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Abstract—Embedded machine learning applications face chal-
lenges related to massive data movement and high computational
intensity, exacerbated by the limited performance of mobile de-
vices. Computational Storage Devices (CSDs) pose huge potential
for accelerating both data-intensive and computation-intensive
embedded machine learning tasks by effectively reducing data
movement and leveraging built-in accelerators. However, existing
in-storage-computing (ISC) frameworks either require invasive
customization of existing host driver layers or necessitate complex
device firmware modifications, hindering the widespread deploy-
ment of CSDs. Additionally, the lack of file semantics and the
constrained internal resources within CSD implicitly compromise
system performance and impact normal read/write performance.

In this paper, we aim to provide a Non-intrusive In-storage-
Computing framework for Embedded applications, named NICE.
This framework includes an easy-to-use in-storage-computing
programming interface that bypasses the kernel stack and
requires no modification to the host NVMe driver, which is
achieved through a novel hyper-addressing-based programming
library and a file-aware page data layout within the CSD.
Additionally, we incorporate a lightweight kernel with coroutine-
based command scheduling and several FPGA-based accelerators
within the storage device firmware to enhance the performance
of embedded machine learning applications while ensuring that
the normal I/O performance remains unaffected.

NICE is implemented on real CSD hardware integrated with
ARM and FPGA. Experimental results demonstrate that our
NICE framework can achieve an average latency performance
improvement of 43.5x (9.32x) compared to CPU- (GPU-) based
embedded machine learning solutions using the state-of-the-art
NVIDIA Jetson NX platform, with 27.5x (4.3x) higher energy
efficiency. NICE also has 34.2x less software and I/O performance
overheads than state-of-the-art ISC frameworks.

Index Terms—Embedded System, Solid State Drive, In Storage
Computing, Computational Storage Device

I. INTRODUCTION

As embedded devices are widely adopted in both daily life
and industrial fields, embedded machine learning paves the
way for real-time and privacy-sensitive AI applications [1]–
[7]. However, embedded machine learning faces substantial
challenges related to data movement overhead and high com-
putational intensity. Computational Storage Devices (CSDs)
exhibit great potential to address these challenges. Benefitting
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from in-storage-computing (ISC) capabilities, CSDs can avoid
the bottleneck of extensive data transfer between processing
units and storage devices. Many data-intensive applications,
such as neural network inference and nearest neighbor search
in recommendation systems, gain a lot of benefits from ISC
technology [8]–[14], especially for embedded devices with
limited computational resources.

Currently, to integrate CSDs into existing systems, three
key issues need to be considered: 1) how programmers can
offload programs to the accelerator, 2) how the CSD firmware
handles ISC requests, and 3) how to design application-specific
accelerator logic in CSDs. However, recent works mainly
focus on accelerator logic design for specific applications,
overlooking the minimization of modifications to existing
systems during integration and the provision of programmer-
friendly ISC frameworks. For instance, [9], [15], [16] enrich
the NVMe protocol by utilizing some unused bits to add extra
NVMe commands for ISC invocations. However, this approach
requires heavy modifications to the existing NVMe driver in
the host system. Other works [14], [17] send network packages
to the CSD to invoke built-in accelerators. Although this
approach can minimize modifications to the host system by
only providing a library based on Ethernet protocols, it usually
burdens the CSD by equipping it with a full-fledged Linux to
receive and process network packets, putting heavy pressure on
the inherently low-performance CSD controller. Additionally,
existing solutions overlook the impact of ISC tasks on normal
I/O performance. Therefore, in this paper, we aim to propose
a non-intrusive ISC framework that allows programmers to
easily offload various embedded machine learning applications
to the CSD without requiring complex modifications to exist-
ing systems and with minimal I/O performance overhead. To
achieve this, four challenging issues must be addressed.

The first challenge is how to distinguish ISC invocations
from normal NVMe Read/Write requests. Without any extra
NVMe commands, we propose a novel hyper-addressing-based
ISC method. Specifically, our NICE framework exposes twice
the actual capacity of each CSD to the host system. The extra
address range is named HyperAddress. When programmers
need to invoke ISC tasks, they can issue a normal NVMe
Read/Write command with the LPA (Logical Page Address)
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Fig. 1. A typical computational storage device architecture.

located at the HyperAddress range, while the Read/Write com-
mand within a normal address range still acts as the original
Read/Write command. Thus, the CSD can easily distinguish
ISC invocations by checking if the LPA exceeds the normal
address range. With such a hyper-addressing-based method,
we can initiate ISC invocations without any modifications to
the existing host NVMe driver.

The second challenge lies in bridging the semantic gap
between the host file system and the device firmware. Many
machine learning applications require files as inputs (e.g.,
images in image recognition). However, the file system on
the host side translates a file read into multiple page reads,
including inode pages and data blocks. From the perspective of
the CSD, these are individual NVMe read commands without
any concept related to files. To address this, we propose an
in-CSD file-aware page data layout to identify each file used
for ISC tasks. As a non-intrusive framework, we aim to
refrain from modifying anything within the existing host file
system or negatively impacting it. For instance, CSDs can be
formatted normally as EXT-4, and users should be able to
initiate requests through the filesystem’s write-read operations
seamlessly. As only write operations change file layouts on
disk, we monitor each NVMe write command to detect inode
page modifications, retrieve all data blocks’ LPN (logical page
number) from inode pages, and obtain relevant PPNs (physical
page numbers) based on the mapping table. We then establish
a doubly linked list stored in the Out-Of-Bound (OOB) area
of each physical flash page. Through this doubly linked list,
we can ensure that each file is correctly fed into the CSD’s
built-in accelerator following the correct order.

The third challenge is how to prevent ISC tasks from
affecting the throughput of normal read and write requests.
Since we offload most of the host’s computations to the CSD,
although we utilize FPGA resources to relieve the pressure of
the CSD’s built-in microcontroller, the polling-based FPGA
scheduling still inevitably impacts the SSD’s regular read and
write performance. Therefore, we design a coroutine-based
scheduling strategy and locking mechanisms within the CSD
to seamlessly handle both normal I/O requests and ISC tasks.
This approach ensures that our NICE framework is non-
intrusive for normal I/O performance.

