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Abstract— The emergence of 2.5D chiplet platforms provides a 
new avenue for compact scale-out implementations of deep 
learning (DL) workloads. Integrating multiple small chiplets 
using a Network-on-Interposer (NoI) offers not only significant 
cost reduction and higher manufacturing yield than 2D ICs but 
also better energy efficiency and performance. However, defects 
in chiplets may compromise performance since they restrict the 
computing capability. Therefore, carefully designed chiplet and 
NoI link placement, and task mapping schemes, in presence of 
defects, are necessary. In this paper, we propose a defect-aware 
NoI design approach using a custom-defined space-filling curve 
(SFC) for efficient execution of mixed workloads of 
convolutional neural network (CNN) inference tasks. We 
demonstrate that the k-ary n-cube-based NoI topologies can be 
degenerated into SFC-based counterparts, which we refer to as 
SFCed NoI topologies. They enable high performance and 
energy efficiency with lower fabrication costs over their parent 
k-ary n-cube counterparts. The SFCed approach helps us to 
extract high performance from an inherently defective system. 
We demonstrate that SFCed design achieves up to 2.3× and 
3.5× reduction in latency and energy, respectively, compared to 
parent NoI architectures while executing diverse DL workloads.  

Keywords—2.5D, Chiplet, NoI, Defects, Space filling Curves, 
CNN Inference, chiplet placement, task mapping 

I. INTRODUCTION  
ecent emergence of complex compute- and data-
intensive applications (e.g., autonomous driving, 
machine vision, robotic medical diagnosis) 
necessitate high performance with a small form-

factor [1] [2]. ITRS 2.0 and IRDS roadmap highlight the 
unprecedented need for memory and processing over the next 
decade [3] [4] [5]. This need dictates the design of large-scale 
chips with high memory and compute capability offering high 
degrees of parallelism. Such large-scale chips include 
multiple processing cores, scaling from a few tens to even 
hundreds. This level of integration increases the area of a 
monolithic chip significantly [4]. As the monolithic chips 
approach the reticle limit, exploding fabrication costs rise as 
one of the major challenges in the silicon industry [6]. 
Chiplet-based designs that integrate multiple smaller chips 
(chiplets) on a single interposer offer a promising solution for 
reducing the manufacturing cost. Since each chiplet occupies 
a smaller area than a monolithic chip, the overall fabrication 
cost of the entire 2.5D system is significantly lower than the 
monolithic counterpart [6]. Then, the chiplets are connected 
through a network-on-interposer (NoI). 

Chiplet-based systems can lower fabrication costs 
significantly, but realistic design scenarios must consider the 
impact of defects on the overall performance [4]. Certain 
parts of individual chiplets may not be functional due to 
intrinsic defects. However, none of the prior work considers 
defects while designing a chiplet-based system. When a 
chiplet has defect(s), the standard remedy is disabling the 

impacted segment and using the chiplet with reduced 
functionality. Hence, one may need additional chiplet(s) to 
execute a particular computation kernel (e.g., layers of a deep 
neural network). This solution, however, increases the inter-
chiplet data exchange as activations from one neural layer 
would have to be spread across multiple chiplets, increasing 
latency and diminishing performance. Hence, it is critical to 
design the NoI by considering the impact of defects and their 
distribution in the chiplets. The number of defects can vary 
from chiplet to chiplet following well-known probability 
distributions (discussed in Section III). As interposers in 2.5D 
systems are 80% empty, the defects on the interposer are 
negligible [7]. However, no existing NoI architecture 
considers defects in chiplets while benchmarking achievable 
performance. Moreover, if the NoI architecture is not 
optimized for the dataflow generated by the workload, it can 
aggravate the overall performance degradation.  

In this work, we propose a new NoI architecture design 
technique in the presence of defective chiplets. This design 
targets CNN workloads on cloud-scale platforms, where the 
number of parameters can reach billions. In a typical target 
workload, multiple CNN inference tasks need to be 
concurrently executed (e.g., object detection, scene 
understanding in self-driving cars, augmented/virtual reality) 
on a cloud [8] [9]. Since each neural layer of a CNN typically 
sends data to the subsequent layer (i.e., the dataflow graph is 
mostly linear), it is desirable for consecutive neural layers to 
be mapped to neighboring chiplets.  

Existing NoI architectures are primarily based on standard 
multi-stage regular topologies such as mesh and torus. [10] 
[11] [12] [13]. Several of these NoI topologies fall under the 
broad family of k-ary n-cube architectures, where k is the 
index and n is the dimension of the cube. The k-ary n-cube 
topology represents a method of structuring and 
interconnecting a network of nodes in a multi-dimensional 
grid. The more traditional topologies, such as a hypercube 
and mesh/torus, represent special cases of the k-ary n-cube 
family of topologies. These NoI architectures, however, do 
not guarantee contiguously placed chiplets to map successive 
neural layers – which is essential to meet the demands of 
CNN workloads. Additionally, when one neural layer needs 
to be mapped on multiple chiplets (due to resource constraints 
imposed by defects), a multi-stage NoI can potentially 
increase inter-chiplet traffic, thereby degrading performance. 

Dataflow awareness: To overcome these challenges, the 
proposed NoI architecture connects the chiplets in a 
contiguous path so that the communicating neural layers are 
highly likely to span neighboring chiplets without 
introducing significant long-range and multi-hop data 
exchange. Our custom-defined space-filling curve (SFC) 
enables this NoI design. SFCs [14] [15] are generic spatial 
abstractions that help linearize multi-dimensional space. We 
decompose the parent NoI that was originally designed using 
some variant of a k-ary n-cube topology, into an SFC-based 
(“SFCed”) architecture, enabling a contiguous Hamiltonian 
path between all the chiplets. This new SFCed representation 
becomes the network substrate for the chiplets on the NoI, on 
to which incoming neural layers associated with CNN 
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inferencing tasks can be mapped contiguously. Specifically, 
we leverage the space-filling property to degenerate each NoI 
to a configuration where each curve traverses a different 
region of the NoI while maintaining contiguity for adjacent 
mapped neural layers both within and between curves.  

This is illustrated in Figure 1, where each SFC consists of 
a head and a tail connecting a group of chiplets in a 
contiguous path.  

Our dataflow-aware NoI is better suited to achieve higher 
throughput with lower energy consumption than existing NoI 
architectures, even in the presence of defects, for two reasons. 
First, the SFC structure enables a contiguous path on the NoI 
to exploit the dataflow. Second, the partitions created by such 
SFCs (revisited in Section IV) allow us to create non-
overlapping regions with equal computational capabilities 
over the entire system. This leads to load balancing to avoid 
performance bottlenecks during runtime, even when 
employing defective chiplets onto the 2.5D system. Instead 
of entirely discarding chiplets with defective parts, we enable 
them to perform better than the state-of-the-art counterparts 
via a suitable hardware/software codesign strategy. By 
efficiently utilizing defective chiplets, we achieve reduced 
fabrication costs with respect to state-of-the-art alternatives 
considering realistic defect scenarios. The major 
contributions are:  
1. We demonstrate how previously designed NoI 

topologies [11] [12] [13] [16], which represent some 
variants of the k-ary n-cube architecture, can be 
decomposed into an SFCed structure. We show that 
mapping the neural layers along the SFC-path improves 
robustness under defects compared to the mapping 
following the original topology of the NoI. 

