
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 1

NOBtree: A NUMA-Optimized Tree Index for
Nonvolatile Memory

Zhaole Chu , Peiquan Jin , Member, IEEE, Yongping Luo , Xiaoliang Wang , Member, IEEE,
and Shouhong Wan

Abstract—Nonvolatile memory (NVM) suffers from more seri-1

ous nonuniform memory access (NUMA) effects than DRAM2

because of the lower bandwidth and higher latency. While3

numerous works have aimed at optimizing NVM indexes, only4

a few of them tried to address the NUMA impact. Existing5

approaches mainly rely on local NVM write buffers or DRAM-6

based read buffers to mitigate the cost of remote NVM access,7

which introduces memory overhead and causes performance8

degradation for lookup and scan operations. In this article, we9

present NOBtree, a new NUMA-optimized persistent tree index.10

The novelty of NOBtree is two-fold. First, NOBtree presents per-11

NUMA replication and an efficient node-migration mechanism12

to reduce remote NVM access. Second, NOBtree proposes a13

NUMA-aware NVM allocator to improve the insert performance14

and scalability. We conducted experiments on six workloads to15

evaluate the performance of NOBtree. The results show that16

NOBtree can effectively reduce the number of remote NVM17

accesses. Moreover, NOBtree outperforms existing persistent18

indexes, including TLBtree, Fast&Fair, ROART, and PACtree,19

by up to 3.23× in throughput and 4.07× in latency.20

Index Terms—Nonuniform memory access (NUMA) effect,21

nonvolatile memory (NVM), tree index.22

I. INTRODUCTION23

THE NON-UNIFORM memory access (NUMA) archi-24

tecture is a prevalent design in modern multicore25

systems [1], [2]. In a NUMA system, CPU cores and26

memory DIMMs are organized into clusters known as NUMA27

nodes, connected by internode links like the Intel Ultra Path28

Interconnect (UPI). Each processor can access either the29

memory on its own NUMA node or that of another, resulting30

in local/remote memory access. Local memory access is inher-31

ently faster than remote memory access. Such an asymmetry32

in accessing cost is known as the NUMA effect [1], [2], which33

impacts application performance substantially.34

Nonvolatile memory (NVM) [3] is an emerging memory35

technology characterized by byte-addressability and persistent36

storage capabilities. It challenges the traditional storage37

hierarchy by bridging the gap between DRAM and SSD,38

Manuscript received 30 July 2024; accepted 30 July 2024. This work
was supported by the National Science Foundation of China under Grant
62072419. This article was presented at the International Conference on
Compilers, Architectures, and Synthesis for Embedded Systems (CASES)
2024 and appeared as part of the ESWEEK-TCAD Special Issue. This article
was recommended by Associate Editor S. Dailey. (Corresponding author:
Peiquan Jin.)

The authors are with the School of Computer Science and Technology,
University of Science and Technology of China, Hefei 230027, China
(e-mail: czle@mail.ustc.edu.cn; jpq@ustc.edu.cn; ypluo@mail.ustc.edu.cn;
wxl147@mail.ustc.edu.cn; wansh@ustc.edu.cn).

Digital Object Identifier 10.1109/TCAD.2024.3438111

prompting a fundamental reevaluation of storage system design 39

principles. In response to this paradigm shift, significant efforts 40

have been devoted to optimizing conventional data management 41

techniques for NVM, including index structures, file systems, 42

and key-value stores. Current NVM devices, e.g., Intel Optane 43

Persistent Memory (“Optane” for short in this article) [4], 44

are integrated into the system much like DRAM, thus also 45

experiencing the NUMA effect. Due to the higher latency and 46

lower bandwidth than DRAM, NVM is more susceptible to the 47

NUMA effect. With NUMA becoming ubiquitous, mitigating 48

its impact is crucial when devising NVM indexes. 49

So far, many NVM-aware indexes have been 50

proposed [5], [6], [7]. These indexes have introduced various 51

techniques to optimize performance on NVM, but the 52

consideration of the NUMA effect is notably absent in many 53

of these designs. Several works have focused on mitigating 54

the NUMA effect of NVM indexes, such as Nap [1] and 55

PACtree [8]. However, Nap needs additional DRAM buffers 56

and is tailored for specific workloads, and PACtree has huge 57

extra space overhead caused by the log. These overheads will 58

become more influential in machines with more NUMA nodes. 59

In addition, Nap can not work well under uniform workloads 60

and always undergoes a degraded scan performance because 61

of the existence of DRAM buffers. 62

In this article, we introduce NOBtree, a novel NUMA- 63

optimized tree index tailored for NVM environments. NOBtree 64

adopts a decoupled tree structure comprising a static read- 65

optimized upper layer and a write-optimized bottom layer 66

to mitigate the NUMA effect. Briefly, this article makes the 67

following contributions. 68

1) We present NOBtree, a new NUMA-optimized NVM- 69

aware tree index with a decoupled structure. NOBtree 70

proposes two new designs, including per-NUMA repli- 71

cation and an efficient node-migration mechanism, to 72

reduce remote NVM access. 73

2) We propose a dedicated NUMA-aware NVM allocator 74

that supports round-robin, local, and specific NUMA 75

node allocations. It incorporates a post-crash garbage 76

collection (GC) mechanism to reduce the overhead 77

of persistence and adopts a two-layer architecture to 78

reduce the contention of threads, thus improving the 79

performance of NVM allocation. 80

3) We conduct comprehensive experiments on a two- 81

socket server equipped with two CPUs and real NVM 82

devices to compare NOBtree with state-of-the-art NVM 83

indexes. The results show that NOBtree can effectively 84

reduce the number of remote NVM accesses. Moreover, 85

1937-4151 c© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

https://orcid.org/0009-0006-4641-9044
https://orcid.org/0000-0002-3871-0548
https://orcid.org/0000-0002-3239-2358
https://orcid.org/0000-0001-9761-7717

2 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS

Fig. 1. Architecture of a typical NUMA system.