The last challenge is the accelerator logic design for em-
bedded machine learning applications. Unlike other works
dedicated solely to designing FPGA accelerators, our FPGA
resources are also occupied by SSD controller logic. To effi-
ciently utilize FPGA resources, we propose a data partitioning
engine and a task allocation engine to achieve computational-
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level parallelism. We also introduce two ping-pong buffers in
the accelerator design to achieve task-level parallelism. With
this approach, we have implemented several built-in acceler-
ators, significantly reducing data movement between the host
CPU and storage devices. Finally, we have implemented NICE
on real CSD hardware with ARM and FPGA resources and
observed significant performance improvements.

II. BACKGROUND AND MOTIVATION

A. Computational Storage Device

As many data-intensive applications emerge, traditional von
Neumann architecture faces more severe data stall problems
caused by limited storage performance. Instead of migrating
data from the storage side to the CPU side, the CSD mitigates
the data stall problem by offloading computations to the
storage side close to the data. Figure 1 shows a typical CSD ar-
chitecture, in which the microcontroller in the CSD takes more
responsibility (e.g., ISC tasks) than the original SSD controller
which only runs some Flash Translation Layer (FTL) functions
(address mapping, garbage collection, etc.). Moreover, due to
the limited computing resources in the microcontroller, CSDs
usually equip some application-specific acceleration logic such
as FPGA resources for more efficient task offloading. With
such an ISC architecture, some data-intensive tasks can be
directly performed near the data, effectively reducing data
movements and alleviating pressure on the host CPU.

B. In-storage-computing Framework

Many recent works are focusing on utilizing the CSD to ac-
celerate data-intensive applications. Table I summarizes some
state-of-the-art works from three perspectives: 1) modifications
made to the existing host system; 2) methods for invoking
ISC tasks within the CSD; and 3) the types of resources
used by ISC tasks. As shown below, some works invoke in-
storage functions via Ethernet-based network packets [14],
[17], facilitating seamless integration into the current host sys-
tem. However, they all need full-fledged Linux running inside
the CSD microcontroller to handle network packets, which
inherently impacts the storage performance since the micro-
controller still needs to perform FTL tasks. Others either need
to revise the NVMe protocol by adding some extra command
to invoke in-storage functions or need a fully customized host
driver for CSD products. Those works more or less require
host driver changes, preventing their technologies from being
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widely adopted in existing systems. Thus, we aim to design
a non-intrusive framework without any modification to the
existing host system, while taking a lightweight kernel in the
CSD to avoid performance impact. Furthermore, some existing
works [9], [12], [15], [16] directly take the microcontroller in
the CSD to perform in-storage-computing tasks, it is hard to
strike a balance between computation tasks and FTL tasks.
Thus, our NICE employs FPGA-based logic designed for in-
storage-computing tasks to relieve the microcontroller’s load.

TABLE I
THE COMPARISON BETWEEN NICE AND RECENT WORKS.
Related Host CSD Acceleration
Works Driver Runtime Logic

RecSSD [12] Customized Bare metal Inside
firmware

Virtual Extra NVMe Bare metal Inside
Object [18] command firmware
nKV [11] Customized Bare metal FPGA-based

ISC Customized Customized Inside
Hadoop [19] kernel firmware

RM-SSD [13] Customized FPGA logic FPGA-based
Newport [15] Extra NVMe Full-fledged Inside

command Linux firmware
SmartSAGE Extra NVMe Bare metal Inside

[9] command firmware
SoftSSD [16] Extra NVMe Lightweight Inside

command kernel firmware
V-Store [20] Customized Customized FPGA-based

kernel
Containerized Network Full-fledged Inside

framework [17] command Linux firmware
Hybrid CNN Network Full-fledged Inside
Training [14] command Linux firmware
PreCog [8] Customized Bare metal FPGA-based
Cognitive Customized Customized FPGA-based
SSD [10] kernel

Optimizing NDP Customized Full-fledged Inside
Operations [21] File System firmware

NICE Unmodified Lightweight FPGA-based
(this work) kernel

C. Embedded Machine Learning Applications

Embedded Convolutional Neural Network. The embed-
ded CNN has been widely deployed for real-time object
detection. However, as the microcontroller in the CSD only
has limited computing resources even with FPGA assisted
(constrained by maximal 15W power through M.2 slot [22]),
we need to judiciously consider which type of neural network
is suitable for such an embedding environment. Considering
the Storage Intensity (SI) defined by SI = FLOPS

I/Osize , which
indicates how much computation is associated with each byte
transfer from storage devices, a neural network with a smaller
SI is more suitable for embedded environments due to less
computation requirement [23], as well as obtaining more
benefits from the CSD with less data movement. Thus, we
select lightweight CNN models with fewer network layers and
weights for more practical embedded CNN inference.

Related works on CNN accelerators [24]–[26] have achieved
high throughput, but their power consumption is not tolerable
for CSDs, making them unsuitable for deployment inside a
storage system. Although a CNN inference accelerator with
extremely low power consumption (0.34W) was implemented
in [27], its inference latency is very high. In [28], in-storage-
computing and computing-in-flash techniques are fused to

accelerate CNNs utilized in video processing. However, this
technique does not consider the placement in resource-limited
embedded environments and is only implemented in simulators
without validation on real hardware platforms. Thus, based on
the above, we have designed a low-power CNN accelerator
suitable for being placed inside SSDs, and have conducted
evaluations on a real CSD hardware platform.

Embedded Nearest Neighbor Search. The embedded near-
est neighbor search (NNS) algorithm is primarily used in
privacy-sensitive recommendation systems as it prefers not
to use cloud-based data processing, protecting users’ privacy
from leakage. With the increasing scale of recommendation
systems, the size of vector space has been approaching the
limit of memory capacity, especially for memory-constrained
embedded devices. When the size of vectors exceeds the
memory capacity, the searching process requires fetching a
portion of vectors from the storage device for distance calcula-
tion. This process incurs significant data movement overhead,
resulting in intolerable query latency.

