICC-MGC
has a larger cooperation scope, and can utilize more duplicate
data. Fig. 19a depicts that for most workloads, L2 cache traffic
obtain significant reduction in ICC-AGC and ICC-MGC, and
the reduction remains stable as the number of GPU cores
increases. The average L2 cache traffic in ICC-MGC is much
smaller than that in ICC-MGC, because the remote L1 cache

11

group can handle more L1 cache read miss requests in ICC-
MGC.

2) Effect of L2 Cache Capacity: In this study, we also
analyze the performance impact of L2 cache capacity in ICC-
AGC and ICC-MGC, and Fig. 19b shows the performance
variation on IPC, L1 hit rate and L2 traffic with different L2
cache capacity, and the number of L2 cache blocks is 256,
512, 1024, 2048 respectively. The organization and layout of
the content in Fig. 19b is consistent with that in Fig. 19a, and
all results are normalized based on the baselines respectively.
Similarly, the name of each result in the legend is consist of
the specific ICC method and the number of L2 cache blocks.

It is worth noting that for most workloads, the performance
effect of L2 cache capacity is not significant, and the work-
loads exhibit similar behaviors under different configurations.
The main reason is that our proposed inter-group cache
cooperation method, ICC-AGC and ICC-MGC, mainly focus
on and utilize duplicate data among L1 caches, so the L2 cache
capacity would not directly impact the overall performance.
On average, for different L2 cache capacity configurations,
the performance obtain relatively stable improvement in both
ICC-AGC and ICC-MGC, which verifies the effectiveness of
our proposed ICC methods.

But for different L2 cache capacity configurations, the
performance in ICC-AGC and ICC-MGC is better than that
in Baselines. When the L2 cache capacity increases, the L1
cache hit rate decreases in ICC-AGC and ICC-MGC, but the
overall performance only changes slightly. Similarly, L2 cache
traffic can be significantly reduced in ICC-MGC compared to
Baseline and ICC-AGC, indicating that a considerable part of
cooperative requests can be served in ICC-MGC, thus leading
to overall performance improvement.

V. RELATED WORK

In this section, we briefly summarize existing works that
focus on duplicate data among L1 caches, and categorize them
into two aspects of exploiting and removing duplication among
L1 caches. Detailed works are presented as follows.

Many prior works attempt to design an efficient commu-
nication mechanism to exploit duplication among L1 caches
to reduce shared L2 traffic. Specifically, Dublish et al. [23]
designed a Cooperative Caching Network to connect all L1
caches to leverage duplication of remote SMs. Ibrahim et
al. [24] design duplicate data prediction and parallel probing
mechanisms to further optimize multiple SMs communication.
Recently, Cheng et al. [35] proposed COLAB to perceive
duplicate requests within a cluster to accelerate data servicing.

Other works focus on developing novel shared architecture
to remove duplication among L1 caches, thus increasing
overall cache capacity. Wang et al. [36] and Choo et al.
[37] proposed to share an L1 Data cache across several SMs.
Ibrahim et al. [25] introduced a shared L1 cache organization,
where each SM only cache a non-overlapping slice of the
entire address range to further eliminate duplication. Ibrahim
et al. [26] recently proposed Clustered Shared Decoupled L1
cache (CSD-L1), which decoupled the L1 caches from SMs
and aggregated to groups, then eliminate data duplication

within each group and limit overall duplication. However, Xu
et al. [27] observed that there exists high resource contention in
CSD-L1, and they proposed ATA-Cache, which decoupled and
aggregated the tag arrays of multiple L1 caches and co-design
a two-level thread-block scheduling to maximize locality.

VI. CONCLUSION

This paper studies the duplication characteristics among L1
cache groups in existing cache architecture, and propose a
inter-group cache cooperation method ICC. ICC is composed
of two cooperation schemes of ICC-AGC and ICC-MGC.
Experimental results on GPGPU-Sim with comprehensive
benchmarks have shown that ICC can achieve a higher cache
hit ratio and GPU performance.

REFERENCES

[1] L. Wang, J. Ye, Y. Zhao, W. Wu, A. Li, S. L. Song, Z. Xu,
and T. Kraska, “Superneurons: dynamic gpu memory management
for training deep neural networks,” in Proceedings of the 23rd
ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, ser. PPoPP ’18. New York, NY, USA: Association
for Computing Machinery, 2018, p. 41–53. [Online]. Available:
https://doi.org/10.1145/3178487.3178491

[2] J. Ryoo, M. Fan, X. Tang, H. Jiang, M. Arunachalam, S. Naveen, and
M. T. Kandemir, “Architecture-centric bottleneck analysis for deep neu-
ral network applications,” in 2019 IEEE 26th International Conference
on High Performance Computing, Data, and Analytics (HiPC), 2019,
pp. 205–214.