NOBtree outperforms existing persistent indexes, includ-86

ing TLBtree, Fast&Fair, ROART, and PACtree, by up to87

3.23× in throughput and 4.07× in latency.88

The remainder of this article is structured as follows. Section II89

summarizes related work. Section III details the design90

of NOBtree. Section V reports the experimental results.91

Section VI discusses the impact of Optane’s discontinuation.92

Finally, in Section VII, we conclude this article.93

II. RELATED WORK94

In this section, we first discuss the NUMA effect on95

NVM. Then, we summarize the recent advances in NVM-96

aware indexes and NUMA optimizations. Finally, we introduce97

techniques for NVM management.98

A. NUMA Effect on NVM99

NVM integrates into a system much like DRAM. Fig. 1100

depicts a typical NUMA system. Given its higher latency101

and lower bandwidth than DRAM, NVM experiences102

more pronounced NUMA effects [9] than DRAM. Prior103

research [1], [8], [9] has underscored a noteworthy decrease in104

remote bandwidth for NVM. This effect is primarily attributed105

to the cache coherency protocol, particularly evident when106

threads on different NUMA nodes access the same NVM107

address. More specifically, today’s Intel processor architectures108

rely on the directory coherence protocol among NUMA109

domains. For NVM devices, the directory information is110

also stored in the 3D-XPoint media. When accessing the111

NVM address on a remote NUMA node, it will incur the112

coherence state change, causing a write operation to the113

directory. That means even a read operation will result in small114

write operations to NVM, causing the performance drop of115

remote NVM accesses. Consequently, it is necessary to avoid116

or reduce the NUMA impact in designing data management117

systems or storage systems tailored for NVM.118

B. NVM-Aware Indexes119

There have been a lot of indexes designed for NVM,120

either for NVM-only or DRAM-NVM hybrid architec-121

ture [5], [6], [10]. The main challenge of the NVM index122

is how to ensure crash consistency without too much123

performance loss. The NVM index’s operation must guarantee 124

crash consistency because of NVM’s feature of persistent 125

storage. A commonly used approach is to use cacheline flush 126

and fence instructions (e.g., CLWB and SFENCE) to guarantee 127

the memory write order. However, using flush and fence 128

instructions will lead to performance degradation. Previous 129

works have introduced various techniques to optimize the 130

performance of NVM indexes, such as fingerprints, indirect 131

order arrays, selective persistence, and log-free node splitting 132

mechanisms. However, the consideration of the NUMA impact 133

is notably absent in many of these designs. 134

Numerous works have endeavored to optimize indexes for 135

NVM, such as Fast&Fair [5], TLBtree [6], and ROART [11]. 136

Fast&Fair introduced a novel mechanism to maintain the 137

order of records inside a node by shifting slots and split- 138

ting/merging nodes in a failure-tolerable manner. TLBtree 139

proposed a decoupled two-layer structure to accelerate index 140

performance, which also inspires the structure of NOBtree. 141

ROART presented a series of techniques to optimize ART on 142

NVM, including entry compression and selective persistence. 143

Overall, these indexes represent the recent advances in NVM- 144

aware indexes. 145

However, within the extensive body of work dedicated 146

to optimizing indexes for NVM, only a small portion has 147

specifically focused on mitigating the NUMA effect. Nap, 148

a black-box approach, transforms any NVM index into a 149

NUMA-aware counterpart [1]. This transformation involves 150

introducing an in-DRAM NUMA-aware layer (NAL) to 151

expedite hot lookups and utilizing a local NVM buffer to 152

absorb insertions, updates, and deletions. While Nap is a 153

versatile method that demonstrates commendable performance 154

on skewed workloads, the presence of read/write buffers 155

complicates the operation process, leading to a decline in scan 156

performance. Additionally, Nap is tailored for skewed work- 157

loads and may not handle uniform workloads as efficiently. 158

Node replication (NR) [2] is a widely recognized technique 159

for addressing the NUMA effect in DRAM. It involves 160

replicating data structures across NUMA nodes and utilizing 161

a NUMA-aware shared log for synchronization. However, full 162

replication consumes substantial memory, and the synchro- 163

nization overhead is considerable, making it unsuitable for 164

NVM-oriented indexes. Therefore, PACtree [8] divides the 165

tree index into two parts: 1) the search layer and 2) the 166

data layer. PACtree selectively replicates the search layer and 167

employs per-NUMA logs to synchronize the replications. The 168

per-NUMA log records the structural modifications of the data 169

layer, and background updating threads will replay the log to 170

update the search layer asynchronously. However, a drawback 171

of the logging method is the additional NVM consumption for 172

the log, as PACtree maintains a log file in every NUMA node. 173

In Section V, where we assess each index’s NVM usage, we 174

observe that PACtree requires 500 MB of NVM space for the 175

per-NUMA log. This space overhead becomes significant in 176

machines with multiple NUMA nodes. 177

C. NVM Allocator 178

Dynamic NVM allocation is crucial to building 179

high-performance and scalable index structures. The memory 180

CHU et al.: NOBTree: A NUMA-OPTIMIZED TREE INDEX FOR NVM 3

allocators are well-defined for DRAM to achieve high181

scalability and low latency. However, NVM allocators must182

also consider crash consistency, necessitating a reevaluation183

of design principles and implementations. Several NVM184

allocators have been developed, primarily falling into two185

categories based on crash consistency mechanisms: 1) log-186

based and 2) GC-based. Log-based allocators leverage logging187

to record all changes in metadata and memory addresses.188

Upon a crash, replaying the log rebuilds the allocator’s189

correct metadata, ensuring crash consistency. PAllocator [12],190

Poseidon [13], and NVAlloc [14] adopt the log approach.191

Another mechanism for ensuring crash consistency is the192

GC mechanism, which provides an alternative to the write-193

ahead log approach. Unlike log-based allocators, GC-based194

allocators do not rely on persistent logs for maintaining crash195

consistency. Instead, they rebuild metadata by traversing the196

heap from a predefined persistent root pointer. GC-based allo-197

cators offer faster allocation and deallocation than log-based198

allocators because they avoid the overhead of persisting logs199

for every allocation or deallocation operation. However, they200

may incur longer recovery times after a crash, as they need201

to traverse the entire memory space to reconstruct metadata.202

Ralloc [15] and DCMM [11] employ the GC mechanism.203

Previous studies have emphasized the importance of204

NUMA-aware NVM allocation to minimize costs [1], [8].205

However, existing approaches typically rely on PMDK to206

build customized NVM managers, which may suffer from207

performance and scalability limitations. To address the short-208

coming, we propose to develop a dedicated high-performance209

NVM allocator with NUMA-awareness. This allocator aims210

to optimize NVM allocation while considering the NUMA211

effect, thereby enhancing the performance and scalability of212

NVM-based indexes.213

III. DESIGN OF NOBTREE214

In this section, we first introduce the motivation and overall215

structure of NOBtree. Then, we describe the optimizations of216

NOBtree for the NUMA architecture. Finally, we present the217

architecture and operation of the NVM allocator.218

A. Motivation of NOBtree219

To explore the impact of the NUMA effect on NVM220

indexes, we first perform a comparative experiment involving221

TLBtree [6] and Fast&Fair [5], along with a variant of TLBtree222

named TLBtree-NR. In TLBtree-NR, the tree undergoes repli-223

cation across all NUMA nodes, ensuring that all operations224

exclusively interact with the tree within the local NVM,225

eliminating all the remote NVM access. Note that TLBtree-226

NR does not incorporate the NR algorithm [2]; thus, it does227

not support crash consistency. We utilize TLBtree-NR solely228

to gauge the highest-achievable read performance by TLBtree229

without leveraging DRAM.230

Fig. 2 depicts the performance gap between TLBtree and231

TLBtree-NR. The experiment took place on a two-socket232

server equipped with two Intel Xeon Gold 6242R CPUs,233

each having 20 physical cores. Thread assignment follows a234

configuration where if the number of threads is below 20, they235

Fig. 2. Performance gain of reducing the NUMA effect: TLBtree-NR uses
replications across NUMA nodes to reduce the NUMA effect, showing much
higher performance than TLBtree and Fast&Fair, which incur NUMA effects
with the increase of threads.

Fig. 3. Structure of NOBtree.

are allocated to a single node. However, if the thread count 236

surpasses 20, threads are distributed across two nodes, and 237

hyper-threading is enabled when exceeding 40. We employ 238

Yahoo! cloud serving benchmark (YCSB)-like workloads to 239

assess the lookup and scan performance, with keys following 240

a Zipfian distribution parameterized at 0.99. 241

As shown in Fig. 2, TLBtree and Fast&Fair struggle to scale 242

beyond a single node as thread count increases beyond 20. 243

Conversely, TLBtree-NR consistently demonstrates robust 244

scalability even though threads are distributed across the two 245

sockets. The main reason for the poor scalability of TLBtree 246

and Fast&Fair is the limited bandwidth of UPI and the 247

cache coherency mapping cost across sockets. These results 248

underscore the substantial NUMA impact on NVM index 249

performance, revealing significant potential for enhancement. 250

Therefore, there is a need to design a NUMA-optimized NVM 251

index. 252

B. Overall Structure of NOBtree 253

Fig. 3 illustrates the overall structure of NOBtree. NOBtree 254

includes two layers: 1) a read-optimized upper layer and 255

2) a write-optimized bottom layer. The upper layer is a read- 256

optimized static structure used to rapidly locate the target 257

subindex in the bottom layer during a read/write operation. 258

The bottom layer is a series of write-optimized subindexes 259

linked by pointers. The rationale behind this design is rooted 260

in the observation that B+-tree nodes closer to the root 261

are read-dominated, while write operations (insertion/deletion) 262

primarily affect the bottom levels. The structure of these two 263

layers has been designed to adapt to the features of the NVM. 264

Moreover, both the read-optimized upper layer and the write- 265

optimized bottom layer are designed to reduce the NUMA 266

effect (the details will be described below). 267

4 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS

Fig. 4. Leaf-node structure in the upper layer.