Recent works [29]–[31] have designed FPGA-based accel-
erators for the efficient acceleration of NNS. However, they
all overlook the time overhead caused by fetching the corpus
from storage devices. Some works [32] improve KNN’s vector
retrieval speed by reducing external memory access, but they
do not consider external storage accesses. Although some
works also take ISC architectures to accelerate NNS [20], [33],
they mainly focus on the specific accelerator design instead
of the ISC framework, hindering programmers from easily
incorporating a CSD into their applications. Therefore, to
efficiently conduct vector retrieval and make the CSD platform
easy to use, we propose the NICE framework, adopting an ISC
architecture to accelerate nearest neighbor search, as illustrated
in Figure 2. We leverage FPGA resources in the CSD to
efficiently perform vector retrieval, with only the essential data
returned to reduce time and power consumption.

III. THE OVERVIEW OF NICE

Figure 3 illustrates the overall architecture of our NICE
design. As a non-intrusive framework, we allow the CSD to be
formatted with various file systems and initiate data read/write
requests through standard I/O operations. For ISC requests,
users can easily invoke them using our NICE library without
modification to the host NVMe driver. The hyper-addressing-
based programming framework can distinguish specific ISC
requests from regular NVMe I/O requests, which is achieved
by setting the request LBA to (the first logical page address of
the file + hyper-address). Within the CSD firmware, we intro-
duce an address interpreter to identify the address range (see
Section IV-A). For ISC requests, as CSDs lack file semantics,
we also need to retrieve all relevant file pages through file-
aware page data layout (see Section IV-B), then concatenate
them in order as input and feed them to built-in accelerators.
Next, to minimize normal I/O performance impacts caused by
ISC tasks, we propose a coroutine-based scheduling mecha-
nism in the CSD firmware (see Section IV-C). Finally, we
have designed FPGA-based accelerators for several embedded
machine learning applications (see Section IV-D). Thus, the
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CSD only returns computation results to the host, saving
the overhead of raw data movements and achieving higher
performance and energy efficiency.

IV. TECHNICAL DETAILS

A. Hyper-addressing-based Programming Framework

As a non-intrusive programming framework, we can only
follow existing NVMe commands to invoke built-in accelera-
tors without introducing additional command types. Thus, we
choose to manipulate the address range for different purposes
(normal I/O or ISC invocation). Specifically, when integrating
a CSD into the host system, it will expose twice the actual
capacity to the host, resulting in two logical address ranges: the
Normal Address Range (the lower half) and the Hyper Address
Range (the upper half), as shown in Figure 4 (a 512GB CSD
in this example). The original NVMe Read/Write commands
continue to function as usual since all NVMe requests within
the Normal Address Range are processed in the same manner
as those in a standard SSD.

TABLE II
NICE APIS.

APIs Description
open (FilePath, flag) Re-encapsulate the POSIX API, insert the file

path and first address to Hashtable after ob-
taining the file descriptor.

NICE Write
(FilePath, op)

Initiate ISC request via hyper-address, select
different accelerators for the file.

NICE Read
(FilePath, buf, size)

Initiate ISC request via hyper-address, read
ISC calculation results.

For ISC requests, leveraging the extended logical ad-
dress range, we offer a user-friendly ISC library including
two important functions: NICE Write(FilePath, op) and
NICE Read(FilePath, buf, length) in table II. In these
functions, we seamlessly translate an ISC invocation into
a standard NVMe command, with the LPA situated at the
designated Hyper Address Range. Therefore, the CSD can
easily distinguish ISC requests from regular NVMe requests
based on the input logical address. For the open API, we re-
encapsulate it in the POSIX open API with preprocessing of
the NICE framework.

Normal IO: NICE_open()

CSD

Normal NVMe cmd

NICE_read() / NICE_write()

Normal NVMe cmd with Hyper Address
Normal I/O request handler

  Device LPA range
Read Write

0GB 512GB
Integrate 

data pages
FPGA

Computing
Select FPGA 
accelerators

Result

Insert
File Head-LPA Hash Table

Index

File Path File Head-LPA
/media/csd/nvme0/file1 0x2024

…… ……

File System and Block IO Layer
Read/Write CMD(LBN=0x2024) Read/Write CMD(LBN=0x2024+512GB)

512GB 1TB0GB   Device LPA range   Hyper Address

Address Interpreter

Hyper-Address

Fig. 4. The hyper-addressing-based framework.

• NICE Open Operation. We have extended the POSIX
open API to incorporate file LPA information within the NICE
framework. Since the NICE framework passes ISC requests
via hyper-addresses, it is essential to establish relationships
between files and their corresponding LPA numbers. Thus,
NICE maintains a Head-LPA hash table that maps <the file
path> to <the first logical address of the file>, eliminating
the necessity to traverse the file path from the root directory to
locate the inode number when initiating ISC requests. Thus,
our NICE framework can bypass several OS kernel layers
achieving higher ISC efficiency.

Such a relationship can be built when every file is created.
Given that file creation and storage are prerequisites for ISC
operations, the open function is crucial before performing ISC
tasks on a specific file. Since the file creation would inevitably
invoke the open function to return the file descriptor, we have
re-encapsulated the open function to insert Hash(File Path)
and the first address of the file into the hash table at the time
of file creation. Furthermore, as the open function conducts
permission checks, files lacking sufficient permissions will not
be included in the Head-LPA hash table to prevent malicious
attacks. The hash table storage overhead (e.g., 0.34MB per
10,000 files) is also negligible for large-capacity SSDs.
• NICE Read Operation. To initiate ISC tasks, program-

mers only need to replace the Read() function with our
NICE Read(FileName, buf, size), requiring no additional
changes. Within the NICE Read context, the file’s first
logical address is retrieved by searching the hash table based
on the file name, eliminating the need to traverse the file
system stack from the root directory. During this process, we
modify the start LPA in the read operation with the Hyper
Address instead of the original LPA. The calculation of the
Hyper Address involves adding a fixed offset equivalent to
the actual capacity (e.g., 512GB in Figure 4) to the original
address. This establishes a one-to-one mapping between the
Normal Address Range and the Hyper Address Range, which
guarantees that even if the host issues a NICE Read() re-
quest with any arbitrary Hyper Address, the CSD can identify
the corresponding original address. Finally, we employ ioctl
to transmit the modified read command to the CSD.

