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Abstract—Full-sequence program (FSP) can program multiple1

bits simultaneously, and thus complete a multiple-page write2

at one time for naturally enhancing write performance of high3

density 3-D solid-state drives (SSDs). This article proposes an4

FSP scheduling approach for the 3-D quad-level cell (QLC) SSDs,5

to further boost their read responsiveness. Considering each FSP6

operation in QLC SSDs spans four different types of QLC7

pages having dissimilar read latency, we introduce matching four8

pages of application data to the suited QLC pages and flush9

them together with the one-shot program of FSP. To this end, we10

employ reinforcement learning to classify the (cached) application11

data into four categories on the basis of their historical access12

frequency and the associating request size. Thus, the frequently13

read data can be mapped to the QLC pages having less access14

latency, meanwhile the other data can be flushed onto the slow15

QLC pages. Then, we can group four different categories of data16

pages and flush them together into a four-page unit of 3-D QLC17

SSDs with an FSP operation. In addition, a proactive rewrite18

method is also triggered for grouping the hot read data with the19

cached data to form an FSP unit. Through a series of emulation20

tests on several realistic disk traces, we show that the proposed21

mechanisms yields notable performance improvement on the read22

responsiveness.23

Index Terms—3-D NAND flash, full-sequence program (FSP),24

quad-level cell (QLC), read performance, reinforcement learning25

(RL), scheduling.26

I. INTRODUCTION27

NAND flash memory-based solid-state drives (SSDs) have28

been widely employed in smartphones, laptops, and data29
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Fig. 1. Four-step programming and read procedures in QLC NAND

flash [16], [46], and the read latency of different types of QLC page is referred
to [11] and [36].

centers [1], [2], [3]. Thanks to the cell density development 30

and 3-D stacked technology, 3-D high density SSDs become 31

a mainstream in the market [4], [5], [6]. For example, modern 32

3-D quad-level cell (QLC) can store up to 4-bits information 33

per cell, and with 128 layers or even 176 layers [7], [8]. 34

Although high density SSDs can greatly contribute to the 35

reduction of per unit price, the program (write) latency 36

significantly prolongs, due to the fact that the small-sized 37

high density cells must store more cell states to hold more 38

information, leading to narrow margins for distinguishing 39

between these states. 40

To accelerate the degraded program throughput in high 41

density SSDs, the full-sequence program (FSP) mechanism 42

is advanced for the high density flash memory [9]. It can 43

program multiple bits simultaneously, and thus complete a 44

multiple-page write at one time [10], [11]. As seen in Fig. 1, 45

FSP can synchronously write four data pages to four QLC 46

pages1 with one program operation, so it can speed up write 47

throughput by up to 4 × in QLC SSDs [16]. In fact, the flash 48

memory vendors, such as Toshiba [12] and Hynix [13] have 49

already enabled the advanced FSP functionality in their SSD 50

products, to enhance programming efficiency. 51

When scheduling an FSP operation, it couples multiple data 52

pages from the buffered data in the dynamic random access 53

memory (DRAM) cache of SSDs, by following the cache 54

management policies, such as first input first output (FIFO) 55

and least recently used (LRU). However, grouping the data 56

1In this article, we use the term of the data page representing the application
data that is buffered in the SSD cache with an SSD page size, and utilize the
term of the QLC or SSD page indicating a basic storage cell of QLC SSDs.
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pages in a sequential order and flushing them onto the flash57

