
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

A Dataflow-aware Network-on-Interposer for CNN
Inferencing in the Presence of Defective Chiplets
Harsh Sharma, Student Member, IEEE, Umit Ogras, Senior Member, IEEE, Ananth Kalyanraman, Senior

Member, IEEE, and Partha Pratim Pande, Fellow, IEEE

Abstract— The emergence of 2.5D chiplet platforms provides a
new avenue for compact scale-out implementations of deep
learning (DL) workloads. Integrating multiple small chiplets
using a Network-on-Interposer (NoI) offers not only significant
cost reduction and higher manufacturing yield than 2D ICs but
also better energy efficiency and performance. However, defects
in chiplets may compromise performance since they restrict the
computing capability. Therefore, carefully designed chiplet and
NoI link placement, and task mapping schemes, in presence of
defects, are necessary. In this paper, we propose a defect-aware
NoI design approach using a custom-defined space-filling curve
(SFC) for efficient execution of mixed workloads of
convolutional neural network (CNN) inference tasks. We
demonstrate that the k-ary n-cube-based NoI topologies can be
degenerated into SFC-based counterparts, which we refer to as
SFCed NoI topologies. They enable high performance and
energy efficiency with lower fabrication costs over their parent
k-ary n-cube counterparts. The SFCed approach helps us to
extract high performance from an inherently defective system.
We demonstrate that SFCed design achieves up to 2.3× and
3.5× reduction in latency and energy, respectively, compared to
parent NoI architectures while executing diverse DL workloads.

Keywords—2.5D, Chiplet, NoI, Defects, Space filling Curves,
CNN Inference, chiplet placement, task mapping

I. INTRODUCTION
ecent emergence of complex compute- and data-
intensive applications (e.g., autonomous driving,
machine vision, robotic medical diagnosis)
necessitate high performance with a small form-

factor [1] [2]. ITRS 2.0 and IRDS roadmap highlight the
unprecedented need for memory and processing over the next
decade [3] [4] [5]. This need dictates the design of large-scale
chips with high memory and compute capability offering high
degrees of parallelism. Such large-scale chips include
multiple processing cores, scaling from a few tens to even
hundreds. This level of integration increases the area of a
monolithic chip significantly [4]. As the monolithic chips
approach the reticle limit, exploding fabrication costs rise as
one of the major challenges in the silicon industry [6].
Chiplet-based designs that integrate multiple smaller chips
(chiplets) on a single interposer offer a promising solution for
reducing the manufacturing cost. Since each chiplet occupies
a smaller area than a monolithic chip, the overall fabrication
cost of the entire 2.5D system is significantly lower than the
monolithic counterpart [6]. Then, the chiplets are connected
through a network-on-interposer (NoI).

Chiplet-based systems can lower fabrication costs
significantly, but realistic design scenarios must consider the
impact of defects on the overall performance [4]. Certain
parts of individual chiplets may not be functional due to
intrinsic defects. However, none of the prior work considers
defects while designing a chiplet-based system. When a
chiplet has defect(s), the standard remedy is disabling the

impacted segment and using the chiplet with reduced
functionality. Hence, one may need additional chiplet(s) to
execute a particular computation kernel (e.g., layers of a deep
neural network). This solution, however, increases the inter-
chiplet data exchange as activations from one neural layer
would have to be spread across multiple chiplets, increasing
latency and diminishing performance. Hence, it is critical to
design the NoI by considering the impact of defects and their
distribution in the chiplets. The number of defects can vary
from chiplet to chiplet following well-known probability
distributions (discussed in Section III). As interposers in 2.5D
systems are 80% empty, the defects on the interposer are
negligible [7]. However, no existing NoI architecture
considers defects in chiplets while benchmarking achievable
performance. Moreover, if the NoI architecture is not
optimized for the dataflow generated by the workload, it can
aggravate the overall performance degradation.

In this work, we propose a new NoI architecture design
technique in the presence of defective chiplets. This design
targets CNN workloads on cloud-scale platforms, where the
number of parameters can reach billions. In a typical target
workload, multiple CNN inference tasks need to be
concurrently executed (e.g., object detection, scene
understanding in self-driving cars, augmented/virtual reality)
on a cloud [8] [9]. Since each neural layer of a CNN typically
sends data to the subsequent layer (i.e., the dataflow graph is
mostly linear), it is desirable for consecutive neural layers to
be mapped to neighboring chiplets.

Existing NoI architectures are primarily based on standard
multi-stage regular topologies such as mesh and torus. [10]
[11] [12] [13]. Several of these NoI topologies fall under the
broad family of k-ary n-cube architectures, where k is the
index and n is the dimension of the cube. The k-ary n-cube
topology represents a method of structuring and
interconnecting a network of nodes in a multi-dimensional
grid. The more traditional topologies, such as a hypercube
and mesh/torus, represent special cases of the k-ary n-cube
family of topologies. These NoI architectures, however, do
not guarantee contiguously placed chiplets to map successive
neural layers – which is essential to meet the demands of
CNN workloads. Additionally, when one neural layer needs
to be mapped on multiple chiplets (due to resource constraints
imposed by defects), a multi-stage NoI can potentially
increase inter-chiplet traffic, thereby degrading performance.

Dataflow awareness: To overcome these challenges, the
proposed NoI architecture connects the chiplets in a
contiguous path so that the communicating neural layers are
highly likely to span neighboring chiplets without
introducing significant long-range and multi-hop data
exchange. Our custom-defined space-filling curve (SFC)
enables this NoI design. SFCs [14] [15] are generic spatial
abstractions that help linearize multi-dimensional space. We
decompose the parent NoI that was originally designed using
some variant of a k-ary n-cube topology, into an SFC-based
(“SFCed”) architecture, enabling a contiguous Hamiltonian
path between all the chiplets. This new SFCed representation
becomes the network substrate for the chiplets on the NoI, on
to which incoming neural layers associated with CNN

R

This work was supported, in part by the US National Science Foundation
(NSF) under grants CNS-1955353, CSR-2308530, CCF 1919122, 2316160.

Harsh Sharma, Ananth Kalyanraman and Partha Pratim Pande are with
Washington State University, Pullman, WA, USA. Email: {harsh.sharma,
ananth, , pande}@wsu.edu

Umit Ogras is with the Department of Electrical and Computer Engineering,
University of Wisconsin Madison, Madison, WI, USA

inferencing tasks can be mapped contiguously. Specifically,
we leverage the space-filling property to degenerate each NoI
to a configuration where each curve traverses a different
region of the NoI while maintaining contiguity for adjacent
mapped neural layers both within and between curves.

This is illustrated in Figure 1, where each SFC consists of
a head and a tail connecting a group of chiplets in a
contiguous path.

Our dataflow-aware NoI is better suited to achieve higher
throughput with lower energy consumption than existing NoI
architectures, even in the presence of defects, for two reasons.
First, the SFC structure enables a contiguous path on the NoI
to exploit the dataflow. Second, the partitions created by such
SFCs (revisited in Section IV) allow us to create non-
overlapping regions with equal computational capabilities
over the entire system. This leads to load balancing to avoid
performance bottlenecks during runtime, even when
employing defective chiplets onto the 2.5D system. Instead
of entirely discarding chiplets with defective parts, we enable
them to perform better than the state-of-the-art counterparts
via a suitable hardware/software codesign strategy. By
efficiently utilizing defective chiplets, we achieve reduced
fabrication costs with respect to state-of-the-art alternatives
considering realistic defect scenarios. The major
contributions are:
1. We demonstrate how previously designed NoI

topologies [11] [12] [13] [16], which represent some
variants of the k-ary n-cube architecture, can be
decomposed into an SFCed structure. We show that
mapping the neural layers along the SFC-path improves
robustness under defects compared to the mapping
following the original topology of the NoI.

2. Extensive performance evaluations on different chiplet-
based systems executing various CNN inferencing
workloads show up to 63% and 76% reduction in
latency and energy, respectively, compared to a state-
of-the-art counterpart under defect-free and defective
(to varying degrees) combinations.

3. We demonstrate the efficiency of the proposed neural
layer to chiplet mapping in the presence of defects.
Compared to existing NoI architectures, the proposed
SFCed solution lowers fabrication cost by up to 6×.

The rest of the paper is organized as follows. Section II
describes the prior work on 2.5D systems, SFCs, and NoI
architectures. Section III presents the defect distribution in
chiplets, while Section IV details the NoI design principles
in the presence of defects. Section V presents the detailed
experimental results and analysis. Finally, Section VI
concludes the paper.