2. Extensive performance evaluations on different chiplet-
based systems executing various CNN inferencing 
workloads show up to 63% and 76% reduction in 
latency and energy, respectively, compared to a state-
of-the-art counterpart under defect-free and defective 
(to varying degrees) combinations. 

3. We demonstrate the efficiency of the proposed neural 
layer to chiplet mapping in the presence of defects. 
Compared to existing NoI architectures, the proposed 
SFCed solution lowers fabrication cost by up to 6×.  

The rest of the paper is organized as follows. Section II 
describes the prior work on 2.5D systems, SFCs, and NoI 
architectures. Section III presents the defect distribution in 
chiplets, while Section IV details the NoI design principles 
in the presence of defects. Section V presents the detailed 
experimental results and analysis. Finally, Section VI 
concludes the paper.  

II. RELATED WORK 
The manufacturing cost of large monolithic chips is 

increasing rapidly. Fewer large chips can be implemented on 
a given wafer than smaller chips. Second, a defective larger 
die wastes more silicon area than relatively smaller dies. Most 
chip vendors and foundries, including TSMC, NVIDIA, Intel, 
and AMD, are moving towards non-monolithic alternatives 
such as 2.5D interposer-based systems to partition the on-
chip resources into smaller discrete computing cores called 
chiplets [7]. Integrating multiple small chiplets on a large 
interposer offers not only significantly lower cost and higher 
manufacturing yield than 2D ICs, but also better thermal 
efficiency than 3D ICs and ease of heterogeneous integration 
[17]. Designing general-purpose as well as application-
specific 2.5D-based systems have been explored to date. The 
recently proposed SIAM framework enables fast design 
space exploration of 2.5D-based systems [11]. The NoI 
paradigm becomes crucial due to the high communication 
demand generated by integrating many chiplets on the same 
substrate. Multiple NoI architectures have been proposed in 
the literature [10] [12]. DeFT proposes a deadlock-free 
routing algorithm and mitigate low reliability due to vertical-
link (VL) faults on the interposer [18]. SiPterposer proposes 
a flexible communication fabric that supports construction of 
arbitrary network topologies to provide ~100% chip 
assembly yield at typical bonding defect rates [19]. 
SiPterposer employes fuses in the interposer wiring and 
introduces bridge chiplets across disconnected regions, 
focused for interposer to amortize assembly defects. 
HexaMesh, is a recently proposed NoI architecture, which is 
a projection of a 3D Mesh onto a planar graph, with up to six 
neighbors (hence Hexa) connected. Most of these 
architectures are based on conventional multi-hop 
interconnection architectures, such as mesh or torus. Hence, 
they are not scalable. A recently proposed SFC-enabled NoI, 
called Floret, is degenerated from a 2D-Mesh [20]. However, 
existing approaches assume all chiplets are fault-free. Hence, 
computational resources within each chiplet were identical.  

SFCs [14] [15] are a specialized class of algorithmic 
mapping techniques that are extensively used as a locality-
preserving data structure for numerous scientific 
applications, involving spatial and range queries. An SFC 
represents a linear ordering of a set of n-points in a d-
dimensional space. Numerous types of SFCs have been 
defined over the decades, including simple schemes such as 
row/column major curves to more sophisticated Hilbert 
curves [21], Z-curve [22], or onion curves [23]. These are 
deterministic curves with a recursive structure to fill a space 
defined by an arbitrary d-dimensional point cloud. For a 

 
Fig. 1: Illustration of a 36-chiplet-based system with link placement search space for parent (a) HexaMesh NoI (b) Kite NoI; Our degenerated SFC-architecture 
of (c) HexaMesh NoI with four SFC; (d) Kite NoI with six SFC. Chiplets covered by the same color belong to the same SFC, and the <H, T> denote the head 
and tail of each corresponding SFC.  



review of classical SFCs, please refer to [14] [15]. SFCs have 
found significant application in databases, parallel scientific 
computing, and bioinformatics; to create locality-preserving 
layouts for DNA nanostructures, sequence alignment, and 
phylogenetic inferences [24] [25] [26]. In our target 
application, the space we are trying to fill is provided as a 2D 
network topology (as shown in the examples in Figure 1). 
Therefore, classical SFCs do not readily apply. However, we 
desire the locality-preserving properties as in a classical SFC. 
For this reason, we define a custom SFC suited to effectively 
exploit the inherent dataflow pattern in CNNs and enable 
high-performance and energy-efficient NoI architectures.  

In this paper, we bridge the gap in the existing state-of-art 
by proposing novel design principles for chiplet-based 
manycore architectures while considering the realistic defect 
distributions to enable high performance with energy savings. 
We also show how this design can be extended to multiple 
parent NoIs (such as Kite, 2D-Mesh, and HexaMesh).  

III. CHIPLET DEFECT DISTRIBUTION 
Defect distribution in chiplets: Recent research has 
demonstrated the potential of resistive random-access 
memory (ReRAM) for efficient machine learning (ML) 
inference [3]. ML computation kernels mainly involve 
multiply-and-accumulate (MAC) operations, which are 
efficiently implemented using ReRAM-based architectures. 
ReRAMs also allow for processing-in-memory (PIM), which 
helps reduce communication between computing cores and 
the main memory, increasing energy efficiency. Hence, in 
this work we use ReRAM-based chiplet as the computational 
platform. Chiplet-based systems provide sufficient 
bandwidth and data localization to meet energy-efficiency 
requirements of emerging compute- and data-intensive 
applications [10]. As an emerging technology, chiplet-based 
2.5D systems must overcome the challenges of limited yield 
due to defects and increased fabrication costs. We determine 
the fault scenarios from the well-established negative 
binomial distribution of the chip yield model, which was 
derived from the real chip manufacturing data [4] [6]. From 
this well-known chip defect model, we determine the best-, 
average, and worst-case scenarios. Yields of individual dies 
are necessary for estimating expected defects for a particular 
manufacturing process technology. The defect density 𝐷! is 
initially high for a new technology. Then, it reduces 
significantly as the technology matures [27]. In a chiplet-
based 2.5D system, each chiplet is placed onto an interposer. 
An interposer is essentially a large monolithic chip with more 
than 80% area empty [4] [6]. Within the interposer, the NoI 
is fabricated post-production [6]. The peripheral circuits 
within the ReRAM chiplets are designed with mature CMOS 
technology [10] [16]. Hence, the probabilities of failure both 
in NoI and the peripherals are much smaller compared to the 
ReRAM crossbars. ReRAM crossbars are used to implement 
the multiply-and-accumulate (MAC) operations that are the 
backbone of the computational kernels for the CNN inference 
tasks. Hence, we consider the manufacturing defects on the 
ReRAM crossbars of each chiplet in this work. Using the 
negative binomial yield model [4], we estimate the yield of 
each chiplet as: 
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where 𝛼  is a process-dependent clustering parameter, 
estimated pessimistically as 20 for a chiplet-based system, 
and A is the area of the chiplet [28]. We utilize the well-
known Gamma distribution, as shown in (2), to determine the 
defect distribution within each chiplet [4] [28].  
Within a local die, we assume defects follow a Poisson 
distribution across the entire area [27]. Multiple defects could 
fall into the same location within a chiplet. Hence, we model 
the probability 𝑃"$($)*(𝑑) that a chiplet has 𝑑 defects ∀𝑑 ∈
[0,1,2, … , 𝑡] , where 𝑡 is the total defect count: 
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The probability that a chiplet has 𝑑 defects is calculated using 
the Gamma function Γ(𝑥), and the constant 𝛽 is defined as: 