cells with an FSP operation may degrade the read performance.58

Wu et al. [35] proposed logical address distance-aware FSP59

scheduling for efficiently utilizing internal parallelism of SSD60

channels, after observing that read access exhibits a sequential61

feature. Specifically, they utilize 5% of the internal DRAM62

cache as the write back cache, and then group the application63

data that do not have adjacent addresses into a storage64

unit for each FSP operation, for improving the read access65

parallelism.66

More specifically, a read access toward an SSD page mainly67

consists of two parts of latency, i.e., page read time and error68

correction code (ECC) decoding time. Apart from the fixed69

decoding time, each FSP storage unit has four QLC pages on70

the flash arrays, including a least significant bit (LSB) page,71

a central LSB (CLSB) page, a central most significant bit72

(CMSB) page, and a most significant bit (MSB) page, with73

varied read access latency. As the example demonstrated in74

Fig. 1, the latency of the LSB page that is the fastest QLC75

page, is 90μs, but it takes 180μs to read the slowest QLC76

page (i.e., the MSB page), which is 2 × latency of reading77

the LSB page [36].78

On the other side, real-world applications commonly have79

varied read frequencies on different parts of their data. Thus,80

we argue that the one-shot program of FSP indiscriminately81

groups multipage data and flushes them together onto an FSP82

storage unit that has four types of QLC pages, must impact83

the performance of the read accesses.84

To our knowledge, no existing work focuses on intelligently85

grouping user data based on their access feature, and mapping86

them onto the suited SSD pages in FSP scheduling. To87

address this issue and further optimize the read performance88

in FSP-supported QLC SSD devices, we propose a new89

FSP scheduling approach, by using reinforcement learning90

(RL) to this end. In brief, this article makes the following91

contributions.92

1) We propose a delayed rewarding-enabled RL model, to93

classify the best-fit type of the QLC page for a given94

data page, by considering factors of the historical access95

frequency and the associated request size. To support96

the feature of delayed rewarding of the RL model,97

we introduce a new q-table design, called as across-98

episode q-table. Instead of an unique q-value, each99

element of the q-table consists of two values, including100

the active and shadow q-value, used for, respectively,101

making decisions in the current episode and updating in102

the next episode.103

2) We group four pages of the user data in the DRAM104

cache of QLC SSDs by basically following the LRU105

manner, on the basis of the outputs of RL. Then, it can106

evict the grouped four data pages from the DRAM107

cache, and simultaneously program them onto the suited108

QLC pages with an FSP process.109

3) We proactively trigger the rewrite operation for relocat-110

ing the hot read data that were originally mapped in slow111

pages. It treats such hot read data as to-be-written data112

and puts them into the tail of the LRU list. After that,113

these hot read data can be grouped with in-cache write114

data, and to be flushed together with an FSP operation.115

4) We offer comprehensive evaluation on several disk traces 116

of real-world applications. As measurements indicate, 117

our proposal can increase the read accesses on the 118

fastest QLC pages (i.e., LSB pages) by 2.5 × and 119

thus improve read performance by 36.1% on average, 120

compared to the state-of-the-art methods. 121

II. BACKGROUND AND MOTIVATION 122

A. Background Knowledge 123

1) SSD Background and FSP: The basic read/write unit of 124

SSDs is the flash page, and a large I/O request of the user 125

application must be split into multiple page-size data segments 126

(i.e., data pages) [14]. Because the SSD device does not allow 127

in-place update, the update operation is completed by flushing 128

the new data on another flash page, indicating the original 129

data page will be marked as invalid. To this end, SSD devices 130

incorporate the flash translation layer (FTL), which maintains 131

a page-level mapping table to record the mapping relationships 132

between the logic page addresses of the user requests and the 133

physical page addresses on underlying flash arrays [24]. 134

Furthermore, FTL supports garbage collection (GC) [15], 135

which is used to reclaim the space occupied by the invalid data 136

(i.e., outdated pages) caused by the out-place updates, when 137

the available capacity of SSD becomes lower than a predefined 138

threshold. Since, each SSD block affords a limited number 139

of erases, SSD devices commonly utilize a DRAM cache for 140

buffering the part of the frequently accessed user data, to avoid 141

the flush operations on the SSD blocks and extend the lifetime 142

of the SSD devices. 143

More importantly, QLC flash stores four bits of information 144

in each cell, thus increasing the capacity of the SSD blocks. 145

Specifically, each QLC block has many four-type pages, 146

including LSB pages, CLSB pages, CMSB pages, and MSB 147

pages, and the number of each type of pages is equivalent. 148

The issue is that the different types of SSD pages have the 149

same capacity but dissimilar read latency. 150

The FSP approach programs multiple data pages in a 151

word line at a time, such as four data pages for the QLC 152

SSDs, to allow the fast programming speed in high density 153

SSDs [35], [36]. In this article, we study organizing four pages 154

of the user data matching the types of four QLC pages, and 155

programming them as an unit simultaneously into QLC flash 156

with FSP. 157

2) Reinforcement Learning: Different from the most 158

machine learning and deep learning approaches, the RL 159

method is a lightweight machine learning model. It incurs 160

low space and computational overhead, e.g., requiring a few 161

KBs of memory and less than 0.31% of I/O processing 162

time in the experiment that will be detailedly described in 163

Section IV-D3, as it merely maintains and updates a q-table 164

to associate the states with the actions (in the Q-learning 165

cases). We use it as an online model without offline training 166

in advance that the other classification models need, e.g., 167

the existing artificial neural network (ANN) model. Because 168

the RL model has the feature of an online model, it can 169

learn the specific rule. However, the other offline classification 170

model can only learn an universe one without updating on the 171

workloads. As a result, the RL model has been successfully 172
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Fig. 2. Read access distribution of different levels of access frequency after running the selected block I/O traces.

Fig. 3. Access distribution of the hottest read addresses after running the
selected I/O traces. In which, the values of read bars represent the ratios of
the read count on the top 25% hottest read addresses to the read count on all
read addresses, whereas those of blue bars stand for the ratios of read counts
for LSB pages dividing that of all pages.

applied to the resource-limited SSD devices, for guiding the173

GC scheduling [28], read refreshing scheduling [29], and other174

aspects [31], [32], [33], [34].175

Especially, Q-learning is a widely used model-free RL176

algorithm, to learn the value of an action in a particular177

state [21]. To this end, it holds a data structure of the q-table178

and their values are referred to as the q-values, corresponding179

pairs of state and action, for directing the best-fit action180

according to the given state in the future.181

B. Motivations182

We replayed 30 block I/O traces of real-world applications183

that are from Microsoft Research Cambridge [26] and Alibaba184

cloud [27], and then recorded the read access frequency of185

different parts of the data. Fig. 2 shows the distribution results186

of varied read frequencies of the data, and the frequency187

setting is referred to [17]. In cases of the most block I/O188

traces, some pieces of the data are intensively read, while the189

others are not. This fact verifies that the phenomenon that190

different parts of application data endure varied read accesses191

at different phases are common.192

Moreover, we collected the distribution of reads on the top193

25% frequently (hot) read pages and the fastest QLC pages194

(i.e., LSB pages). The experiments were conducted on the195

2 MB cache setting, and the other SSD-related experiment196

settings and the detailed specifications of selected traces will197

be described in Section IV-A. As seen in Fig. 3, the read198

access to the top 25% of the frequently read addresses accounts199

for a major part of the total read accesses with 82.2% on200

Fig. 4. High level overview of the proposed FSP scheduler implemented in
QLC SSD devices.

average. This ratio represents the best-case scenario, where 201

all these data can be read from the fastest QLC pages. The 202

ratio of LSB page reads to all the reads is, however, only 203

around 25%. That is to say, there is room for optimization on 204

allocating the hot read data to the suitable type of the SSD 205

pages. 206

Such observations motivate us to group the data pages 207

having different levels of read hotness into a storage unit of 208

FSP (i.e., four-page data), corresponding to the read latency of 209

four types of pages of QLC SSDs. After that, we can commit 210

the unit of four data pages to four types of QLC pages with an 211

FSP operation. Consequently, the read performance of SSDs 212

can be significantly enhanced, as the hottest read data are 213

preferably kept on the fastest QLC pages. 214

III. RL-BASED FSP SCHEDULING 215

A. Overview 216

Fig. 4 demonstrates the high-level overview architecture of 217

the proposed FSP scheduling scheme. First, the FTL of SSD 218

takes charge of serving host requests. In which, our proposed 219

method takes charge of dispatching the four cached pages 220

as an FSP unit, when it needs to evict the data and makes 221

room for the new data in the SSD cache. In our design, 222

we introduce a component of the FSP scheduler running at 223

FTL, that consists of three modules of Agent, Group, and 224

Rewrite Module. Specifically, Agent Module makes use of RL 225

to categorize the cached data pages of applications into four 226

types, according to the factors of the read hotness, the data 227

size, and the size of the relevant request that initially writes 228

the data page. Group Module couples four data pages that have 229

different categories to form a storage unit, so that it can be 230
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Fig. 5. Framework of online training-based RL in our proposal of FSP
scheduling.

