
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 1

NDPGNN: A Near-data Processing Architecture for
GNN Training and Inference Acceleration

Haoyang Wang∗, Shengbing Zhang∗, Xiaoya Fan∗, Zhao Yang†, Meng Zhang∗
∗ Northwestern Polytechnical University, Xi’an, China. † Chang’an University, Xi’an, China.

Abstract—Graph Neural Networks (GNN) require a large
number of fine-grained memory accesses, which results in inef-
ficient use of bandwidth resources. In this paper, we introduce a
near-data processing architecture tailored for GNN acceleration,
named NDPGNN. NDPGNN provides different operating modes
to meet the acceleration needs of various GNN frameworks
while ensuring the configurability and scalability of the system.
NDPGNN takes advantage of data locality characteristics to
repeatedly distribute and utilize data, thereby reducing memory
access requirements, and further improving memory access effi-
ciency by combining a subgraph sparse node scheduling strategy
with intermediate result reuse. We use data packaging to provide
a higher effective data ratio for long-distance data transmission,
thereby improving the utilization of the system’s limited band-
width resources. Compared with the previous method, NDPGNN
brings 5.68 times improvement in system performance while
reducing energy consumption overhead by 8.49 times.

Index Terms—Graph Neural Networks, Hardware Accelerator,
Near-Data Processing.

I. INTRODUCTION

THE application of Graph Neural Networks (GNNs) has
gained popularity in recent years as a powerful extension

of Deep Neural Networks (DNNs) [12], [31]–[33]. GNNs
operate on graphs, which consist of interconnected vertices and
are utilized in various graph abstraction levels including Link
Prediction, Vertex Classification, and Graph Clustering [1]–
[3], [8], [16], [17]. In contrast to typical DNNs, the properties
of GNNs bring new challenges for computing systems. GNNs
have been widely applied in practical scenarios, such as social
network analysis [25], [26], autonomous driving [27], and
recommendation systems [28], [29]. Several tasks within these
applications necessitate low-latency and energy-efficient infer-
ence, particularly in edge computing contexts like autonomous
driving [27], [30].

GNNs require a sparse adjacency matrix [15] to represent
the graph connectivity relationship. Graph Convolutional Net-
works (GCNs) are classic computing models consisting of two
operations in each layer, aggregation and combination. GCN
model uses the message-passing method to collect character-
istics of neighbor nodes and updates vertex data with matrix
multiplication (MM) [51]–[53].

The calculation processes of different graph neural net-
work algorithm models are different. There are several GNN
accelerators designed to mitigate the irregular acceleration

Manuscript received March 31, 2024; accepted July 15, 2024. This
work was partly supported by National Key R&D Program of China
(2022YFB2901103) and Research fund of CIE-SmartChip (20220370-0060).
Corresponding author: Meng Zhang(e-mail: zhangm@nwpu.edu.cn).

Fig. 1. Average Speedup of NDPGNN on Different Datasets.

requirement of GNN and improve performance and energy
efficiency [9]–[11]. However, the existing GNN accelerator
design cannot well support the computing requirements of
different GNN models and does not have good scalability. At
the same time, graph neural network training, especially, is
not considered. Our research rethinks what parts of existing
work can be optimized and designs a hardware acceleration
architecture with better GNN adaptability.

For GNN training, the characteristics of graph data present
several difficulties [38]–[42], particularly in terms of the
under-utilization of compute and bandwidth resources brought
by irregular operations and fine-grained memory access. These
challenges are compounded when training on large graphs due
to the increased demands on system scalability [47]–[50]. A
sample-based training method is proposed as a solution [3].
Instead of processing the entire graph, this method divides the
workload into several node-wise mini-batches, which are more
scalable and effective than whole-graph training.

In recent years, the research of near-data processing technol-
ogy has provided new ideas for solving the problems existing
in data processing tasks [18]–[22]. The near-data processing
mode uses a method that arranges simple computing com-
ponents near data storage to accelerate data-intensive simple
computing operations. Data-intensive tasks can significantly
diminish data transmission delays with the support of near-data
processing architecture, resulting in enhanced computational
performance.

Our design adopts a heterogeneous architecture composed
of near-data modules and convolutional computing units to
adapt to the different computing characteristics of Combi-
nation and Aggregation operations. The advantage of this
architecture is that it can meet both data needs and computing



IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 2

power needs and optimize the execution efficiency of various
operations by rationally allocating hardware resources. In
addition, we further improve system performance through a
series of design methods. For example, repeated distribution
technology that takes advantage of data locality characteristics
can reduce memory access requirements, thereby reducing
data transmission delays and improving overall computing
speed. In addition, the combination of subgraph sparse node
scheduling strategy and intermediate result reuse can further
improve memory access efficiency and reduce resource waste.

In order to further optimize the bandwidth resource utiliza-
tion of the system, we adopt the method of data packing,
thereby increasing the effective ratio of data transmission
over long distances. This packaging technology effectively
reduces the idle time during data transmission, allowing lim-
ited bandwidth resources to be more fully utilized. Through
the combination of these design methods and optimization
strategies, our system achieves a higher performance level
while meeting various acceleration requirements, providing
reliable technical support for large-scale graph data processing.

Our research has made important contributions in the fol-
lowing aspects:

a) First: We analyzed the adaptability of GNN models
to different hardware acceleration methods and discussed
specific strategies for optimizing aggregation and combination
operations to enhance overall acceleration performance. We
considered the varying acceleration requirements of these op-
erations and evaluated the issues and challenges in GNN accel-
eration from multiple dimensions. Additionally, we reassessed
the shortcomings of previous GNN accelerator designs and
established clear design objectives.

b) Second: We design NDPGNN, a near-data hybrid
acceleration architecture that aims to address the challenges
of GNN acceleration and achieve significant performance
improvements. NDPGNN fully leverages the advantages of
near-data processing architecture and traditional computing-
intensive acceleration architecture to achieve efficient system
operation. The design of this architecture takes into account the
characteristics of the GNN model and combines efficient data
processing and computing acceleration mechanisms to provide
powerful acceleration capabilities for GNN applications. At
the same time, it reduces the modification of high-cost devices,
reduces design costs, and improves the versatility of the
system.

c) Third: NDPGNN supports multiple working modes
including inference and training, and can provide flexible
acceleration solutions for GNN frameworks with different
acceleration requirements. Whether it is for data sets with
a huge number of nodes or an exponential increase in the
number of connecting edges, NDPGNN has demonstrated
excellent performance and stable acceleration. Figure 1 shows
the average speedup of NDPGNN on various GNN datasets,
highlighting its strong scalability and applicability.

II. GNN ALGORITHM: INFERENCE AND TRAINING

In this section, we assess the intricacies of GNN inference
and training.

Fig. 2. GNN Algorithm: Aggregation and Combination, Represented by
Connection Relationship and Matrix Multiplication.

During inference, GNN typically employs the following
two fundamental operations: Aggregation and Combination.
For each node, aggregate the features of neighboring nodes
into the current node using a defined message-passing func-
tion. Typical message-passing functions include summation,
averaging, weighted sums, etc. Upon receiving information
transmitted from neighboring nodes, combination operation
updates the current node’s feature representation. A common
feature update function is multilayer perception.