[3] E. Choukse, M. B. Sullivan, M. O’Connor, M. Erez, J. Pool, D. Nellans,
and S. W. Keckler, “Buddy compression: Enabling larger memory for
deep learning and hpc workloads on gpus,” in 2020 ACM/IEEE 47th
Annual International Symposium on Computer Architecture (ISCA),
2020, pp. 926–939.

[4] Q. Sun, X. Zhang, H. Geng, Y. Zhao, Y. Bai, H. Zheng, and
B. Yu, “Gtuner: tuning dnn computations on gpu via graph attention
network,” in Proceedings of the 59th ACM/IEEE Design Automation
Conference, ser. DAC ’22. New York, NY, USA: Association
for Computing Machinery, 2022, p. 1045–1050. [Online]. Available:
https://doi.org/10.1145/3489517.3530584

[5] M. Risso, A. Burrello, F. Conti, L. Lamberti, Y. Chen, L. Benini,
E. Macii, M. Poncino, and D. J. Pagliari, “Lightweight neural archi-
tecture search for temporal convolutional networks at the edge,” IEEE
Transactions on Computers, vol. 72, no. 3, pp. 744–758, 2023.

[6] NVIDIA, “Nvidia’s next generation cuda compute architecture:
Fermi,” Website, 2009, https://www.nvidia.com/content/PDF/fermi
white papers/NVIDIA Fermi Compute Architecture Whitepaper.pdf.

[7] NVIDIA, “Nvidia tesla p100.” Website, 2016, https://images.nvidia.cn/
content/pdf/tesla/whitepaper/pascal-architecture-whitepaper.pdf.

[8] NVIDIA, “Nvidia telsa v100 gpu architecture.” Website,
2017, https://images.nvidia.cn/content/volta-architecture/pdf/
volta-architecture-whitepaper.pdf.

[9] NVIDIA, “Nvidia turing gpu architecture,” Website,
2018, https://images.nvidia.cn/aem-dam/en-zz/Solutions/
design-visualization/technologies/turing-architecture/
NVIDIA-Turing-Architecture-Whitepaper.pdf.

[10] W. A. Wulf and S. A. McKee, “Hitting the memory wall: implications of
the obvious,” SIGARCH Comput. Archit. News, vol. 23, no. 1, p. 20–24,
mar 1995. [Online]. Available: https://doi.org/10.1145/216585.216588

[11] S. H. Fuller and L. I. Millett, “Computing performance: Game over or
next level?” Computer, vol. 44, no. 1, pp. 31–38, 2011.

[12] N. D. E. Jerger and L.-S. Peh, “On-chip networks,” Synthesis
Lectures on Computer Architecture, 2009. [Online]. Available:
https://api.semanticscholar.org/CorpusID:38177873

[13] M. S. Gaur, V. Laxmi, M. Zwolinski, M. Kumar, N. Gupta, and
Ashish, “Network-on-chip: Current issues and challenges,” in 2015 19th
International Symposium on VLSI Design and Test, 2015, pp. 1–3.

[14] M. Jalili and M. Erez, “Reducing load latency with cache level pre-
diction,” in 2022 IEEE International Symposium on High-Performance
Computer Architecture (HPCA), 2022, pp. 648–661.

https://doi.org/10.1145/3178487.3178491
https://doi.org/10.1145/3489517.3530584
https://www.nvidia.com/content/PDF/fermi_white_papers/NVIDIA_Fermi_Compute_Architecture_Whitepaper.pdf
https://www.nvidia.com/content/PDF/fermi_white_papers/NVIDIA_Fermi_Compute_Architecture_Whitepaper.pdf
https://images.nvidia.cn/content/pdf/tesla/whitepaper/pascal-architecture-whitepaper.pdf
https://images.nvidia.cn/content/pdf/tesla/whitepaper/pascal-architecture-whitepaper.pdf
https://images.nvidia.cn/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
https://images.nvidia.cn/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
https://images.nvidia.cn/aem-dam/en-zz/Solutions/design-visualization/technologies/turing-architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf
https://images.nvidia.cn/aem-dam/en-zz/Solutions/design-visualization/technologies/turing-architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf
https://images.nvidia.cn/aem-dam/en-zz/Solutions/design-visualization/technologies/turing-architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf
https://doi.org/10.1145/216585.216588
https://api.semanticscholar.org/CorpusID:38177873

12

[15] A. Bakshi, J.-L. Gaudiot, W.-Y. Lin, M. Makhija, V. K. Prasanna, W. W.
Ro, and C. Shin, “Memory latency : to tolerate or to reduce ?” 2000.
[Online]. Available: https://api.semanticscholar.org/CorpusID:634879

[16] X. Chen, L.-W. Chang, C. I. Rodrigues, J. Lv, Z. Wang, and W.-M.
Hwu, “Adaptive cache management for energy-efficient gpu computing,”
in 2014 47th Annual IEEE/ACM International Symposium on Microar-
chitecture, 2014, pp. 343–355.