																																			𝛽 =
𝐷!𝐴
𝛼 																																																			(3) 

Cumulative probabilities in a 2.5D-based system: When 
considering a chiplet based system with the above-described 
defect-density distribution, the defect probabilities of each 
chiplet will vary. As a designer, it could be challenging to 
make a well-informed decision while looking at systems with 
defects since no two systems will have the same defect map 
for the corresponding chiplets. In this work, we consider 
passive interposers, i.e., no logic is implemented on the 
interposer. The interposer is only used for inter-chiplet 
communication. Moreover, the interposer has a smaller 
critical area than the chiplets [4]. Therefore, defects on the 
interposer will not affect the system performance 
significantly. For illustrative purposes, we consider a 36-
chiplet system as an example. However, the same design 
principle and methodology can be extended for any number 
of chiplets in the presence of defects. We consider chiplets 
with 16 ReRAM tiles, each with 40 crossbar arrays [16]. 
Using this specification, we determine each chiplet area, 
parameter A in (3), as 2.64	𝑚𝑚,  via NeuroSim. Figure 2 
shows the probability of occurrences of a certain number of 
defects in a chiplet using (2). We propose three types of 
probabilistic situations to capture the generality across the 
whole spectrum of defects: best-case, average-case, and 
worst-case scenarios, as described below: 

i) Best Case: In this scenario, none of the chiplets possess 
defects, i.e., the entire system is defect-free. As shown in 
Figure 2, the probability of having a defect-free chiplet using 
(2) is about 53%, yielding a very low probability  0.53-. ≪
.00001% that all 36 chiplets are defect-free. This unlikely 
scenario helps us evaluate the SFC-based NoI’s performance 
in an the ideal (defect-free) setting. 

ii) Average Case: Considering 2.64	𝑚𝑚,  chiplets ,  we 
can fit 1200 chiplets on a 3-inch wafer. Among these 1200 
chiplets, we pick one chiplet at random, assuming the defect 
densities as in (3). We continue to do the same until 36 
chiplets have been chosen. Now considering 36 chiplets, we 

 
Fig. 2: Illustration of cumulative defect probabilities (Gamma distribution) 
for 2.5D chiplet-based system.  
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≈ 33  separate clusters (a 36 chiplet system 
is referred as a cluster). The average case considers the 
average of such 33 separate clusters for each of the 36 
chiplets. Following (2), this results in 96% of the chiplets 
containing up to two defects ∀𝑑 ∈ [0,1,2]. In this situation, 
we have 15 defect-free and 21 chiplets with a single defect.  

iii) Worst Case: This case captures the tail of the 
distribution to present the worst-case scenario. We consider 
the tail to be when there are more than 2 defects on a chiplet 
(𝑑 > 2). The worst case does not suggest all chiplets are 
highly defective; instead, the probability of having the most 
defective chiplets is the highest. Following (2), this 
probability turns out to be 3%. This scenario captures the 
other extreme of the spectrum. In this worst-case, we get 
chiplets with up to 5 defects, i.e., we have 20 defect-free 
chiplets, 9 chiplets with 1 defect, 3 chiplets with 2 defects, 3 
chiplets with 3 defects, and 1 chiplet with 5 defects. 

As the system size increases, the same defect distribution 
trend is followed, as demonstrated above using (2). For 
brevity, we limit further discussion and describe the NoI 
design and optimization approach under defects using SFCs.    

IV. NOI DESIGN AND OPTIMIZATION UNDER CHIPLET DEFECTS 
In this section, we present the proposed NoI design 

methodology considering various CNN tasks in the presence 
of defective chiplets. Most previously proposed NoI 
architectures are degenerated from a given k-ary n-cube 
topology. Here, each point connects to k other chiplets along 
n directions, forming a grid-like lattice of computing 
cores/chiplets: i) Kite is principally derived from a torus [12]; 
ii) SIAM/SIMBA is indeed a 2D-Mesh [10] [11]; iii) 
HexaMesh [13] is a 2D projection of a 3D-Mesh with up to 
six neighbors; iv) SWAP [16], is an irregular NoI architecture 
derived from a 2D-Mesh; and v) Floret was degenerated from 
the initial SIAM (2D-Mesh) configuration [20].  

Given the prevalence of k-ary n-cube type of topologies 
among previous works, we assume that the input topology 
belongs to the k-ary n-cube family, but also with potentially 
defective chiplets. The number of chiplets and their defect 
levels are known at the input time. The objective is to design 
an NoI that decomposes the input topology into a set of SFCs, 
each with its own sequence of chiplets to map the neural 
layers of any CNN task. In this work, we consider how planar 
topologies with defective chiplets degenerate to a 
corresponding SFCed topology. We denote each parent NoI 
topology as a planar graph G (V, E), which is an input to our 
proposed methodology that degenerates to an SFCed version 
from each parent.   

A. SFCed NoI design 
    Given the need to execute various CNN inferencing tasks 
simultaneously, modern-day servers and high-end processors 
must be designed to execute multiple concurrent applications 
[29] [30]. We consider CNNs with different neural layer 
architectures – including linear (e.g., VGG), residual (e.g., 
ResNet), and dense (e.g., DenseNet) connections for 
performing inferencing tasks when designing a chiplet-based 
system. However, mapping different CNNs dynamically to a 
chiplet-based system is challenging. The common property of 
CNN inference tasks is that activations flow from the ith layer 
to the (i+1)th layer. Maintaining contiguity on the physical 
NoI layer between any two consecutive neural layers can 

reduce communication overhead. We assume each chiplet has 
sufficient buffers to store the intermediate activations 
associated with the skip connections, which flow through the 
same NoI links. Consistent with prior work [11] [20], each 
chiplet has 64KB buffer space (register files) to store the 
intermediate activations.  We assume that all weights are 
transferred to the chiplets from the DRAM chiplet before 
performing the CNN inference tasks, consistent with prior 
works [11] [16].  

As a defective chiplet has fewer computing resources, the 
neural layers may need to be spread onto multiple chiplets 
when there are defective chiplets, potentially increasing inter-
chiplet communication. The placement of these defective 
chiplets must consider the system requirements, namely that 
there may be multiple CNN tasks that need to be dynamically 
mapped to the system, and each such task may consist of a 
different number of neural layers. Furthermore, the number 
of chiplets required to execute each layer could vary, often 
increasing due to defects.  

Therefore, the underlying NoI design problem becomes 
one of generating multiple SFCs, each with its own sequence 
of chiplets to map to the neural layers of any given task. 
Moreover, as the different CNN tasks complete execution, the 
chiplets used for that task need to be released and reassigned 
to newer tasks (if any). If a consecutive sequence of chiplets 
cannot accommodate all CNN layers due to defects, the spill-
over layers will need to utilize chiplets in other parts of the 
NoI (i.e., from other SFCs) to ensure successful completion. 
We provide a more formal problem definition next. 