1) Read-Optimized Upper Layer: The upper layer of268

NOBtree can take the form of any data structure capable of269

delivering high-search performance. In our current implemen-270

tation, we opt for a customized k-ary tree-like index to serve271

as the upper layer. This layer is designed as a static structure272

with no structural modifications, utilizing a contiguous node273

array and eliminating all pointers. The main features of the274

upper layer are static structure, read-optimized node layout,275

and per-NUMA replication.276

Static Structure: The static structure means there is no277

structural modification in the upper layer. We employ this278

design mainly for two reasons. First, the static structure is279

beneficial for read operations. Using the static structure means280

that we can neglect the write operations and employ a fully281

read-optimized index layout. Second, according to the previous282

work [6], write operations are rare in this layer. That is because283

the write operations in a B+-tree’s inner node are triggered by284

the node split occurring in the bottom layer. The number of285

write operations decreases exponentially from bottom to top.286

Thus, it is reasonable to sacrifice the write performance for287

the read performance in the upper layer.288

Insertions to the upper layer may fail if the target leaf node289

is full because there will not be any structural modifications.290

Such failures may lead to performance decline by lengthening291

the traversal path if the target subindex is not inserted into292

the upper layer. To address the performance issues stemming293

from a full and imbalanced upper layer, NOBtree will rebuild294

the upper layer once a predefined threshold is reached. The295

threshold will influence the frequency of reconstructions. It’s296

crucial to strike a balance with this threshold because if297

rebuilding occurs too frequently, it can degrade NOBtree’s298

performance due to the high cost of reconstruction. Therefore,299

we choose a well-tuned threshold based on the experimental300

result to achieve the highest performance. We will give a301

detailed description of the rebuilding process in Section IV-C.302

Read-Optimized Node Layout: The upper layer of NOBtree303

plays a crucial role in swiftly locating the subindex, influ-304

encing the performance of both read and write operations.305

We utilize an array-based k-ary tree as the upper layer,306

categorizing nodes into immutable inner nodes and gapped307

leaf nodes. Inner nodes are ordered arrays and are always308

100% full with no pointers. This design choice enables them to309

accommodate a maximum number of keys, thus lowering the310

tree height. The inner nodes are determined at the rebuilding311

time and will not change until the next reconstruction. Leaf312

nodes contain records with a key and a pointer to subindexes313

and employ a gapped structure. Fig. 4 shows the leaf-node314

structure. We reserve a few empty slots in each leaf node315

(preallocating some gaps when rebuilding the top layer). The316

empty slots in a leaf node can absorb new records generated317

Fig. 5. Node structure in the bottom layer.