flushed onto the QLC pages with an FSP operation. Note that,231

Agent and Group Modules are activated when evicting the FSP232

units of the user data pages from the data cache, and Rewrite233

Module is activated when the hot read data are retrieved from234

the slow pages. Specifically, Rewrite Module primarily aims235

to proactively redistribute some hot read data to the fast pages236

by utilizing the functionalities of both the Agent and Group237

Modules.238

Besides, the native functionality of cache management239

running at FTL is modified for supporting the newly proposed240

FSP scheduling approach. To be specific, a fixed ratio of tail241

data pages in the LRU list of the cached data pages instead of242

only four tail data pages, are treated as the evicted candidates,243

when grouping a four-page FSP unit needed by Group Module.244

B. Agent Module: RL-Based Classification245

The basic idea is to utilize the RL model categorizing data246

pages and then recommending four of them to be flushed247

together with an FSP process, for better matching four QLC248

pages that have different read latency, in an FSP storage unit.249

Fig. 5 illustrates the framework of RL, and it shows the250

interaction between the Agent (the FSP scheduler in our251

context) and Environment (QLC NAND SSDs in our context).252

As seen, Agent maintains a data structure to make the best-253

fit decisions (e.g., Action At). Then, it needs iterating and254

updating the corresponding values of the data structure accord-255

ing to the future reward (i.e., Reward Rt), in the learning256

process. Note that, in this work, the feature of online training257

in RL makes it possible to approximate the optimal policies258

with not much overhead. This section mainly describes our259

RL implementation, including action, state, reward, and other260

details.261

Actions: The available selections for the Agent in the RL262

model. The purpose of our RL-based model is to determine263

the type of data pages, corresponding to the four types of264

QLC pages. Consequently, Actions are set consisting of LSB,265

CLSB, CMSB, and MSB.266

States: The observations related to action decisions from267

the Environment in the RL model. Considering the basic268

granularity of I/O scheduling inside SSDs is the data page,269

we define states in the RL model associating with the given270

data page. In the context of our RL-based model, the states271

are the current situations of the cached data pages, which272

are the candidates of FSP scheduling, to be classified into273

four categories. Besides, the historical access information of274

the data pages is crucial for accurate classification. Thus, we275

consider the following three aspects when defining the states.276

1) The short-term and long-term history information of 277

access frequency on the data page should be considered 278

first. Specifically, the long-term access frequency is cat- 279

egorized into four states, as analysed in the observation 280

of Section II-B, namely, 0 and 1, 2 and 3, 4 and 281

5, and >5. Meanwhile, the short-term access frequency, 282

is determined by whether or not the data page has been 283

accessed. In our design, the long-term information refers 284

to the accumulated read count of histories, while the 285

short-term one is based on the page read in the recent 286

episode. In brief, 2 bits plus 1 bit are, respectively, used 287

to record the long-term and short-term information. 288

2) Apart from read requests that need accessing the data 289

saved in QLC pages, the small update (write) requests 290

expect fetching the original data from the SSD pages 291

as well, and such update operations are called as read- 292

modify-writes (RMWs) [22]. Thus, the size information 293

is also referred to as a factor when defining the states. 294

Considering the small size of the I/O request and page- 295

level application data may require the update operation 296

with RMW, we define a small I/O request if the size 297

is not larger than one page; otherwise, the request is 298

defined as a large one. 299

3) The type of QLC page that holds the data associating 300

with the previous write operation on the same logical 301

page address can be divided into four states (i.e., four 302

types of QLC pages; to record this information, we use 303

2 bits to represent the LSB, CLSB, CMSB, and MSB 304

page, by referring to the previous action of classifying 305

the type of the data page. For example, data with the 306

page address 368 was ever flushed into the MSB page 307

before it re-entered the DRAM cache. We record this 308

information in the page address 368 as 11. Note that, 309

if the pages of data are the new data that first appear, 310

we set this information as the LSB page (i.e., 00) in 311

default. 312

In summary, we define four groups of the long-term access 313

frequency, two types of the short-term access frequency, two 314

kinds of the size of I/O requests, two categories of the size 315

of page-level data chunks, and four page types of previous 316

write request on the same logical page address. That is, we 317

have 4 × 2 × 2 × 2 × 4 = 128 states in total in our 318

RL-based model. 319

Rewards: The feedback from the Environment after specific 320

actions have been completed regarding the given states. In the 321

context of FSP scheduling, the reward cannot be well defined 322

as instant feedback, since the read requests on the current 323

data page may not immediately occur. Thus, we propose a 324

method of delaying reward updates during the training process. 325

To this end, an across-episode q-table (will be described 326

later) is designed to effectively support this functionality. 327

First, it randomly explores the rule of the state-action in the 328

first episode, and each episode is set as 1000 steps/actions 329

in this article, by also referring to [28] and [29]. Next, it 330

observes the data pages committed to the QLC pages in the 331

previous episode. After that, the feedback can be given for 332

updating the RL policy with relative rewards in the following 333

episode. 334
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Fig. 6. Q − table design that supports the feature of delayed rewarding in
our scenario of the RL model. Each element of the state-action pair consists
of two q − values (the active and shadow q − value) for separately supporting
decision making and periodically q−value renewing. There are three kinds of
operations on our q − table: ❶search the active q-value based on the current
state and then make a decision on the page type for the data page; ❷update
the shadow q-value for the state-action pair, according to the delayed reward;
and ❸renew all active q-values by copying relevant shadow q-values, after
starting a new episode. Note that, we only present two states in the figure for
illustration simplicity.