Problem formulation: Henceforth, we use the following 
definition of an “SFC” for our NoI design. Given a network 
of n chiplets of a certain graph topology G(V,E), with the 
chiplets as the nodes in V and the 1-hop links as the edges in 
E, an arbitrary 𝜓 -cover SFC is a path of length 𝜓 (where 
𝜓£𝑛) in the graph – i.e., a contiguous sequence of 𝜓 chiplets 
that are connected by a series of 1-hop links along the 
network.  

Given G(V,E) with n chiplets and a target number 𝜆  of 
SFCs (where 𝜆 = 1

2
	 ), the problem for our NoI design 

becomes one of partitioning the set of n chiplets in V into 𝜆 
number of SFCs such that no two SFCs share any chiplets.  

In theory, the complexity class of this problem is NP-
complete, as the classical Hamiltonian Path (HP) problem on 
a graph, which is NP-complete, reduces to our base case with 
𝜆 = 1. Consequently, our solution is heuristic in nature.   

While not all generic graphs contain an HP, the guarantee 
exists for any 4-connected planar graph, which holds for our 
target NoI such as a 2D-Mesh, torus, ring, hypercube, 
HexaMesh, and Kite (which degenerates to a 2D-Mesh if we 
remove the diagonal links and hence contain an HP) [31].   
    Overview of NoI design: During degeneration of the planar 
k-ary n-cube NoI to corresponding SFC architecture 
(SFCed), we let the placement of the defective chiplets be 
guided by the expected computation patterns inherent in CNN 
tasks. In particular, as the first few layers of a CNN are 
expected to generate the largest number of activations, 
ensuring these high-activation layers are mapped to defect-
free chiplets is crucial. With their reduced activations, the 
remaining layers are more amenable to getting mapped to 
defective chiplets. Using this general high-level idea, we 
propose a two-phase process to reduce latency and energy, 



and maximize throughput of CNN inference tasks: (balanced 
assignment) first, a defect-aware balanced assignment of 
chiplets to each SFC; and (SFC placement) next, a defect-
aware placement of the SFCs on the NoI architecture so that 
any two chiplets consecutive on the SFC are also one-hop 
neighbors on the NoI. These two steps are summarized in 
Algorithm 1 and described next. 
Defect-aware balanced assignment: We formulate the 
problem of determining the composition of each SFC as one 
of a variant of bin packing. In the classical bin packing 
optimization problem, the input is a set of n items 
(𝑎0…𝑎1&/ ), each of a certain size 𝑠(𝑎#) = (0,1] , and an 
unlimited set of unit capacity bins. The objective is to pack 
(i.e., partition) the n items using the least number of bins 
possible [32]. This classical problem is NP-hard [34].  

Our version of the problem is a constrained variant of this 
classical formulation. In our case, each bin is an SFC, and the 
items are the n chiplets such that each chiplet c has a known 
computational power 𝜇(𝑐), as defined by the defect map. 
Furthermore, since the number of SFCs is fixed (i.e., a 
positive constant 𝜆), the number of chiplets per each SFC bin 
is also fixed (a positive constant 𝜓 = 1

3
). This implies that our 

version of the bin packing problem is one of generating a 
balanced distribution of the n chiplets across the 𝜆 SFC bins, 
such that each SFC would contain 1

3
  chiplets, while the total 

computational power assigned to each SFC bin is 
approximately balanced. Ideally, the chiplets assigned to each 
SFC C should support a target t number of resources, where 
𝑡 = P/

3
∑ 𝜇(𝑐))∈5 R. However, this cannot be guaranteed as that 

would depend on the input set of chiplets and their defect 
rates. Consequently, we propose the following greedy 
heuristic approach which aims to achieve as best of a 
balanced assignment of chiplets to SFC bins as possible 
(Algorithm 1), while satisfying the SFC number and length 
criteria (i.e., 𝜆 SFCs each with 𝜓 = 1

3
 chiplets).  

Our balanced assignment algorithm (Algorithm 1) first 
sorts the chiplets in the non-increasing order of their compute 
resources (line 2). Next, it assigns the sorted chiplets to bins 

using a simple round-robin strategy (line 4), yielding 𝜓 
chiplets per SFC. Subsequently, the algorithm swaps chiplets 
between the overfull bins and the underfull bins iteratively 
until the balancing can no longer be improved for the pair of 
bins under consideration (Line 5). Here, a bin is said to be 
“overfull” (alternatively, “underfull”) if it has more than 
(alternatively, less than) the target t number of compute 
resources. Note that swapping maintains the 𝜓 chiplets per 
SFC condition. To implement this shuffling of chiplets 
between SFCs, we use a greedy Least-Used (LU) scheme, 
similar to those exploited in other optimization problems with 
a balancing criterion [35]. More specifically, our LU scheme 
swaps the chiplet with the least defect from the next largest 
overfull bin (bo) with the chiplet with the largest defects in 
the next smallest under-full bin (bu). This is done until either 
the compute resources of bo or bu reach t, or no more swaps 
are possible. Figure 3 demonstrates the binning process. After 
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I. ALGORITHMS

Algorithm 1: Defect-aware SFC architecture design
Input: C: a 2D grid of n chiplets represented as a graph G(V,E)

�: the desired number of SFCs
D: Defect map of each chiplet with compute capacity µ(c)

Output: A list of � SFCs: ⇧ = {⇧0,⇧1, . . .⇧��1}, where each
SFC ⇧i is of size  ;  = dn� e

1: t d
P

c2C
µ(c)
� e /* Target resource for SFC */

2: Csort  Sort n chiplets in non-increasing order
3: Initialize � bins of size  ; B = {b0, b1, . . . b��1}

/* Step1: Creation of bins using least used */
4: Assign Csort[i] to SFC ⇧i mod �

5: Exchange elements until ⇠ t 8b 2 B
/* Move elements to underfull bins until target t
is achieved 8b 2 B */

6: [hH,T i] Assign a list of � hhead, taili chiplet position pairs
in C
/* Step2: SFC creation using bins B */

7: for all hhi, tii 2 [hH,T i] do

8: Initialize   dn� e
/* i.e., TSP tour length for each SFC */

9: Initialize ⇧i to an empty array of (TSP tour) size  
10: ⇧i  ComputeTSP (G(V,E), hhi, tii, )
11: Update graph G by removing all edges incident on ⇧i

12: end for

13: ⇧ 
S

i ⇧i

14: return ⇧

Algorithm 2: Defect-aware mapping algorithm
Input: Workload with multiple CNNs (W = {wi}) each with

multiple layers
C: the set of n chiplets, where each chiplet c 2 C has compute
capacity µ(c)
⇧ : a set of � SFCs {⇧0,⇧1, . . .⇧��1}, with each SFC
internally ordered in non-increasing order of chiplet defect
rates from their respective heads h

Output: Mapping of each CNN w 2W to a distinct subset of
chiplets (i.e., � : W ! 2C such that the mappings of chiplets
are mutually disjoint)

1: Init. next = 0 /* allocation to start at the first
chiplet ⇧(1) */

2: Init. n0 = n /* the running count of the number of
available chiplets */

3: Init. a countdown timer at each SFC head to 0
(i.e., h.timer = 0, 8h 2 H)

4: for all w 2W do

5: ⇥ number of compute resources required by w

(rounded to the next integer)
6: Compute ⌧jump(h,w) = h.timer + ⌧exec(h,w)

for each h 2 H

7: hbest  argminh (⌧jump(h,w))
8: if (⌧jump(hbest, w) < ⌧exec(next, w)) then

9: next = pos(hbest) /* Jump over the defective
chiplets to the next available head */

10: else

11: continue /* Mapping position next does not get
updated */

12: end if

13: h�(w), n0i = mapCNN(w,⇧, next,⇥, n
0) /* Map w to a

sequence of ⇥ compute resources starting at
next position; return the updated n0 */

14: Update next (�(w).lastindex+ 1) mod n

15: end for

16: return �

 
Fig. 3: Skewness reduces as the least used binning procedure allocates 
resources in each corresponding bins. Blue line indicates target bin size 
under perfect balancing.  
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the chiplets are assigned to SFC bins, the chiplets of each SFC 
are internally sorted in non-increasing order of their 
computational resources (line 6).  