Next, we introduce the training method for GNN. The
training process for GNN involves forward propagation, loss
computation, backward propagation, and parameter optimiza-
tion.

A. Graph Neural Networks

Figure 2 shows a standard GNN algorithm [34]. The graph
structure is represented by the Adjacency Matrix composed of
connection relationships between nodes. Within a GNN model,
there exist numerous graph convolutional layers. In each layer,
vectors undergo two distinct computations: aggregation and
combination. Within a layer operation cycle, a node accumu-
lates information from its neighboring nodes through aggrega-
tion and subsequently updates its vector through combination.
The aggregation and combination operations for the node v in
layer k can be succinctly characterized as follows:

akv = Aggregate(hk−1
u |u ∈ Ñ (v)),

hk
v = Combine(akv ,W

k
c ).

(1)

Here, hk
v signifies the hidden feature vector of node v at

the k-th layer, while akv represents the aggregation feature



IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 3

Fig. 3. GNN Training Process, Forward Propagation, Loss Computation,
Backward Propagation, and Parameter Optimization.

vector. W k
c stands for the shared weight parameters used for

combination operation in layer k, and Ñ (v) encompasses all
the neighboring nodes of the central node. Moreover, there
are some symbols in Fig. 2. N is the total amount of nodes
in the graph, dk is the dimension of the node vector in layer
k. HK and Ak represent the stitching matrix of the hidden
feature vector and the aggregation feature vector in layer k,
respectively.

akv =
∑

u∈Ñ (v)

1√
Dv ∗Du

hk−1
u , hk

v = ReLU
(
akv ·W k

)
(2)

The equations 2 delineate the particular computation within
the typical GCN model [5]. Within the equation, Dv and Du

represent the degrees of the vertex v and each respective neigh-
bor u. The aggregation of neighbor features is accomplished
through summation alongside degree-based normalization. The
combination operation is obtained through node-weight con-
volutional computations, followed by a ReLU operation. The
weights W are acquired through training. In the GCN model,
all nodes calculated in each layer utilize the same weight
values for the combination operation.

Edge updating is another prevalent function in GNNs, and
formula 3 elucidates the procedure involved in edge updating.

eu,v = σ(W k
e · hk−1

u ). (3)

where eu,v denotes the resultant edge update vector for the
node pair u and v, hk−1

u signifies the hidden feature vector of
node u at the (k − 1)-th layer, and W k

e represents the shared
weight parameters employed in the edge update process of
layer k.

Numerous GNN models necessitate edge update processing,
but there are also GNN models that don’t involve edge
update operations. Allocating dedicated hardware computing
resources for edge updates may lead to a waste of computa-
tional resources.

B. GNN Training

GNN training typically involves four main steps: forward
propagation, loss computation, backward propagation, and
parameter optimization, shown in Fig. 3.

a) Forward Propagation:: Input node features from the
graph into the GNN model for forward propagation com-
putation. Continuously update node representations during
the aggregation and combination processes. The process of
forward propagation is similar to the inference process, using
the weight values of the current round for calculation.

b) Loss Computation:: Compare the GNN’s output node
representations with the ground truth labels to compute the
loss function. During the training process, the Loss value can
be reduced through continuous iteration, thereby improving
the system prediction accuracy.

c) Backward Propagation:: Utilize the backward prop-
agation algorithm to calculate gradients of the loss function.
Different from traditional CNN calculations, the calculation
of each layer of GNN calculation consists of two sub-
calculations. Therefore, the calculation process of aggregation
and combination operations needs to be analyzed separately
during the backward propagation process. The calculation in
the backward propagation process can be expressed as:

δk
′

v = mask

 ∑
u∈Ñ (v)

1√
Du ∗Dv

δk+1
u

 (4)

δkv = δk
′

v ·W k+1T ,
∂L
∂W k

=
∂L
∂W k

+ ak
T

v · δkv (5)

Where the symbol δk+1
u represents the gradients of features

for vertex u at layer l+1, which is equivalent to ∂L
∂hl+1

u
. The

function mask() refers to gradients associated with activation
functions such as ReLU(). At the start of each training epoch,
the weight gradients ∂L

∂Wk are initialized to zero.
d) Parameter Optimization:: Utilize optimization algo-

rithms to update model parameters and reduce the loss func-
tion.

W k = W k − η
∂L
∂W k

(6)

where η represents the learning rate.
The training process is iterative for multiple epochs until

convergence. In the training process of graph neural network
(GNN), due to a large amount of calculation, the Sample-
based mini-batch training method is usually used [43]–[46].
This method is to reduce the computational complexity and
memory usage during the training process, thereby improving
training efficiency and speed.

III. CHALLENGES

In this part, we first introduce the challenges that exist in
the design process of GNN accelerators, and then we introduce
some related work in the same field and their shortcomings.

A. Challenges

The GNN task is different from the traditional DNNs.
Because of its irregular data organization and operation char-
acteristics, von Neumann’s architecture is not suitable for
GNN acceleration. There is a mismatch between acceleration
structure and computing requirements, which is primarily
reflected in the following:



IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 4

a) Challenge 1: Acceleration Requirements Differences
of Two Basic Computations : Combination and aggregation
are the two fundamental processes of the GNN algorithm, and
they both have distinct acceleration requirements [35]–[37].
Matrix multiplication is used in combination tasks, which is a
computationally demanding operation. Aggregation is a data-
intensive activity that requires a lot of data and uses basic
calculations, and the data has low reusability characteristics.
To meet the processing acceleration needs of GNNs, it is not
sufficient to choose an acceleration approach that adjusts to a
single computation feature.

b) Challenge 2: Fine-grained Memory Access: Accord-
ing to the natural connection relationship of graphs, the GNN
operations require the support of fine-grained memory access.
Operations between pairs of nodes call for hopping access
in memory, which brings memory access requirements to all
surrounding nodes that are connected to one central node.
Simply increasing the memory access bandwidth won’t result
in a significant performance gain because the node’s neighbors
are dispersed over the whole graph and the spatial locality of
the data they link to in the storage system is very poor. By
increasing the memory access bandwidth, more data can be
accessed, but since a considerable portion of the extra data is
worthless, the total efficiency of memory access has not risen.

c) Challenge 3: Significant Overhead of Full-graph
Training: A natural method of GNN training is full-graph
training, which takes into account all neighbors of every
central node. This strategy has some drawbacks. First of all,
full-graph training brings substantial difficulties to storage
bandwidth and computational power because it requires a large
number of calculations when training big graphs. Additionally,
the full-graph training method is not scalable enough to handle
the needs of large-scale distributed GNN as graph size grows
with the development of GNN. Sampling is a good way
to deal with the GNN’s irregular computation and sparse
properties, but it requires hardware that can support the mini-
batch computing technique.