Upon receiving an NVMe read request, the CSD initially
examines whether the request’s start LPA is located within the
Hyper Address Range. If yes, the CSD conducts ISC tasks us-
ing the data stored at the original LPA, which is obtainable by



5

Host

Device

File system
Regular page requests

Partition metadata (e.g. Superblock)

Normal I/O request handler

FileSystem Semantics

In-Storage-Computing requests

Inode InterpreterTranslation Table Superblock 
Group Desc

ISC I/O request handler

Fig. 5. The overview of file-aware in-CSD page data layout.

subtracting the actual capacity from the Hyper Address. Hence,
by utilizing NICE Read(FileName, buf, size), program-
mers can easily perform ISC tasks, obtaining result feedback
directly without transferring large raw data to the host.

• NICE Write Operation. To support various embed-
ded machine learning applications in the CSD, programmers
must be able to select different accelerators. This selec-
tion is achieved through the NICE Write(FileName, op)
function in our NICE library. Similar to the NICE Read
function, we replace the original LPA with the corresponding
Hyper Address when initiating the write command. As no
actual data modification occurs, the identifier of the chosen
application model will be written, whose size is determined
by the number of embedded accelerators implemented in the
CSD. To avoid data inconsistency caused by the accelerator’s
identifier, it cannot be stored within the data page. Thus, we
leverage the OOB area in each physical flash page to store
this identifier, whose size is smaller enough regarding more
than 400 bytes of OOB space in a 4KB flash page.

B. File-aware In-CSD Page Data Layout

Due to the absence of file semantics within the CSD,
bridging the semantic gap between the host file system and the
CSD runtime is necessary for initiating ISC tasks. Thus, we
propose a file-aware CSD internal page data layout to preserve
relationships among file pages. This layout ensures that an ISC
operation with only one LPA transferred to the CSD can be
accurately identified and executed. This layout ensures that a
complete file can be accurately identified in CSD and fed to
the computing unit with sequential information with just one
NVMe command.

Originally, obtaining file semantics involved initiating sys-
tem calls in the kernel’s Virtual File System (VFS) to traverse
the namespace tree along the file path. Specifically, it begins
by locating the corresponding inode data in the inode table
based on the inode number of the root directory, and then
obtaining the inode data of the next-level directory level-
by-level, until reaching the target file. NICE eliminates this
time-consuming path traversal process by constructing and
maintaining a mapping between the file name and the logical
address of its first block (as mentioned in Section IV-A: NICE
Open Operation). When initiating ISC operations on a specific
file, we simply issue a hyper-addressing-based read command
to its first block according to the mapping table, saving the
latency of traversing the whole path from the root directory.

After path traversal, existing ISC architectures commonly
require reading the page where the inode corresponding to
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the file is located in the host and parsing all the data blocks
corresponding to the file. To avoid extra I/O caused by reading
the inode page, we offload the inode page interpretation into
the CSD.

Figure 5 provides an overview of our file-aware CSD in-
ternal page data layout design, demonstrating additional infor-
mation that needs to be maintained in the CSD firmware (e.g.,
partition and filesystem metadata). When the host formats
the SSD into a file system such as EXT-4, the file system’s
superblock, group descriptor, and other metadata are written to
specific logical pages. Traditional SSD systems have this data
but do not use it, while our system will monitor and use this
data to obtain the semantics of the file in the CSD. As the LPA
of data blocks recorded in the inode page serves solely as an
offset to the partition’s starting LPA rather than representing
an absolute LPA, the CSD without partition information faces
difficulty in accurately identifying the correct LPA for data
blocks. Thus, we record the starting LPA of each partition to
a Superblock Table in the CSD.

Considering the possibility that the file’s first LPA recorded
in the Head-LPA mapping table may not reference an inode
page, we additionally maintain a doubly linked list within
the Out-Of-Bound (OOB) area of each physical data page,
recording its corresponding predecessor and successor logi-
cal/physical data pages, as depicted in Figure 6. When an
ISC command (e.g., NICE Read()) is initiated, the CSD
receives an NVMe Read command with its LPA being the
logical address of the file’s first page. Suppose the first LPA
corresponds to the file’s inode. In that case, we directly parse
the inode page to fetch LPA offsets of all data pages, and
then add the partition’s StartLPA from the Superblock Table
to obtain the absolute LPA of data pages and corresponding
PPAs. If the first LPA only points to a specific data page, we
can still retrieve all data pages from the doubly linked list.

To construct the doubly linked list in the OOB area of
each data page, we persistently monitor each page written to
determine if it is an inode page. For instance, as illustrated
in Figure 6, we first recognize an inode page written with the
#100 LPA and assign a physical page #512 for it through the
translation table (❶). Then we read the inode page to get all
data blocks of this input file (❷). As the inode LPA must be
situated in a partition whose LPA space is consecutive, we can
easily determine its associated partition using the Superblock
Table (❸). Finally, by adding each data page’s LPA offset to
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the starting LPA of this partition, we can get the absolute
LPA number of each data page (❹). After checking with
the translation table, both logical and physical page numbers
can be retrieved, which are then written to the OOB area of
each data page. Thus, we can get such file semantics without
changing the host filesystem.

Another challenge is related to garbage collection in the
CSD firmware, which may change the physical locations of
partial data pages of a file, leading to a broken linked list of
the PPAs. However, since we also record a linked list of the
LPAs that would not be changed during garbage collection,
we can restore the PPA-linked list from the LPA-linked list.
Specifically, each time we retrieve a data page through the
PPA-linked list, we also check if it matches the LPA-linked
list. Any detected mismatch will lead to a repeated read (read
the correct PPA through the LPA-linked list) according to
the newest translation table. The physical page with incorrect
OOB information is also marked as “vulnerable”. When all
data pages of the file are marked vulnerable, we additionally
perform a reconstruction for all data pages’ OOB area to
recover the correct PPA-linked list.