II. RELATED WORK
The manufacturing cost of large monolithic chips is

increasing rapidly. Fewer large chips can be implemented on
a given wafer than smaller chips. Second, a defective larger
die wastes more silicon area than relatively smaller dies. Most
chip vendors and foundries, including TSMC, NVIDIA, Intel,
and AMD, are moving towards non-monolithic alternatives
such as 2.5D interposer-based systems to partition the on-
chip resources into smaller discrete computing cores called
chiplets [7]. Integrating multiple small chiplets on a large
interposer offers not only significantly lower cost and higher
manufacturing yield than 2D ICs, but also better thermal
efficiency than 3D ICs and ease of heterogeneous integration
[17]. Designing general-purpose as well as application-
specific 2.5D-based systems have been explored to date. The
recently proposed SIAM framework enables fast design
space exploration of 2.5D-based systems [11]. The NoI
paradigm becomes crucial due to the high communication
demand generated by integrating many chiplets on the same
substrate. Multiple NoI architectures have been proposed in
the literature [10] [12]. DeFT proposes a deadlock-free
routing algorithm and mitigate low reliability due to vertical-
link (VL) faults on the interposer [18]. SiPterposer proposes
a flexible communication fabric that supports construction of
arbitrary network topologies to provide ~100% chip
assembly yield at typical bonding defect rates [19].
SiPterposer employes fuses in the interposer wiring and
introduces bridge chiplets across disconnected regions,
focused for interposer to amortize assembly defects.
HexaMesh, is a recently proposed NoI architecture, which is
a projection of a 3D Mesh onto a planar graph, with up to six
neighbors (hence Hexa) connected. Most of these
architectures are based on conventional multi-hop
interconnection architectures, such as mesh or torus. Hence,
they are not scalable. A recently proposed SFC-enabled NoI,
called Floret, is degenerated from a 2D-Mesh [20]. However,
existing approaches assume all chiplets are fault-free. Hence,
computational resources within each chiplet were identical.

SFCs [14] [15] are a specialized class of algorithmic
mapping techniques that are extensively used as a locality-
preserving data structure for numerous scientific
applications, involving spatial and range queries. An SFC
represents a linear ordering of a set of n-points in a d-
dimensional space. Numerous types of SFCs have been
defined over the decades, including simple schemes such as
row/column major curves to more sophisticated Hilbert
curves [21], Z-curve [22], or onion curves [23]. These are
deterministic curves with a recursive structure to fill a space
defined by an arbitrary d-dimensional point cloud. For a

Fig. 1: Illustration of a 36-chiplet-based system with link placement search space for parent (a) HexaMesh NoI (b) Kite NoI; Our degenerated SFC-architecture
of (c) HexaMesh NoI with four SFC; (d) Kite NoI with six SFC. Chiplets covered by the same color belong to the same SFC, and the <H, T> denote the head
and tail of each corresponding SFC.

review of classical SFCs, please refer to [14] [15]. SFCs have
found significant application in databases, parallel scientific
computing, and bioinformatics; to create locality-preserving
layouts for DNA nanostructures, sequence alignment, and
phylogenetic inferences [24] [25] [26]. In our target
application, the space we are trying to fill is provided as a 2D
network topology (as shown in the examples in Figure 1).
Therefore, classical SFCs do not readily apply. However, we
desire the locality-preserving properties as in a classical SFC.
For this reason, we define a custom SFC suited to effectively
exploit the inherent dataflow pattern in CNNs and enable
high-performance and energy-efficient NoI architectures.

In this paper, we bridge the gap in the existing state-of-art
by proposing novel design principles for chiplet-based
manycore architectures while considering the realistic defect
distributions to enable high performance with energy savings.
We also show how this design can be extended to multiple
parent NoIs (such as Kite, 2D-Mesh, and HexaMesh).

III. CHIPLET DEFECT DISTRIBUTION
Defect distribution in chiplets: Recent research has
demonstrated the potential of resistive random-access
memory (ReRAM) for efficient machine learning (ML)
inference [3]. ML computation kernels mainly involve
multiply-and-accumulate (MAC) operations, which are
efficiently implemented using ReRAM-based architectures.
ReRAMs also allow for processing-in-memory (PIM), which
helps reduce communication between computing cores and
the main memory, increasing energy efficiency. Hence, in
this work we use ReRAM-based chiplet as the computational
platform. Chiplet-based systems provide sufficient
bandwidth and data localization to meet energy-efficiency
requirements of emerging compute- and data-intensive
applications [10]. As an emerging technology, chiplet-based
2.5D systems must overcome the challenges of limited yield
due to defects and increased fabrication costs. We determine
the fault scenarios from the well-established negative
binomial distribution of the chip yield model, which was
derived from the real chip manufacturing data [4] [6]. From
this well-known chip defect model, we determine the best-,
average, and worst-case scenarios. Yields of individual dies
are necessary for estimating expected defects for a particular
manufacturing process technology. The defect density 𝐷! is
initially high for a new technology. Then, it reduces
significantly as the technology matures [27]. In a chiplet-
based 2.5D system, each chiplet is placed onto an interposer.
An interposer is essentially a large monolithic chip with more
than 80% area empty [4] [6]. Within the interposer, the NoI
is fabricated post-production [6]. The peripheral circuits
within the ReRAM chiplets are designed with mature CMOS
technology [10] [16]. Hence, the probabilities of failure both
in NoI and the peripherals are much smaller compared to the
ReRAM crossbars. ReRAM crossbars are used to implement
the multiply-and-accumulate (MAC) operations that are the
backbone of the computational kernels for the CNN inference
tasks. Hence, we consider the manufacturing defects on the
ReRAM crossbars of each chiplet in this work. Using the
negative binomial yield model [4], we estimate the yield of
each chiplet as:

																																						𝑌"#$ =	%1 + A ∗
D%
𝛼 ,

&'

																						(1)

where 𝛼 is a process-dependent clustering parameter,
estimated pessimistically as 20 for a chiplet-based system,
and A is the area of the chiplet [28]. We utilize the well-
known Gamma distribution, as shown in (2), to determine the
defect distribution within each chiplet [4] [28].
Within a local die, we assume defects follow a Poisson
distribution across the entire area [27]. Multiple defects could
fall into the same location within a chiplet. Hence, we model
the probability 𝑃"$($)*(𝑑) that a chiplet has 𝑑 defects ∀𝑑 ∈
[0,1,2, … , 𝑡] , where 𝑡 is the total defect count:

														𝑃"$($)*(𝑑) = 	
Γ(𝑑 + 𝛼)
𝑑! Γ(𝛼) 	

𝛽"

(𝛽 + 1)"+' 																						(2)

The probability that a chiplet has 𝑑 defects is calculated using
the Gamma function Γ(𝑥), and the constant 𝛽 is defined as:

																																			𝛽 =
𝐷!𝐴
𝛼 																																																			(3)

Cumulative probabilities in a 2.5D-based system: When
considering a chiplet based system with the above-described
defect-density distribution, the defect probabilities of each
chiplet will vary. As a designer, it could be challenging to
make a well-informed decision while looking at systems with
defects since no two systems will have the same defect map
for the corresponding chiplets. In this work, we consider
passive interposers, i.e., no logic is implemented on the
interposer. The interposer is only used for inter-chiplet
communication. Moreover, the interposer has a smaller
critical area than the chiplets [4]. Therefore, defects on the
interposer will not affect the system performance
significantly. For illustrative purposes, we consider a 36-
chiplet system as an example. However, the same design
principle and methodology can be extended for any number
of chiplets in the presence of defects. We consider chiplets
with 16 ReRAM tiles, each with 40 crossbar arrays [16].
Using this specification, we determine each chiplet area,
parameter A in (3), as 2.64	𝑚𝑚, via NeuroSim. Figure 2
shows the probability of occurrences of a certain number of
defects in a chiplet using (2). We propose three types of
probabilistic situations to capture the generality across the
whole spectrum of defects: best-case, average-case, and
worst-case scenarios, as described below:

i) Best Case: In this scenario, none of the chiplets possess
defects, i.e., the entire system is defect-free. As shown in
Figure 2, the probability of having a defect-free chiplet using
(2) is about 53%, yielding a very low probability 0.53-. ≪
.00001% that all 36 chiplets are defect-free. This unlikely
scenario helps us evaluate the SFC-based NoI’s performance
in an the ideal (defect-free) setting.

ii) Average Case: Considering 2.64	𝑚𝑚, chiplets , we
can fit 1200 chiplets on a 3-inch wafer. Among these 1200
chiplets, we pick one chiplet at random, assuming the defect
densities as in (3). We continue to do the same until 36
chiplets have been chosen. Now considering 36 chiplets, we

Fig. 2: Illustration of cumulative defect probabilities (Gamma distribution)
for 2.5D chiplet-based system.

have about /,00
-.

≈ 33 separate clusters (a 36 chiplet system
is referred as a cluster). The average case considers the
average of such 33 separate clusters for each of the 36
chiplets. Following (2), this results in 96% of the chiplets
containing up to two defects ∀𝑑 ∈ [0,1,2]. In this situation,
we have 15 defect-free and 21 chiplets with a single defect.

iii) Worst Case: This case captures the tail of the
distribution to present the worst-case scenario. We consider
the tail to be when there are more than 2 defects on a chiplet
(𝑑 > 2). The worst case does not suggest all chiplets are
highly defective; instead, the probability of having the most
defective chiplets is the highest. Following (2), this
probability turns out to be 3%. This scenario captures the
other extreme of the spectrum. In this worst-case, we get
chiplets with up to 5 defects, i.e., we have 20 defect-free
chiplets, 9 chiplets with 1 defect, 3 chiplets with 2 defects, 3
chiplets with 3 defects, and 1 chiplet with 5 defects.