B. Related Works

Based on the analysis of GNN accelerator design problems,
we rethink the aspects of previous work that can be improved.

a) GNN Inference Accelerating: Numerous custom ac-
celerators have been introduced to accelerate GNNs. Notable
accelerators in this field include HyGCN [9], AWB-GCN [10],
and HaGNN [11].

HyGCN [9] employs a hybrid architecture comprising an
aggregation phase and a combination phase. The aggregation
phase exhibits dynamic and irregular execution characteris-
tics, whereas the combination phase demonstrates static and
regular execution patterns. To address these phases, HyGCN
introduces an edge-centric and matrix-vector multiplication
(MVM) programming model, leveraging various forms of
parallelism while ensuring hardware transparency. It integrates
two efficient engines to optimize these phases and coordinates
the pipeline between engines to minimize latency and energy
consumption. However, due to the lack of in-depth analysis of
the acceleration requirements for Aggregation and Combina-

tion, HyGCN does not fully realize the performance potential
of its hybrid architecture.

AWB-GCN [10] addresses the workload imbalance when
processing large-scale real-world graphs by introducing three
hardware-based auto-tuning techniques: dynamic distribution
smoothing, remote switching, and row remapping. These tech-
niques continuously monitor sparse graph patterns, dynami-
cally adjust workload distribution among a large number of
processing units, and reuse the optimal configuration after
convergence. Nevertheless, HyGCN and AWB-GCN can not
support Edge-update operations in GNN models, limiting its
applicability for accelerating models like GraphSage and G-
GCN.

HaGNN [11] presents an accelerator architecture specifi-
cally designed for GNNs, addressing the unique memory ac-
cess and data movement requirements of GNNs. This architec-
ture includes dedicated hardware units for efficiently handling
the irregular data movements essential in graph computations
while providing the high computational throughput required
by GNN models. However, HaGNN cannot identify and store
intermediate results of edge update and aggregation, resulting
in the movement of invalid data and the wasting of bandwidth
resources.

b) GNN Training Accelerating: GNNear [24] is consid-
ered one of the most advanced works currently and provides
strong support in GNN training acceleration. However, despite
its excellent performance in accelerating GNN training, there
are some areas worthy of improvement. Especially in terms
of utilizing algorithmic features in aggregation operations,
GNNear has not fully exploited its potential and failed to
maximize the use of limited bandwidth resources. This makes
it less than ideal for achieving optimal training acceleration.
Although GNNear has made important progress in the field
of GNN training acceleration, there is still room for improve-
ment, especially in optimizing algorithm feature utilization and
bandwidth resource utilization.

c) ReRAM Accelerators for GNNs: In-data processing is
a method of performing internal computations within memory
structures using novel circuit components that possess both
storage and computational capabilities, such as memristors.
There have been some studies leveraging new ReRAM storage
to accelerate graph processing applications [18] [19]. In-data
processing is an important branch of graph neural network
acceleration, but the expensive design costs associated with
novel memory structures pose a challenge to its widespread
adoption in the short term, which does not meet our design
goals.

C. Design Goal

During the system design process, we need to consider
the following design goals to achieve better performance and
scalability:

a) High Acceleration Energy Efficiency: Our system
should be able to provide efficient acceleration capabilities
to support fast and efficient computing processes while main-
taining little energy consumption.



IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 5

Fig. 4. NDPGNN Architecture System Design and Module Description. Including the specific design of Sample Engine and Aggregation PE. The corresponding
relationship between each design module and challenges is marked in different colors.

b) Solve the Bottleneck Problem of Memory Bandwidth:
In order to avoid fine-grained memory bandwidth utilization
becoming the bottleneck of the system, we need to reduce
unnecessary long-distance data transfer and increase the pro-
portion of effective data participating in the operation.

c) Flexible System Design Concept: Our system should
support GNNs in different sizes and operation modes to accel-
erate calculations. To do this, we need to design flexible and
scalable systems to adapt to complex and changing application
scenarios.

d) Reduce the Changes to High-cost Components: In the
system design process, we need to minimize the changes to
high-cost components such as memory chips to ensure that the
acceleration system has better versatility and scalability.

IV. PROPOSED ARCHITECTURE: NDPGNN

For the needs of GNN acceleration, we present NDPGNN,
a near-data hybrid acceleration architecture.

A. System Design

The system design of NDPGNN is shown in Fig. 4. It
comprises a high-bandwidth memory, a PCIe switch with
a near-data processing module, and a matrix multiplication
array connected to the PCIe switch. The NDP module is
utilized to handle computation-intensive tasks related to data-
dense features in GNNs. Matrix-Multiplication Processing En-
gine (MMPE) is responsible for processing compute-intensive
tasks, such as combination and edge updates. By allocating
tasks associated with different features to their respective units,
NDPGNN not only addresses the challenge of dissimilar fea-
ture operations during the graph neural network computation
but also ensures the system’s capability to support various
GNN models without wasting hardware resources.

Following design goals, NDPGNN organizes function mod-
ules, each designed to address challenges in GNN inference
and training acceleration processes. For different memory ac-
cess and computational requirements during GNN aggregation

and combination processes, we have designed two different
modules tailored to their features. To address bandwidth bot-
tlenecks in the GNN computation process, we have designed
a near-data fine-grained access architecture and also devised a
data packaging module to enhance the utilization of limited
bandwidth further. Also, we designed a node ID generate
module that supports sample-based training processes to tackle
the issue of low efficiency in full-graph training.

NDPGNN supports various computing needs in different
GNN inference and training processes through configurable
data paths. For example, in the Node Sampling Module,
you can choose whether to perform sampling through the
data gating device, so the system can support high-precision
reasoning and sample-based training at the same time. As
another example, NDPGNN can configure the data paths of
two Matrix Multiplication Processing Engines (MMPE) to
make them both process combination workloads at the same
time or process combination and edge updates separately.
Configurable datapath strategy makes NDPGNN not only
support multiple types of models but also not cause hardware
resources waste by load imbalance.

Unlike traditional DNNs, the computation process and
workload of GNNs are dependent on the input features, mak-
ing static data flow dependencies and task allocation unsuitable
for GNN acceleration needs. Scheduling GNN computational
tasks requires dynamic scheduling techniques. We achieve
dynamic scheduling of graph tasks by incorporating a Sample
Engine and Task Scheduler into the system.

The NDP module consists of five main components: the
Sample Engine, Aggregation Processing Engine (Aggregation
PE), Memory Controller, Task Scheduler, and Data Packer.
Among them, the Sample Engine and Aggregation PE are
computational modules used for training and inference in
graph neural networks. The Task Scheduler is used for subtask
partitioning and overall system task scheduling. The Memory
Controller is responsible for controlling data access to the
high-bandwidth memory. The Data Packer is responsible for



IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 6

aggregating fine-grained memory access data, ensuring that
data transmitted over long distances consists only of valid data,
thereby improving bandwidth utilization.