Specifically, we use the Q-learning implementation in our335

RL model, and the q function is the rule of updating q-value,336

as defined in337

Q′(St, At) = (1 − α)Q(St, At) + α
[
r + γ Q(St+1, At+1)

]
(1)338

where Q(St, At) and Q(St+1, At+1) are, respectively, the value339

in q-table when the action At/At+1 is taken at the state340

St/St+1 and time t/t + 1. Specifically, in the left-hand side of341

(1), Q′(St, At) represents the new q-value after updating. In342

addition, the parameters of α and γ are the step size and the343

discount factor, which are set as the typical values, i.e., 0.3344

and 0.8 [20], [28]. The parameter of r means the reward, and345

the reward function is correspondingly given the feedback of346

read accesses in the next episode. According to the parameters347

above in (1), the new Q′(St, At) can be updated, by referring348

to the old q-value Q(St, At), and the rewards that include the349

reward r and the policy decision Q(St+1, At+1) in next time350

point t+1. The updated time point is the next time period after351

the decision occurs (will be detailedly described in Fig. 6).352

On the one hand, the reward of our design of the RL model353

is defined, on the basis of the access information of different354

types of the data pages. Specifically, ±1, ±0.5, ∓0.5, and355

∓1 are, respectively, used to reflect the LSB, CLSB, CMSB,356

and MSB page is accessed or not in the next episode. On the357

other hand, the factor of I/O response time is also considered358

when deciding the reward [28], [29]. While the response time359

of the current read request (normalized to the unit of 1 KB)360

is lower than the 70th, 90th, and 99th percentiles of the361

normalized completion time of all the historical read requests,362

the reward r will be, respectively, set as 1, 0.5, and 0, for363

giving positive feedback to the RL policy. Otherwise, it will364

be given a negative value of -1 [29]. In the end, we sum these365

two parts as the final reward, for iteratively updating q-table.366

To support the functionality of delaying reward update in367

our RL-based model, we propose a new design of across-368

episode q-table, as shown in Fig. 6. In which, each entry (i.e.,369

a state-action pair) keeps two values of the active q-value and370

the shadow q-value. The active q-value is used to determine371

the action based on the current state St in the current episode,372

and the shadow q-value is used to reflect the real-time value373

of the state-action pair with delayed rewarding.374

Algorithm 1: RL-Based Decision in FSP Scheduling
Input: States for four pages, State-action pairs in the

previous episode
Output: At

1 Initialize q table as an empty set;
2 Function q_table(S)

3 Random ζ between 0 to 99;
4 if (ζ < ε) then
5 Return random action;

6 else
7 Return argmax(Q(S));

8 if episode < 4 then
9 ε = 80;

10 else
11 ε = 1;

12 At = q_table(St);
13 /*Update q-table from 2nd episode*/
14 if episode > 0 then
15 r = reward(lpn.p);
16 Q’ = r+ γ Q(Sp+1,Ap+1);
17 Q’(Sp,Ap) = (1 − α) Q(Sp,Ap)+α Q’;

18 if new episode then
19 Copy active q_values to shadow q_values;

As seen, in the step of ❶, it first searches the q-table with 375

the state of St, and all active q-values associating with State 376

0 (i.e., Row #0 in the figure) should be retrieved. Assuming 377

that, Q(St, At) is the maximum value associated with State 378

0, the corresponding action of CLSB is decided. In the step 379

of ❷, the q-table refines the shadow q-values with delayed 380

rewarding. Note that, p and t represent the same offset of step 381

in the previous episode and the current episode, and when 382

the step in St is completed, the reward in the previous Sp is 383

then used to update the Q(Sp, Ap) based on (1). When a new 384

episode starts, it copies the corresponding shadow q-values to 385

the active q-values that is called episode renewing, to avoid 386

the interference of determining actions and updating rewards, 387

as illustrated in the step of ❸. 388

For clearly illustrating the workflow of the proposed 389

RL-based classification model, Algorithm 1 shows the imple- 390

mentation details. First, the proposed across-episode q-table 391

is initialized as all zeros, shown in line 1. Lines 2–7 show 392

the q-table decision policy. Specifically, the basic principle 393

is determining the corresponding action having the maximum 394

q-value in q-table under the specific state, when the random 395

value ζ is lower than ε; otherwise, it aggressively determines 396

the actions by the random strategy. In order to construct a 397

stable q-table, we randomly select the actions by utilizing ε- 398

greedy initialization in the initial period, and preserving the 399

chance to test the other actions during the remainder of the 400

periods when the decision policy is stable. That is, the first 401

4×1000 actions are randomly selected with a large ε (80%) 402

and a small ε (1%) during the remainder of the period [20] 403
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Fig. 7. Illustration on grouping the four page types of data in the case of
CMSB does not have the candidate data page.

