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Abstract—With the rise of embodied foundation models1

(EFMs), most notably small language models (SLMs), adapting2

Transformers for the edge applications has become a very active3

field of research. However, achieving the end-to-end deployment4

of SLMs on the microcontroller (MCU)-class chips without5

high-bandwidth off-chip main memory access is still an open6

challenge. In this article, we demonstrate high efficiency end-7

to-end SLM deployment on a multicore RISC-V (RV32) MCU8

augmented with ML instruction extensions and a hardware9

neural processing unit (NPU). To automate the exploration of10

the constrained, multidimensional memory versus computation11

tradeoffs involved in the aggressive SLM deployment on the het-12

erogeneous (multicore+NPU) resources, we introduce Deeploy,13

a novel deep neural network (DNN) compiler, which generates14

highly optimized C code requiring minimal runtime support.15

We demonstrate that Deeploy generates the end-to-end code for16

executing SLMs, fully exploiting the RV32 cores’ instruction17

extensions and the NPU. We achieve leading-edge energy and18

throughput of 490 µJ per token, at 340 token per second for19

an SLM trained on the TinyStories dataset, running for the first20

time on an MCU-class device without the external memory.21

Index Terms—Accelerators, compilers, embodied AI, founda-22

tion models (FMs), neural networks, TinyML.23
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I. INTRODUCTION 24

THE LATEST evolutions in mainstream artificial intelli- 25

gence (AI) have been driven by Transformers, which have 26

taken over from recurrent neural networks (RNNs) and convo- 27

lutional neural networks (CNNs) as the leading edge models 28

for language processing and multimodal applications [1], [2]. 29

The success of Transformers can be primarily attributed to 30

the emergence of the foundation model (FM) paradigm: large 31

Transformer models extensively pretrained on the datasets 32

spanning trillions of tokens and then fine tuned with a much 33

lower volume of labeled data to solve the domain-specific 34

problems. Following the success of FMs in natural language 35

processing (NLP) [1], [3], an increasing number of fields are 36

starting to formulate and adapt FMs for high dimensional 37

sensor data that has traditionally been challenging to process, 38

like decoding the neural data [4], [5], or training embodied AI 39

agents [6], [7], which may incorporate the multimodal sensor 40

inputs. 41

Operating directly on the sensory data and in a cyber– 42

physical loop may lead to solving many outstanding challenges 43

in fields, such as brain-machine interfaces [5] and miniaturized 44

robotics [7]. However, to materialize this promise, models 45

of this class need to be embodied in physical devices as 46

embodied foundation models (EFMs), and they must cope with 47

the strict constraints in terms of compute throughput, power 48

consumption, and footprint typical of the edge devices. Unlike 49

the data center-scale systems, which collect and aggregate 50

sensor data over the shared resources for high-throughput 51

processing, embodied AI systems must process the sensor 52

data with extremely low latency and memory capacity under 53

tight power constraints. This is particularly challenging for the 54

smallest class of AI-oriented computers: so-called “TinyML” 55

devices operating at the extreme edge, based on micro- 56

controller (MCU)-class devices without complex operating 57

systems or memory-management units (MMUs), relying on 58

the user level software to implement low-level hardware 59

management functionalities. Despite many recent successes 60

with the previous generation deep neural networks (DNNs), 61

the emergence of the TinyML paradigm for the EFMs faces 62

the dual challenge of reducing FMs to a manageable size and 63

enabling their deployment on the tiny devices. 64
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A first concrete step in this direction is the recent introduc-65