As the system size increases, the same defect distribution
trend is followed, as demonstrated above using (2). For
brevity, we limit further discussion and describe the NoI
design and optimization approach under defects using SFCs.

IV. NOI DESIGN AND OPTIMIZATION UNDER CHIPLET DEFECTS
In this section, we present the proposed NoI design

methodology considering various CNN tasks in the presence
of defective chiplets. Most previously proposed NoI
architectures are degenerated from a given k-ary n-cube
topology. Here, each point connects to k other chiplets along
n directions, forming a grid-like lattice of computing
cores/chiplets: i) Kite is principally derived from a torus [12];
ii) SIAM/SIMBA is indeed a 2D-Mesh [10] [11]; iii)
HexaMesh [13] is a 2D projection of a 3D-Mesh with up to
six neighbors; iv) SWAP [16], is an irregular NoI architecture
derived from a 2D-Mesh; and v) Floret was degenerated from
the initial SIAM (2D-Mesh) configuration [20].

Given the prevalence of k-ary n-cube type of topologies
among previous works, we assume that the input topology
belongs to the k-ary n-cube family, but also with potentially
defective chiplets. The number of chiplets and their defect
levels are known at the input time. The objective is to design
an NoI that decomposes the input topology into a set of SFCs,
each with its own sequence of chiplets to map the neural
layers of any CNN task. In this work, we consider how planar
topologies with defective chiplets degenerate to a
corresponding SFCed topology. We denote each parent NoI
topology as a planar graph G (V, E), which is an input to our
proposed methodology that degenerates to an SFCed version
from each parent.

A. SFCed NoI design
 Given the need to execute various CNN inferencing tasks
simultaneously, modern-day servers and high-end processors
must be designed to execute multiple concurrent applications
[29] [30]. We consider CNNs with different neural layer
architectures – including linear (e.g., VGG), residual (e.g.,
ResNet), and dense (e.g., DenseNet) connections for
performing inferencing tasks when designing a chiplet-based
system. However, mapping different CNNs dynamically to a
chiplet-based system is challenging. The common property of
CNN inference tasks is that activations flow from the ith layer
to the (i+1)th layer. Maintaining contiguity on the physical
NoI layer between any two consecutive neural layers can

reduce communication overhead. We assume each chiplet has
sufficient buffers to store the intermediate activations
associated with the skip connections, which flow through the
same NoI links. Consistent with prior work [11] [20], each
chiplet has 64KB buffer space (register files) to store the
intermediate activations. We assume that all weights are
transferred to the chiplets from the DRAM chiplet before
performing the CNN inference tasks, consistent with prior
works [11] [16].

As a defective chiplet has fewer computing resources, the
neural layers may need to be spread onto multiple chiplets
when there are defective chiplets, potentially increasing inter-
chiplet communication. The placement of these defective
chiplets must consider the system requirements, namely that
there may be multiple CNN tasks that need to be dynamically
mapped to the system, and each such task may consist of a
different number of neural layers. Furthermore, the number
of chiplets required to execute each layer could vary, often
increasing due to defects.

Therefore, the underlying NoI design problem becomes
one of generating multiple SFCs, each with its own sequence
of chiplets to map to the neural layers of any given task.
Moreover, as the different CNN tasks complete execution, the
chiplets used for that task need to be released and reassigned
to newer tasks (if any). If a consecutive sequence of chiplets
cannot accommodate all CNN layers due to defects, the spill-
over layers will need to utilize chiplets in other parts of the
NoI (i.e., from other SFCs) to ensure successful completion.
We provide a more formal problem definition next.

Problem formulation: Henceforth, we use the following
definition of an “SFC” for our NoI design. Given a network
of n chiplets of a certain graph topology G(V,E), with the
chiplets as the nodes in V and the 1-hop links as the edges in
E, an arbitrary 𝜓 -cover SFC is a path of length 𝜓 (where
𝜓£𝑛) in the graph – i.e., a contiguous sequence of 𝜓 chiplets
that are connected by a series of 1-hop links along the
network.

Given G(V,E) with n chiplets and a target number 𝜆 of
SFCs (where 𝜆 = 1

2
), the problem for our NoI design

becomes one of partitioning the set of n chiplets in V into 𝜆
number of SFCs such that no two SFCs share any chiplets.

In theory, the complexity class of this problem is NP-
complete, as the classical Hamiltonian Path (HP) problem on
a graph, which is NP-complete, reduces to our base case with
𝜆 = 1. Consequently, our solution is heuristic in nature.

While not all generic graphs contain an HP, the guarantee
exists for any 4-connected planar graph, which holds for our
target NoI such as a 2D-Mesh, torus, ring, hypercube,
HexaMesh, and Kite (which degenerates to a 2D-Mesh if we
remove the diagonal links and hence contain an HP) [31].
 Overview of NoI design: During degeneration of the planar
k-ary n-cube NoI to corresponding SFC architecture
(SFCed), we let the placement of the defective chiplets be
guided by the expected computation patterns inherent in CNN
tasks. In particular, as the first few layers of a CNN are
expected to generate the largest number of activations,
ensuring these high-activation layers are mapped to defect-
free chiplets is crucial. With their reduced activations, the
remaining layers are more amenable to getting mapped to
defective chiplets. Using this general high-level idea, we
propose a two-phase process to reduce latency and energy,

and maximize throughput of CNN inference tasks: (balanced
assignment) first, a defect-aware balanced assignment of
chiplets to each SFC; and (SFC placement) next, a defect-
aware placement of the SFCs on the NoI architecture so that
any two chiplets consecutive on the SFC are also one-hop
neighbors on the NoI. These two steps are summarized in
Algorithm 1 and described next.
Defect-aware balanced assignment: We formulate the
problem of determining the composition of each SFC as one
of a variant of bin packing. In the classical bin packing
optimization problem, the input is a set of n items
(𝑎0…𝑎1&/), each of a certain size 𝑠(𝑎#) = (0,1] , and an
unlimited set of unit capacity bins. The objective is to pack
(i.e., partition) the n items using the least number of bins
possible [32]. This classical problem is NP-hard [34].

Our version of the problem is a constrained variant of this
classical formulation. In our case, each bin is an SFC, and the
items are the n chiplets such that each chiplet c has a known
computational power 𝜇(𝑐), as defined by the defect map.
Furthermore, since the number of SFCs is fixed (i.e., a
positive constant 𝜆), the number of chiplets per each SFC bin
is also fixed (a positive constant 𝜓 = 1

3
). This implies that our

version of the bin packing problem is one of generating a
balanced distribution of the n chiplets across the 𝜆 SFC bins,
such that each SFC would contain 1

3
 chiplets, while the total

computational power assigned to each SFC bin is
approximately balanced. Ideally, the chiplets assigned to each
SFC C should support a target t number of resources, where
𝑡 = P/

3
∑ 𝜇(𝑐))∈5 R. However, this cannot be guaranteed as that

would depend on the input set of chiplets and their defect
rates. Consequently, we propose the following greedy
heuristic approach which aims to achieve as best of a
balanced assignment of chiplets to SFC bins as possible
(Algorithm 1), while satisfying the SFC number and length
criteria (i.e., 𝜆 SFCs each with 𝜓 = 1

3
 chiplets).

Our balanced assignment algorithm (Algorithm 1) first
sorts the chiplets in the non-increasing order of their compute
resources (line 2). Next, it assigns the sorted chiplets to bins

using a simple round-robin strategy (line 4), yielding 𝜓
chiplets per SFC. Subsequently, the algorithm swaps chiplets
between the overfull bins and the underfull bins iteratively
until the balancing can no longer be improved for the pair of
bins under consideration (Line 5). Here, a bin is said to be
“overfull” (alternatively, “underfull”) if it has more than
(alternatively, less than) the target t number of compute
resources. Note that swapping maintains the 𝜓 chiplets per
SFC condition. To implement this shuffling of chiplets
between SFCs, we use a greedy Least-Used (LU) scheme,
similar to those exploited in other optimization problems with
a balancing criterion [35]. More specifically, our LU scheme
swaps the chiplet with the least defect from the next largest
overfull bin (bo) with the chiplet with the largest defects in
the next smallest under-full bin (bu). This is done until either
the compute resources of bo or bu reach t, or no more swaps
are possible. Figure 3 demonstrates the binning process. After

2

Algorithms for SFC (with Defective chiplets) -
ICCAD submission

Harsh, Ananth, et al.