in our experiments when running the benchmarks, shown in404

lines 8–11. Then, line 12 is to show the main operation405

by calling the Function q_table(S) to determine the action.406

Lines 14–17 present the process of updating q-table based on407

the defined reward, which has been described in the previous408

discussions. When a new episode starts, the active q_values409

should duplicate to the shadow q_values, as seen in lines 18410

and 19.411

C. Group Module: FSP Unit Management412

This section depicts coupling four pages of cached data to413

form a storage unit of FSP, on the basis of their best-fit page414

type, output by the RL-based classification model. We adopt415

an intuitive solution analysing a fixed number of the cached416

data pages from the tail of the LRU list, and then select four417

data pages having varied categories (i.e., Actions offered by418

the RL-based classification model) to build an FSP storage419

unit, corresponding to the four-type QLC pages.420

We emphasize that it needs matching four data pages with421

four-type QLC pages from the candidate cached data pages,422

and it also allows selecting the other types of data pages and423

replacing the missed type of data pages in the candidates, when424

constructing an FSP storage unit. For example, in the case425

that the CMSB page does not have a recommended data page,426

according to the outputs of the RL-based classification model,427

the data page has the neighboring type (i.e., MSB or CLSB)428

can be alternatively used, as a part of the FSP storage unit.429

Specifically, the RL-based classification model checks the430

fixed ratio of the cached data pages from the tail node, and431

temporally records the determined actions (i.e., the best-fit type432

of the QLC page for the data pages). Fig. 7 shows the policy433

of grouping an FSP storage unit from the cached data pages,434

on the basis of their actions output by the RL-based model. As435

seen, we do not have the data page whose determined action436

is CMSB. Then, we need selecting a data page that has a437

neighboring action, i.e., the cached data page has either the438

MSB or the CLSB action. Specifically, our selection rule is to439

use the data page that has a neighboring action, and is closer440

to the tail of the cached page list. Finally, we evict four data441

pages from the cache and flush them together with an FSP442

operation, when we need cache space for the new data.443

D. Rewrite Module: Proactive Hot Data Redistribution444

It is inevitable that some frequently read accessed data445

pages are not updated by host I/O requests, while these data446

are stored in slow pages (i.e., CMSB and MSB pages). This447

section introduces a Rewrite Module, for proactively placing448

these data into fast pages. When the data page types of449

Fig. 8. Workflow of proactive hot read data with Rewrite Module.

TABLE I
CHARACTERISTICS OF THE EVALUATED SSDS

the current read request is slow pages, it checks the history 450

information of access frequency that has been described in 451

Section III-B. If the long-term and short-term frequency are, 452

respectively, the highest value (i.e., 11 and 1), it awakes the 453

functionality of the proactive Rewrite Module. 454

Fig. 8 shows the workflow of Rewrite Module in our FSP 455

scheduler. As seen, it triggers rewriting a hot read data page 456

that was originally stored in a slow flash page, and temporarily 457

loads into the cache as the dirty data. Meanwhile, the data 458

page will be treated as a new tail node in the LRU list. Since, 459

the goal of Rewrite Module is to relocate the hot read data to 460

appropriate pages, it calls Agent and Group Module to group 461

cached data into a to-be-written FSP unit. Note that, the hot 462

read data should be temporarily buffered as a to-be-written 463

dirty data if the SSD cache is not full. They hold their location 464

in the LRU list, avoiding impacting the cache utilization of 465

the write data. 466

IV. EXPERIMENTS AND EVALUATION 467

A. Experimental Setup 468

We have performed trace-driven simulation with SSDsim 469

[23] to model the 3-D QLC NAND flash-based SSDs. The 470

SSDsim simulator has been utilized for several SSD-related 471

optimization researches, such as [32], [35], [36], and [47]. The 472

evaluated SSD parameters are based on [36] with the detailed 473

specifications described in Table I. We have extended SSDsim 474

for supporting the FSP scheme, referred to [36]. Dynamic page 475

allocation [35], greedy GC [24], and static wear-leveling [25] 476

are employed by default. 477

SSDs commonly use the DRAM data cache to absorb hot 478

write data for two reasons as follows. 479

1) The write latency of the flash memory is around 10 × 480

longer than the read latency, indicating a write hit can 481

lead to more I/O reduction. 482

2) Absorbing more write requests in the data cache can 483

reduce the number of flushing operations to the flash 484

array, thus extending the lifetime of SSDs. 485
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TABLE II
SPECIFICATIONS ON SELECTED DISK TRACES

(ORDERED BY READ RATIO)

Then, we use the DRAM cache as a write cache by486

default [37], [38], [40]. The varied sizes of DRAM cache487

range from 2 to 32 MB [39], [42], [48], to evaluate the488

efficiency of the proposed method under different scales of489

the SSD cache. In addition, a fixed number of data nodes in490

the cache list tail is set as 5% of the total number of nodes,491

referred to [35].492

We employed eight commonly used disk traces.493

Specifically, the first four traces are from the block I/O trace494

collection of Microsoft Research Cambridge [26], which have495

been used as benchmarks in several recent SSD optimized496

methods [32], [35], [36], [47]. The remaining four recent497

traces are obtained from Alibaba cloud [27], representing the498

first 72 data traces. Table II shows the detailed specifications499

of the block I/O traces. Specially, the metrics of Int. footprint500

and Int. ratio mean the footprint of the hottest read addresses501

that endure 80% of all the read accesses and the ratio of the502

corresponding footprint to the total footprint, for reflecting the503

read locality of the benchmarks.504

In addition, we selected the following comparison counter-505

parts in our evaluation tests as follows.506

1) Baseline adopts the default scheduling based on the LRU507

replacement policy in the cache management [19]. It508

evicts the final four data pages at the tail of the LRU list509

from the cache and flushes them together with an FSP510

operation.511

Besides, we introduce another baseline that buffers512

both the read and write data in the cache, labeled as513

Baseline-RW.514

2) Access frequency-based scheduling, (labeled as515

Frequency) is based on the work proposed by516

Lv et al. [44]. It employs the intuitive factor of access517

frequency as the basis of the page type classification,518

though it is designed for the traditional four-step519

programming.520

For evaluating Frequency in the context of FSP, it groups521

FSP units with LRU tail nodes, by directly considering522

the history information of read counts to match the523

suited QLC page for a specific data page. In addition,524

the rewrite procedure also groups the to-be-written hot525

read data with the other three data nodes in the LRU tail526

list, as an FSP unit, by following an immediate refresh527

fashion.528

3) Distance-based scheduling (labeled as Distance)529

proposed by Wu et al. [35], groups inconsistent access530

Fig. 9. Read performance comparison after running the selected block I/O
traces. (a) Cache size: 2 MB. (b) Cache size: 8 MB. (c) Cache size: 32 MB.