C. LightWeight Runtime and Coroutine-based Scheduling

NICE has a lightweight runtime based on a multi-core
processor and FPGA resources on the CSD platform. It con-
tains both coroutine-based scheduling mechanisms and lock
strategies that can simultaneously handle excessive loads of
both normal I/O and ISC requests, ensuring non-intrusive
I/O performance of the CSD. As shown in Figure 7, the
ISC request processing can be divided into multiple stages,
including SQ retrieval, SQ parsing, logical address transla-
tion, flash data transmission, in-storage calculation, and CQ
postage. Flash data transfer and in-storage calculation are the
most time-consuming operations. Therefore, we place the flash
data transfer stage on the Cortex-R5 co-processor, relieving
the pressure of Cortex-A53 (main processor). R5 interacts
with A53 through the coroutine-based sleep-wake mechanism
and task queue. For ISC logic, we implement it using FPGA
resources and utilize an interrupt-based wake-up mechanism
to release computing resources in the main A53 processor,
thus minimizing the impact on normal I/O performance. The
major job of the master coroutine is to get SQ requests and
dispatch them to each slave coroutine. We give each slave
coroutine a run queue, from which it can take out requests
for processing. For incoming ISC requests, we prioritize their
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Fig. 8. The details of FPGA-based NNS accelerator in NICE.

processing to be completed as soon as possible. By offloading
the two most time-consuming stages of ISC requests to other
cores, we can minimize the impact on normal I/O performance
while ensuring optimal ISC performance. In addition, since we
expose a new hyper-address space (with the same size as the
original address space) in the CSD to initiate ISC requests,
during the master coroutine’s task dispatching process, we
will determine whether ISC requests and normal I/O requests
hit the same original address space. If so, the two coroutines
can share the data read from NAND flash, increasing data
reusability and improving I/O performance.

D. Accelerator Design

1) In-Storage-NNS Accelerator: For data-intensive machine
learning applications such as NNS, we have implemented an
FPGA-based in-storage KNN accelerator into NICE, called
“NICE-K”. We offload all computations involved in vector
retrieval, including similarity calculation and top-k calculation,
from the host to the CSD. The architecture of NICE-K,
depicted in Figure 8, comprises the similarity calculation
module and the top-K selection module.

Similarity Calculation Module. To fully leverage FPGA
parallelism, we partition the embeddings in the corpus based
on dimensional sizes. When a query is received, we swiftly
load the partitioned vectors into the calculation module within
a single clock cycle using multiple AXI buses. This enables
us to compute the similarity between the query vector and the
vectors in the corpus across different dimensions concurrently.
Since similarity computation typically involves subtraction fol-
lowed by multiplication (such as Euclidean distance), we have
implemented the similarity calculation module in a pipelined
manner. Finally, the results from different dimensions for the
same vector are fed into a pipelined addition tree, ultimately
producing the final similarity score.

Top-k Selection Module. To improve the throughput of
NNS, we have implemented a pipeline-based Top-K selector
as described in [34]. This selector receives a score every cycle
and outputs data within the top-K range. It comprises i-merge
and Topk-merge components, where multiple i-merges can be
combined to create an i-sorter component. The data input
starts from 1-merge and progresses to Top4-merge based on
the specified value of K (e.g., 4 in the Figure 8). The Top4-
merge module includes two queues: one to store the last top-K
data and the other to hold new data. This pipelined selector
operates in a total of k + log2k clock cycles. However, when
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Fig. 9. The details of FPGA-based CNN accelerator in NICE.

processing multiple batches of data, a single selector may not
precisely match the score output frequency of the similarity
module. Therefore, we employ parallel pipeline selectors to
enhance the throughput for multi-batch processing.

2) In-Storage-CNN Accelerator: Furthermore, to empower
NICE in handling more intricate embedded machine learn-
ing tasks, we have implemented a dedicated neural network
accelerator tailored for in-storage CNN inference, referred to
“NICE-C”. Users can offload neural network models to the
SSD, execute in-storage inference tasks, and then obtain the
inference results transferred to the host instead of moving
large amounts of raw data. We offload all computations of
commonly used neural network layers such as convolutional
layers, pooling layers, linear layers, depth-wise convolutions,
pointwise convolutions, inverse residual layers, and activation
layers to the CSD. The accelerator consists of five main
modules: the input load engine, input partition engine, task
distribution engine, processing element (PE) array, and input-
output ping-pong buffers. The overview is illustrated in Fig-
ure 9, where we fully exploit the parallelism of the FPGA
from both the computational and task levels.

Computation-Level Parallelism. Due to the limited re-
sources in FPGA, preloading all input data and weights into
the accelerator is impossible. Therefore, the Input Load Engine
is needed to select and load a portion of the network inputs and
weights. The read data is temporarily stored in FPGA RAMs
(e.g., BRAM, URAM, LUTRAM) which can be configured
by programmers. However, to achieve maximum computation-
level parallelism in the PE array, higher RAM bandwidth is
required, which is constrained by limited read/write ports for
each RAM block. Therefore, we need a Data Partition Engine
to divide the input data into different RAM blocks. We first
perform a coarse-grained partition for feature maps and weight
matrices, storing each image channel in different RAM blocks,
making the data transmission benefit from more independent
read/write ports. In this way, the data in multiple channels
can be fetched to the PE array simultaneously. Fine-grained
partition is further introduced for higher throughput, where
the data in each channel is divided based on the CNN kernel
size and stored in different RAM blocks. This enables multiple
read/write ports in one image channel, allowing the PE array to
fetch all the data in one image channel with one cycle. Then,
as the data has been partitioned and stored in different RAM
blocks, Task Distribution Engine schedules the partitioned data
to idle PE units, allowing them to run simultaneously for
maximum computation-level parallelism. A pipelined adder

tree is utilized for result accumulation and the results are
finally stored in the output buffer and transferred back.

Task-Level Parallelism. To overlap the data transmission
latency with the computation, we further explore task-level
parallelism by utilizing two ping-pong buffers in both in-
put/output paths. This allows for the concurrent execution of
three stages: ❶ loading a portion of data from memory, ❷
partitioning data and performing parallel computation with PE
array, and ❸ writing computation results back to memory. With
a judicious consideration for the latency of the three stages,
developers can trade off the latency of stage 2 with more or
less hardware resources to match the latency of stages 1 and
3, thereby improving the overall inference performance.