I. ALGORITHMS

Algorithm 1: Defect-aware SFC architecture design
Input: C: a 2D grid of n chiplets represented as a graph G(V,E)

�: the desired number of SFCs
D: Defect map of each chiplet with compute capacity µ(c)

Output: A list of � SFCs: ⇧ = {⇧0,⇧1, . . .⇧��1}, where each
SFC ⇧i is of size ; = dn� e

1: t d
P

c2C
µ(c)
� e /* Target resource for SFC */

2: Csort Sort n chiplets in non-increasing order
3: Initialize � bins of size ; B = {b0, b1, . . . b��1}

/* Step1: Creation of bins using least used */
4: Assign Csort[i] to SFC ⇧i mod �

5: Exchange elements until ⇠ t 8b 2 B
/* Move elements to underfull bins until target t
is achieved 8b 2 B */

6: [hH,T i] Assign a list of � hhead, taili chiplet position pairs
in C
/* Step2: SFC creation using bins B */

7: for all hhi, tii 2 [hH,T i] do

8: Initialize dn� e
/* i.e., TSP tour length for each SFC */

9: Initialize ⇧i to an empty array of (TSP tour) size
10: ⇧i ComputeTSP (G(V,E), hhi, tii,)
11: Update graph G by removing all edges incident on ⇧i

12: end for

13: ⇧
S

i ⇧i

14: return ⇧

Algorithm 2: Defect-aware mapping algorithm
Input: Workload with multiple CNNs (W = {wi}) each with

multiple layers
C: the set of n chiplets, where each chiplet c 2 C has compute
capacity µ(c)
⇧ : a set of � SFCs {⇧0,⇧1, . . .⇧��1}, with each SFC
internally ordered in non-increasing order of chiplet defect
rates from their respective heads h

Output: Mapping of each CNN w 2W to a distinct subset of
chiplets (i.e., � : W ! 2C such that the mappings of chiplets
are mutually disjoint)

1: Init. next = 0 /* allocation to start at the first
chiplet ⇧(1) */

2: Init. n0 = n /* the running count of the number of
available chiplets */

3: Init. a countdown timer at each SFC head to 0
(i.e., h.timer = 0, 8h 2 H)

4: for all w 2W do

5: ⇥ number of compute resources required by w

(rounded to the next integer)
6: Compute ⌧jump(h,w) = h.timer + ⌧exec(h,w)

for each h 2 H

7: hbest argminh (⌧jump(h,w))
8: if (⌧jump(hbest, w) < ⌧exec(next, w)) then

9: next = pos(hbest) /* Jump over the defective
chiplets to the next available head */

10: else

11: continue /* Mapping position next does not get
updated */

12: end if

13: h�(w), n0i = mapCNN(w,⇧, next,⇥, n
0) /* Map w to a

sequence of ⇥ compute resources starting at
next position; return the updated n0 */

14: Update next (�(w).lastindex+ 1) mod n

15: end for

16: return �

Fig. 3: Skewness reduces as the least used binning procedure allocates
resources in each corresponding bins. Blue line indicates target bin size
under perfect balancing.

2

Algorithms for SFC (with Defective chiplets) -
ICCAD submission

Harsh, Ananth, et al.

I. ALGORITHMS

Algorithm 1: Defect-aware SFC architecture design
Input: C: a 2D grid of n chiplets represented as a graph G(V,E)

�: the desired number of SFCs
D: Defect map of each chiplet with compute capacity µ(c)

Output: A list of � SFCs: ⇧ = {⇧0,⇧1, . . .⇧��1}, where each
SFC ⇧i is of size ; = dn� e

1: t d
P

c2C
µ(c)
� e /* Target resource for SFC */

2: Csort Sort n chiplets in non-increasing order
3: Initialize � bins of size ; B = {b0, b1, . . . b��1}

/* Step1: Creation of bins using least used */
4: Assign Csort[i] to SFC ⇧i mod �

5: Exchange elements until ⇠ t 8b 2 B
/* Move elements to underfull bins until target t
is achieved 8b 2 B */

6: [hH,T i] Assign a list of � hhead, taili chiplet position pairs
in C
/* Step2: SFC creation using bins B */

7: for all hhi, tii 2 [hH,T i] do

8: Initialize dn� e
/* i.e., TSP tour length for each SFC */

9: Initialize ⇧i to an empty array of (TSP tour) size
10: ⇧i ComputeTSP (G(V,E), hhi, tii,)
11: Update graph G by removing all edges incident on ⇧i

12: end for

13: ⇧
S

i ⇧i

14: return ⇧

Algorithm 2: Defect-aware mapping algorithm
Input: Workload with multiple CNNs (W = {wi}) each with

multiple layers
C: the set of n chiplets, where each chiplet c 2 C has compute
capacity µ(c)
⇧ : a set of � SFCs {⇧0,⇧1, . . .⇧��1}, with each SFC
internally ordered in non-increasing order of chiplet defect
rates from their respective heads h

Output: Mapping of each CNN w 2W to a distinct subset of
chiplets (i.e., � : W ! 2C such that the mappings of chiplets
are mutually disjoint)

1: Init. next = 0 /* allocation to start at the first
chiplet ⇧(1) */

2: Init. n0 = n /* the running count of the number of
available chiplets */

3: Init. a countdown timer at each SFC head to 0
(i.e., h.timer = 0, 8h 2 H)

4: for all w 2W do

5: ⇥ number of compute resources required by w

(rounded to the next integer)
6: Compute ⌧jump(h,w) = h.timer + ⌧exec(h,w)

for each h 2 H

7: hbest argminh (⌧jump(h,w))
8: if (⌧jump(hbest, w) < ⌧exec(next, w)) then

9: next = pos(hbest) /* Jump over the defective
chiplets to the next available head */

10: else

11: continue /* Mapping position next does not get
updated */

12: end if

13: h�(w), n0i = mapCNN(w,⇧, next,⇥, n
0) /* Map w to a

sequence of ⇥ compute resources starting at
next position; return the updated n0 */

14: Update next (�(w).lastindex+ 1) mod n

15: end for

16: return �

the chiplets are assigned to SFC bins, the chiplets of each SFC
are internally sorted in non-increasing order of their
computational resources (line 6).

 Defect-aware SFC placement: Next, we place each SFC
onto the NoI architecture to guarantee NoI contiguity
between consecutive chiplets of any SFC. To achieve this, we
first choose 2𝜆 locations on the NoI that can house the 𝜆
head-tail chiplet pairs of the SFCs. Here, we note that
reducing the average number of hops separating the tail of an
SFC from the head of another SFC is important during the
subsequent CNN layer mapping phase, since the same CNN
task may possibly use chiplets from two or more SFCs.
Therefore, our search objective becomes minimizing the
average path length 𝑑	between the tail of one SFC to the
heads of other non-overlapping SFCs:

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒:		𝑑 = 		
1
𝑝	 Y Z𝑡# − ℎ6Z78$9$	#≠6,			<=,>3,?#,6∈[0,A&/]

				(4)

The distance between any tail-to-head pair is calculated as the
Manhattan distance over the 2D grid. Minimizing this
average distance measure 𝑑 is imperative as communication
delay increases when data flows between the tail of one SFC
to the head of another SFC. The above principle determines
the placement of each chiplet within each SFC.

Once all SFC bins are created with the defective chiplets,
and the head-tail pairs are selected, the chiplet set assigned to
each SFC bin is linearly ordered. This task is one of using the
NoI topology’s one-hop links and neighborhood information
so that a contiguous path with 𝜓 consecutive chiplets,
connected via 1-hop links, is detected between the head and
tail chiplets (which act as the two sentinel ends of the path).
The problem is formulated as a traveling salesman problem
(TSP) over the (𝜓 − 2) chiplets on a planar graph [33]. From
each chiplet (head in this case), we visit other chiplets
(nodes), creating a Hamiltonian path. Each visited chiplet is
stitched as part of the SFC, while we keep on choosing a
chiplet from the head of the respective bin and appending
them onto the SFC. By placing the chiplets in a non-
increasing order of defects, we ensure that the highest
activation layers can be mapped to least defective chiplets.