tion of small language models (SLMs): FMs with tens to a few66

hundred million, rather than several billion parameters [8], [9].67

While most currently available FMs are focused on processing68

natural language at a proof-of-concept scale, the effort toward69

the embedded multimodal sensor inputs with small-scale,70

application-specific FMs offers a highly promising path for the71

development of this novel class of models. Much like what72

happened with the initial emergence of deep learning [10],73

the evolution of advanced TinyML applications based on the74

EFMs is currently prevented by the lack of suitable targets75

for the deployment of these models and, even more, of76

the deployment frameworks that enable utilizing the existing77

specialized hardware to its full capabilities.78

Deploying tiny EFMs requires overcoming several chal-79

lenges specific to the TinyML domain. Large-scale AI80

inference systems typically employ the heterogeneous com-81

puter architectures composed by a conventional host (e.g.,82

an x86 processor) and a very large throughput-oriented83

accelerator (e.g., H100 [11], TPU [12]), which is fully84

exploited only at large batch sizes. Conversely, TinyML is85

used for latency-sensitive applications focusing on the real-86

time inference without batching. As a consequence, TinyML87

AI inference typically employs much more specialized accel-88

erator architectures [13], [14], leading to more complex89

mapping and optimization challenges for the DNN deploy-90

ment. Furthermore, TinyML’s strict constraints on energy91

efficiency and MCU-class computer architecture typically92

require platform-specific optimization, including memory-93

aware tiling, static memory allocation, and latency-hiding94

direct memory access (DMA) scheduling, which require95

advanced compiler support to scale to complex DNNs like96

FMs. While several compilers have limited support for user-97

defined kernels [15], [16], configuring and extending them98

requires expert knowledge, and their top-down compilation99

approach often clashes with loosely coupled accelerators.100

Moreover, mainstream compilers do not address the strict101

memory constraints in extreme-edge devices.102

In this article, we aim to remove the first barrier toward103

developing EFM suited for deployment on TinyML platforms:104

the lack of deployment frameworks that enable their efficient105

execution. We demonstrate, to the best of our knowledge, the106

first end-to-end tool flow to deploy EFMs on the heterogeneous107

MCU-class systems. Specifically, we demonstrate the end-108

to-end deployment of a TinyStories-class [8] network on109

Siracusa, an advanced MCU in TSMC 16 -nm technology110

featuring embedded nonvolatile memory [magnetoresistive111

random access memory (MRAM)] and two heterogeneous112

compute engines, namely an octa-core RV32 compute cluster113

with instruction extensions for machine learning (ML) and a114

multimode CNN neural processing unit (NPU), N-Eureka [13].115

We present the tooling and algorithms integrated within our116

deployment framework, Deeploy.117

The contributions of this article are as follows.118

1) We describe Deeploy, a customizable, domain-specific119

compiler designed for generating bare metal code fit-120

ting the memory constraints of extreme edge devices.121

Deeploy supports all the key computational primitives122

needed for the execution of Transformer-based EFMs 123

on heterogeneous extreme edge system-on-chip (SoCs) 124

through its bottom-up compilation approach, which 125

allows applying advanced code optimization on expert- 126

optimized kernel templates. We further introduce a novel 127

algorithm for solving the tiling and static memory allo- 128

cation problems for multilevel software-managed caches 129

and its integration into Deeploy.1 130

2) We benchmark common Transformer configurations, 131

demonstrating that code generated by Deeploy 132

maximizes engine utilization in heterogeneous, 133

multiaccelerator SoCs. We achieve data marshaling 134

overheads of just 9 % for large workloads with high 135

arithmetic intensity executing on the cluster cores and 136

NPU collaboratively thanks to efficient data movement 137

acceleration and low-overhead offloading mechanisms. 138

3) As a concrete large-scale end-to-end use-case of 139

Deeploy and its adaptability to heterogeneous hard- 140

ware platforms, we demonstrate for the first time the 141

deployment of a TinyStories-class SLM on Siracusa, 142

a state-of-the-art heterogeneous MCU. While using 143

on-chip memory only, we achieve a throughput of 144

340 token per second at an energy cost of 490 μJ for 145

autoregressive inference. We show that using the flexible 146

deployment flow enabled by Deeploy for the same SLM 147

allows us to implement multilayer KV caching using on- 148

chip memory only, improving token throughput by 26 × 149

compared to inference without caches. 150

The remainder of this article is organized as follows. 151

In Section II, the previous work in quantized neural net- 152

works, SLMs, and neural network deployment for the extreme 153

edge devices is introduced and discussed. Section III intro- 154

duces the Deeploy and discusses its deployment flow for 155

the Transformers. Section IV discusses the SLM architec- 156

ture used in this work and the approach to mapping it 157

on Siracusa. In Section V, we present the Siracusa MCU 158

platform. Section VI presents and discusses the end-to-end 159

deployment results, comparing them to the state-of-the-art. 160

Finally, Section VII concludes this article, summarizing the 161

results and contributions. 162

II. RELATED WORK 163

This section gives an overview of the state-of-the-art on 164

EFMs, focusing on the developments toward improvements 165

in energy efficiency and model size and tools to deploy the 166

DNNs on the extreme edge devices. 167

A. Small Foundation Models 168

Recently, the development of the decoder-only large lan- 169

guage models (LLMs), such as Llama [1], and Mixtral [2], 170

and their associated ML pipelines led to a new model type: 171

the FM. 172

FMs are pretrained LLMs, which can be fine tuned for 173

the downstream tasks at a fraction of the cost of pretraining, 174

1We will open-source all code required to reproduce our experiments under
https://github.com/pulp-platform/deeploy.