E. NICE Implementaion

1) Softeware Implementation: Fig 10 shows the detailed
workflow of ISC requests using the NICE framework. When
calling NICE Read(FilePath, buf, size), we need to spec-
ify the file path and set the size to indicate how many bytes of
the file to perform in-storage computation (0 means the entire
file). Afterward, we hash the file path and use the result as a
key to find the corresponding file’s first LPA in the hash table.
This hash table is constructed when calling re-encapsulated
open to create a file and invoking regular write to store file
data. Once we obtain the file’s first LPA, we calculate its
corresponding hyper-address and then submit a read request
to the device driver.

Upon receiving the read request, the CSD resolves the ad-
dress back to the original LPA. Then we find the corresponding
PPA through the address translation table. If it has been cached
in the FTL cache, the page can be directly read, and the inode
number and the doubly linked list can be obtained from the
OOB. Otherwise, it needs to be read from the NAND flash. By
leveraging the inode number and existing file system metadata,
we can determine the location of the inode page. This allows
us to get the detailed file information and instruct the FPGA to
retrieve the file from NAND Flash. After ISC task execution,
the FPGA transfers results via the NVMe controller to the
buffer specified in the NICE Read function.

2) Hardware Implementation: Due to limited FPGA re-
sources, unlike other state-of-the-art works that focus solely on
using all hardware resources to implement FPGA accelerators,
our FPGA resources also need to be utilized for SSD controller
logic. This results in relatively few resources available for
accelerator design, as shown in Table III which exhibits
FPGA resource utilization in detail. Therefore, we have only
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TABLE III
THE FPGA UTILIZATION OF NICE.

Module LUT FF BRAM DSP URAM
NVMe Controller 11034 31287 46.5 0 0
DDR Controller 15415 17919 25.5 3 0
Flash Controller 61042 33770 28 0 0
CNN Accelerator 71862 68193 165 351 0
NNS Accelerator 9270 1247 9 33 54

Interconnect 55565 140445 15 0 0
In Total 214918 223586 280 354 96

Percent(%) 97.59 49.07 92.95 29.81 56.25

implemented two parallel IP cores for each specific machine
learning application, integrating all FPGA-based optimizations
in each IP core. For both of these accelerators, communication
with the Flash controller or DDR controller is facilitated
through the DMA controller as a bridge. The Flash controller
converts the data retrieved from the flash chip, in the AXI-
FULL format, into the AXI-STREAM format. This enables
streaming delivery of CNN weight data and NNS corpus
vectors to the accelerators. On the ARM side, the DMA
controller’s registers are configured to set the transfer’s starting
address, enabling data transfer from Flash to the accelerator
or DDR to the accelerator. Ultimately, the ARM side initiates
the entire computation process by changing the values of the
accelerator’s status registers and retrieves the execution results
in the form of interrupts.

We employed Verilog HDL and High-Level Synthesis for
the collaborative design of the CSD system. We synthesized
it using Vivado 2020.2 and designed our lightweight kernel
along with coroutine-based scheduling in Vitis 2020.2. As
illustrated in Figure 11, the NICE prototype is implemented on
real CSD hardware using Xilinx ZYNQ UltraScale+ ZU7EG,
which features both ARM (PS) and FPGA (PL) resources,
8GB DDR4 DRAM, and 512GB MLC NAND flash. The CSD
is connected to the host via a PCIe 3.0 x8 interface. Both KNN
and CNN accelerators are connected to the DDR controller via
the AXI bus, with their control registers exposed in the CSD
microprocessor for convenient invocation by the firmware.

V. EVALUATION

A. Experiment Setup

Non-intrusive framework. To evaluate the ISC perfor-
mance improvement brought by our framework under the
optimization of hyper-address and file-aware in-CSD page
data layout, we first conduct a comparative analysis between
the NICE with the state-of-the-art work optimizing the ISC

Fig. 11. The real CSD hardware.

path [21], and the widely-used data path based on the host
kernel I/O stack [13]. We execute the same real-world NDP
application as in [21] on NICE and set two baselines: 1) ISC
path based on the host kernel I/O stack, referred to HOST-
ISC; 2) ISC path based on FSR proposed in [21], referred to
FSR-ISC. Given that we are focusing on evaluating the ISC
path, we normalize the diverse computing performance of dif-
ferent processors and concentrate solely on comparing the ISC
path performance in our experimental analysis. Additionally,
we carefully considered the performance impact of the FTL
cache in our evaluations.

Our experiments are divided into two groups. The first group
stores the first page of the requested file in the FTL cache so
that the CSD can directly read the inode number corresponding
to this file in memory. By leveraging the file system metadata,
the CSD can calculate the inode LPN and retrieve the file’s
data chunks accordingly. The other group does not have the
first page of the requested file in the FTL cache. As a result,
the logical address of the file’s first page needs to be converted
into a physical address through the page table, then we can
retrieve the inode number stored in the NAND flash page’s
OOB area, and finally obtain the file data chunks. The EXT-4
file system is used and the path depth of the file is set to 20.

To exhibit the non-intrusive characteristic of our NICE
framework on normal I/O performance, we conduct a test
under a high load of both regular read requests and ISC
requests. The host is continuously issuing ISC commands to
the CSD based on various IOPS, while the SSD benchmark
is also running to measure the normal I/O performance. The
benchmark has two modes: 8 threads with 8 queues (8T8Q),
and 16 threads with 16 queues (16T16Q). The I/O size of
each read is set to 64 blocks (equivalent to 256KB). The
test involves reading 615MB of data, and the final result is
recorded as the ordinary read I/O performance (MB/s).

In-Stroage-NNS accelerator. To evaluate the performance
of the NNS algorithm in the NICE framework, we initially
examine the efficiency of our FPGA-based KNN accelerator
(NICE-K). We compare the performance of NICE-K with a
cutting-edge embedded computing platform NVIDIA Jetson
NX (refer to NX in the following), equipped with a 6-core
NVIDIA Carmel ARM CPU, a 384-core NVIDIA Volta GPU,
8GB DDR4 DRAM, and 128GB NVMe SSD. By employing
Facebook’s open-source similarity search library Faiss [35]
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Fig. 13. The performance of NICE’s coroutine-based scheduling.

which supports both CPU and GPU on the NX platform,
we maximize the throughput by simultaneously utilizing CPU
and GPU in the NX platform. Furthermore, we contrast the
performance of NICE-K with the state-of-the-art KNN accel-
erator CHIP-KNN [30]. More importantly, we also assess the
performance disparities between NNS implementations based
on ISC architecture and traditional architecture.