addresses into a storage unit of FSP, to maximize the 531

internal parallelism of QLC SSD. In our implementation, 532

the distance threshold is set as half of the page number 533

of the total write back cache, by following the design 534

principle of Distance [35]. 535

4) The RL-based FSP scheduling (labeled as RL) is our 536

proposed method. It utilizes the RL model classifying 537

the type of data pages, and groups four of them that have 538

different types into a storage unit of FSP. For further 539

redistributing the location of hot read data that have been 540

stored in slow flash pages, it proactively groups such hot 541

read data with the cached data as an FSP unit. 542

B. Tests and Benefit Illustration 543

To measure the validity of the proposed mechanism that 544

aims to boost read access performance by considering the 545

dissimilarity of page types, we use the following metrics in 546

our tests: 1) I/O latency, and 2) read ratio of the fastest QLC 547

pages. 548

1) I/O Performance: Reducing the read latency is the 549

primary target of the proposed scheme. Figs. 9 and 10 show 550

the comparison of the normalized read and total I/O latency 551

after running the selected block traces, while the cache sizes 552

are set as 2, 8, and 32 MB. 553

As seen, our proposed RL approach outperforms the com- 554

parison counterparts on the measurements of read response 555

time and total I/O response time. This is because, it can 556

make use of the RL-based policy to find suited types of 557

the page data in a storage unit of FSP. In other words, 558

the RL-based model can learn the rule of grouping what 559

four data pages to corresponding QLC pages, by considering 560

both the read frequency and the size of the data pages and 561
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Fig. 10. Comparison of the overall I/O performance after running the selected
block I/O traces. (a) Cache size: 2 MB. (b) Cache size: 8 MB. (c) Cache size:
32 MB.

relevant requests. Specifically, RL decreases the read latency562

by 40.4%, 28.3%, and 38.8%, in contrast to Baseline,563

Frequency, and Distance, respectively. Consequently, RL cuts564

down the total I/O latency by 27.8%, 17.4%, and 28.2%,565

when comparing with three counterparts.566

Baseline-RW performs the worst in the most workloads,567

and this is because Baseline-RW buffers hot read data in the568

cache, which must affect the write performance, since it cannot569

use all the cache space for efficiently absorbing the write570

data. When running two read-intensive traces of ali735 and571

ali121, however, we see Baseline-RW does yield attractive572

I/O performance. For example, in the case of ali735 with the573

configuration of 32 MB cache size, Baseline-RW perform the574

best. This is because the trace of ali735 has very intensive575

read accesses on a limited portion of address space (i.e., the576

size of its Int. footprint is only 8.1 MB), indicating the577

major part of the hot read data can be buffered in the data578

cache. We emphasize that Baseline-RW brings about more579

flush operations on the flash array and more erase operations,580

impacting the lifetime of SSDs, which will be presented in581

Section IV-D2.582

Another clue is that, the Frequency method improves the583

read performance by 13.6% on average across three cache584

configurations in contrast to Baseline, since it only considers585

the factor of historical access frequency information, thus586

inaccurately directing FSP scheduling. In addition, Distance587

can only slightly improve the read performance by 1.9% on588

average, compared to the Baseline. This is due to the fact that,589

it does not take the access feature into consideration, which590

offsets the performance gains from the access parallelism.591

2) Read Distribution on Fast Pages: We further analyse the592

read access count on the fastest QLC pages after running the593

(a)

(b)

(c)

Fig. 11. Comparison of read accesses on LSB pages after running the selected
block I/O traces. (a) Cache size: 2 MB. (b) Cache size: 8 MB. (c) Cache size:
32 MB.

selected block I/O traces, which matters the overall I/O latency. 594

Fig. 11 presents the comparison results with four selected FSP 595

scheduling methods. As seen, Frequency and RL can increase 596

the read count from the fastest QLC pages (i.e., LSB pages), 597

compared to the Baseline scheme. Specifically, Frequency and 598

RL increase the read counts from the LSB pages by 1.7 and 599

2.9 × on average, respectively. As a result, RL can yield the 600

best I/O performance improvements after running the selected 601

block traces. On the contrary, Distance cannot better utilize 602

the LSB pages to response the read requests. Consequently, 603

it limits the read performance improvement that has been 604

analysed in Section IV-B1. 605

The interesting observation is, the tendency of the increase 606

in the ratio of LSB page reads is similar to that of the reduction 607

in I/O latency. Specifically, in some cases of write-intensive 608

workloads, e.g., stg0, src1_2, and hm0, RL in contrast to the 609

Baseline, can increase the LSB page read count by 75.8% on 610

average, but the increase is limited to 14.9%, compared to 611

Frequency. Since, the rewrite module is enabled based on the 612

recent read frequency information, there is a low probability 613

of triggering rewrite operations during the specific episode 614

(window) of such write-intensive workloads. Nevertheless, the 615

good point is that, in these three traces, RL achieves 34.8%, 616

33.2%, and 33.4% of reductions in read latency, as well 617

as 10.4%, 11.1%, and 14.0% of decreases in I/O latency, 618

compared to Baseline, Frequency, and Distance, respectively. 619

Another interesting clue is, our proposed method RL can 620

yield the read ratio of 73.1% from LSB pages on average 621

under the three cache settings. Take the 2M setting as an illus- 622

tration. RL can achieve 71.2% of the read ratio after running 623

the evaluated workloads. This performance is approaching the 624

ratio of 82.2% in the best-case scenario, where all the data 625
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 12. Reward analysis on RL after running the selected block I/O traces.
Note that, the unit of the X-axis is an episode, i.e., 1000 steps. (a) trace: stg0.
(b) trace: ts0. (c) trace: src1_2. (d) trace: hm0. (e) trace: ali188. (f) trace:
ali112. (g) trace: 735. (h) trace: 121.