by a subindex splitting of the bottom layer. The version is used 318

for optimistic concurrency control like previous works [16]. 319

In our implementation, the slot number is set to 15, and we 320

reserve three empty slots when building the upper layer. Note 321

that the size of inner nodes and leaf nodes is both 256B, 322

aligning with Optane’s internal page size, which can reduce the 323

number of NVM accesses when traversing the tree. Moreover, 324

all the nodes are allocated in contiguous memory space. Such 325

a design can reduce the number of TLB misses during the 326

operation process, leading to higher performance. 327

Per-NUMA Replication: While the read-optimized static 328

structure of the upper layer can offer the ability to rapidly 329

locate the subindex. Threads from other sockets still experi- 330

ence reduced search performance due to remote NVM access if 331

the upper layer resides in only one NUMA node. To tackle this 332

issue, we propose replicating the upper layer across all NUMA 333

nodes. During an index operation, each thread accesses the 334

upper layer on its local socket, effectively reducing the costly 335

remote NVM access. We will give a detailed description in 336

Section III-C. 337

2) Write-Optimized Bottom Layer: The bottom layer 338

employs a group of subindexes, as illustrated in Fig. 3, which 339

are indexed by the upper layer. The subindex is a write- 340

optimized persistent B+-tree. All the roots of the subindexes 341

are linked via pointers. This linked structure enables the asyn- 342

chronous update of the upper layer while ensuring correctness 343

simultaneously. The subindex incorporates various techniques 344

to adapt to NVM, including a node size optimized for NVM, 345

physically unsorted but logically sorted keys, and a log-free 346

splitting/merging mechanism. We will describe the design of 347

the bottom layer next. 348

NVM-Friendly Structure: The bottom layer of NOBtree is 349

tailored to handle the majority of insert operations, neces- 350

sitating the creation of an NVM-friendly structure. Fig. 5 351

illustrates the node structure in the bottom layer. Each node 352

contains a header and several slots to store records. The header 353

contains a state field, a leftmost child pointer, a slotArray, 354

two sibling pointers, and a node id. The state field contains 355

a counter(1 byte), a sib_ver(1 byte) and a node version(6 356

bytes). The leftmost pointer points to the child node whose 357

keys are all less than the current node’s minimal key. It is 358

valid only for the inner node. The slotArray records the keys’ 359

order information in the node. The two sibling pointers and the 360

sib_ver are used to implement the log-free splitting/merging 361

CHU et al.: NOBTree: A NUMA-OPTIMIZED TREE INDEX FOR NVM 5

mechanism. The counter counts the total number of records362

in this node. The node id is used for node migration. It363

is assigned when the node is created. The node version is364

used for concurrency control. We adopt optimistic concurrency365

control in our implementation. The header’s size is less than366

64 bytes, and the size of state is 8 bytes. NOBtree’s bottom367

layer employs several techniques to improve the efficiency of368

write operations.369

The node size is set to 256B, aligned with Optane’s internal370

page size, ensuring at most one NVM access when traversing371

a node. In addition, the records within a node are physically372

unsorted but logically sorted. Such a design eliminates the373

need to shift records while inserting new keys. However,374

a completely unordered key arrangement harms searching375

and node-splitting operations. To cope with the problem, a376

slotArray is introduced to maintain the order information of377

the keys. For instance, slotArray[3] = 4 indicates that the third378

smallest key is stored in the fourth slot. In our implementation,379

each node comprises only 12 records, allowing us to represent380

the position information using just 4 bits. Therefore, we381

can embed the slotArray within an 8-byte field and update382

it atomically. This approach significantly improves search383

performance without incurring additional costly NVM writes.384

Also, we implement a log-free splitting/merging mechanism385

using shadow sibling pointers, eliminating the logging over-386

head typically employed for ensuring crash consistency. This387

approach utilizes two pointers in one node to reference the388

sibling node. A parameter, denoted as sib_ver, indicates the389

functional pointer, i.e., the pointer pointing to the actual sibling390

node. During a node splitting, we initially allocate a new node391

and copy half of the records from the splitting node to this392

new node. Subsequently, we install the new node into the393

nonfunctional pointer. Finally, we visualize the new nodes by394

atomically updating the sib_ver. This strategy ensures crash395

consistency without resorting to the costly logging mechanism.396

NUMA Optimization: The NVM-friendly structure enhances397

the insert performance of NOBtree. However, a notable398

performance degradation will occur when all subindexes are399

placed in only one NUMA node while access threads are400

distributed across multiple nodes. This is attributed to two401

main factors. First, half of the threads consistently undergo402

remote NVM access, experiencing a costly operation process.403

Second, previous work [9] reveals that reading the same404

address from multiple sockets (denoted as the near-far access405

pattern) achieves very low-NVM bandwidth due to cache406

coherency protocol. A naive solution to this problem is407

replicating the entire bottom layer across all NUMA nodes [2],408

enabling each thread to access the local bottom layer and thus409

reducing remote NVM access. However, this approach will410

introduce huge extra NVM consumption and synchronization411

costs between the replications.412

To cope with the problem without introducing extra over-413

head, we propose randomly distributing the nodes in the414

subindex across all NUMA nodes, as depicted in Fig. 3. This415

approach helps avoid near-far accesses, thereby improving416

index performance. We also introduce a node migration417

mechanism for the bottom layer. NOBtree migrates nodes418

within a subindex to the socket that accesses them most419

frequently, thereby reducing remote NVM access. We will give 420

a detailed description in Section III-D. It’s worth noting that 421

these designs necessitate specialized NVM allocation methods, 422

e.g., round-robin allocation and allocation to specific NUMA 423

nodes. However, existing NVM allocators do not support such 424

allocation patterns. Therefore, we propose a new NVM storage 425

manager to fulfil these requirements. 426

3) NVM Storage Manager: The NVM storage manager 427

(NSM) is responsible for allocating NVM. NOBtree relies 428

on a new NUMA-aware NVM allocator, as shown in Fig. 3. 429

To optimize allocation performance, we adopt a two-layer 430

structure to organize NVM storage: 1) a thread-cache layer and 431

an 2) NVM-free-page layer. The thread-cache layer is used to 432

minimize contention among concurrent NVM allocations, and 433

the NVM-free-page layer manages all free NVM pages. The 434

details of NSM will be discussed in Section III-E. 435

C. Per-NUMA Replication 436

The NUMA optimization in the upper layer is per-NUMA 437

replication, where the upper layer of NOBtree is replicated in 438

each NUMA node. Leveraging NOBtree’s decoupled structure, 439

it can tolerate inconsistency between the upper and bottom 440

layers, allowing it to replicate the upper layer in each NUMA 441

node. This design enables threads to access the upper layer 442

on the local socket, thus mitigating the costly remote NVM 443

access. 444

While the idea of NUMA NR is straightforward, it is 445

challenging to synchronize the replicas across NUMA nodes. 446

A common approach is to use a shared log for synchroniza- 447

tion [2], [8]. However, relying on a log to replay operations 448

to the upper layer introduces vulnerabilities to NOBtree. 449

Since we use only one thread to process the log entry, the 450

insertion of a newly split node into the upper layer might be 451

delayed, especially during periods of high-splitting activity. 452

While delayed updates to the upper layer do not compromise 453

the correctness of subsequent operations, they may affect 454

performance stability. If subsequent operations need to access 455

the split node before inserting it into the upper layer, they must 456

traverse the subindex list to locate the target subindex. Also, 457

the log-based method requires extra NVM space for logs; for 458

example, PACTree needs 500 MB of NVM space to store the 459

log on each node. Considering the potential drawbacks, it is 460

more practical to adopt a synchronous approach for insertions 461

into the upper layer. 462

The second reason that we do not delay the insertion 463

to the upper layer is that structural modifications in the 464

upper layer are less costly than anticipated, making immediate 465

insertion feasible. Hence, there’s no need to employ the 466

logging approach for delayed insertion. In summary, we utilize 467

a synchronous approach to update the upper layer for the 468

aforementioned reasons. Upon a subindex root node split, the 469

new root node is inserted into the upper layers immediately. 470

D. Migration Coordinator 471

The NUMA optimization in the bottom layer mainly relies 472

on the node migration mechanism, which can reduce the 473

remote NVM access in the bottom layer. We propose a 474

6 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS

migration coordinator for the bottom layer to handle the475

node migration. This optimization is based on an observation:476

each thread has different data-accessing localities. Traditional477

evaluations often distribute the workload equally among all478

threads executing the task, assuming the same hotspot data479

across them. However, systems like MySQL and Microsoft480

SQL Server typically assign a single core to service requests481

from a single session, resulting in different threads having482

distinct hotspots. This distribution characteristic presents an483

opportunity to design a node migration mechanism for the484

bottom layer in NOBtree. Leveraging the diverse hotspots of485

each thread, we can migrate nodes in the bottom layer to the486

socket that accesses them most frequently, thereby reducing487

remote NVM access. The node migration in the bottom488

layer involves two primary steps: 1) identifying the node to489

be migrated and putting it into a global queue and 2) the490

migration coordinator periodically retrieves node information491

from the global queue to execute migrations in the background.492

Inspired by the producer-consumer model, the process of node493

migration utilizes a global queue to record information about494

nodes slated for migration. When an operation thread accesses495

a specific node, it checks whether the node requires migration.496

If so, its information will be put into the global queue. A497

dedicated thread (migration coordinator) periodically polls the498

global queue and executes node migrations. Note that the499

migration coordinator runs in the background, minimizing500

disruptions to normal operations. To implement the node501

migration mechanism correctly and efficiently, we have to502

address the following challenges.503

Identifying the Node to Be Migrated: NOBtree utilizes504

historical access statistics to determine nodes eligible for505

migration in the bottom layer. It monitors access to all506

leaf nodes, identifying nodes meeting two criteria: 1) they507

are considered hot nodes and 2) most accesses are remote508

NVM accesses. A node qualifies as a hot node if its509

total accesses surpass a threshold within a monitoring win-510

dow. Subsequently, we calculate the percentage of accesses511

from remote nodes. If remote access constitutes the major-512

ity, we add the node’s information to the global queue.513

This information includes the node’s address, its parent and514

previous sibling addresses, and the target migrating NUMA515

node. The migration coordinator fetches this information516

periodically from the global queue and performs the migra-517

tion accordingly. Other methods of identifying hot data can518

also be employed, maintaining the core concept of node519

migration.520

However, maintaining access statistics can pose a scalability521

bottleneck due to the need for frequent modifications, which522

incur additional writes [17]. Given the expensive cost of NVM523

writes, we utilize an in-DRAM hash table to record the access524

information rather than maintaining statistics within the nodes525

themselves. The key in the hash table corresponds to the node526

id, as discussed in Section III-B2. To further alleviate the527

impact on the performance, we implement a sampling method,528

recording access statistics every ten operations. These statistics529

include the total number of local and remote accesses, enabling530

us to calculate the node’s ‘hotness’ and determine whether531

migration is necessary.532

Fig. 6. Structure of the NSM.