[17] X. Zhu, R. Wernsman, and J. Zambreno, “Improving first level cache
efficiency for gpus using dynamic line protection,” ser. ICPP ’18.
New York, NY, USA: Association for Computing Machinery, 2018.
[Online]. Available: https://doi.org/10.1145/3225058.3225104

[18] B. Li, J. Wei, J. Sun, M. Annavaram, and N. S. Kim, “An efficient
gpu cache architecture for applications with irregular memory access
patterns,” ACM Trans. Archit. Code Optim., vol. 16, no. 3, jun 2019.
[Online]. Available: https://doi.org/10.1145/3322127

[19] Y. Oh, G. Koo, M. Annavaram, and W. W. Ro, “Linebacker: Preserving
victim cache lines in idle register files of gpus,” in 2019 ACM/IEEE
46th Annual International Symposium on Computer Architecture (ISCA),
2019, pp. 183–196.

[20] Y. Tian, S. Puthoor, J. L. Greathouse, B. M. Beckmann, and D. A.
Jiménez, “Adaptive gpu cache bypassing,” ser. GPGPU-8. New York,
NY, USA: Association for Computing Machinery, 2015, p. 25–35.
[Online]. Available: https://doi.org/10.1145/2716282.2716283

[21] G. Koo, Y. Oh, W. W. Ro, and M. Annavaram, “Access pattern-
aware cache management for improving data utilization in gpu,” in
2017 ACM/IEEE 44th Annual International Symposium on Computer
Architecture (ISCA), 2017, pp. 307–319.

[22] N. Agarwal, D. Nellans, M. O’Connor, S. W. Keckler, and T. F. Wenisch,
“Unlocking bandwidth for gpus in cc-numa systems,” in 2015 IEEE 21st
International Symposium on High Performance Computer Architecture
(HPCA), 2015, pp. 354–365.

[23] S. Dublish, V. Nagarajan, and N. Topham, “Cooperative caching for
gpus,” ACM Trans. Archit. Code Optim., vol. 13, no. 4, dec 2016.
[Online]. Available: https://doi.org/10.1145/3001589

[24] M. A. Ibrahim, H. Liu, O. Kayiran, and A. Jog, “Analyzing and
leveraging remote-core bandwidth for enhanced performance in gpus,”
in 2019 28th International Conference on Parallel Architectures and
Compilation Techniques (PACT), 2019, pp. 258–271.

[25] M. A. Ibrahim, O. Kayiran, Y. Eckert, G. H. Loh, and A. Jog,
“Analyzing and leveraging shared l1 caches in gpus,” in Proceedings
of the ACM International Conference on Parallel Architectures and
Compilation Techniques, ser. PACT ’20. New York, NY, USA:
Association for Computing Machinery, 2020, p. 161–173. [Online].
Available: https://doi.org/10.1145/3410463.3414623

[26] M. A. Ibrahim, O. Kayiran, Y. Eckert, G. H. Loh, and A. Jog, “Analyzing
and leveraging decoupled l1 caches in gpus,” in 2021 IEEE International
Symposium on High-Performance Computer Architecture (HPCA), 2021,
pp. 467–478.

[27] X. Xu, L. Wang, L. Xiao, L. Liu, Y. Lv, X. Xie, M. Han, and
H. Liu, “Ata-cache: Contention mitigation for gpu shared l1 cache with
aggregated tag array,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, pp. 1–1, 2023.

[28] A. Bakhoda, G. L. Yuan, W. W. L. Fung, H. Wong, and T. M. Aamodt,
“Analyzing cuda workloads using a detailed gpu simulator,” in 2009
IEEE International Symposium on Performance Analysis of Systems and
Software, 2009, pp. 163–174.

[29] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-H. Lee, and
K. Skadron, “Rodinia: A benchmark suite for heterogeneous computing,”
in 2009 IEEE International Symposium on Workload Characterization
(IISWC), 2009, pp. 44–54.

[30] S. Grauer-Gray, L. Xu, R. Searles, S. Ayalasomayajula, and J. Cavazos,
“Auto-tuning a high-level language targeted to gpu codes,” in 2012
Innovative Parallel Computing (InPar), 2012, pp. 1–10.

[31] B. He, W. Fang, Q. Luo, N. K. Govindaraju, and T. Wang, “Mars:
a mapreduce framework on graphics processors,” in Proceedings
of the 17th International Conference on Parallel Architectures and
Compilation Techniques, ser. PACT ’08. New York, NY, USA:
Association for Computing Machinery, 2008, p. 260–269. [Online].
Available: https://doi.org/10.1145/1454115.1454152

[32] A. Karki, C. Palangotu Keshava, S. Mysore Shivakumar, J. Skow,
G. Madhukeshwar Hegde, and H. Jeon, “Tango: A deep neural network
benchmark suite for various accelerators,” in 2019 IEEE International
Symposium on Performance Analysis of Systems and Software (ISPASS),
2019, pp. 137–138.