 Defect-aware SFC placement: Next, we place each SFC 
onto the NoI architecture to guarantee NoI contiguity 
between consecutive chiplets of any SFC. To achieve this, we 
first choose 2𝜆  locations on the NoI that can house the 𝜆 
head-tail chiplet pairs of the SFCs. Here, we note that 
reducing the average number of hops separating the tail of an 
SFC from the head of another SFC is important during the 
subsequent CNN layer mapping phase, since the same CNN 
task may possibly use chiplets from two or more SFCs. 
Therefore, our search objective becomes minimizing the 
average path length 𝑑	between the tail of one SFC to the 
heads of other non-overlapping SFCs:  

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒:		𝑑 = 		
1
𝑝	 Y Z𝑡# − ℎ6Z78$9$	#≠6,			<=,>3,?#,6∈[0,A&/]

				(4) 

The distance between any tail-to-head pair is calculated as the 
Manhattan distance over the 2D grid. Minimizing this 
average distance measure 𝑑 is imperative as communication 
delay increases when data flows between the tail of one SFC 
to the head of another SFC. The above principle determines 
the placement of each chiplet within each SFC.  

Once all SFC bins are created with the defective chiplets, 
and the head-tail pairs are selected, the chiplet set assigned to 
each SFC bin is linearly ordered. This task is one of using the 
NoI topology’s one-hop links and neighborhood information 
so that a contiguous path with 𝜓  consecutive chiplets, 
connected via 1-hop links, is detected between the head and 
tail chiplets (which act as the two sentinel ends of the path). 
The problem is formulated as a traveling salesman problem 
(TSP) over the (𝜓 − 2)  chiplets on a planar graph [33]. From 
each chiplet (head in this case), we visit other chiplets 
(nodes), creating a Hamiltonian path. Each visited chiplet is 
stitched as part of the SFC, while we keep on choosing a 
chiplet from the head of the respective bin and appending 
them onto the SFC. By placing the chiplets in a non-
increasing order of defects, we ensure that the highest 
activation layers can be mapped to least defective chiplets.    

B. Neural network to Chiplet Mapping under Defects  
Next, we describe the defect-aware mapping of CNN 

inferencing tasks to the SFCed NoI architecture. Recall that 
targeted workflow is a concurrent list of CNN inferencing 
tasks. For each CNN task, we map the task to the current 
chiplet location within an SFC or jump to any available head. 
Let Π denote the set of all 𝜆 SFCs. Algorithm 2 details the 
major steps of this mapping procedure. Let the workload 𝑊	
be a queue of multiple CNN tasks. For each 𝑤	 ∈ 	𝑊, we first 
compute the required number of computing resources. 
Initially, all chiplets across all 𝜆 SFCs of Π are considered 
available. We keep a countdown timer ℎ. 𝑡𝑖𝑚𝑒𝑟 for each of 
the 𝜆 heads that is initialized to 0. We track a 𝑛𝑒𝑥𝑡 pointer to 
point to the next chiplet along Π that is due for assignment. 
The 𝑛𝑒𝑥𝑡 pointer is where the mapping starts. Initially, 𝑛𝑒𝑥𝑡 
is initialized as the head chiplet of the first SFC (Π0). In 
essence, the algorithm updates this next location to map the 
CNN to the chiplet, which minimizes the execution time and 
then maps the networks. 
    More formally, the algorithm must choose between one of 
two possible mapping locations: either the next chiplet in 

order of the current SFC, or the head of a different SFC. This 
decision is based on which mapping choice would result in 
the lower execution time, as highlighted in line 8 of 
Algorithm 2. With the CNN layer to chiplet mapping, we 
keep track of the expected countdown time of each head. This 
time is derived from the communication traffic arising from 
the inter-layer activations of the CNN mapped on that head. 
The major function that computes Φ(𝑤) for any given task 𝑤 
is 𝑀𝑎𝑝𝐶𝑁𝑁(𝑤,Π, 𝑛𝑒𝑥𝑡, Θ, 𝑛), shown in line 13 of Algorithm 
2. This function maps the task 𝑤  to a sequence of Θ 
computing resources, starting from the 𝑛𝑒𝑥𝑡 position along 
Π. The actual chip let coordinates for this next position is 
given by Π&/(𝑛𝑒𝑥𝑡). The 𝑀𝑎𝑝𝐶𝑁𝑁 function returns when 
all layers of 𝑤  have been successfully mapped. Note that it 
is possible that along the mapping process, the next chiplet to 
be assigned is occupied with another CNN task. In this case, 
the procedure waits until another head or 𝑛𝑒𝑥𝑡  chiplet 
becomes available depending on the condition shown in Line 
8 in Algorithm 2. No deadlocks are possible since we test all 
available heads, and the timers associated with chiplets are 
countdown timers.  

V. EXPERIMENTAL RESULTS  
In this section, we present a thorough performance 

evaluation of the SFCed architectures in the presence of 
chiplet defects considering concurrent CNN inferencing tasks. 
We also compare the proposed SFCed NoI with respect to 
corresponding parent NoIs. 

A. Experimental Setup  
i) System specification and evaluation setup: To 
demonstrate the efficacy and scalability of the proposed 
SFCed architectures as a function of chiplet defects, we 
consider three different system sizes (n) with 36, 64, and 100 
chiplets. Each chiplet has 2.64	𝑚𝑚, area, with 16 tiles, each 
tile consisting of 40 PEs, and each PE consisting of 128x128 
crossbar arrays [11] [16]. We use a modified NeuroSim to 
partition and map the concurrent CNN tasks onto a 2.5D-
based system [34]. The inter-chiplet traffic is generated by 
the activations between the neural layers. The activations 
generated by residual skip connections are also part of the 
communication traffic. All the NoI topologies are simulated 
using the BookSim simulator [35]. The inputs to the BookSim 
simulator are the connectivity between NoI routers and the 
inter-chiplet traffic generated for each CNN inference task 
within the workload. We determine the area, latency, and 
energy consumption of the NoI using a modified version of 
BookSim to capture custom NoI topologies considered in this 
work. We use the Nvidia ground-referenced signaling (GRS) 
parameters for chiplets on a 32nm technology to evaluate the 
NoI area and power consumption [10]. Table I shows the 
other system-level parameters considered in the performance 
evaluation [11] [17]. In our work, each chiplet consists of 16 
tiles following previous work [16] [11]. It should be noted 
that as the chiplet size decreases, the number of defects per 
chiplet could potentially reduce. However, the computational 
and storage capabilities of each chiplet also reduce. Hence, 
weights of each neural layer and its corresponding activations 
are spread onto multiple chiplets, giving rise to higher inter-
chiplet traffic. This in turn leads to overall system level 
latency overhead and lower energy efficiency. We note that 
the experimental analysis and performance evaluation 