Coordinating Migration With Other Operations: 533

Coordinating migration with other operations is a key 534

responsibility of the migration coordinator. Since node 535

migration occurs in the background, structural modifications 536

may occur in the migrating node, its parent, or its previous 537

sibling node. If any structural modifications occur during 538

migration, the migration process is aborted to maintain data 539

integrity. During a migration, the node is first locked to block 540

subsequent insertions. Then, we copy the node to the target 541

NUMA node. Next, we update the node’s parent and previous 542

node to point to the new node. Note that we need to guarantee 543

crash consistency during the two update operations. Because 544

the two operations can not be done atomically, we use logs to 545

ensure crash consistency. Finally, we mark the original node 546

as obsolete and free it once no more readers access it. The 547

migration does not block any reader during this process. We 548

adopt an epoch-based reclamation strategy [18] to reclaim the 549

obsolete node. Note that the migration relies on the dedicated 550

NUMA-aware NVM allocator, which allows NVM allocation 551

on specific NUMA nodes. In the subsequent section, we will 552

present the details of the allocator. 553

E. NUMA-Aware NVM Allocator 554

NVM allocation profoundly affects the insert performance 555

of indexes. Prior works [8], [11], [14] have demonstrated that 556

different NVM allocators can result in a performance gap of 557

25% ∼ 50% for indexes. Thus, NOBtree presents a NUMA- 558

aware NVM allocator to enhance the insert performance of 559

the index. 560

NVM allocators are generally categorized into two types: 561

1) log-based [12], [13], [14] and 2) GC-based [11], [14], [15]. 562

The former relies on logging to persist memory changes and 563

heap metadata, ensuring the atomicity of operations in case 564

of failure. However, this approach introduces additional per- 565

sistence overhead. To mitigate this overhead, recent allocators 566

utilize GC to rebuild heap metadata post-crash by scanning the 567

entire memory space [15]. The GC-based allocators generally 568

offer faster allocation speeds than the log-based allocators. 569

Therefore, we adopt the GC-based NVM allocator. 570

Fig. 6 depicts the overall structure of the NSM, which 571

consists of two main parts. The bottom part operates as an 572

NVM space manager, responsible for managing the entire 573

NVM space. Meanwhile, the upper part serves as the thread 574

cache for NVM allocation and deallocation operations. 575

CHU et al.: NOBTree: A NUMA-OPTIMIZED TREE INDEX FOR NVM 7

Algorithm 1: NVM Allocation
1 Function nvm_numa_malloc(size, node):
2 if node < number_of_numa_node then

// allocate to the given NUMA node
3 return thread_cache.slab[node].slab_alloc(size);
4 end

// allocate NVM according to the pre-set mode
5 return thread_cache.slab[mode].slab_alloc(size);
6 Function slab_alloc(size):
7 size_class = get_size_class(size);
8 address = freelist[size_class].pop();
9 if !address then

// get a NVM page according to the pre-set
mode

10 page = get_nvm_page(mode);
11 fill the freelist with the requested NVM page;
12 address = freelist[size_class].pop();
13 end
14 return address;
15 Function get_nvm_page(i):
16 if i < number_of_numa_node then
17 return NVM page on NUMA node i;
18 else if i == LOCAL then
19 numa_node = get_numa_node();
20 return NVM page on NUMA node numa_node;
21 else
22 return NVM page in a round-robin way;

The bottom part manages the per-NUMA NVM pool,576

treating the NVM space as a free-page list with a default page577

size of 256KB. The thread cache comprises segregated lists,578

each containing blocks of the same size. Each block is used to579

serve a single allocation request. This two-layer structure helps580

alleviate contention for concurrent NVM allocations, resulting581

in high performance and scalability.582

NSM offers three allocation modes: 1) local (allocating583

pages from the local node); 2) round-robin (allocating pages584

among NUMA nodes in a round-robin manner); and 3) node-585

specific (allocating pages from a specified node). Users initiate586

the mode during the creation of NSM. There are a certain587

number of slab managers inside a thread cache. Each contains588

segregated free lists and serves different modes of NVM allo-589

cation. Algorithm 1 shows the process of the NVM allocation.590

The allocation needs to provide two parameters, size and591

node. The slab manager responsible for the specified node is592

selected to allocate NVM. The slab manager first gets the size593

class of the request. Then, it retrieves an address from the594

corresponding free list based on the size class. If the free list595

returns an address successfully, the allocation is completed.596

Otherwise, the slab manager requests a free NVM page from597

the bottom NVM space manager, fills the free list with the598

page, and allocates memory from it.599

In the NVM allocation process, thread contention arises600

primarily when threads request a page from the bottom601

NVM space manager. However, this contention is infrequent602

compared to the overall NVM allocations, allowing the NSM603

to deliver high-allocation performance. Additionally, only the604

page allocation requires persistence, while small allocations605

from the thread cache do not need to persist any metadata.606

These two features contribute to the high performance and607

Algorithm 2: Lookup Operation

1 Function Lookup(key):
2 num_node = get_numa();

// identify current thread’s NUMA node
3 bottom_root = uptree[numa_node].Up_Lookup(key);
4 while bottom_root.max_key < key do
5 bottom_root = bottom_root.get_sib();
6 end
7 return Bottom_Lookup(bottom_root, key);
8 Function Bottom_Lookup(node, key):
9 cur = node;

10 while cur.leftmost != NULL do
11 cur = cur.get_child(key);
12 end
13 return cur.get_child(key);
14 Function get_child(key):
15 retry: old_version = node.version;
16 if key > node.get_sib().min_key then
17 return node.get_sib().get_child();
18 end
19 if leftmost != NULL then

// search in the inner node
20 pos = get_pos(key);
21 if pos == 0 then
22 ret = leftmost;
23 else
24 ret = records[slotArray[pos− 1]].val;
25 else

// search in the leaf node
26 pos = get_pos(key);
27 if records[pos].key != key then
28 ret = NULL;
29 else
30 ret = records[pos].val;
31 if node.version! = old_version then
32 goto retry;
33 end
34 return ret;