B. Neural network to Chiplet Mapping under Defects
Next, we describe the defect-aware mapping of CNN

inferencing tasks to the SFCed NoI architecture. Recall that
targeted workflow is a concurrent list of CNN inferencing
tasks. For each CNN task, we map the task to the current
chiplet location within an SFC or jump to any available head.
Let Π denote the set of all 𝜆 SFCs. Algorithm 2 details the
major steps of this mapping procedure. Let the workload 𝑊	
be a queue of multiple CNN tasks. For each 𝑤	 ∈ 	𝑊, we first
compute the required number of computing resources.
Initially, all chiplets across all 𝜆 SFCs of Π are considered
available. We keep a countdown timer ℎ. 𝑡𝑖𝑚𝑒𝑟 for each of
the 𝜆 heads that is initialized to 0. We track a 𝑛𝑒𝑥𝑡 pointer to
point to the next chiplet along Π that is due for assignment.
The 𝑛𝑒𝑥𝑡 pointer is where the mapping starts. Initially, 𝑛𝑒𝑥𝑡
is initialized as the head chiplet of the first SFC (Π0). In
essence, the algorithm updates this next location to map the
CNN to the chiplet, which minimizes the execution time and
then maps the networks.
 More formally, the algorithm must choose between one of
two possible mapping locations: either the next chiplet in

order of the current SFC, or the head of a different SFC. This
decision is based on which mapping choice would result in
the lower execution time, as highlighted in line 8 of
Algorithm 2. With the CNN layer to chiplet mapping, we
keep track of the expected countdown time of each head. This
time is derived from the communication traffic arising from
the inter-layer activations of the CNN mapped on that head.
The major function that computes Φ(𝑤) for any given task 𝑤
is 𝑀𝑎𝑝𝐶𝑁𝑁(𝑤,Π, 𝑛𝑒𝑥𝑡, Θ, 𝑛), shown in line 13 of Algorithm
2. This function maps the task 𝑤 to a sequence of Θ
computing resources, starting from the 𝑛𝑒𝑥𝑡 position along
Π. The actual chip let coordinates for this next position is
given by Π&/(𝑛𝑒𝑥𝑡). The 𝑀𝑎𝑝𝐶𝑁𝑁 function returns when
all layers of 𝑤 have been successfully mapped. Note that it
is possible that along the mapping process, the next chiplet to
be assigned is occupied with another CNN task. In this case,
the procedure waits until another head or 𝑛𝑒𝑥𝑡 chiplet
becomes available depending on the condition shown in Line
8 in Algorithm 2. No deadlocks are possible since we test all
available heads, and the timers associated with chiplets are
countdown timers.

V. EXPERIMENTAL RESULTS
In this section, we present a thorough performance

evaluation of the SFCed architectures in the presence of
chiplet defects considering concurrent CNN inferencing tasks.
We also compare the proposed SFCed NoI with respect to
corresponding parent NoIs.

A. Experimental Setup
i) System specification and evaluation setup: To
demonstrate the efficacy and scalability of the proposed
SFCed architectures as a function of chiplet defects, we
consider three different system sizes (n) with 36, 64, and 100
chiplets. Each chiplet has 2.64	𝑚𝑚, area, with 16 tiles, each
tile consisting of 40 PEs, and each PE consisting of 128x128
crossbar arrays [11] [16]. We use a modified NeuroSim to
partition and map the concurrent CNN tasks onto a 2.5D-
based system [34]. The inter-chiplet traffic is generated by
the activations between the neural layers. The activations
generated by residual skip connections are also part of the
communication traffic. All the NoI topologies are simulated
using the BookSim simulator [35]. The inputs to the BookSim
simulator are the connectivity between NoI routers and the
inter-chiplet traffic generated for each CNN inference task
within the workload. We determine the area, latency, and
energy consumption of the NoI using a modified version of
BookSim to capture custom NoI topologies considered in this
work. We use the Nvidia ground-referenced signaling (GRS)
parameters for chiplets on a 32nm technology to evaluate the
NoI area and power consumption [10]. Table I shows the
other system-level parameters considered in the performance
evaluation [11] [17]. In our work, each chiplet consists of 16
tiles following previous work [16] [11]. It should be noted
that as the chiplet size decreases, the number of defects per
chiplet could potentially reduce. However, the computational
and storage capabilities of each chiplet also reduce. Hence,
weights of each neural layer and its corresponding activations
are spread onto multiple chiplets, giving rise to higher inter-
chiplet traffic. This in turn leads to overall system level
latency overhead and lower energy efficiency. We note that
the experimental analysis and performance evaluation

considered in this paper can extend to other technology
parameters.
ii) Datasets and CNN workloads: We evaluate the
performance and energy efficiency of the original NoIs with
respect to their SFCed architecture in the presence of defects
on multiple concurrent CNN inferencing tasks. Table II
shows different neural networks executed on the
corresponding datasets and their number of parameters. As
the system size increases, we use ImageNet-based CNNs with
more parameters to illustrate the merits of the proposed

architecture. Table III shows the naming convention of the
CNN tasks in each workload (WL) along with their total
number of parameters running on (a) CIFAR-100 and (b)
ImageNet datasets. Tables III(a) & (b) show the CNN tasks
queue to be executed on the 2.5D system. Various
combinations of the neural networks in Table II are executed
concurrently to capture the workloads (WL) considered in the
experimental setup. We evaluate the 36-chiplet system using
CIFAR-100 dataset. For scalability, we evaluate 64 and 100
chiplet system on ImageNet-based workloads as the number
of parameters is in the order of billions. As an example, WL1
consists of sixteen instances of 𝑁𝑁, (ResNet34), along with

one instance of 𝑁𝑁C (VGG19), and so on. We cover the
whole spectrum by randomly choosing any combination of
the CNN tasks. Note that the general concept behind our NoI
design applies to any deep learning inference tasks.
Additionally, the workloads consist of multiple ResNet and
DenseNet models to validate the advantages of SFCed NoIs
with skip connection-based CNNs.
 Due to chiplet defects, a given neural layer may need to be
distributed to multiple chiplets, giving rise to an increase in
inter-chiplet traffic. This effect is particularly pronounced in
layers where the number of activations is significantly higher
than the rest. In the initial layers of CNNs, convolutional
layers extract basic features (such as edges, textures, and
colors) while preserving spatial resolution. The convolutional
filters applied to the input image at this stage do not reduce
the spatial dimensions. Hence, the activation from the initial
layers remains large. Higher activations in the starting layers
give rise to more data exchange among communicating
chiplets. Chiplet defects, due to the unavailability of compute
tiles, leads to higher volume of inter-chiplet traffic. This, in
turn, increases latency and reduces energy efficiency.
iii) Baseline NoI design: We compare the performance of the
SFCed NoIs in the presence of defects against four baselines:
Kite, HexaMesh, SIAM, and application-specific NoI
architecture SWAP [12] [11] [16]. Kite is primarily a Torus-
based NoI, and SIAM is a 2D-Mesh NoI. HexaMesh is a
concentrated mesh NoI with staggered chiplet placements
with up to six router ports for any internal chiplet, principally
a projection of a 3D-Mesh onto a planar structure. The
application-specific SWAP NoI is an irregular architecture
where the chiplets and the associated links are placed per
specific design time considerations for a given set of CNN
applications. We set the same system parameters and evaluate
over the same CNN workloads for all architectures (Kite,
HexaMesh, SIAM, SWAP, and their SFCed counterparts) for
a fair comparison. Kite, HexaMesh, SIAM, and SWAP are
the original/parent NoIs referred to as ‘Case-I,’ and their

TABLE II: LIST OF NEURAL NETWORKS FOR INFERENCING ALONG WITH
THEIR CORRESPONDING NUMBER OF CNN PARAMETERS WITH
(A) CIFAR-100, (B) IMAGENET DATASET

TABLE I: NOI HARDWARE PARAMETERS CONSIDERED FOR EVALUATION

TABLE IV: NUMBER OF SFCS IN EACH DEGENERATED ARCHITECTURE

TABLE III: LIST OF CNN TASKS IN A WORKLOAD FOR INFERENCING ALONG WITH THEIR TOTAL NUMBER OF PARAMETERS WITH (A) CIFAR-100, (B)
IMAGENET DATASET

SFCed counterparts are referred to as ‘Case-II’: i.e., Case-I
corresponds to the Parent NoI; and Case-II to the
corresponding SFCed NoI. We map each CNN layer in Case-
I using a nearest neighbor mapping algorithm that allocates
each incoming CNN layer to the closest available chiplet to
ensure minimum communication delay among
communicating cores. This ensures maximum achievable
performance as communicating chiplets are mapped as close
as possible on the NoI. However, these three architectures
have multi-hop paths between chiplets, which are more
pronounced under chiplets with defects as activations from
one neural layer may spread over multiple chiplets. Hence,
having contiguous available chiplets may not be possible as
the number of CNNs increases when the interconnection
topology is inherently multi-stage (mesh- or torus-based).
This could lead to consecutive neural layers being mapped to
far-apart chiplets through multi-hop paths. For bigger system
sizes, the number of multi-hop paths increases. On the
contrary, the SFCed group of NoI architectures always
ensures that communicating CNN layers are mapped to
contiguous chiplets, and we start mapping on a defect-free
head. Hence, SFCed NoIs (Case-II) consistently outperform
their (state-of-the-art) parent NoI architectures with higher
energy efficiency.

B. NoI Performance and Energy Analysis
 Determining the optimum number of SFCs 𝜆 for each
considered system size is the first essential step. The optimum
number of SFCs depends on the distance between the tail of
one SFC to the heads of the other non-overlapping SFCs
(refer eq. (4)). We consider an iso-chiplet area, i.e., individual
chiplet size remains constant as the system size scales. Hence,
the number of SFCs 𝜆 remains within a limited range for
varying system sizes. For example, the number of optimum
SFCs for SFCed Kite for 36-, 64-, and 100-chiplet systems
are 6, 4, and 4, respectively. Table IV shows the number of
corresponding SFCs in each SFCed NoI. It should be noted
that Floret is a SFC architecture that was degenerated from
2D-Mesh (SIAM). Hence, Floret and SIAM have the same
number of SFCs.
 Second, the proposed SFCed architecture has an inherent
advantage over parent NoI architectures in terms of power
consumption due to smaller routers and fewer links in SFCs.