SCHERER et al.: DEEPLOY: ENABLING ENERGY-EFFICIENT DEPLOYMENT OF SLMs 3

making them particularly relevant for the domain specializa-175

tion. However, LLMs often contain several billion parameters,176

requiring GiB of storage space, making them incompatible177

with the extreme edge inference.178

Addressing this gap, the emerging field of SLMs has gained179

significant traction in the last year. The aim of SLMs is to180

compact LLMs down to tens to hundreds of MiB [8], [9],181

mirroring the evolution of compression of CNNs [17] over the182

past decade.183

This paradigm shift toward compact FMs is particularly184

interesting for TinyML applications. Incorporating smaller185

FMs, like SLMs, into the embedded devices may enable a new186

wave of intelligent, responsive, and autonomous devices built187

on the EFMs. Such systems could bridge the gap between188

the human-understandable inputs, such as text and performing189

high-level planning and low-level control tasks [18] and make190

such advanced capabilities available at the edge, embodied in191

robots, appliances, and wearable devices.192

In this work, we contribute to the growing field of SLM193

and EFM research and aim to lay the foundation for truly194

embedded SLMs by providing a foundational deployment flow195

that supports a wide range of FMs, from the autoregressive196

decoder-only ones to the encoder-only ones.197

B. Neural Network Deployment for Extreme Edge Devices198

Building on the trends of the model quantization and199

compression, as well as research into more computation-200

ally efficient DNNs [25], DNN inference on the mobile201

and embedded devices has become a flourishing field of202

research [13], [14], [26]. While model deployment on the203

mobile devices like smartphones follows similar approaches to204

the server-scale deployment, relying on the ample compute and205

memory resources, hardware-managed caches, and operating206

systems to carry out task scheduling available to this class207

of devices, deeply embedded devices face much more severe208

constraints in deployment. This is especially true for the209

new generation of MCU-class devices focusing on the AI210

applications. In contrast to their predecessors, these MCUs211

feature multicore compute clusters, DNN accelerators, and212

on-chip memory of up to 10 MiB, split into multiple software-213

managed memory hierarchy levels [13], [14], [27].214

To optimally leverage the compute capabilities of such215

complex systems, network deployment must simultaneously216

optimize the execution schedule and tiling of operators and217

orchestrate overlapping memory transfers using DMAs to218

achieve low data marshaling overheads and high compute219

utilization. While modern top-down compilers like MLIR and220

TVM [15], [16] allow integration of most common instruction221

set architectures (ISAs) and accelerator APIs, their focus is222

not on meeting the stringent memory constraints of this class223

of TinyML devices. Prior work like Dory [28], CoSa [29],224

and others have addressed these challenges for CNNs by225

focusing on the operator tiling to fit the target’s memory226

constraints. However, these approaches assume a single-227

cluster memory hierarchy, with undivided memory at each228

level, and a simple lifetime model for the network tensors,229

which are fundamentally stateless across the inference rounds.230

These simplifying assumptions do not hold for the complex 231

heterogeneous multiaccelerator hardware and advanced SLM 232

networks [30], [31]. 233

Moving beyond these prior works, we propose a novel 234

constraint programming algorithm that enables co-optimizing 235

tiling and memory allocation, which overcomes the limitations 236

of the previous approaches by supporting the data flows with 237

complex lifetimes (e.g., KV caching) as required by EFMs. 238