scalability of NSM. Moreover, the three allocation modes 608

provided by the NSM offer users greater flexibility in utilizing 609

NVM. 610

IV. OPERATIONS OF NOBTREE 611

In this section, we describe NOBtree’s operations, including 612

lookup, insert, and the upper layer’s rebuild. Due to the new 613

structure and NUMA-aware designs of NOBtree, all these 614

operations need to be redesigned. 615

A. Lookup 616

Algorithm 2 outlines the lookup process in NOBtree, which 617

comprises two main steps: 1) searching in the upper layer 618

to locate the subindex and 2) searching in the subindex to 619

retrieve the desired result. We initiate the lookup process by 620

selecting the local upper tree and then searching for the key 621

within this upper tree to obtain the root of the subindex (lines 622

2 and 3). This search process in the upper layer is similar to 623

the procedure employed in the traditional B+-tree. Starting 624

from the root node, we recursively traverse the inner nodes 625

until reaching the leaf node. Subsequently, we get the root 626

of the target subindex. However, the obtained result may be 627

8 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS

incorrect due to subindex splits. To correct this, we traverse the628

linked list to get the true root of the target subindex (lines 4–629

6). Then we execute the lookup operation within this subindex630

and return the result (line 7).631

The lookup process of the upper layer is similar to that in a632

traditional B+-tree. However, there are some distinctions due633

to the specific characteristics of the upper layer’s structure.634

The inner node of NOBtree’s upper layer is pointless to635

accommodate more keys. So when searching in the inner node,636

we will utilize a formula to calculate the position of the child637

node. This approach is feasible due to the static structure of638

the upper layer, where all nodes are allocated in a contiguous639

space. Consequently, the offset of each node remains fixed,640

and we can determine it by calculating the offset. Furthermore,641

the structure of the upper layer remains unchanged until we642

rebuild it, ensuring the reliability of this calculation method.643

Similarly, the lookup process of the bottom layer, outlined in644

Algorithm 2 (lines 8–34), comprises two main steps: 1) locat-645

ing the leaf node and 2) conducting a local search within the646

leaf. When probing a node, the process begins by snapshotting647

the version (line 15). Subsequently, we verify whether the node648

has undergone a split. If a split has occurred before accessing649

the node, we switch to its next sibling node (lines 16–18). If650

the node is an inner node, we find the first position where the651

key exceeds the target key. This search is facilitated using the652

slotArray (lines 19–24). Conversely, if the node is a leaf node,653

we identify the first position where the key is greater than or654

equal to the target key. We then check if the key matches the655

target key (lines 25–30). Finally, we verify the node’s version.656

If it has changed during the search, the process is retried.657

Otherwise, the result is returned.658

B. Insertion659

The main steps of the insert operation are similar to those of660

the lookup operation. We begin by searching the local upper661

layer to locate the target subindex, followed by inserting the662

key into the subindex. Subsequently, we check whether we663

need to rebuild the upper layer. If reconstruction is necessary, it664

is executed in the background (lines 11–13). During insertion665

to the subindex, node splitting may occur in the subindex.666

If the root of the subindex splits and we need to insert the667

newly generated root into the upper layer, we will try to668

insert the new root into all upper layers (lines 14–17). If the669

insertion to the upper layer fails, we will store the new root670

in a temporary list (lines 18–20). We use the temporary list671

to accelerate the rebuilding process. Further details will be672

provided in Section IV-C.673

Algorithm 4 offers a detailed overview of the insert opera-674

tion within a node of subindexes. Initially, the node is locked675

to prevent subsequent insertions. If the node has been split676

just before the insertion attempt, we switch to the next node677

to perform the insertion (Algorithm 4, lines 3–6). If the node678

is full, a new node is created, and the keys are rearranged.679

Notably, the split operation is log-free due to the utilization680

of shadow sibling pointers. To ensure crash consistency, any681

updates to the node’s header are followed by CLWB and682

SFENCE instructions. Node splits may propagate from the leaf683

Algorithm 3: Insert Operation

1 Function Insert(key, val):
2 num_node = get_numa();
3 bottom_root = uptree[numa_node].Up_Lookup(key);
4 query_time = query_time+ 1;
5 while bottom_root.max_key < key do
6 bottom_root = bottom_root.get_sib();
7 goes_step = goes_step+ 1;
8 end
9 res = Bottom_Insert(bottom_root, key, val);

10 average_goes_step = goes_step/query_time;
11 if average_goes_step > threshold then
12 rebuild_upper();
13 end
14 if res.flag = TRUE then

// the root of the subindex splits
15 for i = 0; i < num_numa; i++ do
16 succ = uptree[i].Up_Insert(res.key, res.val);
17 end
18 if succ = FALSE then

// failed to insert to upper layer
19 mutable.append(res.key, res.val);
20 end
21 end
22 Function Bottom_Insert(node, key, val):
23 res = recursive_insert(node, key, val);
24 if res.is_split then

// node split spreads to the root
25 if res.level < threshold then
26 create a new root and update the upper layer;
27 else
28 return {TRUE, res.split_k, res.split_node};
29 end
30 return {FALSE, 0, NULL};
31 Function recursive_insert(node, key, val):
32 if node.leftmost != NULL then
33 child = node.get_child(key);
34 res = recursive_insert(child, key, val);
35 if res.is_split then
36 return node.store(res.split_k, res.split_node)
37 return {node.level, FALSE, 0, NULL};
38 else
39 return node.store(key, val)

to the root. If we find that the root of the subindex splits, 684

we will check whether the height of the subindex exceeds 685

the predefined threshold. If not, we will create a new root to 686

accommodate the splitting node and update the upper layer 687

to point to this new root (Algorithm 3, lines 25 and 26). 688

Otherwise, we will insert the newly created node to the upper 689

layer (Algorithm 3, lines 14–17). 690

C. Rebuilding the Upper Layer 691

Rebuilding the upper layer starts with collecting all the 692

roots of subindexes. Then, based on the number of records, 693

we calculate the number of leaf nodes and the tree height. 694

Subsequently, we fill the leaf nodes with the records and 695

recursively construct inner nodes until the root is created. 696

To mitigate the overhead of rebuilding the upper layer, we 697

implement several optimizations to reduce the frequency and 698

associated costs of this process, thus enhancing the index’s 699

stability and efficiency. 700

CHU et al.: NOBTree: A NUMA-OPTIMIZED TREE INDEX FOR NVM 9

(a) (b) (c) (d) (e) (f)

Fig. 7. Throughput under various workloads. (a) Write-heavy. (b) Read-heavy. (c) Read-only. (d) Scan. (e) Read–Modify–Write. (f) Write-only.

Algorithm 4: Node Insert Operation

1 Function store(key, val):
2 Lock();
3 if key > node.get_sib().min_key then
4 Unlock();
5 return node.get_sib().store(key, val);
6 end
7 if count == split_threshold then

// node needs to split
8 split_node← create new node;
9 split_k← the middle key;

10 rearrange the keys in the old node and insert key;
11 update the header of split_node;
12 clwb();sfence();
13 update the header of current node;
14 clwb();sfence();
15 Unlock();
16 return {level, TRUE, split_k, split_node};
17 else
18 insert the key;
19 Unlock();
20 return {level, FALSE, 0, NULL};

First, although the upper layer is static, its leaf node reserves701

some empty slots to absorb limited insertions. Such a design702

can effectively reduce the total number of rebuilds. Second,703

instead of initiating a rebuilding process immediately after a704

failed insertion, we defer this action until the average probing705

length in the linked list exceeds a predefined threshold. As706

shown in Algorithm 3 (lines 10–13), we use the parameter707

average_goes_step to record the average probing length along708

the linked list. Once this parameter exceeds the predefined709

threshold, indicating a significant performance degradation, the710

upper layer is rebuilt. This approach ensures that rebuilding711

is only triggered when failed insertions noticeably impact712

performance. As a result, the frequency of rebuilding occur-713

rences is reduced. In our evaluation, we observed less than 20714

reconstructions after inserting 200 million keys.715

V. PERFORMANCE EVALUATION716

We conduct experiments on a 2-socket server equipped717

with two Intel Xeon Gold 6242R CPUs, each featuring 20718

cores. The server contains 256-GB DRAM and 2048-GB Intel719

Optane DC persistent memory, equally distributed over two720

sockets. We configure all Optane modules to App-Direct721

mode and create a DAX-aware ext4 file system. Then, we722

mount the file system using the DAX option.723

Competitors: We conduct a comparative evalua- 724

tion of NOBtree against four NVM-oriented indexes: 725

1) Fast&Fair [5]; 2) PACtree [8]; 3) ROART [11]; and 726

4) TLBtree [6]. We leverage their respective open-source 727

codes for our assessment. It is noteworthy that PACtree also 728

incorporates measures to mitigate the NUMA effect. Nap is 729

not considered in the comparison as it is a black-box approach 730

applicable to any index, which is orthogonal to our design, 731

and its use of buffers may result in performance degradation 732

for scan workloads. 733

Workloads: The dataset consists of 200M randomly gen- 734

erated integers (8 bytes long). There are mainly six kinds 735

of YCSB-like workloads, including read-only (100% lookup), 736

read-heavy (95% lookup and 5% insert), write-heavy (50% 737

lookup and 50% insert), write-only (100% insert), read– 738

modify–write (50% lookup and 50% read–modify–write), and 739

scan (100% scan). The YCSB is an open-source benchmarking 740

suite for evaluating the maintenance and retrieval capabilities 741

of computer programs [19]. It is widely used to compare the 742

performance of database systems and database indexes. We 743

made slight modifications to its core workload generator by 744

replacing all update operations with insert operations and then 745

generated the experimental workloads. In these workloads, all 746

the lookup and scan operations follow a Zipfian distribution 747

with a parameter of 0.99. The experiments scale from 1 thread 748

to 80 threads. When the number of threads is less than 20, 749

they are assigned to a single node. However, if the thread 750

number exceeds 20, threads are distributed across two nodes, 751

and hyper-threading is enabled when exceeding 40. 752

A. Throughput 753

In this experiment, we evaluate the throughput of each 754

index under various workloads. Fig. 7 shows the throughput 755

of NOBtree and other indexes under the six workloads. Across 756

the six workloads, NOBtree consistently outperforms other 757

indexes. Specifically, under 80 threads, NOBtree achieves 758

3.10×, 3.13×, 2.41×, 2.32×, 2.86×, and 3.06× higher 759

throughput compared to other indexes on average under the six 760

workloads, respectively. The high-read-throughput of NOBtree 761

is attributed to the per-NUMA upper-layer replication and 762

the node migration mechanism in the bottom layer, which 763

can reduce the costly remote NVM accesses effectively. 764

Additionally, the dedicated NUMA-aware NVM allocator con- 765

tributes to NOBtree’s superior insert performance. Although 766

rebuilding the upper layer is time-consuming, the rebuilding 767

frequency is rather low because we have reserved some empty 768

10 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS

(a) (b) (c) (d) (e) (f)

Fig. 8. Tail latency under skewed workloads (20t: 20 threads, 40t: 40 threads). (a) Lookup(20t). (b) Scan(20t). (c) Insert(20t). (d) Lookup(40t). (e) Scan(40t).
(f) Insert(40t).