B. Sample Engine

Figure 4 describes the workflow of Sample Engine. Sample
Engine is used to convert the sparse neighbor node information
of the entire graph into the correlation between aggregation
operations between nodes. It takes the full graph adjacency
matrix as input and extracts the connection information be-
tween the central node and its neighboring nodes. Retrieve
the adjacency matrix of the corresponding row according
to the ID of the central node. The node with 1 in the
corresponding position is the neighbor node connected to the
central node, so the ID of the corresponding neighbor node
can be generated. This transformation converts the sparse
connection information of the entire graph into a dense mini-
batch data structure, simplifying irregular operations within
the graph structure. In addition, it will also filter out the data
of neighbor nodes that do not participate in aggregation during
the training process, thereby achieving sample-based training.
For example, in the case where random sampling is applied,
the neighbor sampling module proportionally removes some
edges between the central node and its neighbors through
group sampling. When the GNN model does not require
sampling to perform a high-precision inference process, this
sampling step can be skipped through a bypass circuit.

In different computing models, the specific computing pro-
cess of GNN is different. The order of operations based on
node data can be divided into two types: Aggregation first
and Combination first. Sample Engine can support these two
different acceleration requirements. Through the generated
configurable data stream of neighbor node data, the system
can send it to the Aggregation Engine or the MMPE array for
Combination operation.

C. Aggregation Processing Engine

The Aggregation Processing Engine (Aggregation PE) is
used to implement the aggregation operation in GNN. It
receives the neighbor node information in the mini-batch struc-
ture, and the intermediate results are used as input for further
processes. By saving reusable intermediate aggregation results,
we use a redundancy elimination method [14] to improve
system performance. The same central node’s aggregation
tasks are given to a single aggregation engine unit, and the
aggregation workloads of several central nodes are processed
concurrently by various units.

The same node may be a neighbor of multiple central nodes
at the same time. If this property cannot be well utilized,
multiple unnecessary data accesses may occur, thereby in-
creasing bandwidth pressure. NDPGNN uses the node data
reuse method to distribute the same data to the parallel
Aggregation PE of all current neighbor nodes, as shown in
Fig 5. GNN data does not have the reuse characteristics of
traditional computing, so it is not suitable for the multi-level
Cache structure in the von Neumann structure. Finding the
data reuse characteristics in the GNN acceleration process

Fig. 5. Distribute Nodes to Other Neighbor Nodes in Parallel Aggregation
PE to Take Advantage of Data Time Locality.

can avoid repeated access to the same data multiple times,
and use the time locality of data to improve system operating
efficiency.

D. Data Packer

The memory access of GNN data during the calculation
process has fine-grained characteristics, and the data nodes
accessed each time are generated by the connection relation-
ships of the graph. For a central node, the IDs of its neighbor
nodes may be discontinuous, thus bringing about fine-grained
memory access requirements.

Efficiencypipe [tk] =

N [tk]∑
i=0

Deff [tk]

LB

 /N [tk] (7)

Equation 7 shows the memory access efficiency of tk round.
Where LB represents the memory access bit width, Deff
represents the length of valid data, and N is the number of
memory accesses calculated this time.

Among the data accessed in a single time, the data that
needs to be used in this round of calculation only accounts
for a small part, as shown in Fig. 6, and more data is the data
that is not used in this round of calculation. If all this data is
transmitted over long distances, limited bandwidth resources
will be wasted.

NDPGNN uses data packing to solve the bandwidth prob-
lem caused by fine-grained memory access, prevents the long-
distance transmission of invalid data and the occupation of
bandwidth resources, and packs sparse information into dense
data, thereby improving system bandwidth utilization and
reducing This eliminates the impact of bandwidth bottlenecks
on the overall acceleration of the system.

Nodes that have completed the Aggregation phase proceed
to the packing stage to be sent to the MMPE for the Combi-
nation operation. The Combination process for each node is
relatively independent, with no data dependency or require-
ment on the order of node operations. Once Aggregation is
completed, nodes can be packed, and when a fixed-length pack
is ready, it is sent to the MMPE. Although there is a waiting
period during the packing process, this wait is not a stall but
a continuous flow of data, without the bubbles caused by data
dependencies.

E. Task Scheduler

The main responsibility of the Task Scheduler is to manage
the overall computing process of the system, including select-
ing data paths and controlling data scheduling. In graph neural



IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 7

Fig. 6. (a) The Proportion of Currently Required Valid Data in Unpackaged
Data is Small. (b) Packed Dense Data Helps Improve Bandwidth Utilization.

networks, the task scheduler is even more crucial, because it
not only coordinates the order of various calculation modules
and ensures that calculations are performed in the correct
order to effectively process and transmit information, but also
controls the way data is arranged, thereby better-improving
system bandwidth utilization. In terms of computing processes,
the task scheduler can control the order of aggregation and
combination to support the computing needs of different GNN
models.

In order to reduce the sparsity in graph calculation and
avoid repeated calculation of intermediate results, NDPGNN
adopts the strategy of sub-graph calculation. We used the
METIS [54] method to identify and create subgraphs. This
hierarchical partitioning algorithm is based on the adjacency
matrix, with the core idea being to continuously coarsen nodes
and edges of the original graph to reduce its size. After
reaching a certain degree of reduction, the coarsened graph is
partitioned, and the partitioned subgraphs are then projected
back to the original graph structure. This ensures the balance
of each subgraph while maintaining model accuracy. Sub-
graph technology saves the aggregation intermediate results
of dense sub-graphs and directly uses these results when
needed, which can avoid repeated aggregation calculations for
multiple neighbor nodes of the sub-graph, thereby improving
computing efficiency.

However, using sub-graph intermediate results for calcula-
tion may bring more sparse connections to the graph structure.
At the same time, the process of generating sub-graph inter-
mediate results requires multiple accesses to sparse neighbor
node data to calculate the value of the sub-graph intermediate
results. These accesses to sparse neighbor nodes are fine-
grained, that is, two sparse neighbor nodes may require two
visits to obtain because their locations are not continuous, so
the bandwidth of each memory access cannot be efficiently
utilized.

During the data arrangement process, NDPGNN also places
the necessary sparse nodes of dense sub-graphs near the sub-
graph to reduce the number of memory accesses and increase
the locality of the data space, as shown in Fig. 7. This op-
timization method further improves the bandwidth utilization
of the system and makes the graph computing process more
efficient and feasible, especially when processing large-scale
graph data. It has significant advantages. In summary, task
scheduler and sub-graph technology play an indispensable role
in graph neural networks. Through reasonable scheduling and
optimization methods, the overall performance and computing

Fig. 7. (a) Sparse Connections between Dense Sub-graphs May Increase the
Amount of Memory Accesses. (b) Rearrange the Sparse Neighbors of the
Sub-graph to Improve Data Spatial Locality.

efficiency of the system can be effectively improved, and the
processing of complex graph data can be provided. strong
support and solutions.

F. Matrix Multiplication Processing Engine

Typical near-data processing architecture is suitable for
computational tasks with high data demands and simple com-
putational components, but it is not suitable for larger-scale
multiplication-accumulate matrices. The characteristics of the
NDP determine the NDPGNN architecture, which consists
of a near-data processing module and an MMPE, forming a
heterogeneous system mode.