III. DEEPLOY 239

In this section, we provide an overview of the Deeploy 240

compilation flow. In contrast to most state-of-the-art compil- 241

ers for DNNs, which lower DNN representations top-down 242

into predefined primitives that need to be implemented by 243

each backend [15], [16], [32], Deeploy employs a bottom- 244

up compilation approach, where the compiler implements 245

networks by composing the user provided C kernels, extending 246

them with the code generation passes to implement tiling and 247

memory allocation. This bottom-up approach to compilation 248

provides three key advantages: first, it supports reusing hand- 249

optimized kernel libraries commonly available for most ISAs 250

and accelerators. Second, it can be easily extended to support 251

highly customized nonstandard compute platforms, including 252

heterogeneous SoCs featuring multiple accelerators for which 253

a low-level compiler backend may not exist. Third, it allows 254

easy integration of novel operators found in emerging the 255

Transformer architectures without invasive modifications to the 256

deployment flow. 257

Deeploy is organized in three building blocks; the fron- 258

tend validates and transforms the graph representation into 259

a representation that suits the platform and assigns kernel 260

templates to each operator. The midend performs all the 261

tiling and static memory allocation computations, guaranteeing 262

that the computed program schedule may execute without 263

unscheduled runtime memory spills. Finally, the backend uses 264

the optimized graph representation generated in the frontend, 265

and the generated tiling schedule and memory allocation 266

map generated in the midend to create the executable code 267

through a series of code generation passes. All the deployment 268

targets share the same execution flow, and Deeploy uses a 269

configurable platform abstraction, the backend, which allows 270

it to steer the operators’ mapping, optimization, and lowering 271

according to the platform’s configuration. An overview of the 272

Deeploy execution flow is shown in Fig. 1. 273

A. Data Structures 274

Deeploy distinguishes between three types of buffers: 275

1) variable buffers; 2) transient buffers; and 3) constant 276

buffers. Variable buffers represent tensors that contain data 277

that is not constant at compile time, i.e., network inputs, 278

outputs, and intermediate activations. Constant buffers rep- 279

resent compile-time constant data used in inference, i.e., 280

network weights and other network parameters. Finally, tran- 281

sient buffers represent scratchpad memory locations for the 282

kernel execution, e.g., im2col buffers for the convolution 283

kernels [33], [34], or reorder buffers for efficient transposition 284

kernels. Typically, the amount of space used in transient 285
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Fig. 1. Overview of the Deeploy execution flow. Steps 1© and 2© are part of the frontend. In the first step, the graph is modified by fusing and inserting
platform-specific operators, for example, transposition operators, to match the data layout requirements. In the second step, the datatypes for every tensor are
inferred, the accelerator target is chosen, and the kernel templates are selected. The first step in the midend, step 3©, is the TCF, which computes geometrical
constraints for the tile sizes of each tensor, adding them to a CP. The resulting tensor size variables are translated into a 2-D bin packing problem in step
4©. The solution of the co-constrained tiling and static memory allocation problem is computed by the ORTools CP-SAT solver and finally processed in step
5© in the backend. Step 5© generates platform-specific C code exploiting DMA transfers. Each step of the execution flow is highly configurable through the
Backend object.