considered in this paper can extend to other technology 
parameters.  
ii) Datasets and CNN workloads: We evaluate the 
performance and energy efficiency of the original NoIs with 
respect to their SFCed architecture in the presence of defects 
on multiple concurrent CNN inferencing tasks. Table II 
shows different neural networks executed on the 
corresponding datasets and their number of parameters. As 
the system size increases, we use ImageNet-based CNNs with 
more parameters to illustrate the merits of the proposed 

architecture. Table III shows the naming convention of the 
CNN tasks in each workload (WL) along with their total 
number of parameters running on (a) CIFAR-100 and (b) 
ImageNet datasets. Tables III(a) & (b) show the CNN tasks 
queue to be executed on the 2.5D system. Various 
combinations of the neural networks in Table II are executed 
concurrently to capture the workloads (WL) considered in the 
experimental setup. We evaluate the 36-chiplet system using 
CIFAR-100 dataset. For scalability, we evaluate 64 and 100 
chiplet system on ImageNet-based workloads as the number 
of parameters is in the order of billions. As an example, WL1 
consists of sixteen instances of 𝑁𝑁, (ResNet34), along with 

one instance of 𝑁𝑁C  (VGG19), and so on. We cover the 
whole spectrum by randomly choosing any combination of 
the CNN tasks. Note that the general concept behind our NoI 
design applies to any deep learning inference tasks. 
Additionally, the workloads consist of multiple ResNet and 
DenseNet models to validate the advantages of SFCed NoIs 
with skip connection-based CNNs.  
    Due to chiplet defects, a given neural layer may need to be 
distributed to multiple chiplets, giving rise to an increase in 
inter-chiplet traffic. This effect is particularly pronounced in 
layers where the number of activations is significantly higher 
than the rest. In the initial layers of CNNs, convolutional 
layers extract basic features (such as edges, textures, and 
colors) while preserving spatial resolution. The convolutional 
filters applied to the input image at this stage do not reduce 
the spatial dimensions. Hence, the activation from the initial 
layers remains large. Higher activations in the starting layers 
give rise to more data exchange among communicating 
chiplets. Chiplet defects, due to the unavailability of compute 
tiles, leads to higher volume of inter-chiplet traffic. This, in 
turn, increases latency and reduces energy efficiency.  
iii) Baseline NoI design: We compare the performance of the 
SFCed NoIs in the presence of defects against four baselines: 
Kite, HexaMesh, SIAM, and application-specific NoI 
architecture SWAP [12] [11] [16]. Kite is primarily a Torus-
based NoI, and SIAM is a 2D-Mesh NoI. HexaMesh is a 
concentrated mesh NoI with staggered chiplet placements 
with up to six router ports for any internal chiplet, principally 
a projection of a 3D-Mesh onto a planar structure. The 
application-specific SWAP NoI is an irregular architecture 
where the chiplets and the associated links are placed per 
specific design time considerations for a given set of CNN 
applications. We set the same system parameters and evaluate 
over the same CNN workloads for all architectures (Kite, 
HexaMesh, SIAM, SWAP, and their SFCed counterparts) for 
a fair comparison. Kite, HexaMesh, SIAM, and SWAP are 
the original/parent NoIs referred to as ‘Case-I,’ and their 

TABLE II: LIST OF NEURAL NETWORKS FOR INFERENCING ALONG WITH 
THEIR CORRESPONDING NUMBER OF CNN PARAMETERS WITH  
(A) CIFAR-100, (B) IMAGENET DATASET 
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SFCed counterparts are referred to as ‘Case-II’: i.e., Case-I 
corresponds to the Parent NoI; and Case-II to the 
corresponding SFCed NoI. We map each CNN layer in Case-
I using a nearest neighbor mapping algorithm that allocates 
each incoming CNN layer to the closest available chiplet to 
ensure minimum communication delay among 
communicating cores. This ensures maximum achievable 
performance as communicating chiplets are mapped as close 
as possible on the NoI. However, these three architectures 
have multi-hop paths between chiplets, which are more 
pronounced under chiplets with defects as activations from 
one neural layer may spread over multiple chiplets. Hence, 
having contiguous available chiplets may not be possible as 
the number of CNNs increases when the interconnection 
topology is inherently multi-stage (mesh- or torus-based). 
This could lead to consecutive neural layers being mapped to 
far-apart chiplets through multi-hop paths. For bigger system 
sizes, the number of multi-hop paths increases. On the 
contrary, the SFCed group of NoI architectures always 
ensures that communicating CNN layers are mapped to 
contiguous chiplets, and we start mapping on a defect-free 
head. Hence, SFCed NoIs (Case-II) consistently outperform 
their (state-of-the-art) parent NoI architectures with higher 
energy efficiency.  

B. NoI Performance and Energy Analysis  
    Determining the optimum number of SFCs 𝜆  for each 
considered system size is the first essential step. The optimum 
number of SFCs depends on the distance between the tail of 
one SFC to the heads of the other non-overlapping SFCs 
(refer eq. (4)). We consider an iso-chiplet area, i.e., individual 
chiplet size remains constant as the system size scales. Hence, 
the number of SFCs 𝜆  remains within a limited range for 
varying system sizes. For example, the number of optimum 
SFCs for SFCed Kite for 36-, 64-, and 100-chiplet systems 
are 6, 4, and 4, respectively. Table IV shows the number of 
corresponding SFCs in each SFCed NoI. It should be noted 
that Floret is a SFC architecture that was degenerated from 
2D-Mesh (SIAM). Hence, Floret and SIAM have the same 
number of SFCs.  
    Second, the proposed SFCed architecture has an inherent 
advantage over parent NoI architectures in terms of power 
consumption due to smaller routers and fewer links in SFCs. 