Except for chiplets designated as heads and tails (ℎ, 𝑡), the
(𝜓 − 2)	chiplet on each SFC has only two associated router
ports. Only the heads and tails in the system will have more
than two ports based on the inter-SFC connectivity. We
observe that six-port and four-port routers are most frequent
in HexaMesh and Kite [12]. SIAM with 2D-Mesh NoI
consists mostly of routers with three and four ports.
Moreover, SWAP primarily uses three-port routers [16].
Smaller routers in the SFCed architecture also correspond to
fewer links. It should be noted that reducing the number of
links and router ports alone does not necessarily lead to
performance and energy efficiency. To achieve these
benefits, it is crucial to consider iso-computation across the
spatial region of the 2.5D system. The communication
volume directly depends on the neural layer to chiplet
mapping. If a neural layer is partitioned across multiple
chiplets, the traffic volume on the NoI increases. This leads
to performance degradation and higher energy consumption.
Therefore, computational uniformity should be maintained
for high energy efficiency. In the presence of defects, the
Case-I NoI architectures have nonuniform computational
capabilities due to lack of iso-partitions. HexaMesh and Kite,
for example, have mostly two-hop links, and the routers are
inherently larger. SIAM, principally a 2D-Mesh, has single-
hop link connections to its neighboring chiplets. However,
SIAM has larger routers with a higher number of router ports.
SWAP has fewer links and smaller router ports, but not all
links are necessarily single hop. Within each 𝜆 SFCs, each
partition has equivalent computational capabilities.
Moreover, all the redundant links are omitted, and all the SFC
routers are small. These factors improve NoI performance
and energy efficiency. Moreover, smaller routers, fewer
links, and reduced NoI area, hence the fabrication costs and
carbon footprint, are highlighted in the next section.
 We benchmark Case-I's latency and energy consumption
compared to Case-II for five different CNN workloads on
each dataset (WL1-WL5 on CIFAR-100; WL6-WL10 on
ImageNet) for all the system sizes. We consider three defect
scenarios (best-, average-, and worst-case described in
Section III). It should be noted that the best-case principally
corresponds to an ideal, defect-free situation. Each bar plot is
normalized with respect to SFCed Kite in the worst-case
defect configuration.

Fig. 4: Latency comparison between worst-, average-, and best-case defect
scenarios for 36 chiplet system for SFCed Kite.

0.8

0.9

1

1.1

1.2

1.3

1.4

WL1 WL2 WL3 WL4 WL5

N
or

m
al

iz
ed

 N
oI

 L
at

en
cy

Worst Average Best

Fig. 7: Average Latency improvement (normalized) for 100 chiplet system
comparing defect-free and worst-case Case-I with respect to worst-case
Case-II.

0.6

1

1.4

1.8

2.2

2.6

3

Kite HexaMesh SWAP SIAM

Av
er

ag
e

La
te

nc
y

Im
pr

ov
em

en
ts

Original NoI (Best Case) Original NoI (Worst Case) SFCed NoI (Worst Case)

Floret
(SFCed SIAM)

Fig. 6: Average latency improvement (normalized) for 64 chiplet system
comparing defect-free and worst-case Case-I with respect to worst-case
Case-II.

0.6

1

1.4

1.8

2.2

2.6

Kite HexaMesh SWAP SIAM

Av
er

ag
e

La
te

nc
y

Im
pr

ov
em

en
ts

Parent NoI (Best Case) Parent NoI (Worst Case) SFCed NoI (Worst Case)

Floret
(SFCed SIAM)

Fig. 5: Average latency improvement(normalized) for 36 chiplet system
comparing defect-free and worst-case Case-I with respect to worst-case
Case-II.

0.8

1

1.2

1.4

1.6

1.8

Kite HexaMesh SWAP SIAM Floret

Av
er

ag
e

La
te

nc
y

Im
pr

ov
em

en
ts

Original NoI (Best Case) Original NoI (Worst Case) SFCed NoI (Worst Case)

Floret
(SFCed SIAM)

 Latency: We first evaluate the latency degradation from
the best-case to the worst-case defect scenario. For this, we
consider only the SFCed Kite architecture as an example.
Figure 4 shows the latency comparison among the best-,
average-, and worst-case of defects considering WL1-5 on a
36-chiplet system. As mentioned earlier, neural layers are
spread over multiple chiplets due to defects, increasing the
inter-chiplet traffic. This gives rise to performance penalty in
a more defective system running the same workload. On
average, the worst-case scenario incurs a 19% latency penalty
with respect to the best-case counterpart. The highest latency
penalty is 36% for the worst-case. The merits of the SFC
architecture are best understood when its performance under
the worst-case defect scenario is compared to other NoI
counterparts under the best-case scenario (i.e., having no
defective chiplets).

Figure 5 shows the average latency improvement of each
NoI for the 36-chiplet system considering workloads WL1 to
WL5 in various degree of defects. SFCed architectures
outperform their parent baselines for all defect
configurations, including the corresponding best-case
scenario. For example, SFCed Kite improves the latency on
average by ~26%, and ~44% compared to best-case and
worst-case Kite architecture, respectively. A similar trend is
noted across all degenerated NoIs with respect to their
original counterparts. Similarly, as the system size scales, the
performance improvement for SFCed NoI is more significant
since collocating communicating neural layers to
neighboring chiplets becomes easier during the mapping
along the SFC path. It should be noted that SFCed Floret is
the same as SFCed SIAM and achieves the highest
performance among all SFCed counterparts. This is because
Floret was degenerated from a 2D-Mesh topology. Under the
worst-case defect scenario, the set of inter-chiplet links, the
placement of the defective chiplets into SFCs, and the defect-
aware mapping strategy – all of them collectively yield the
same NoI architecture as SIAM (2D-Mesh). For this reason,

henceforth we show only results for SFCed SIAM instead of
showing both Floret and SIAM in our further investigations.

Figures 6 and 7 show the latency of each NoI architecture
for the 64-and 100-chiplet systems, respectively. SFCed
performs 46%, 40%, and 42% better than Kite, SIAM, and
SWAP, respectively, considering the worst-case defect
scenario for the 64-chiplet system. As the system size scales
up further, the effect of defects is more pronounced. For
bigger systems, inter-chiplet traffic due to defects increases.
This leads to more multi-hop paths for Case-II due to the
unavailability of contiguous chiplets to map to. The highest
latency improvement of 65% for Case-I is achieved for WL7,
considering the worst-case defect scenario on the 100-chiplet
system with respect to Kite and its SFCed counterpart, as
shown in Figure 7. In the average defect scenario, the
performance improvement for SFC is always more than at
least 25% compared to all the other NoI topologies for all the
system sizes considered here.

Energy: SFCed NoIs achieve significant energy savings
besides reducing the inference latency. They avoid multi-hop
communication traffic, boosting energy efficiency. Figures
8(a)-(c) show the radar plots capturing the achievable energy
improvement for 36-, 64- and 100 chiplet systems, comparing
the worst-case of defects for SFCed NoI to best-case of
defects for their parent counterparts in defect-free
configuration. SFC always increases the energy efficiency for
all system sizes and defect scenarios. The highest energy
savings are achieved for the 100-chiplet system considering
the workload WL9, where SFCed NoIs reduce the energy
consumption with respect to Kite, SIAM, and SWAP by 78%,
62%, and 65%, respectively.
 Notably, SFCed NoIs under worst-case defects outperform
all other topologies with no defects. The highest
improvement for SFC is observed in comparison with Kite.
Even with the worst-case defects, SFCed Kite achieves on
average 63% and 78% reductions in latency and energy,
respectively, compared to Kite with no defects. This analysis
shows that the SFCed architectures outperform all the parent
counterparts. This points towards the merits of the SFCed NoI
topologies. Adopting SFCed NoI not only ensures high
performance but also energy efficiency and the highest
robustness to manufacturing defects. Next, we illustrate the
fabrication cost benefits of the SFCed Architectures.

Fig. 8: Radar plots showing the energy efficiency of SFCed NoIs under worst-case defects over their parent NoIs under best-case defects for (a) 36 chiplets;
(b) 64 chiplets; (c) 100 chiplets system. SFCed NoIs have smaller bounded area and hence higher energy efficiency in comparison to their parent counterparts.
As the system size scales, the ratio of the enclosed area between SFCed and parent NoIs increases; hence the energy efficiency scales with bigger system size.

Fig. 9: A 64 chiplet 2.5D system with four 3D-DRAM stacks.