The MMPE is utilized for handling Combination and Edge
update operations, comprising multiplication-accumulate ma-
trices. The calculation of Combination and Edge update, cen-
tered around convolution, is crucial within GNN computations.
It is noteworthy that certain GNN models do not involve Edge
update operations. Thus, designing a dedicated computational
module for Edge update allows for supporting a variety
of GNN computational model requirements. However, this
approach may lead to idle circuits during the computation of
models without Edge update operations, resulting in hardware
resource wastage.

NDPGNN employs two homogeneous MMPEs to handle
Combination and Edge update operations. When dealing with
GNN models that include Edge update, the two MMPEs
execute Combination and Edge update operations separately,
thereby supporting multiple model types. Conversely, when
processing models without Edge update, the two MMPEs
can collaborate on Combination operations through data path
configuration, preventing circuit idle states.

The data received by the MMPE is provided by the Data
Packing module within the NDP module. Data packing mit-
igates the low bandwidth utilization issue caused by GNN
fine-grained access features, enabling a higher proportion
of effective data in limited bandwidth resources for long-
distance transmission. Consequently, this resolves bandwidth
bottlenecks encountered during GNN acceleration processes.

G. Execution Mode

NDPGNN can support GNN models that require and do
not include edge updates. The nodes removed during the
sample operation don’t have to participate in the edge update
operation, ensuring that no unused intermediate results are



IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 8

TABLE I
DIFFERENT GNN MODELS

Algorithms Edge Update Aggregation Combination
GCN Null akv =

∑
u∈N (v) h

k−1
u hk

v = σ
(
Wk · akv

)
GraphSage-Pool eu,v = σ

(
Wk

1 · hk−1
u

)
akv = maxu∈N (v)

{
e(u,v)

}
hk
v = σ

(
Wk

2 · akv
)

G-GCN eu,v = σ
(
Wk

1 · hk−1
u +Wk

2 · hk−1
v

)
akv =

∑
u∈N (v) eu,v ⊙ hk−1

u hk
v = σ

(
Wk

3 · akv
)

generated. During the GNN model execution process without
edge updates, after-sampling neighbor data based on the
central node is directly sent to Aggregation PE to operate,
after which the combination task is packed and then distributed
to two MMPE units for operations. In this configuration,
the two MMPEs computing components are all used, and
no computing resources are idled. For models with edge
update operations, Sample Engine separates the entire graph
into mini-batch-based tasks before transmitting packed data to
MMPE for edge update. After the edge update, node vectors
are sent to Aggregation PE and then MMPE again for the
combination operation. Two MMPE arrays can perform edge
updates and combinations in this mode, respectively.

NDPGNN not only supports GNN inference but also sup-
ports GNN training. In the training process of large-scale
graphs, training acceleration is very challenging, so the mini-
batch sample-based training mode is adopted. Different from
the inference process, the Sample Engine chooses to enter
sampling mode rather than bypass mode during the training
process.

In NDPGNN, the Sample Engine will choose to enter
the sampling mode during the training phase, perform data
aggregation and update operations based on the sampled data,
calculate gradients, and update weights until the training
purpose is achieved. During the training process of GNN,
the mini-batch Sample-based training mode can effectively
improve the training speed and efficiency. In this mode, the
system will randomly select a part of nodes and edges from
the entire graph to form a mini-batch for training based on the
preset sampling strategy. This can reduce the amount of data
that needs to be processed during the training process, reduce
the computing load, speed up model convergence, and save
computing resources.

V. EXPERIMENTS AND EVALUATION

A. Experimental Setup

We’ve instantiated NDPGNN in Verilog and conducted
synthesis using the Synopsys Design Compiler (DC) with
the TSMC 12 nm standard VT library. The overall on-
chip memory is 22MB. We employed Ramulator [13] to
estimate HBM timings and energy consumption. In evaluating
NDPGNN, we selected three prominent GNN models, namely
GCN [5], GraphSage-Pool [6], and G-GCN [7]. The operations
of each model are shown in Table I. It’s worth noting that both
GraphSage-Pool and G-GCN include edge-update operations,
and GraphSage-Pool and G-GCN have different edge-update
operations. Table II shows the GNN datasets we use. The
six datasets we employed exhibit significant differences in

TABLE II
GRAPH DATASETS

Dataset Vertex Edge Dimension
Cora(CA) 2,708 10,556 1,433

Citeseer(CS) 3,327 9,104 3,703
BZR(BR) 6,519 137,734 3
PPI(PI) 14,755 225,270 50

Pubmed(PB) 19,717 88,648 500
Reddit(RD) 232,965 114,615,892 602

size, manifested in terms of node count and node dimen-
sionality. This approach enables a better assessment of the
system’s capability to handle different feature datasets while
also highlighting whether the system maintains scalability with
increasing dataset size, thereby showcasing its ability to deliver
stable performance improvements.

We conducted a comparative analysis, pitting NDPGNN
against PyTorch Geometric [4] implementations on both CPU
and GPU. Additionally, we compared NDPGNN with three
GNN accelerators, including HyGCN [9], AWB-GCN [10],
and HaGNN [11]. The CPU platform was equipped with
two Intel Xeon(R) CPU E5-2680 v3 processors and 500GB
of DRAM, while the GPU platform featured an NVIDIA
Tesla V100 GPU. To ensure the fairness of our comparisons,
we standardized the configurations, operating frequencies,
and fabrication processes of the baseline accelerators. This
alignment helps to avoid performance discrepancies caused
by varying hardware conditions. Table III provides the system
configurations of baseline accelerators. In order to evaluate
the training acceleration effect of NDPGNN, we use DGL
[23] model training running on CPU and GPU, and SOTA
training accelerator GNNear [24] as baselines, and compare
the performance of NDPGNN and baseline training accelera-
tion methods. GNNear utilizes the TSMC 28nm process. To
maintain fairness in our comparisons, we employed identical
experimental configurations across all evaluated accelerators
when assessing NDPGNN’s training acceleration effects. Also,
we adjusted the operating frequency of GNNear to the same
1GHz as in our work instead of 700M in the original article,
to get a fairer comparison of the acceleration effect. In
addition, we use our acceleration environment and GNNear’s
acceleration strategy to evaluate its training acceleration effect
on the G-GCN model.

B. Experimental Results and Evaluation

a) Inference Speedup: We conducted an evaluation of
NDPGNN by comparing it to three GNN frameworks: GCN,



IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 9

Fig. 8. Inference Speedup Compared with Other Baselines on Different Datasets, Normalized to PyG-CPU.

TABLE III
SYSTEM CONFIGURATIONS OF ACCELERATORS.

System Configurations

HyGCN

1GHz @
32 SIMD 16 cores and

32×128 arrays
256 GB/s HBM

AWG-GCN
1GHz @
4k PEs

256 GB/s HBM

HaGNN

1GHz @
512 32-bit ALUs and

32×128 PEs
256 GB/s HBM

NDPGNN

1GHz @
512 Aggregation-PEs and

32×128 arrays
256 GB/S HBM

GraphSage-Pool, and G-GCN. GraphSage-Pool and G-GCN
models incorporate edge update operations, a feature that the
HyGCN and AWB-GCN accelerators lack the capability to
support.