(a) (b) (c) (d) (e) (f)

Fig. 9. Remote NVM access under various workloads. (a) Write-heavy. (b) Read-heavy. (c) Read-only. (d) Scan. (e) Read–Modify–Write. (f) Write-only.

slots to absorb insertions. We have tuned the threshold to769

reduce the rebuilding time, which improves the performance.770

Despite PACtree’s efforts to address the NUMA effect, its771

performance struggles to scale effectively, especially beyond772

40 threads. In particular, PACtree’s performance on the read-773

only workload experiences a sharp decline, ultimately ranking774

as the least efficient index. This decline could be attributed775

to the influence of hyper-threading and cache coherence776

protocols. We measure the data volume of the remote access in777

Section V-C and find that PACtree experiences an increasing778

volume of remote NVM access when the thread number779

increases from 40 to 80. This is the main reason for PACtree’s780

degraded performance. PACtree recommends using snooping781

protocols for NVM, but most platforms use a directory-based782

protocol by default because snooping may not scale well783

to more CPU cores. The server in our experiments adopts784

the directory-based protocol and does not allow changes to785

coherence protocols, potentially contributing to the suboptimal786

performance of PACtree.787

B. Tail Latency788

In this section, we assess the tail latency of the index’s789

lookup, scan, and insert operations under 20 and 40 threads.790

As shown in Fig. 8, NOBtree consistently exhibits the lowest-791

tail latency across most cases and achieves 1.46×, 2.59×, and792

8.25× lower latency than other indexes on average under the793

three workloads, respectively. Notably, for the scan operation,794

Fast&Fair outperforms others under 20 threads, attributed795

to its larger leaf node size compared to NOBtree, which796

is particularly advantageous for scan operations. However,797

under 40 threads, the impact of the NUMA effect leads to798

increased tail latency for all indexes across all workloads. In799

this scenario, NOBtree maintains the lowest-tail latency across800

all three workloads, providing further evidence of its superior801

performance.802

C. Remote NVM Access 803

In this section, we measure the data traffic caused by remote 804

NVM accesses. We utilized the Intel Performance Counter 805

Monitor (Intel PCM)1 to quantify remote NVM access during 806

runtime. Fig. 9 presents the results for six workloads, where 807

we varied the thread number from 40 to 80 and distributed 808

threads across two sockets. NOBtree consistently achieves 809

less remote NVM access amount than TLBtree except the 810

scan workload. This can be owing to the replication of 811

the upper layer and the node migration. Under the scan 812

workload, NOBtree’s smaller leaf nodes incur more remote 813

NVM access compared to TLBtree. Since multiple nodes 814

need to be scanned to obtain results, smaller node sizes lead 815

to scanning more nodes. Nevertheless, as shown in Fig. 7, 816

NOBtree still outperforms TLBtree in throughput under the 817

scan workload because TLBtree places data on a single socket, 818

causing threads on the other socket to consistently access 819

remote NVM. In addition, Fast&Fair experiences a significant 820

amount of remote NVM access, which is primarily due to its 821

large node size. 822

D. Throughput Under Uniform Workloads 823

In this section, we will evaluate all indexes under uni- 824

form workloads. We omit the write-heavy and write-only 825

workloads as the insert operation is always randomly dis- 826

tributed. As shown in Fig. 10, the performance of all the 827

indexes degrades compared with those under skewed work- 828

loads. However, NOBtree’s performance still outperforms 829

others, indicating the efficiency of NOBtree under uniform 830

workloads, which is mainly owing to the per-NUMA upper- 831

layer replication as it can effectively reduce costly remote 832

NVM access. 833

1https://github.com/intel/pcm

CHU et al.: NOBTree: A NUMA-OPTIMIZED TREE INDEX FOR NVM 11

(a) (b)

(c) (d)

Fig. 10. Throughput under uniform workloads. (a) Read-heavy. (b) Read-
only. (c) Scan. (d) Read–Modify–Write.

(a) (b)

Fig. 11. Impact of workload skewness and data volume. (a) Impact of
Skewness. (b) Impact of Data Volume.

E. Sensitivity Analysis834

Impact of Workload Skewness: The skewness of the work-835

loads reflects the deviation of query keys toward hotkeys, a836

characteristic often described by the Zipf parameter in the837

Zipfian distribution. In this experiment, we first load 100M838

keys and then perform 200M lookup operations. We vary839

the Zipf parameter from 0.6 to 0.99. Fig. 11(a) shows the840

throughput under 80 threads. One can see that all the indexes’841

performance improves with the increase of skewness. The842

performance of all indexes improves with increasing skewness.843

This improvement can be attributed mainly to the effect of844

the CPU cache. Higher skewness implies that most queries845

concentrate on a small set of keys, enabling the index to846

utilize the CPU cache more efficiently. NOBtree achieves the847

highest performance across all skewness, indicating its stable848

performance for different access patterns.849

Impact of Data Volume: In this experiment, we explore the850

impact of dataset volume on the index’s performance. We851

load several keys to construct the index and then evaluate the852

lookup performance under 80 threads. The lookup operations853

follow the Zipfian distribution with a parameter of 0.99. The854

amount of keys varies from 10 M to 300 M. Fig. 11(b)855

illustrates the results. The performance of all indexes degrades856

as the data volume increases. This decline occurs because857

more keys will heighten the indexes, leading to longer traversal858

TABLE I
COMPARISON OF NVM CONSUMPTION (GB)