C. DRAM overhead for NoI Architectures
 In this subsection, we quantify the impact of DRAM
loading on the overall execution time. The targeted
architecture is expected to have sufficient memory capacity
to store the weights and activations of various well-known
DNN workloads. Considering the storage capacity of each
chiplet with 8-bit precision is 2.5MB, a 100-chiplet system
has a total storage capacity of ~250 MB. For the smallest
system size of 36 chiplets, the storage capacity is ~90 MB.
This storage is enough, considering the largest CNN tasks
(VGG19 on ImageNet Dataset) require 137 MB at the same
8-bit precision. Similarly, for the smallest considered 36-
chiplet system, the storage capacity is enough for the biggest
neural network on CIFAR-100. However, the memory
requirement increases when we execute multiple concurrent
CNN tasks. Hence, we need to read/write weights and
activations from/to an external memory for the corresponding
CNN task. The DRAM loading depends on the availability of
the weights on the chiplet system. Hence, DRAM loading
will not occur for each CNN task and depends on the order of
occurrences, which is a function of the workload. As a result,
there will be a variable additional latency penalty added to
the overall execution time corresponding to that. While
evaluating the DRAM access latency, we consider that the
DRAM is connected through the interposer with the chiplet
system. Figure 9 shows the 2.5D-chiplet system with four 3D
stacks of DRAM on the interposer, consistent with existing
works [6] [12]. We use RAMULATOR for estimating
DRAM access times considering standard state machine
referenced here [36] [37]. Figure 10 shows the overall
execution time when executing workloads WL1-WL5 on 36
chiplet system under average case of defects. These
workloads represent a class of concurrent CNN tasks.
Depending on the specific workload, the DRAM access
varies from 21% to 34.8% of the overall execution time. The
variation in overall DRAM loading time is due to the
workload characteristics considered here. For example, in
WL5, as there is less immediate repeatability of CNNs, the
DRAM loading overhead is higher than WL1. In the case of
WL1, multiple instances of ResNets34 are executed, reducing
the need for DRAM loading after each CNN. However, this
relatively high DRAM access time arises due to random
ordering of concurrent CNN tasks that creates very high
degree of variability among CNNs being executed. This

represents a very pessimistic situation. In reality, we expect
an inference task to be executed multiple times using the
same set of CNNs. In that case, the DRAM access time will
be amortized over multiple inference passes with same CNN
tasks. As an example, if 12 ResNet34 CNNs are executed
concurrently for 20 passes on a 36-chiplet
SFCed_HexaMesh, the overall DRAM overhead will only be
1.5% of the total execution time. It should be noted that the
overall advantage of the SFCed architectures remains
unchanged with respect to k-ary n-cube counterparts even in
presence of extremely variable concurrent CNN tasks. Hence,
though DRAM execution incurs additional performance
overhead based on the concurrent CNN tasks being executed,
this does not impact the advantages of the SFCed NoI
architectures demonstrated in this work.

D. Fabrication Costs of SFCed Architectures
 Over the last two decades, we have witnessed a dramatic
rise in computing demand fueled by new applications at the
edge and cloud scale. Higher computational requirements
lead to higher costs for manufacturing and maintaining such
systems. This section discusses the relative fabrication cost
reductions if the defective chiplets were discarded instead of
utilizing them. For example, considering the 36-chiplet
system for both the average-and worst-case, following (2), we
know that the system will have a certain number of defective
chiplets. The normalized fabrication cost of chiplets is
expressed as [11]:

													𝐶DED*$F =
𝐿9$(
𝐿 	× 𝑒&G!HI"#$&I%&%'#(J																							(5)

where 𝐿9$(is the number of chiplets per wafer in the
reference system, and 𝐿 is the number of chiplets per wafer
for the system under consideration. The parameter
𝐷0	represents the defect density, and 𝐴9$(is the NoI area of
the reference system. We consider a 2.5D system designed by
AMD with 864	𝑚𝑚, area as the reference in this work [6].
The system area consists of the chiplets and the NoI. Using
(5), we can compare the fabrication cost of two different
chiplet systems. For example, the fabrication cost for a
defective 2.5D system is:

																	𝐶G$($)*#K$ =
𝐿9$(
𝐿 × 𝑒&G!(I"#$&I)#$#*'+,#)												(6)

Similarly, the fabrication cost of the defect-free 2.5D system:

Fig. 10: Overall execution time considering DRAM overhead for a 36 chiplet system under average case of defects.

0

200

400

600

800

1000

1200

Ki
te

H
ex
aM

es
h

SI
AM

SF
Ce

d_
Ki
te

SF
Ce

d_
He

xa
M
es
h

SF
Ce

d_
SI
AM Ki
te

H
ex
aM

es
h

SI
AM

SF
Ce

d_
Ki
te

SF
Ce

d_
He

xa
M
es
h

SF
Ce

d_
SI
AM Ki
te

H
ex
aM

es
h

SI
AM

SF
Ce

d_
Ki
te

SF
Ce

d_
He

xa
M
es
h

SF
Ce

d_
SI
AM Ki
te

H
ex
aM

es
h

SI
AM

SF
Ce

d_
Ki
te

SF
Ce

d_
He

xa
M
es
h

SF
Ce

d_
SI
AM Ki
te

H
ex
aM

es
h

SI
AM

SF
Ce

d_
Ki
te

SF
Ce

d_
He

xa
M
es
h

SF
Ce

d_
SI
AM

WL1 WL2 WL3 WL4 WL5

To
ta

l T
im

e
of

 E
xe

cu
7o

n
(m

s)
DRAM overhead

											𝐶G$($)*N9$$ =
𝐿9$(
𝐿 × 𝑒&G!(I"#$&I)#$#*'-"##)														(7)

where 𝐴G$($)*#K$ and 𝐴G$($)*N9$$	correspond to the total area
of defective and defect-free systems. Therefore, the ratio of
the fabrication costs can be expressed as:

																	
𝐶G$($)*#K$
𝐶G$($)*N9$$

= 𝑒&G!(I)#$#*'-"##&I)#$#*'+,#)												(8)

Considering the average- and worst-case scenarios discussed
in Section III, the relative fabrication cost primarily boils
down to the additional area of the discarded chiplets and the
NoI. The NoI area depends on the size of the routers, number,
and length of inter-chiplet links. Hence, designing an
optimized NoI, which considers the defect distribution in
chiplets is necessary for creating 2.5D systems.
 Figure 11 plots the overall trend for comparing NoI
architectures (SFCed NoI with worst-case defects vs Parent
NoI with defect free system) for 100 chiplet system. The y-
axis is normalized with respect to a 36 chiplet SFCed Kite.
SFCed NoIs have lower energy-delay product (EDP) and
reduced fabrication costs than parent NoIs. The marker size is
proportional to the corresponding NoI area. As an example,
there is a 10x EDP reduction with 6x fabrication cost
improvement for SFCed HexaMesh due to reduced router
sizes and robustness to defects. Hence, the SFCed NoIs are
towards the left compared to parent NoIs. This shows a
significant improvement in the performance, energy, and
fabrication costs for our SFCed architectures compared to the
parent NoIs. It is observed that the bottom-leftmost point (with
minimum fabrication cost and EDP) is SFCed SIAM, which
is essentially Floret. This is because all the links in SFCed
SIAM (Floret) are single-hop connections, whereas the link
length varies depending on the parent NoI for Kite, HexaMesh
and SWAP, respectively. This illustrates the importance of
choosing the right parent architecture when designing SFCed
counterparts for CNN inference tasks. Overall, our results
suggest the high suitability of SFC-based architectures for
CNN inference tasks compared to more traditional designs.

VI. CONCLUSION
The emergence of 2.5D chiplet platforms provides a new

avenue for compact scale-out implementations of emerging

compute- and data-intensive applications. However, progress
in designing chiplet-based systems is impeded by silicon
defects. This paper presents a space-filling curve (SFC)-based
NoI architecture that achieves high performance and energy
efficiency even in the presence of silicon defects. Instead of
discarding defective chiplets, SFCed NoI optimizes their
utilization. SFCed NoIs enable a dataflow aware NoI to design
2.5D architecture that outperforms their parent k-ary n-cube
based NoIs. Comprehensive experimental evaluation with
different system sizes and diverse CNN inferencing
workloads demonstrate that SFCed NoIs on average achieve
up to 2.3x and 3.5x reduction in latency and energy
consumption. SFCed NoIs enable robustness to defects in
comparison to a situation where the defective chiplets were
discarded and hence reduce their NoI area and hence the
fabrication cost.

REFERENCES

[1] W. Liu et al., "A survey of deep neural network architectures and their
applications," Neurocomputing, no. 234, 2017.

[2] Z. Wu et al., "A comprehensive survey on graph neural networks,"
IEEE transactions on neural networks and learning systems, vol. 32,
no. 1, 2020.

[3] J. A. Carballo et al., "ITRS2.0:Towardare-framingofthesemiconductor
technology roadmap.," in IEEE 32nd Intl. Conf. Computer Design, Oct
2014.

[4] D. Stow et al., Cost-Effective Design of Scalable High-Performance
Systems Using Active and Passive Interposers, IEEE/ACM
International Conference on Computer-Aided Design (ICCAD), 2017.

[5] International technology roadmap for semiconductors 2.0, 2015
edition, system integration. Report Ch 1, 2015., Semiconductor
Industry Association, 2015.