Except for chiplets designated as heads and tails (ℎ, 𝑡), the 
(𝜓 − 2)	chiplet on each SFC has only two associated router 
ports. Only the heads and tails in the system will have more 
than two ports based on the inter-SFC connectivity. We 
observe that six-port and four-port routers are most frequent 
in HexaMesh and Kite [12]. SIAM with 2D-Mesh NoI 
consists mostly of routers with three and four ports. 
Moreover, SWAP primarily uses three-port routers [16]. 
Smaller routers in the SFCed architecture also correspond to 
fewer links. It should be noted that reducing the number of 
links and router ports alone does not necessarily lead to 
performance and energy efficiency. To achieve these 
benefits, it is crucial to consider iso-computation across the 
spatial region of the 2.5D system. The communication 
volume directly depends on the neural layer to chiplet 
mapping. If a neural layer is partitioned across multiple 
chiplets, the traffic volume on the NoI increases. This leads 
to performance degradation and higher energy consumption. 
Therefore, computational uniformity should be maintained 
for high energy efficiency. In the presence of defects, the 
Case-I NoI architectures have nonuniform computational 
capabilities due to lack of iso-partitions. HexaMesh and Kite, 
for example, have mostly two-hop links, and the routers are 
inherently larger. SIAM, principally a 2D-Mesh, has single-
hop link connections to its neighboring chiplets. However, 
SIAM has larger routers with a higher number of router ports. 
SWAP has fewer links and smaller router ports, but not all 
links are necessarily single hop. Within each 𝜆 SFCs, each 
partition has equivalent computational capabilities. 
Moreover, all the redundant links are omitted, and all the SFC 
routers are small. These factors improve NoI performance 
and energy efficiency. Moreover, smaller routers, fewer 
links, and reduced NoI area, hence the fabrication costs and 
carbon footprint, are highlighted in the next section.  
    We benchmark Case-I's latency and energy consumption 
compared to Case-II for five different CNN workloads on 
each dataset (WL1-WL5 on CIFAR-100; WL6-WL10 on 
ImageNet) for all the system sizes. We consider three defect 
scenarios (best-, average-, and worst-case described in 
Section III). It should be noted that the best-case principally 
corresponds to an ideal, defect-free situation. Each bar plot is 
normalized with respect to SFCed Kite in the worst-case 
defect configuration. 

 
Fig. 4: Latency comparison between worst-, average-, and best-case defect 
scenarios for 36 chiplet system for SFCed Kite.  

0.8

0.9

1

1.1

1.2

1.3

1.4

WL1 WL2 WL3 WL4 WL5

N
or

m
al

iz
ed

 N
oI

 L
at

en
cy

Worst Average Best

 
Fig. 7: Average Latency improvement (normalized) for 100 chiplet system 
comparing defect-free and worst-case Case-I with respect to worst-case 
Case-II.    
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Fig. 6: Average latency improvement (normalized) for 64 chiplet system 
comparing defect-free and worst-case Case-I with respect to worst-case 
Case-II.    
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Fig. 5: Average latency improvement(normalized) for 36 chiplet system 
comparing defect-free and worst-case Case-I with respect to worst-case 
Case-II.    
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 Latency: We first evaluate the latency degradation from 
the best-case to the worst-case defect scenario. For this, we 
consider only the SFCed Kite architecture as an example. 
Figure 4 shows the latency comparison among the best-, 
average-, and worst-case of defects considering WL1-5 on a 
36-chiplet system. As mentioned earlier, neural layers are 
spread over multiple chiplets due to defects, increasing the 
inter-chiplet traffic. This gives rise to performance penalty in 
a more defective system running the same workload. On 
average, the worst-case scenario incurs a 19% latency penalty 
with respect to the best-case counterpart. The highest latency 
penalty is 36% for the worst-case. The merits of the SFC 
architecture are best understood when its performance under 
the worst-case defect scenario is compared to other NoI 
counterparts under the best-case scenario (i.e., having no 
defective chiplets).  

Figure 5 shows the average latency improvement of each 
NoI for the 36-chiplet system considering workloads WL1 to 
WL5 in various degree of defects. SFCed architectures 
outperform their parent baselines for all defect 
configurations, including the corresponding best-case 
scenario. For example, SFCed Kite improves the latency on 
average by ~26%, and ~44% compared to best-case and 
worst-case Kite architecture, respectively. A similar trend is 
noted across all degenerated NoIs with respect to their 
original counterparts. Similarly, as the system size scales, the 
performance improvement for SFCed NoI is more significant 
since collocating communicating neural layers to 
neighboring chiplets becomes easier during the mapping 
along the SFC path. It should be noted that SFCed Floret is 
the same as SFCed SIAM and achieves the highest 
performance among all SFCed counterparts. This is because 
Floret was degenerated from a 2D-Mesh topology. Under the 
worst-case defect scenario, the set of inter-chiplet links, the 
placement of the defective chiplets into SFCs, and the defect-
aware mapping strategy – all of them collectively yield the 
same NoI architecture as SIAM (2D-Mesh). For this reason, 

henceforth we show only results for SFCed SIAM instead of 
showing both Floret and SIAM in our further investigations.  

Figures 6 and 7 show the latency of each NoI architecture 
for the 64-and 100-chiplet systems, respectively. SFCed 
performs 46%, 40%, and 42% better than Kite, SIAM, and 
SWAP, respectively, considering the worst-case defect 
scenario for the 64-chiplet system. As the system size scales 
up further, the effect of defects is more pronounced. For 
bigger systems, inter-chiplet traffic due to defects increases. 
This leads to more multi-hop paths for Case-II due to the 
unavailability of contiguous chiplets to map to. The highest 
latency improvement of 65% for Case-I is achieved for WL7, 
considering the worst-case defect scenario on the 100-chiplet 
system with respect to Kite and its SFCed counterpart, as 
shown in Figure 7. In the average defect scenario, the 
performance improvement for SFC is always more than at 
least 25% compared to all the other NoI topologies for all the 
system sizes considered here.  

Energy: SFCed NoIs achieve significant energy savings 
besides reducing the inference latency. They avoid multi-hop 
communication traffic, boosting energy efficiency. Figures 
8(a)-(c) show the radar plots capturing the achievable energy 
improvement for 36-, 64- and 100 chiplet systems, comparing 
the worst-case of defects for SFCed NoI to best-case of 
defects for their parent counterparts in defect-free 
configuration. SFC always increases the energy efficiency for 
all system sizes and defect scenarios. The highest energy 
savings are achieved for the 100-chiplet system considering 
the workload WL9, where SFCed NoIs reduce the energy 
consumption with respect to Kite, SIAM, and SWAP by 78%, 
62%, and 65%, respectively.   
    Notably, SFCed NoIs under worst-case defects outperform 
all other topologies with no defects. The highest 
improvement for SFC is observed in comparison with Kite. 
Even with the worst-case defects, SFCed Kite achieves on 
average 63% and 78% reductions in latency and energy, 
respectively, compared to Kite with no defects. This analysis 
shows that the SFCed architectures outperform all the parent 
counterparts. This points towards the merits of the SFCed NoI 
topologies. Adopting SFCed NoI not only ensures high 
performance but also energy efficiency and the highest 
robustness to manufacturing defects. Next, we illustrate the 
fabrication cost benefits of the SFCed Architectures.  

Fig. 8: Radar plots showing the energy efficiency of SFCed NoIs under worst-case defects over their parent NoIs under best-case defects for (a) 36 chiplets; 
(b) 64 chiplets; (c) 100 chiplets system. SFCed NoIs have smaller bounded area and hence higher energy efficiency in comparison to their parent counterparts. 
As the system size scales, the ratio of the enclosed area between SFCed and parent NoIs increases; hence the energy efficiency scales with bigger system size.  

 
Fig. 9: A 64 chiplet 2.5D system with four 3D-DRAM stacks.    
 