The performance metrics obtained from our evaluations, as
delineated in Fig. 8, have been normalized relative to the PyG-
CPU. NDPGNN showcases remarkable speed enhancements,
outperforming HyGCN, AWB-GCN, and HaGNN by factors
of 7.90×, 2.44×, and 6.73×, respectively, across a diverse
array of accelerator configurations. These results underscore
NDPGNN’s prowess in terms of computational efficiency and
performance scalability.

Unlike HyGCN and AWB-GCN, NDPGNN not only sup-
ports GCN-based models but also facilitates edge update
operations through data path scheduling, thus catering to the
diverse acceleration requirements of different GNN models.
This flexibility not only expands the system’s applicability
but also ensures high efficiency in handling various graph

neural network tasks while avoiding reduced overall system
efficiency due to idle circuits. Therefore, NDPGNN demon-
strates unique advantages and potential in accelerating graph
neural networks.

Moreover, we evaluate NDPGNN’s scalability, seeking to
unveil its adaptability and efficiency across varying dataset
sizes. Fig. 1 portrays the relationship between different
dataset dimensions and the corresponding speedup achieved
by NDPGNN. The absence of a discernible inverse correlation
between speedup and graph size indicates that the magnitude
of GNN datasets does not exert a discernible influence on the
acceleration effect offered by NDPGNN. This observation is
significant as it underscores NDPGNN’s capacity to maintain
consistent acceleration capabilities across datasets of varying
complexities and magnitudes.

In small graph tasks, AWB-GCN achieves slightly bet-
ter acceleration than NDPGNN, benefiting from its use of
graph sparsity strategies to enhance computational efficiency.
However, as the graph size increases, NDPGNN demon-
strates superior acceleration, showcasing better scalability for
large graph acceleration tasks. Additionally, NDPGNN sup-
ports GraphSage-Pool and G-GCN models that include Edge-
Update operations, which AWB-GCN cannot support, high-
lighting NDPGNN’s scalability across different GNN models.

b) Energy Consumption: Regarding energy consump-
tion, as illustrated in Fig. 9, NDPGNN employs a node-
wise processing method, resulting in energy savings of 8.00×,
8.90×, and 8.57× compared to HyGCN, AWB-GCN, and
HaGNN, respectively.

The reduction in energy consumption can be attributed
primarily to two factors. Firstly, there is a direct impact on
energy consumption from improvements in performance. For
instance, the acceleration of the computational process in
Graph Neural Networks (GNNs) leads to an overall reduction
in energy consumption, as the time required for computation



IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 10

Fig. 9. Energy Consumption Compared with Other Baseline Accelerators, Normalized to NDPGNN.

significantly decreases. Secondly, optimizing the memory ac-
cess process can effectively reduce the number of memory
accesses, thereby lowering the energy consumption of the
memory subsystem. This can be achieved by increasing the
proportion of effective data in memory, allowing the system
to utilize memory resources more efficiently and consequently
reducing energy consumption. Thus, through optimization in
these two aspects, the system can simultaneously improve per-
formance while lowering energy consumption, demonstrating
effective energy optimization outcomes.

c) Training Speedup: Figure 10 depicts the training
acceleration capabilities of NDPGNN in the context of GNN
training. We conducted a comprehensive comparative anal-
ysis by evaluating the training acceleration capabilities of
NDPGNN against DGL-CPU, DGL-GPU, and the current
state-of-the-art GNN training accelerator GNNear. To assess
NDPGNN’s performance, we employed three popular GNN
models: GCN, GraphSage-Pool, and G-GCN. All performance
metrics were normalized to the DGL-CPU benchmark to
ensure a consistent evaluation framework.

The comparative results presented in Fig. 10 unequivo-
cally demonstrate that NDPGNN exhibits superior training
acceleration capabilities compared to the state-of-the-art GNN
accelerator. These findings underscore the effectiveness and ef-
ficiency of NDPGNN in accelerating GNN training processes,
highlighting its potential as a high-performance solution in the
field of graph-based machine learning tasks.

d) Ablative Analysis: In order to deeply analyze the
impact of various optimization strategies on the accelera-
tion performance of NDPGNN, we conducted a series of
ablative experiments. We compared the GCN model on the
Cora dataset with HyGCN, presenting the performance im-
provements brought by the near-memory heterogeneous de-
sign method proposed in this paper, as well as the three
optimization strategies during GNN inference acceleration.
Figure 11 presents the results of these ablative analyses. In
these experiments, we use HyGCN as the baseline accelerator.
NDP Vanilla means using the original version of the near-data
processing method for GNN acceleration but does not adopt
the optimization strategy proposed in this article. This method
still consists of two parts: the NDP module and MMPE, form-
ing a heterogeneous system. Compared to NDP Vanilla, NDP

Packing, NDP Aggr., and NDP-SN (NDPGNN) sequentially
add one optimization method over the previous model. These
methods are data-packing, data scheduling in aggregation,
and sparse neighbors’ rearrangement, respectively. This allows
us to evaluate the contribution of each optimization strategy
to system performance. The final NDP-SN incorporates all
optimization strategies and therefore represents the proposed
NDPGNN architecture. NDP Packing introduces data packag-
ing technology on the basis of NDP Vanilla, thereby providing
more efficient data for long-distance data transmission, thus
improving the overall bandwidth utilization of the system.
Based on NDP Packing, NDP Aggr. further enhances the
data scheduling and optimization in the Aggregation operation.
By increasing the number of data reuses on the chip, it
effectively utilizes the time locality of the data and reduces
the system’s memory access requirements, thus significantly
improving the efficiency of the system. NDPGNN is the
complete system design described in this article, including all
optimization strategies introduced in the article. Specifically,
compared with NDP Aggr., NDPGNN adds strategies such
as sub-graph result reuse and sub-graph sparse connection
node arrangement in terms of system scheduling optimization,
which further improves the overall performance of the system.
The above data are normalized to HyGCN. These ablative
experimental results reveal the respective contributions of dif-
ferent optimization strategies in the acceleration performance
of NDPGNN, providing a useful reference for understanding
system optimization, and also better reflecting the optimization
proposed in this article. effectiveness of the strategy.

VI. DISCUSSION

A. Opportunity for Large-scale Graph Processing

As research in GNNs advances, the size of graph datasets
continues to grow, leading to a substantial increase in the de-
mand for memory bandwidth. To effectively address this chal-
lenge, distributed storage structures have gradually emerged,
offering robust support for the processing of expansive graph
datasets. CXL technology, with its high-speed memory ac-
cess and data transfer capabilities, in conjunction with high-
bandwidth memory technology, has the capacity to signifi-
cantly enhance the system’s data throughput [22]. Leveraging
the support of CXL technology, the NDPGNN architecture



IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 11

Fig. 10. Training Speedup. Normalized to DGL-CPU.

Fig. 11. Ablative Experiment. Showing the Contribution of Each Method to
the Improvement of Performance.

approach holds the potential for achieving more impressive
results.