[6] A. Kannan, N. Jerger and G. Loh, "Enabling interposer-based
disintegration of multi-core processors," in Proceedings of the 48th
International Symposium on Microarchitecture (MICRO-48), New
York, 2015.

[7] N. Jerger, A. Kannan, Z. Li and G. Loh., "NoC Architectures for
Silicon Interposer Systems: Why Pay for more Wires when you Can
Get them (from your interposer) for Free?," in Proceedings of the 47th
Annual IEEE/ACM International Symposium on Microarchitecture,
USA, 2014.

[8] https://www.cloudera.com/content/dam/www/marketing/resources/eb
ooks/how-to-take-ai-applications-from-concept-to-reality-with-cml-
on-aws.pdf.landing.html.

[9] S. Bergsma, T. Zeyl, A. Senderovich and J. Beck, "Generating
Complex, Realistic Cloud Workloads using Recurrent Neural

Fig. 11: Energy-Latency reduction trend (log-scale) of SFCed NoIs (worst-case defects) compared to their parent counterparts (Kite, SIAM, SWAP,
HexaMesh) in defect-free systems) running	workload	WL6-10	on	ImageNet	dataset.

SFCed NoI

WorstCase Defects

Parent NoI

BestCase Defects

Networks.," Proceedings of the ACM SIGOPS 28th Symposium on
Operating Systems Principles, pp. 376-391, 2021.

[10] Y. Shao et al., "Simba: Scaling Deep-Learning Inference with Multi-
Chip-Module-Based Architecture," in In Proceedings of the 52nd
Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO '52), New York, 2019.

[11] G. Krishnan et al., "SIAM: Chiplet-based Scalable In-Memory
Acceleration with Mesh for Deep Neural Networks," ACM Trans.
Embed. Comput. Syst, vol. 20, no. 5, 2021.

[12] S. Bharadwaj, J. Yin, B. Beckmann and T. Krishna, "Kite: A Family
of Heterogeneous Interposer Topologies Enabled via Accurate
Interconnect Modeling," in 2020 57th ACM/IEEE Design Automation
Conference (DAC), 2020.

[13] P. Iff et al., "HexaMesh: Scaling to Hundreds of Chiplets with an
Optimized Chiplet Arrangement," in DAC, 2023.

[14] M. Bader, "Space-filling curves: an introduction with applications in
scientific computing (Vol. 9).," Springer Science & Business Media.,
2012.

[15] H. Sagan, "Space-filling curves.," Springer Science & Business
Media, 2012.

[16] H. Sharma et. al, "SWAP: A Server-Scale Communication-Aware
Chiplet-Based Manycore PIM Accelerator," EEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 41,
no. 11, pp. 4145-4156, 2022.

[17] P. Vivet et al., "IntAct: A 96-Core Processor With Six Chiplets 3D-
Stacked on an Active Interposer With Distributed Interconnects and
Integrated Power Management," IEEE Journal of Solid-State Circuits,
vol. 56, no. 1, 2021.

[18] T. Ebadollah, S. Pasricha and M. Nikdast, "DeFT: A deadlock-free and
fault-tolerant routing algorithm for 2.5 D chiplet networks," in Design,
Automation & Test in Europe Conference & Exhibition (DATE), 2022.

[19] E. Pete, T. Austin and V. Bertacco, "SiPterposer: A fault-tolerant
substrate for flexible system-in-package design," in Design,
Automation & Test in Europe Conference & Exhibition (DATE), 2019.

[20] H. Sharma et al., "Florets for Chiplets: Data Flow-aware High-
Performance and Energy-efficient Network-on-Interposer for CNN
Inference Tasks," ACM Transactions on Embedded Computing
Systems, vol. 22, no. 5, pp. 1-21, 2023.

[21] D. Hilbert, "Uber die stegie Abbildung einer Linie auf Flachenstuck,,"
Math. Ann., vol. 38 , pp. 459-460, 1891.

[22] G. Morton, "A computer oriented geodetic data base and a new
technique in file sequencing," in IBM, Ottawa, Canada , 1966.

[23] P. Xu and S. Tirthapura, "A lower bound on proximity preservation by
space filling curves.," IEEE 26th International Parallel and
Distributed Processing Symposium, pp. 1295-1305, 2012.

[24] S. Sarkar, G. R. Kulkarni, P. P. Pande and A. Kalyanaraman,
"Network-on-chip hardware accelerators for biological sequence
alignment," IEEE Transactions on Computers, vol. 59, no. 1, pp. 29-
41, 2009.

[25] E. W. Bethel, D. Camp, D. Donofrio and M. Howison, "Improving
performance of structured-memory, data-intensive applications on
multi-core platforms via a space-filling curve memory layout.," in
IEEE International Parallel and Distributed Processing Symposium
workshop, 2015.

[26] M. M. Haque, A. Kalyanaraman, A. Dhingra, N. Abu-Lail and K.
Graybeal, "DNAjig: a new approach for building DNA
nanostructures.," in International Conference on Bioinformatics and
Biomedicine, 2009.

[27] S. Sutardja., "1.2 the future of IC design innovation," in IEEE Int.
Solid- State Circuits Conf., Feb 2015.

[28] J. A. Cunningham., "The use and evaluation of yield models in
integrated circuit manufacturing.," IEEE Trans. Semicond. Manuf.,
1990.

[29] B. Zimmer et al., "A 0.32–128 TOPS, Scalable Multi-Chip-Module-
Based Deep Neural Network Inference Accelerator With Ground-
Referenced Signaling in 16 nm," IEEE Journal of Solid-State Circuits,
vol. 55, no. 4, 2020.

[30] S. Pati, "Computation vs. Communication Scaling for Future
Transformers on Future Hardware," in arXiv, 2023.

[31] W. Tutte, "A theorem on planar graphs.," Transactions of the
American Mathematical Society, , no. 1, pp. 99-116, 1956.

[32] J. E. G. Coffman, M. Garrey and D. Johnson, "Approximation
Algorithms for Bin Packing — An Updated Survey.," in Algorithm

Design for Computer System Design. International Centre for
Mechanical Sciences, Springer, 1984.

[33] T. K. Hazra and A. Hore, "A comparative study of Travelling
Salesman Problem and solution using different algorithm design
techniques," in 7th Annual Information Technology, Electronics and
Mobile Communication Conference (IEMCON), Vancouver, 2016.

[34] X. Peng et al., "DNN+NeuroSim: An End-to-End Benchmarking
Framework for Compute-in-Memory Accelerators with Versatile
Device Technologies," in International Electron Devices Meeting
(IEDM), 2019.

[35] N. Jiang et al., "A Detailed and Flexible Cycle-Accurate Network-on-
Chip Simulator," in IEEE ISPASS, 2013.

[36] H. Luo et al., "Ramulator 2.0: A Modern, Modular, and Extensible
DRAM Simulator," in arXiv:2308.11030, 2023.

[37] Y. Kim, W. Yang and O. Mutlu, "Ramulator: A Fast and Extensible
DRAM Simulator,"," IEEE Computer Architecture Letters, vol. 15,
no. 1, pp. 45-49, 2016.

Harsh Sharma (Student Member, IEEE)
received the B.E. degree from NSIT, Delhi
University, New Delhi, India, in 2021. He is
currently a Ph.D. candidate at Washington
State University, Pullman, USA. His research
interests include His current research
interests include novel interconnect
architectures for manycore chips,
heterogeneous architectures, and ML.

Umit Y. Ogras (Senior Member, IEEE) Umit
Y. Ogras is a professor at the University of
Wisconsin-Madison, Madison, WI USA. His
research interests include embedded systems,
heterogeneous SoCs, low-power VLSI,
wearable computing, and flexible hybrid
electronics. Ogras has a Ph.D. in electrical and
computer engineering from Carnegie Mellon
University, Pittsburgh, PA, USA.

Ananth Kalyanraman (Senior Member,
IEEE) is a Professor, Boeing Centennial
Chair, and the Interim Director at the School
of Electrical Engineering and Computer
Science, Washington State University,
Pullman, Washington. He is also the Director
of the AgAID AI Institute and holds a joint
appointment with Pacific Northwest National
Laboratory. He received PhD from Iowa

State University in 2006. His research focuses on developing
parallel algorithms and software for data-intensive problems in the
areas of computational biology and graph-theoretic applications.
Ananth serves as an Associate Editor-In-Chief of Journal of Parallel
and Distributed Computing, an Associate Editor of IEEE/ACM
Transactions on Computational Biology and Bioinformatics, and
Subject Area Editor for Parallel Computing.

Partha Pratim Pande (Fellow, IEEE) is a
professor and holder of the Boeing
Centennial Chair in computer engineering at
the school of Electrical Engineering and
Computer Science, Washington State
University, Pullman, USA. He is currently
the Interim dean of the Voiland College of
Engineering and Architecture (VCEA). His
current research interests are novel

interconnect architectures for manycore chips, on-chip wireless
networks, heterogeneous architectures, and ML for EDA.