[33] A. Danalis, G. Marin, C. McCurdy, J. S. Meredith, P. C.
Roth, K. Spafford, V. Tipparaju, and J. S. Vetter, “The scalable
heterogeneous computing (shoc) benchmark suite,” in Proceedings

of the 3rd Workshop on General-Purpose Computation on Graphics
Processing Units, ser. GPGPU-3. New York, NY, USA: Association
for Computing Machinery, 2010, p. 63–74. [Online]. Available:
https://doi.org/10.1145/1735688.1735702

[34] V. Kandiah, S. Peverelle, M. Khairy, J. Pan, A. Manjunath, T. G. Rogers,
T. M. Aamodt, and N. Hardavellas, “Accelwattch: A power modeling
framework for modern gpus,” in MICRO-54: 54th Annual IEEE/ACM
International Symposium on Microarchitecture, ser. MICRO ’21. New
York, NY, USA: Association for Computing Machinery, 2021, p.
738–753. [Online]. Available: https://doi.org/10.1145/3466752.3480063

[35] B.-W. Cheng, E.-M. Huang, C.-H. Chao, W.-F. Sun, T.-T. Yeh, and
C.-Y. Lee, “Colab: Collaborative and efficient processing of replicated
cache requests in gpu,” in Proceedings of the 28th Asia and South
Pacific Design Automation Conference, ser. ASPDAC ’23. New York,
NY, USA: Association for Computing Machinery, 2023, p. 314–319.
[Online]. Available: https://doi.org/10.1145/3566097.3567838

[36] J. Wang, L. Jiang, J. Ke, X. Liang, and N. Jing, “A sharing-aware
l1.5d cache for data reuse in gpgpus,” in Proceedings of the 24th Asia
and South Pacific Design Automation Conference, ser. ASPDAC ’19.
New York, NY, USA: Association for Computing Machinery, 2019, p.
388–393. [Online]. Available: https://doi.org/10.1145/3287624.3287633

[37] K. Choo, W. Panlener, and B. Jang, “Understanding and optimizing gpu
cache memory performance for compute workloads,” in 2014 IEEE 13th
International Symposium on Parallel and Distributed Computing, 2014,
pp. 189–196.

Guosheng Wang is currently a master student
in School of Computer Science and Technology,
Wuhan University of Technology. His current re-
search interests include cache design and optimiza-
tion of GPU.

Yajuan Du received joint PhD degrees of City
University of Hong Kong and Huazhong University
of Science and Technology in Feb. 2018 and Dec.
2017, respectively. She is now an associate professor
in School of Computer Science and Technology,
Wuhan University of Technology.

Her research interest focuses on optimizing GPU
performance and the performance of nonvolatile
memories.

Weiming Huang received the M.S. degree from the
Wuhan University of Technology, Wuhan, China.
His current research interests include cache and TLB
design of GPU.

https://api.semanticscholar.org/CorpusID:634879
https://doi.org/10.1145/3225058.3225104
https://doi.org/10.1145/3322127
https://doi.org/10.1145/2716282.2716283
https://doi.org/10.1145/3001589
https://doi.org/10.1145/3410463.3414623
https://doi.org/10.1145/1454115.1454152
https://doi.org/10.1145/1735688.1735702
https://doi.org/10.1145/3466752.3480063
https://doi.org/10.1145/3566097.3567838
https://doi.org/10.1145/3287624.3287633

	Introduction
	Background And Motivation
	GPU Architecture and Cache Hierarchy
	Clustered Shared Decoupled L1 Cache
	Preliminary Study
	Cache Miss Rate.
	Duplicate Data Characteristics

	The proposed ICC method
	Overview of ICC Architecture
	The Design of ICC-AGC
	ACD-Table
	AdjNet
	Priority Arbiter

	The Design of ICC-MGC
	MulNet
	The Two-way Sending Mechanism
	The Dynamic Sending Mechanism

	The Workflow of ICC
	The Workflow of ICC-AGC
	The Workflow of ICC-MGC

	Overhead Analysis
	The Overhead of ICC-AGC
	The Overhead of ICC-MGC

	Evaluation
	Experimental Setup
	Experimental Results
	Cache Hit Rate
	L2 Cache Traffic
	Overall Performance (IPC)
	L1 Cache Read Latency
	Power Consumption

	Sensitivity Studies
	Effect of GPU Core Count
	Effect of L2 Cache Capacity

	Related work
	Conclusion
	References
	Biographies
	Guosheng Wang
	Yajuan Du
	Weiming Huang