In summary, we set six distinct experimental cases: 1) CPU-
Faiss, executing the CPU version of Faiss on the NX platform;
2) GPU-Faiss, operating the GPU version of Faiss on the
NX platform; 3) the state-of-the-art FPGA-based accelerator
CHIP-KNN; 4) our FPGA-only accelerator, referred to NICE-
K, without utilizing any ISC framework; 5) NICE-K with
the FSR ISC framework, labeled as the FSR-K; 6) NICE-
K with our NICE’s ISC framework, shown as NICE. The
experimental parameters are: search space size ranged from
400 million to 6.4 billion; dimensions (D) ranged from 4 to
64; datatypes are 16-bit and 32-bit; top-k (K) is set to 128.

In-Stroage-CNN accelerator. For the In-Storage CNN ac-
celerator, referred to NICE-C, we also conduct a set of evalu-
ations comparing NICE-C with the embedded computing plat-
form NVIDIA Jetson NX and another ultra-low-power CNN
accelerator [27]. Due to the strict power constraints of our CSD
system, we do not select state-of-the-art CNN accelerators that
focus solely on inference performance without considering
energy consumption. Instead, we select a low-power CNN
accelerator aligning with the power requirements of our in-
storage accelerator. In our evaluation, we choose two rep-
resentative embedded neural networks, MobileNetV2 (α=1.0,
β=1.0) and LeNet, with the ImageNet dataset (each image with
224×224×3 bytes) and the MNIST-10 dataset. Based on the

different performance modes of the NVIDIA Jetson NX, we
construct six scenarios: 1) 6-core ARM@1.4GHz; 2) 4-core
ARM@1.9 GHz; 3) 384-core GPU@1.1GHz; 4) the ultra-
low-power CNN accelerator DeepDive; 5) NICE-C using the
FSR framework as FSR-C, and 6) NICE-C using the NICE
framework. We evaluate all six conditions on inference latency,
I/O time, and throughput for the two CNN models at different
batch sizes. We also analyze the power consumption of NICE
and demonstrate its energy efficiency.

B. NICE Framework Performance Analysis
Figure 12 illustrates the execution time of the HOST-ISC,

the FSR-ISC, and our NICE-ISC approach under different
cache behaviors and various sizes of the requested file. Experi-
mental results show that regardless of the FTL cache behavior,
our NICE-ISC outperforms both the FSR-ISC and HOST-ISC
methods across all workloads. Compared to the HOST-ISC ap-
proach, NICE uses hyper-addressing to initiate ISC commands,
which prevents the user program from trapping into the kernel
file system. The mapping table design also avoids the traversal
of the whole file path, significantly saving data movement
overhead. In comparison to the FSR-ISC approach, regarding
FTL cache hit, as shown in Figure 12(a), NICE exhibits an
average latency reduction of 15.6x-16x across different file
sizes. This improvement is attributed to NICE’s in-CSD file-
aware page data layout and hyper-address-based file semantic
retrieval method. We place the file inode number in the OOB
area of the file’s first physical page, during the file retrieving,
we only need to read the file’s first physical page and then
locate the inode blocks based on the file system’s metadata and
inode number, thereby obtaining the file’s data chunks. This
eliminates the need to traverse 20 directories starting from the
root directory based on the file name, as in the case of FSR.
Therefore, the time it takes for our system to retrieve a file only
includes the time to look up the hash table + the time of the
IO stack involved in the command + the time to read the first
page and inode page based on the hyper-address and the file
system semantics + the time of the inode interpreter parsing.
As shown in Figure 12(b), during FTL cache miss, our NICE-
ISC further reduces access latency by 50.3x-54.6x compared to
FSR-ISC. This is due to the inefficiency of flash reads, which
may reach 20 times in the worst case of a 20-depth file path in
FSR-ISC. By contrast, NICE-ISC only needs a maximum of
two flash reads to determine the file’s data chunks. Thus, NICE
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Fig. 15. The comparison of KNN energy efficiency for NVIDIA Jetson NX, FSR [21], and NICE.

provides high-performance ISC command execution efficiency
and does not suffer from performance degradation as the file
depth increases.

The impact on regular I/O performance under excessive
loads is shown in Figure 13. Figure 13(a) illustrates the
effect of using NICE’s coroutine-based scheduling vs. without
scheduling under different ISC request loads (8T8Q mode). It
can be observed that with coroutine-based scheduling, NICE
has a lower impact on read performance, even with heavy
workloads.The results for the 16T16Q mode are also similar.
With coroutine-based scheduling, the read performance is
improved. Note that there is no free lunch in the world, thus
the scheduling mechanism has slightly influenced the ISC task
performance. However, the ISC task performance reduction is
also minimal (19.5ms vs. 20.78ms), which is only around 5%.
In summary, NICE’s coroutine-based scheduling mechanism
effectively strikes a balance between normal I/O performance
and ISC task latency.

C. In-Storage-NNS Performance Analysis

1) Latency: We compare the latency of a single KNN
query between NICE and five other competitors under dif-
ferent experimental setups, as depicted in Figure 14. Firstly,
Figure 14(a) illustrates the retrieval time of a single vector
when the number of embeddings in the corpus is 0.4 billion,
and the vector dimensions range from 4 to 64, with a 16-bit
datatype. It can be observed that regardless of the dimensions,

our NICE query performance outperforms all other competi-
tors. Compared to the CPU on the NX platform, benefiting
from our NICE framework and built-in FPGA accelerator,
the query latency is reduced by 8.3x-12.6x. Regarding the
NX platform’s GPU, due to a single query’s inability to
fully leverage the GPU’s parallel computing performance
(throughput will be discussed in the next subsection), NICE’s
pipeline-based FPGA design results in a 6.4x-27.4x latency
reduction. NICE also performs 4.8x-6.7x faster than the state-
of-the-art NNS accelerator CHIPKNN. There are two reasons:
firstly, CHIPKNN does not consider the overhead of data
movement, focusing solely on accelerating the computing
process, whereas we utilize ISC architecture to avoid the
latency of data movement; secondly, we fully exploit the
pipeline parallelism for higher top-K selection performance.
Furthermore, the overall performance of our NICE framework
is also improved compared with the FSR framework.