from the top 25% most frequently read addresses are allocated626

on the LSB pages, as observed in Section II-B. This fact627

illustrates that the proposed method RL can effectively utilize628

the fastest QLC pages matched with the frequently read data.629

This is the root cause of the performance benefits from our630

proposed RL.631

C. Analysis on Reinforcement Learning632

This section focuses on the learning process of RL in633

settings of three cache sizes. Specifically, the average reward634

in each episode is an indicator of the training performance,635

and the general goal of the Agent is to maximize its total636

cumulative reward.637

Fig. 12 shows the average reward in each episode, which is638

also a metric demonstrating convergence. As seen, it yields a639

low positive or negative average reward and reveals apparent640

fluctuations in the first few episodes, but the average reward641

gradually yields an attractive convergence tendency in the642

following episodes. For example, in the first 30 episodes of643

running ts0, RL aggressively starts to exploit the decisions and644

provides further feedback to fix the policy of q-table used by645

FSP scheduler. After that, the average reward remains stable.646

This verifies the policy is trained as a convergence rule, to647

determine the suitable action for each specific state, in our RL648

scenario.649

(a)

(b)

(c)

Fig. 13. Comparison of the read/write cache hit ratio after running the
selected block I/O traces. (a) Buffer size: 2 MB. (b) Buffer size: 8 MB.
(c) Buffer size: 32 MB.

D. Overhead Analysis 650

This section depicts overhead analysis on cache use effi- 651

ciency, erase count, as well as time and space consumption. 652

1) Cache Use Efficiency: The DRAM data cache inside 653

SSDs is used to minimize the I/O latency by absorbing the 654

read/write requests on the frequently accessed data, on the 655

basis of the principle of data locality. To evaluate whether 656

the proposed method affects cache use efficiency or not, we 657

record the results of cache hit ratios, with configurations of 658

three cache sizes after running all the evaluated benchmarks. 659

Fig. 13 presents the relevant results. 660

Obviously, Baseline-RW can greatly improve the read hit 661

ratio, but yields the worst write hit ratio. This fact verifies the 662

read/write data cache can contribute to more read hits, but it 663

impacts the number of write hits. Note that, the write latency 664

of the flash memory is around 10 × more than the read latency, 665

and Baseline-RW shows the worst I/O performance when 666

running the most of selected benchmarks, as the previously 667

described in Section IV-B1. 668
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(a)

(b)

(c)

Fig. 14. Number of erase operations induced by GC after running the selected
block I/O trace. (a) Buffer size: 2 MB. (b) Buffer size: 8 MB. (c) Buffer size:
32 MB.

The most important thing is that, our RL method shows a669

similar level of cache use efficiency as the Baseline method.670

That is to say, our method does not pose a noticeable impact671

on the metric of cache use efficiency. Note that, the read672

performance gain of the proposed approach primarily benefits673

from the effective alignment with the four types of QLC pages,674

that is, more frequently read data can be served by LSB pages675

that exhibit the lowest read latency.676

2) Erase and Lifetime Statistics: We use the metric of erase677

count induced by GC to reflect the endurance of the SSD.678

Fig. 14 reports the result of erase numbers after running the679

selected traces, when implementing different FSP scheduling680

methods under varied cache settings.681

As discussed, Baseline-RW yields the least number of write682

hits in the cache, resulting in an average increase of 2.2683

× in terms of the erase count. In addition, Fig. 14 shows684

that Frequency brings about more erase operations by 7.6%685

on average, compared to Baseline. On the one hand, the686

Frequency mechanism aggressively triggers rewrite operations687

for the hot read data, since it only holds the recent frequency688

information whose trigger condition is less stringent than that689

of our proposed mechanism. On the other hand, it fails to690

smartly guide the matching between the cached data and691

QLC page types, thereby further increasing the number of692

subsequently triggered rewrite operations.693

RL slightly increases the erase number by 2.5% on694

average, compared to the Baseline. This is because it only695

groups candidates of the evicted data pages from a limited696

number of tail pages in the cache, which negligibly impacts697

cache use efficiency, as well as the measure of erase count.698

In addition, it can successfully direct FSP scheduling to the699

appropriate pages, which also limits the erase number induced700

by the subsequent rewrites.701

(a)

(b)

(c)

Fig. 15. Time overhead after running the selected traces with advanced FSP
scheduling methods of Frequency, Distance, and RL. (a) Cache size: 2 MB.
(b) Cache size: 8 MB. (c) Cache size: 32 MB.