C. DRAM overhead for NoI Architectures 
    In this subsection, we quantify the impact of DRAM 
loading on the overall execution time. The targeted 
architecture is expected to have sufficient memory capacity 
to store the weights and activations of various well-known 
DNN workloads. Considering the storage capacity of each 
chiplet with 8-bit precision is 2.5MB, a 100-chiplet system 
has a total storage capacity of ~250 MB. For the smallest 
system size of 36 chiplets, the storage capacity is ~90 MB. 
This storage is enough, considering the largest CNN tasks 
(VGG19 on ImageNet Dataset) require 137 MB at the same 
8-bit precision. Similarly, for the smallest considered 36-
chiplet system, the storage capacity is enough for the biggest 
neural network on CIFAR-100. However, the memory 
requirement increases when we execute multiple concurrent 
CNN tasks. Hence, we need to read/write weights and 
activations from/to an external memory for the corresponding 
CNN task. The DRAM loading depends on the availability of 
the weights on the chiplet system. Hence, DRAM loading 
will not occur for each CNN task and depends on the order of 
occurrences, which is a function of the workload. As a result, 
there will be a variable additional latency penalty added to 
the overall execution time corresponding to that. While 
evaluating the DRAM access latency, we consider that the 
DRAM is connected through the interposer with the chiplet 
system. Figure 9 shows the 2.5D-chiplet system with four 3D 
stacks of DRAM on the interposer, consistent with existing 
works [6] [12]. We use RAMULATOR for estimating 
DRAM access times considering standard state machine 
referenced here [36] [37]. Figure 10 shows the overall 
execution time when executing workloads WL1-WL5 on 36 
chiplet system under average case of defects. These 
workloads represent a class of concurrent CNN tasks. 
Depending on the specific workload, the DRAM access 
varies from 21% to 34.8% of the overall execution time. The 
variation in overall DRAM loading time is due to the 
workload characteristics considered here. For example, in 
WL5, as there is less immediate repeatability of CNNs, the 
DRAM loading overhead is higher than WL1. In the case of 
WL1, multiple instances of ResNets34 are executed, reducing 
the need for DRAM loading after each CNN. However, this 
relatively high DRAM access time arises due to random 
ordering of concurrent CNN tasks that creates very high 
degree of variability among CNNs being executed. This 

represents a very pessimistic situation. In reality, we expect 
an inference task to be executed multiple times using the 
same set of CNNs. In that case, the DRAM access time will 
be amortized over multiple inference passes with same CNN 
tasks. As an example, if 12 ResNet34 CNNs are executed 
concurrently for 20 passes on a 36-chiplet 
SFCed_HexaMesh, the overall DRAM overhead will only be 
1.5% of the total execution time. It should be noted that the 
overall advantage of the SFCed architectures remains 
unchanged with respect to k-ary n-cube counterparts even in 
presence of extremely variable concurrent CNN tasks. Hence, 
though DRAM execution incurs additional performance 
overhead based on the concurrent CNN tasks being executed, 
this does not impact the advantages of the SFCed NoI 
architectures demonstrated in this work. 

D. Fabrication Costs of SFCed Architectures  
    Over the last two decades, we have witnessed a dramatic 
rise in computing demand fueled by new applications at the 
edge and cloud scale. Higher computational requirements 
lead to higher costs for manufacturing and maintaining such 
systems. This section discusses the relative fabrication cost 
reductions if the defective chiplets were discarded instead of 
utilizing them. For example, considering the 36-chiplet 
system for both the average-and worst-case, following (2), we 
know that the system will have a certain number of defective 
chiplets. The normalized fabrication cost of chiplets is 
expressed as [11]:  

													𝐶DED*$F =
𝐿9$(
𝐿 	× 𝑒&G!HI"#$&I%&%'#(J																							(5) 

where 𝐿9$(  is the number of chiplets per wafer in the 
reference system, and 𝐿 is the number of chiplets per wafer 
for the system under consideration. The parameter 
𝐷0	represents the defect density, and 𝐴9$( is the NoI area of 
the reference system. We consider a 2.5D system designed by 
AMD with 864	𝑚𝑚, area as the reference in this work [6]. 
The system area consists of the chiplets and the NoI. Using 
(5), we can compare the fabrication cost of two different 
chiplet systems. For example, the fabrication cost for a 
defective 2.5D system is:  

																	𝐶G$($)*#K$ =
𝐿9$(
𝐿 × 𝑒&G!(I"#$&I)#$#*'+,#)												(6) 

Similarly, the fabrication cost of the defect-free 2.5D system: 

 
Fig. 10: Overall execution time considering DRAM overhead for a 36 chiplet system under average case of defects. 
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											𝐶G$($)*N9$$ =
𝐿9$(
𝐿 × 𝑒&G!(I"#$&I)#$#*'-"##)														(7) 

where 𝐴G$($)*#K$ and 𝐴G$($)*N9$$	correspond to the total area 
of defective and defect-free systems. Therefore, the ratio of 
the fabrication costs can be expressed as: 

																	
𝐶G$($)*#K$
𝐶G$($)*N9$$

= 𝑒&G!(I)#$#*'-"##&I)#$#*'+,#)												(8) 

Considering the average- and worst-case scenarios discussed 
in Section III, the relative fabrication cost primarily boils 
down to the additional area of the discarded chiplets and the 
NoI. The NoI area depends on the size of the routers, number, 
and length of inter-chiplet links. Hence, designing an 
optimized NoI, which considers the defect distribution in 
chiplets is necessary for creating 2.5D systems.  
 Figure 11 plots the overall trend for comparing NoI 
architectures (SFCed NoI with worst-case defects vs Parent 
NoI with defect free system) for 100 chiplet system. The y-
axis is normalized with respect to a 36 chiplet SFCed Kite. 
SFCed NoIs have lower energy-delay product (EDP) and 
reduced fabrication costs than parent NoIs. The marker size is 
proportional to the corresponding NoI area. As an example, 
there is a 10x EDP reduction with 6x fabrication cost 
improvement for SFCed HexaMesh due to reduced router 
sizes and robustness to defects. Hence, the SFCed NoIs are 
towards the left compared to parent NoIs. This shows a 
significant improvement in the performance, energy, and 
fabrication costs for our SFCed architectures compared to the 
parent NoIs. It is observed that the bottom-leftmost point (with 
minimum fabrication cost and EDP) is SFCed SIAM, which 
is essentially Floret. This is because all the links in SFCed 
SIAM (Floret) are single-hop connections, whereas the link 
length varies depending on the parent NoI for Kite, HexaMesh 
and SWAP, respectively. This illustrates the importance of 
choosing the right parent architecture when designing SFCed 
counterparts for CNN inference tasks. Overall, our results 
suggest the high suitability of SFC-based architectures for 
CNN inference tasks compared to more traditional designs. 

VI. CONCLUSION 
The emergence of 2.5D chiplet platforms provides a new 

avenue for compact scale-out implementations of emerging 

compute- and data-intensive applications. However, progress 
in designing chiplet-based systems is impeded by silicon 
defects. This paper presents a space-filling curve (SFC)-based 
NoI architecture that achieves high performance and energy 
efficiency even in the presence of silicon defects. Instead of 
discarding defective chiplets, SFCed NoI optimizes their 
utilization. SFCed NoIs enable a dataflow aware NoI to design 
2.5D architecture that outperforms their parent k-ary n-cube 
based NoIs. Comprehensive experimental evaluation with 
different system sizes and diverse CNN inferencing 
workloads demonstrate that SFCed NoIs on average achieve 
up to 2.3x and 3.5x reduction in latency and energy 
consumption. SFCed NoIs enable robustness to defects in 
comparison to a situation where the defective chiplets were 
discarded and hence reduce their NoI area and hence the 
fabrication cost.  
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