B. Cost-effectiveness for the Architecture Based on Common
Components

In-memory computing plays a crucial role in accelerating
graph neural networks. However, the high costs associated
with the design of new memory systems limit its widespread
adoption in the short term. In contrast to traditional in-memory
computing, near-data processing doesn’t require costly modi-
fications and production of storage chips.

VII. CONCLUSION

In this work, we introduce NDPGNN. It employs near-
data processing modules to handle data-intensive computa-
tions and utilizes matrix-multiplication arrays for compute-
intensive tasks. To overcome the difficulty of fine-grained
memory access, it improves bandwidth resource usage through
data packaging. NDPGNN adopts a node-centered mini-batch
training method to enhance overall computational efficiency in
the GNN training aspect. Overall, NDPGNN improves 5.68×
system performance and reduces 8.49× energy consumption
overhead compared to previous methods.

REFERENCES

[1] Z. Lin, et al., 2020. PaGraph: Scaling GNN training on large graphs via
computation-aware caching. In SoCC ’20: ACM Symposium on Cloud
Computing, Virtual Event, USA, October 19-21, 2020. ACM, 401–415.
DOI: 10.1145/3419111.3421281

[2] I. Gog, et al., 2016. Firmament: Fast, centralized cluster scheduling at
scale. In Proceedings of the 12th USENIX Symposium on Operating
Systems Design and Implementation. 99–115.

[3] M. Serafini and H. Guan, “Scalable Graph Neural Network Training:
The Case for Sampling,” Oper. Syst. Rev., vol. 55, no. 1, pp. 68–76,
2021. DOI: 10.1145/3469379.3469387

[4] M. Fey, et al., Fast graph representation learning with pytorch geometric.
arXiv:, 2019.

[5] T. N. Kipf, et al., “Semi-supervised classification with graph convolu-
tional networks,” International Conference on Learning Representations,
2017.

[6] W. Hamilton, et al., “Inductive representation learning on large graphs,”
Adv. Neural Inf. Process. Syst., 2017.

[7] X. Bresson, et al., “Residual gated graph convnets,” arXiv preprint
arXiv:, 2017.

[8] M. Zhang, et al., “Link prediction based on graph neural networks,”
Adv. Neural Inf. Process. Syst., vol. 31, pp. 5165–5175, 2018.

[9] M. Yan, et al., “Hygcn: A gcn accelerator with hybrid archi-
tecture,” in 2020 IEEE International Symposium on High Perfor-
mance Computer Architecture (HPCA). IEEE, 2020, pp. 15–29. DOI:
10.1109/HPCA47549.2020.00012

[10] T. Geng, et al., “Awb-gcn: A graph convolutional network accelerator
with runtime workload rebalancing,” in 2020 53rd Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO). IEEE, 2020,
pp. 922–936. DOI: 10.1109/MICRO50266.2020.00079

[11] A. Auten, et al., “Hardware acceleration of graph neural networks,” in
2020 57th ACM/IEEE Design Automation Conference (DAC). IEEE,
2020, pp. 1–6. DOI: 10.1109/DAC18072.2020.9218751

[12] Zonghan Wu, et al. 2020. A comprehensive survey on graph neural
networks. IEEE Transactions on Neural Networks and Learning Systems
(2020).

[13] Y. Kim, W. Yang, and O. Mutlu, “Ramulator: A fast and extensible dram
simulator,” IEEE Comput. Archit. Lett., vol. 15, no. 1, pp. 45–49, 2015.
DOI: 10.1109/LCA.2015.2414456

[14] Z. Jia, et al., (2019). Redundancy-Free Computation Graphs for Graph
Neural Networks. arXiv.

[15] J. E. Gonzalez, et al., “PowerGraph: Distributed Graph-Parallel Compu-
tation on Natural Graphs,” in Proceedings of the Symposium on Oper-
ating Systems Design and Implementation (OSDI), 2012, pp. 17–30.

[16] P. Veličković, et al., 2018. Graph Attention Networks. In Proceed-
ings of the 6th International Conference on Learning Representations
(ICLR’18).

[17] V. G. Satorras, et al., 2018. Few-Shot Learning with Graph Neural Net-
works. In Proceedings of the 6th International Conference on Learning
Representations (ICLR’18).

[18] N. Challapalle, et al., “GaaS-X: Graph Analytics Accelerator Supporting
Sparse Data Representation using Crossbar Architectures,” in Proceed-
ings of the International Symposium on Computer Architecture (ISCA),
2020, pp. 433–445. DOI: 10.1109/ISCA45697.2020.00044

[19] Y. Huang, et al., “RAGra: Leveraging Monolithic 3D ReRAM for
MassivelyParallel Graph Processing,” in Proceedings of the Design,
Automation & Test in Europe (DATE), 2019, pp. 1273–1276. DOI:
10.23919/DATE.2019.8715192

[20] Z. Wu, et al., “A comprehensive survey on graph neural networks,” IEEE
Trans. Neural Netw. Learn. Syst., 2020.

[21] K. Xu, et al., “How powerful are graph neural networks?” arXiv preprint
arXiv:, 2018.

[22] W. Huangfu, et al., BEACON: Scalable Near-Data-Processing Acceler-
ators for Genome Analysis near Memory Pool with the CXL Support,
2022 55th IEEE/ACM International Symposium on Microarchitecture
(MICRO), Chicago, IL, USA, 2022, pp. 727-743.

[23] DGL, [n.d.][n.d.]. DGL Framework. https://github.com/dmlc/dgl.
[24] Z. Zhou, et al., 2023. GNNear: Accelerating Full-Batch Training

of Graph Neural Networks with near-Memory Processing. In Pro-
ceedings of the International Conference on Parallel Architectures
and Compilation Techniques (PACT ’22). Association for Comput-
ing Machinery, New York, NY, USA, 54–68. https://doi.org/DOI:
10.1145/3559009.3569670

[25] W. Fan, et al., “Graph neural networks for social recommendation,”
in The World Wide Web Conference, 2019, pp. 417–426. DOI:
10.1145/3308558.3313488

[26] A. Lerer, et al., “Pytorch-biggraph: A large scale graph embed-
ding system,” Proceedings of Machine Learning and Systems, vol. 1,
pp. 120–131, 2019.

[27] X. Weng, et al., “Joint 3d tracking and forecasting with graph neural
network and diversity sampling,” arXiv preprint arXiv:, vol. 2, no. 6.2,
p. 1, 2020.



IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 12

[28] B. Jin, et al., “Multi-behavior recommendation with graph convolutional
networks,” in Proceedings of the 43rd International ACM SIGIR Con-
ference on Research and Development in Information Retrieval, 2020,
pp. 659–668.

[29] Z. Yang and S. Dong, “Hagerec: Hierarchical attention graph convo-
lutional network incorporating knowledge graph for explainable rec-
ommendation,” Knowl. Base. Syst., vol. 204, p. 106194, 2020. DOI:
10.1016/j.knosys.2020.106194

[30] M. Klimke, et al., “Cooperative behavior planning for auto-
mated driving using graph neural networks,” in 2022 IEEE Intel-
ligent Vehicles Symposium (IV). IEEE, 2022, pp. 167–174. DOI:
10.1109/IV51971.2022.9827230

[31] K. He, et al., “Deep residual learning for image recognition,” in
Proceedings of the IEEE Conference on computer vision and pattern
recognition, 2016, pp. 770–778.