To further explore the impacts of the proposed method on 702

the SSD lifetime, we collect the total amount of the processed 703

write data before the appearance of 5% wear-out blocks inside 704

SSDs [49], [50]. Specifically, we run the selected workloads 705

in a repeated manner until the number of wear-out blocks 706

approaches 5% of all the blocks, and then record the amount 707

of write data. Our proposed RL scheme slightly reduces the 708

lifetime by 0.7% on average, compared to the Baseline. 709

We suggest that the static wear-leveling [25] is employed to 710

balance the erase distribution inside SSDs, for boosting the 711

SSD’s lifetime. 712

3) Time and Space Overhead: Three optimized FSP 713

scheduling approaches need to traverse a fixed 5% of cache 714

data pages (i.e., the candidates of data pages), so that they 715

consume computation time in the process of cache eviction. 716

Considering SSD controllers usually have limited computation 717

power and memory capacity, we use a local ARM-based 718

machine equipped with an ARM Cortex A7 Dual-Core with 719

800 MHz. Fig. 15 shows the comparison results of extra time 720

cost, compared to the Baseline. 721

The measurements demonstrate that our proposed method 722

only takes between 1.6E-05% and 0.31% of the total 723

I/O processing time. Obviously, all the three optimized FSP 724

scheduling methods do need more time consumption in 725

the search process, while the number of evicted data page 726

candidates increases with the DRAM cache size varying from 727

2 to 32 MB. Note that, the time overhead is collected 728

in a resource-limited ARM platform that was described in 729



LI et al.: PAGE TYPE-AWARE FSP SCHEDULING VIA RL 11

Section IV-A. The experimental results in Section IV-B have730

considered the impact of the time overhead on the I/O latency.731

It is worth mentioning that our proposed RL approach732

incurs an extra part of the time overhead caused by decision733

making and policy updating in the RL-based model. However,734

this part of the overhead does not increase as the cache735

capacity becomes larger. This is because the update process736

is independent of the cache size, only depending on the size737

of the q-table. We suggest that our RL-based FSP scheduling738

scheme does not result in noticeable time overhead, which is739

consistent with the other RL-based optimization methods in740

SSDs [28], [29], [30], [31].741

Our proposed RL method needs to hold the history read742

frequency information, i.e., 1 bit for short-term and 2 bits for743

long-term access frequency on the data page. It needs 48 MB744

for simulated 1 TB SSD, while the Frequency requires 16 MB.745

Besides, different from the other FSP scheduling methods that746

do not need extra data structures, our RL method results in the747

space overhead. To be specific, RL holds a q-table with two748

types of the q-values, to direct FSP scheduling and update the749

q-values based on the rewards from the system environment.750

They consume 4 KB (= 128 (states) * 4 (actions) * 4B (one751

entry needed for q-value) * 2 (table number)). In addition,752

the logical addresses of the data pages that are evicted in the753

previous episode should always be recorded for getting the754

reward and the read frequency information. Except for the755

logical addresses, it also requires 1 bit to represent the data is756

a small I/O request or not, and 2 bits to record the previously757

written page type. Therefore, it totally requires 2.32 KB (=758

1000 (steps in an episode) * (2B (logical address number)759

+ 3bits)). In summary, RL takes acceptable memory space in760

SSDs for directing the FSP optimization.761

V. RELATED WORK762

A. Reinforcement Learning-Based Optimization763

RL is a lightweight method which can make deci-764

sions for the system scheduling without heavy overheads.765

For the internal GC scheduling in NAND-based SSDs,766

Kang et al. [28] proposed an RL-assisted method for GC to767

reduce the long-tail latency and ensure the quality of services.768

Similarly, Li et al. [29] proposed an RL-based scheduling769

on read refresh operations, caused by read disturb errors,770

for mitigating the negative impacts of normal I/O requests.771

Fan et al. [30] proposed a Q-learning-based backup strategy to772

efficiently execute the program by utilizing the residual energy.773

Pan et al. [31] utilized RL for the cache cleaning on DM-774

SMR, and thus mitigate long-tail latency. These scheduling775

methods focus on the topic of quality of services, and do776

internal operations at the suitable time periods based on the777

RL decisions. In addition, Wu et al. [32] proposed an RL-778

based I/O merging for SSDs. It considers the operations and779

size of queued I/O requests as the states of RL, and thus780

fine merging methods can improve the system throughput.781

Different from these RL-based mechanisms, our proposed782

method faces the topic of varied read latency of high density783

SSD pages. Considering the factors of access frequency and784

size, data pages can be grouped and simultaneously written785

through FSP into specific QLC pages, for yielding better read 786

performance. 787

B. FSP Technology-Based Proposals 788

For the purpose of adapting to the software layer manage- 789

ment of FSP technology, Wu et al. [35] proposed an FSP-aware 790

data allocation policy for improving the read performance. 791

It considers grouping the data whose access addresses are 792

not adjacent. Then, the internal parallelism can be exploited 793

to yield better read latency. Liu et al. [36] proposed a page 794

allocation scheme in the SSD firmware, which supports the 795

smaller program granularity of the FSP operation, to employ 796

the irregular number of written data pages. It can eliminate the 797

space fragmentation and thus improve the page utilization in 798

the SSD storage system. However, while the FSP operations 799

make the program latency about four page types uniform, 800

the read latency of them has significantly varied values. Our 801

proposal of FSP scheduling considers the dissimilarity of page 802

types, to classify the best fit of the cached data pages, and 803

flush them into specific QLC pages, thus improving the read 804

access performance. 805

C. Read-Optimized Scheduling Proposals 806

For the purpose of speedup the read performance of high 807

density SSDs, Chang et al. [43] proposed a read performance 808

improvement method for the TLC flash memory, by utilizing 809

a list to record the read count, and a bitmap to keep track of 810

recently unread fast pages. Lv et al. [44] introduced a read 811

data hotness identification via an LRU list, and move them to 812

the page having corresponding read latency. However, these 813

methods target the traditional four-step programming routine, 814

and we propose an RL-based scheduling method under the 815

default FSP-enabled 3-D QLC NAND flash-based SSDs. 816

VI. CONCLUSION AND FUTURE WORK 817

This article proposes a page type-aware FSP scheduling, 818

through RL in 3-D QLC SSDs. Our goal is to map the 819

frequently read data to the QLC pages with lower access 820

latency, and flush other data to the slow QLC pages in an 821

FSP operation, for boosting read performance of high density 822

SSDs. To this end, we employ RL to classify the (cached) 823

application data into four categories on the basis of their 824

historical access frequency and the associated request size. 825

After that, we can match four data pages in cache that have 826

different output actions of the RL-based classification model, 827

to the suited QLC pages and flush them together with one- 828

shot program of FSP. In addition, we proactively trigger 829

rewriting the hot read data that was previously stored in slow 830

pages, by grouping it with the cached data as an FSP unit. 831

Experimental results show that our proposal improves the read 832

responsiveness by between 14.2%-62.7%, in contrast to the 833

state-of-the-art methods. 834

Our proposal of RL-based scheduling is initially designed 835

for the SSD devices adopting page-level mapping. In the 836

future, we will further investigate the applicability of our 837

approach in the scenarios of data interleaving across the QLC 838

pages. 839
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