buffers depends on the operator’s parametrization, distinguish-286

ing them from the variable buffers. In contrast to simpler DNN287

topologies, EFMs employ data structures that require advanced288

allocation strategies, such as the KV caches of the autore-289

gressive SLMs, as they have more complex buffer lifetime290

requirements than the intermediate tensors found in CNNs.291

Addressing these constraints requires a more sophisticated292

management of the buffers’ lifetime and memory allocation293

than in the other deployment tools targeting the extreme edge294

devices [28], [29].295

The distinction between the global and local section buffers296

is relevant for the code generation; the global objects are297

allocated as the global C variables, while the local objects298

are only accessible in the inference code. As such, the global299

variables are alive throughout an inference execution, while the300

local variables are allocated and deallocated as the network’s301

execution schedule requires.302

B. Frontend303

Deeploy’s frontend is designed around ingesting quantized304

open neural network exchange (ONNX) graphs produced by305

DNN and Transformer quantization tools like Quantlib [35].306

Deeploy implements a configurable lowering pass system307

based on the pattern matching of the ONNX graphs to enable308

efficient and customizable graph-lowering strategies. Each309

lowering pass consists of an user-defined replacement function310

and a source pattern, which describes the subgraph that should311

be replaced. Using the replacement function, each lowering312

pass uses the matched subgraph to generate a target pattern,313

which replaces the source pattern. Using this system, the314

first processing step in the frontend is transforming the input315

graph into a custom, platform-specific ONNX dialect using316

lowering passes provided by the backend. The user further317

defines operator mappings between the custom operators 318

and the engines available in the target platform to control 319

the code generation on the level of individual operators. 320

Common TinyML kernel libraries like CMSIS-NN and PULP- 321

NN [33], [34] offer kernels for the fused linear operators 322

and activations, which can be lowered into by matching 323

pairs of linear operators and quantization operators. Besides 324

operator fusion optimization passes, Deeploy also supports the 325

minimization and insertion of the data marshaling operators 326

like transpositions to match the data layout requirements of 327

the kernel libraries. An example of such an operator insertion 328

pass is adding transpositions operators to optimize the data 329

layout of the B matrix for the general matrix multiplication 330

(GEMM) kernels of type Y = αAB+βC for better data access 331

locality. 332

The second step after transforming the input graph into 333

the platform-specific dialect in the frontend is parsing, during 334

which every operator in the network is analysed to construct 335

an initial context of buffers used in the network’s execution, 336

and type inference and kernel selection where every buffer 337

in the context is assigned a type. The types used in Deeploy 338

correspond to the standard C types (e.g., int8_t, float32) 339

or custom data types, depending on the kernels used by 340

the backend. To guarantee a valid type assignment, Deeploy 341

propagates type information top-to-bottom. The user must 342

only provide the input types for every graph’s input tensor to 343

achieve this; then, using this information, Deeploy matches the 344

input types of each operator with one of the kernel signatures 345

provided by the backend. 346

The final result of the frontend is an assignment of low-level 347

kernel templates to every operator in the lowered platform- 348

specific ONNX, which satisfies the type constraints imposed 349

by the network’s operators. 350
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Fig. 2. Example of the co-optimization of tiling and static memory allocation algorithm for one memory level in Deeploy. First, the lifetime of each tensor
in the graph is calculated under the execution schedule shown on the left. Next, the memory scheduler constructs an adjacency matrix of the tensor graph and
extracts the cost vector from the TCF shown in the middle. Finally, Deeploy applies a coordinate transform within the CP. On the right-hand side, the 2-D
bin packing solution is presented with the naive solution on the top, and the solution found by Deeploy is shown below.