[32] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” Commun. ACM, vol. 60, no.
6, pp. 84–90, 2017. DOI: 10.1145/3065386

[33] C. Szegedy, et al., “Going deeper with convolutions,” in Proceedings of
the IEEE conference on computer vision and pattern recognition, 2015,
pp. 1–9.

[34] J. Gilmer, et al., “Neural message passing for quantum chemistry,”
in International conference on machine learning. PMLR, 2017, pp.
1263–1272.

[35] A. Abou-Rjeili and G. Karypis, “Multilevel algorithms for partitioning
power-law graphs,” in Proceedings 20th IEEE International Parallel and
Distributed Processing Symposium. IEEE, 2006, pp. 10–pp.

[36] J. E. Gonzalez, et al., “Powergraph: Distributed graph-parallel compu-
tation on natural graphs,” in Presented as part of the 10th USENIX
Symposium on Operating Systems Design and Implementation (OSDI
12), 2012, pp. 17–30.

[37] C. Xie, et al., “Distributed power-law graph computing: Theoretical and
empirical analysis,” Advances in neural information processing systems,
vol. 27, 2014.

[38] J. Ahn, et al., 2015. A scalable processing-in-memory accelerator
for parallel graph processing. In Proceedings of the 42nd Annual
International Symposium on Computer Architecture. 105–117. DOI:
10.1145/2749469.2750386

[39] G. Dai, T. Huang, Y. Chi, J. Zhao, G. Sun, Y. Liu, et al., “Graphh:
A processing-in-memory architecture for large-scale graph processing,”
IEEE Trans. Comput. Aided Des. Integrated Circ. Syst., vol. 38, no. 4,
pp. 640–653, 2018. DOI: 10.1109/TCAD.2018.2821565

[40] L. Nai, et al., 2017. GraphPIM: Enabling Instruction-Level PIM Of-
floading in Graph Computing Frameworks. In 2017 IEEE Interna-
tional Symposium on High Performance Computer Architecture, HPCA
2017, Austin, TX, USA, February 4-8, 2017. IEEE Computer Society,
457–468. https://doi.org/DOI: 10.1109/HPCA.2017.54

[41] M. Zhang, et al., 2018. GraphP: Reducing communication for PIM-
based graph processing with efficient data partition. In 2018 IEEE
International Symposium on High Performance Computer Architecture
(HPCA). IEEE, 544–557. DOI: 10.1109/HPCA.2018.00053

[42] Y. Zhuo, et al., 2019. Graphq: Scalable pim-based graph processing. In
Proceedings of the 52nd Annual IEEE/ACM International Symposium
on Microarchitecture. 712–725. DOI: 10.1145/3352460.3358256

[43] J. Chen, et al., 2018. Fastgcn: fast learning with graph convolutional
networks via importance sampling. arXiv preprint arXiv: (2018).

[44] W.-L. Chiang, et al., 2019. Cluster-gcn: An efficient algorithm for
training deep and large graph convolutional networks. In Proceedings
of the 25th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining. 257–266. DOI: 10.1145/3292500.3330925

[45] W. Hamilton, et al., Inductive representation learning on large graphs.
In Advances in neural information processing systems. 1024–1034.

[46] H. Zeng, et al., 2019. Graphsaint: Graph sampling based inductive
learning method. arXiv preprint arXiv: (2019).

[47] Z. Cai, et al., DGCL: an efficient communication library for distributed
GNN training. In EuroSys ’21: Sixteenth European Conference on
Computer Systems, Online Event, United Kingdom, April 26-28, 2021,
Antonio Barbalace, Pramod Bhatotia, Lorenzo Alvisi, and Cristian Cadar
(Eds.). ACM, 130–144. https://doi.org/DOI: 10.1145/3447786. 3456233
DOI: 10.1145/3447786.3456233

[48] Z. Jia, et al., “Improving the accuracy, scalability, and performance of
graph neural networks with roc,” Proceedings of Machine Learning and
Systems, vol. 2, pp. 187–198, 2020.

[49] M. Vasimuddin, et al., 2021. DistGNN: Scalable Distributed Training
for Large-Scale Graph Neural Networks. arXiv preprint arXiv: (2021).

[50] A. Tripathy, et al. 2020. Reducing communication in graph neural
network training. In SC20: International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis. IEEE, 1–14. DOI:
10.1109/SC41405.2020.00074

[51] R. Hwang, et al., “Grow: A row-stationary sparse-dense gemm
accelerator for memory-efficient graph convolutional neural net-
works,” in 2023 IEEE International Symposium on High-Performance
Computer Architecture (HPCA). IEEE, 2023, pp. 42–55. DOI:
10.1109/HPCA56546.2023.10070983

[52] R. Sarkar, et al., “Flowgnn: A dataflow architecture for real-
time workload-agnostic graph neural network inference,” in
2023 IEEE International Symposium on High-Performance
Computer Architecture (HPCA). IEEE, 2023, pp. 1099–1112. DOI:
10.1109/HPCA56546.2023.10071015

[53] M. Yoo, et al., “Sgcn: Exploiting compressed-sparse features in deep
graph convolutional network accelerators,” in 2023 IEEE International
Symposium on High-Performance Computer Architecture (HPCA).
IEEE, 2023, pp. 1–14. DOI: 10.1109/HPCA56546.2023.10071102

[54] G. Karypis and V. Kumar. Metis: A software package for partitioning
unstructured graphs, partitioning meshes, and computing fill-reducing
orderings of sparse matrices, 1997.

Haoyang Wang is a Ph.D candidate in School
of Computer Science, Northwestern Polytechnical
University. She received M.E. in Northwestern Poly-
technical University. Her main research interests
include Computer Architecture, Machine Learning
and Neuromorphic Architecture.

Shengbing Zhang received the M.E. and Ph.D.
degree in computer science and technology
from Northwestern Polytechnical University,
Xi’an, China, in 1991 and 1998, respectively. He
is currently a Full Professor with Northwestern
Polytechnical University. His main research interests
include Architecture, Computer engineering and
technology and Neuromorphic Architecture, VLSI.

Xiaoya Fan received the M.E. and Ph.D. degree
in computer science and technology from North-
western Polytechnical University, Xi’an, China, in
1985 and 1989. He is currently a Full Professor with
Northwestern Polytechnical University. His research
interests include Digital Circuit Design, SoC Design,
and Mixed-signal Circuit Design.

Zhao Yang is an assistant professor in School
of Future Transportation, Chang’an University. His
research interests include computer architecture, ma-
chine learning, and perva- sive computing. He is cur-
rently exploring the challenges of federated learning
on heterogeneous mobile edge computing platforms.

Meng zhang , Ph.D, Associate professor, Member
of China Computer Federation. His main research
interests include Computer Architecture, Machine
Learning and Neuromorphic Architecture, VLSI.