To better illustrate the performance improvement, Fig-
ure 14(b) shows the breakdown analysis of NNS query per-
formance under various corpus sizes. There are six different
combinations of accelerator logics (CPU, GPU, CHIPKNN,
NICK-K) with ISC frameworks (SSD-IO, FSR-IO, NICE-IO):
CPU+SSD-IO, GPU+SSD-IO, CHIP-KNN+SSD-IO, NICE-
K+SSD-IO, NICK-K+FSR-IO, and NICE-K+NICE-IO. We
observe two insights: firstly, our NICE-ISC framework shows
significant performance improvements compared to the FSR-
ISC framework and traditional (SSD-IO) architectures. Sec-
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Fig. 16. The comparison of MobileNet’s performance and energy efficiency for NVIDIA Jetson NX, FSR [21], and NICE.
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Fig. 17. The comparison of LeNet’s performance.

ondly, even without using the ISC framework, our NNS
accelerator (NICK-K) performs better than other FPGA ac-
celerators. Finally, Figure 14(c) demonstrates the performance
under a 32-bit data type.

2) Throughput: In terms of throughput, we exhibit the per-
formance differences between NICE, Faiss CPU and GPU im-
plementations, and accelerators in the FSR framework (FSR-
K) across various dimensions in Figure 15(a). All competitors
utilize batched queries to achieve maximum throughput. At
low dimensions (4-32), our NICE’s throughput matches or
even exceeds that of the GPU, attributed to our accelerator’s
optimization of throughput through parallel distance calcula-
tion and pipeline-based top-K selector. However, due to limita-
tions in FPGA resources and AXI bandwidth, our accelerator
experiences constraints on pipeline parallelism and the number
of top-k modules when operating in high dimensions (D=64).
This results in a significant decrease in throughput, causing
the QPS (Queries Per Second) to be lower than that of GPUs.
Moreover, our NICE framework still achieves an average of
1.11x higher performance than that using the FSR framework.
Additionally, the CPU’s throughput is consistently the lowest
across all dimensions.

3) Energy Efficiency: Figure 15(b) illustrates the power
consumption of different architectures across various dimen-
sions. It can be observed that although GPUs achieve higher
throughput than NICE-K when dealing with high-dimensional
embedding vectors, their power consumption is also signif-
icantly higher than that of NICE-K. Since our NICE-K is
integrated into the SSD, it must strictly adhere to power con-
sumption constraints. Ultimately, in terms of energy efficiency
(QPS/Watt), NICE consistently outperforms the GPU with an
improvement ranging from 4.12x to 14.5x.

D. In-Storage-CNN Performance Analysis

1) Latency: Figure 16(a) illustrates the average execution
time of MobileNetV2 inference obtained by our NICE and the
five competitors under different batch sizes. It can be observed
that regardless of the batch size, our NICE achieves lower
inference latency compared to the other solutions. In the case
of a batch size of 1, our NICE-C accelerator achieves lower
latency than the GPU implementation, which is mainly due
to maximally exploring the FPGA parallelism with pipelined
executions. However, at batch sizes 2, 4, 8, 16, and 32, the
parallelism of the GPU is fully utilized, leading to a slightly
higher computation time for NICE-C due to limited FPGA
resources allocated to the accelerator. However, the data trans-
fer latency of the GPU dominates the overall latency at this
point. Benefiting from our ISC framework, which eliminates
the raw image data movement from SSD to GPU, the overall
inference latency of NICE is faster than that of the GPU,
despite the longer computation time. Since our NICE only
needs to return the inference results to the host, its I/O time can
be neglected compared to the GPU and CPU. Overall, NICE
has 1.56x faster inference latency on average than the GPU.
Furthermore, compared to the FSR-ISC framework, NICE also
outperforms by 15%. Things are getting much better when
a more lightweight CNN model is adopted, as Figure 17(a)
shows, in which the raw image data transmission occupies
more than 90% of the overall latency under the CPU/GPU
solution when the batch size reaches 256. Thus, at all batch
sizes, NICE outperforms the other solutions since they are
hindered by SSD I/O latency.

2) Throughput and Energy Efficiency: Finally, we analyze
the power consumption of CNN inference and the energy effi-
ciency (Throughput/Watt, TPW) of NICE and five competitors
under various batch sizes. As shown in Figure 16(b), the TPW
of NICE is significantly higher than that of CPU and GPU
solutions, even comparable to DEEPDIVE. Although in some
batch sizes, the throughput of the NICE accelerator is slightly
lower than that of the GPU, its power consumption is also
significantly lower than that of the GPU, resulting in higher
energy efficiency compared to GPU-based solutions (4.94x
on average). Compared to the CPU, due to the significant
improvement in throughput provided by our built-in accelera-
tors, the energy efficiency is increased by 33.17x, making the
slightly higher power consumption negligible. For the FSR-
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ISC framework, NICE’s energy efficiency is on average 14%
higher than it. For LeNet, the experimental results are even
better. The inference performance is 2x higher than that based
on FSR-ISC and 2.4x-19x better than the GPU-based solution.

VI. CONCLUSION

In this paper, we introduce a non-intrusive in-storage-
computing framework for embedded machine learning applica-
tions. With an easy-to-use hyper-addressing-based method and
an in-CSD file-aware page data layout, programmers can easily
perform ISC tasks without any modification to the existing
host system. Inside the CSD firmware, our coroutine-based
scheduling mechanism also helps reduce the impact on the
normal I/O performance. We also introduce several FPGA-
based optimizations to fully exploit both computation- and
task-level parallelism. Experimental results show that we can
achieve significant performance improvement and better en-
ergy efficiency than the state-of-the-art embedded platform, as
well as less overhead than the state-of-the-art ISC framework.
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