paths during operations. NOBtree consistently outperforms 859

other indexes. 860

F. Space Cost 861

The NVM consumption of each index is shown in Table I. 862

In this experiment, we measure the NVM usage of each index 863

after loading 200 million records with 8-byte keys and values. 864

Fast&Fair demonstrates the lowest-NVM consumption, mainly 865

attributed to its larger node size. NOBtree consumes more 866

NVM spaces than TLBtree, primarily due to two reasons. First, 867

we reduce the number of keys that a single node can store 868

to allocate space for maintaining migration statistics, which 869

leads to more nodes after the key loading. Second, NOBtree 870

replicates the upper layer across NUMA nodes, introducing 871

additional NVM consumption. The size of the NOBtree’s 872

upper layer is only about 34 MB, which is relatively small 873

compared to the total index size. Thus, it is possible to put 874

the upper layer in a faster DRAM to further accelerate the 875

performance of NOBtree. 876

VI. FURTHER DISCUSSIONS 877

As of July 2022, Intel decided to discontinue its Optane 878

product [3]. It is a major setback for NVM-related research. 879

However, the NVM technology has been regarded as an 880

efficient solution to partially address the storage wall issue, 881

and NVM-oriented structures and algorithms are needed in 882

the storage architecture involving NVM. So far, except for 883

the 3D-XPoint technology used by the Optane series, there 884

are other technologies for implementing NVM, such as phase 885

change memory (PCM), spin-transfer torque magnetoresistive 886

RAM (STT-MRAM), and resistive RAM (RRAM) [20]. A 887

recent report showed that the total sales of STT-MRAM might 888

reach 98.3 billion dollars by 2033 [21]. Thus, there is still an 889

urgent demand to study efficient structures optimized for NVM 890

devices. There are similarities between Optane and other NVM 891

devices, such as nonvolatility, read/write asymmetry, and byte 892

addressability. Therefore, current research related to Optane 893

can still inspire future work. 894

In addition, the growing demand for larger memory capacity 895

has led to the development of new memory technolo- 896

gies like compute eXpress link (CXL). CXL provides a 897

cache-coherent interface for connecting CPUs, memory, and 898

accelerators. CXL-attached memory exhibits characteristics 899

similar to NVM, such as byte addressability and near-DRAM 900

performance with higher capacities [3], [22]. CXL-attached 901

memory can be viewed as remote NUMA memory, and 902

most current research on CXL memory is based on emulat- 903

ing memory in a remote NUMA node [22]. The proposed 904

approach in this study can also be applied to indexes for CXL- 905

attached memory in the future, given the similarity between 906

remote NUMA memory and NVM. 907

12 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS

VII. CONCLUSION908

In this article, we presented NOBtree, a new index structure909

designed to mitigate the NUMA effect in NVM indexes.910

NOBtree employs a decoupled tree structure, which consists911

of a read-optimized upper layer and a write-optimized bottom912

layer to enhance both read and write performance. To improve913

the read performance in the NUMA architecture, we proposed914

per-NUMA replication for the upper layer and a node migra-915

tion mechanism for the bottom layer. Additionally, we devised916

a dedicated NUMA-aware NVM allocator to optimize the917

insertion performance of NOBtree. The experimental results918

across diverse workloads suggested the effectiveness and919

efficiency of NOBtree.920

REFERENCES921

[1] Q. Wang, Y. Lu, J. Li, and J. Shu, “Nap: A black-box approach922

to NUMA-aware persistent memory indexes,” in Proc. OSDI, 2021,923

pp. 93–111.924

[2] I. Calciu, S. Sen, M. Balakrishnan, and M. K. Aguilera, “Black-box925

concurrent data structures for NUMA architectures,” in Proc. ASPLOS,926

2017, pp. 207–221.927

[3] D. Koutsoukos, R. Bhartia, M. Friedman, A. Klimovic, and G. Alonso,928

“NVM: Is it not very meaningful for databases?” Proc. VLDB Endow.,929

vol. 16, no. 10, pp. 2444–2457, 2023.930

[4] (Intel Corp., Santa Clara, CA, USA). Intel Optane Technology.931

2020. [Online]. Available: https://www.intel.com/content/www/us/en/932

architecture-and-technology/intel-optane-technology.html933

[5] D. Hwang, W. Kim, Y. Won, and B. Nam, “Endurable transient934

inconsistency in byte-addressable persistent B+-tree,” in Proc. FAST,935

2018, pp. 187–200.936

[6] Y. Luo, P. Jin, Z. Zhang, J. Zhang, B. Cheng, and Q. Zhang, “Two937

birds with one stone: Boosting both search and write performance for938

tree indices on persistent memory,” ACM Trans. Embed. Comput. Syst.,939

vol. 20, no. 5s, pp. 1–25, 2021.940

[7] B. Zhang, S. Zheng, Z. Qi, and L. Huang, “NBTree: A lock-free PM-941

friendly persistent B+-tree for eADR-enabled PM systems,” Proc. VLDB942

Endow., vol. 15, no. 6, pp. 1187–1200, 2022.943

[8] W. Kim, M. K. Ramanathan, X. Fu, S. Kashyap, and C. Min, 944

“PACTree: A high performance persistent range index using PAC 945

guidelines,” in Proc. SOSP, 2021, pp. 424–439. 946

[9] B. Daase, L. J. Bollmeier, L. Benson, and T. Rabl, “Maximizing 947

persistent memory bandwidth utilization for OLAP workloads,” in Proc. 948

SIGMOD, 2021, pp. 339–351. 949

[10] Y. Luo, P. Jin, Q. Zhang, and B. Cheng, “TLBtree: A read/write- 950

optimized tree index for non-volatile memory,” in Proc. ICDE, 2021, 951

pp. 1889–1894. 952

[11] S. Ma et al., “ROART: Range-query optimized persistent ART,” in Proc. 953

FAST, 2021, pp. 1–16. 954

[12] I. Oukid, D. Booss, A. Lespinasse, W. Lehner, T. Willhalm, and 955

G. Gomes, “Memory management techniques for large-scale persistent- 956

main-memory systems,” Proc. VLDB Endow., vol. 10, no. 11, 957

pp. 1166–1177, 2017. 958

[13] A. Demeri, W. Kim, M. K. Ramanathan, J. Kim, M. Ismail, and C. Min, 959

“Poseidon: Safe, fast and scalable persistent memory allocator,” in Proc. 960

21st Int. Middlew. Conf., 2020, pp. 207–220. 961

[14] Z. Dang et al., “NVAlloc: Rethinking heap metadata manage- 962

ment in persistent memory allocators,” in Proc. ASPLOS, 2022, 963

pp. 115–127. 964

[15] W. Cai, H. Wen, H. A. Beadle, C. Kjellqvist, M. Hedayati, and 965

M. L. Scott, “Understanding and optimizing persistent memory alloca- 966

tion,” in Proc. ISMM, 2020, pp. 60–73. 967

[16] Y. Mao, E. Kohler, and R. T. Morris, “Cache craftiness for fast multicore 968

key-value storage,” in Proc. 7th ACM Eur. Conf. Comput. Syst., 2012, 969

pp. 183–196. 970

[17] J. Ge et al., “SALI: A scalable adaptive learned index framework based 971

on probability models,” Proc. ACM Manag. Data, vol. 1, no. 4, pp. 1–25, 972

2023. 973

[18] R. Binna, E. Zangerle, M. Pichl, G. Specht, and V. Leis, “HOT: A height 974

optimized Trie index for main-memory database systems,” in Proc. 975

SIGMOD, 2018, pp. 521–534. 976

[19] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears, 977

“Benchmarking cloud serving systems with YCSB,” in Proc. 1st ACM 978

Symp. Cloud Comput., 2010, pp. 143–154. 979

[20] A. Chen, “A review of emerging non-volatile memory (NVM) tech- 980

nologies and applications,” Solid-State Electron., vol. 125, pp. 25–38, 981

Nov. 2016. 982

[21] C. Tom and H. Jim, Emerging Memories Branch Out, Santa Clara, CA, 983

USA, Storage Netw. Ind. Assoc., 2023. 984

[22] Y. Sun et al., “Demystifying CXL memory with genuine CXL-ready 985

systems and devices,” in Proc. MICRO, 2023, pp. 105–121. 986

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Helvetica-Condensed-Bold
 /Helvetica-LightOblique
 /HelveticaNeue-Bold
 /HelveticaNeue-BoldItalic
 /HelveticaNeue-Condensed
 /HelveticaNeue-CondensedObl
 /HelveticaNeue-Italic
 /HelveticaNeueLightcon-LightCond
 /HelveticaNeue-MediumCond
 /HelveticaNeue-MediumCondObl
 /HelveticaNeue-Roman
 /HelveticaNeue-ThinCond
 /Helvetica-Oblique
 /HelvetisADF-Bold
 /HelvetisADF-BoldItalic
 /HelvetisADFCd-Bold
 /HelvetisADFCd-BoldItalic
 /HelvetisADFCd-Italic
 /HelvetisADFCd-Regular
 /HelvetisADFEx-Bold
 /HelvetisADFEx-BoldItalic
 /HelvetisADFEx-Italic
 /HelvetisADFEx-Regular
 /HelvetisADF-Italic
 /HelvetisADF-Regular
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