C. Midend351

The second stage of Deeploy’s execution flow, the midend,352

receives the platform-specific ONNX graph and the kernel353

assignment for each operator from the frontend. The midend’s354

purpose is to perform all the optimization operations required355

to generate the low-level optimized C code for the target356

platform in the backend. The midend is divided into two357

optimization steps: 1) memory level annotation and 2) tiling358

and memory scheduling. To model the CP used to compute359

the tiling and static memory allocation solution, Deeploy uses360

Google’s ORTools.361

1) Memory Level Annotation: The memory level annota-362

tion step annotates every buffer in the compilation context363

with a memory hierarchy level. The motivation for defining364

the storage location of every tensor is to model the code365

generation constraints closely to the hardware; most embedded366

systems designed for the TinyML applications use multiple367

memory or cache levels [13], [14] to optimize the tradeoff368

between the storage density and the memory access latency.369

While Deeploy supports the tiling of buffers, directly assign-370

ing buffers’ memory levels to lower cache levels can lead371

to performance improvements. When targeting accelerators372

that would otherwise be limited by the available bandwidth373

toward higher-level caches, controlling memory allocation has374

a significant performance impact [13].375

2) Tiling: The second processing step in the midend is376

tiling and memory scheduling. For every kernel template377

chosen in the frontend, the target platform must specify a tile378

constraint (TC). The TC models the geometric and platform-379

specific constraints for tiling an operator. For a tiling solution380

to be correct, all the geometric constraints must hold. For381

example, the spatial dimensions of a Softmax activation’s382

output tile must be the same as its input tile’s dimensions.383

As such, the geometric constraints do not depend on the384

implementation of an operator. While it is possible to tile385

the large tensor operators down to single instructions when386

targeting the processor cores, the same does not hold for the387

accelerators. Specifying TCs and platform-specific constraints 388

on a per-kernel basis is especially important for handling the 389

tiling problem for the loosely coupled accelerators since they 390

typically only support specific dimensions to be tiled, owing 391

to their specialized datapaths [13], [14]. 392

Similarly to the type inference and kernel selection flow, 393

the tile constraint flow (TCF) is applied top-to-bottom through 394

the execution schedule of the network, adding the geo- 395

metric and platform-specific TCs of every operator to the 396

CP. Furthermore, the TCF adds one symbolic variable per 397

dimension per tensor in the network to the CP and a sym- 398

bolic variable for every tensor, representing its size as the 399

product of all the dimension variables. Using this formulation, 400

the solution of the CP represents the size of the largest 401

tile. 402

3) Memory Scheduling: After the geometrical constraints 403

of every mapped kernel template in the network are collected 404

and added to the CP, the Deeploy’s memory scheduler calcu- 405

lates the lifetime of every tensor in the network over the user 406

provided execution schedule of the ONNX graph as shown in 407

Fig. 2. As previously mentioned, this is an essential step for 408

the autoregressive Transformers that must accommodate short- 409

lived tensors (e.g., intermediate activations and residuals) and 410

long-lived buffers (such as KV caches). 411

Deeploy’s memory scheduler computes a tiling path using 412

the backend’s memory hierarchy model to assign a sequence 413

of memory transfers through the different memory levels. 414

Using the calculated lifetimes and the tensor’s size variable 415

computed before, the memory scheduler models the problem 416

of computing a static memory allocation schedule as a 2-D 417

bin packing problem [30], [36], where the horizontal axis 418

represents the lifetime, and the vertical axis represents the 419

memory address space. 420

Similar to the other state-of-the-art algorithms [30], 421

Deeploy’s scheduling CP works with Tetris scheduling intro- 422

duced in TetriSched [37], where the memory buffers are 423

scheduled one after another, adding to the maximum load 424

of each of their lifetime’s bins. To solve the tiling and 425
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allocation problem in a single shot, the memory allocation of426

each buffer is coupled to the tiling solution, which requires427

expressing the order in which they are scheduled within the CP428

as well.429

The first step to modeling the memory allocation problem is430

to pick a random schedule of the memory buffers and compute431

the adjacency matrix A of the tensor graph. We collect the432

memory size of each buffer, represented as an integer variable433

of the CP, in a cost vector C. For any permutation matrix P,434

A′ = P × A × PT is a valid adjacency matrix with associated435

cost vector C′ = P × C. A valid N × N permutation matrix436

can be expressed as437

pi,j ∈ [0, 1] ∀i, j ∈ [0, N − 1]438

N−1∑

i=0

pi,j = 1 ∀j ∈ [0, N − 1]439

N−1∑

i=0

pj,i = 1 ∀j ∈ [0, N − 1].440

Next, the total memory load is computed iteratively using441

A′ & C′: since we use Tetris scheduling, we add each buffer’s442

memory size to the size of the final scheduled buffer whose443

lifetime overlaps. We use a vector of intermediate variables444

containing one entry for each buffer, H, representing the445

memory load in the lifetime region of each buffer. The vector446

H is computed as follows:447

H0 = 0448

Hj = maxi=0···j−1
(
A′[j, i] · Hi

) + C′
j.449

The total worst-case memory load for all the execution steps450

is then computed as memory load = maxi=0···N(Hi).451

In contrast to the other static memory schedule algorithms,452

which focus on calculating an optimal solution for the memory453

blocks of the fixed size, our algorithm combines the constraints454

on the tile sizes and memory layout calculation into a single455

CP; this allows Deeploy to simultaneously optimize static456

memory allocation as well as tile sizing to control memory457

use during the entire inference process, which is critical to458

matching the memory constraints of extreme-edge SoCs with459

the complex buffer lifetime requirements of Transformers.460

An overview of the co-constrained tiling and static memory461

allocation algorithm is shown in Fig. 2.462

D. Backend463

Every kernel template picked in the frontend is assigned464

a list of code generation passes by the backend. Each code465

generation pass operates on a code segment, starting from466

the original kernel template, and may add to or modify its467

code segment. Besides enabling integration of custom passes,468

Deeploy offers the standard code generation passes required469

for generating the correct code, e.g., memory allocation and470

deallocation generation, which inserts calls to heap-based471

allocators or sets pointers to predefined memory locations472

calculated during tiling and memory scheduling.473

An essential set of code generation passes is centered around474

generating closures for the code segments. In the context of475

Fig. 3. Bottom-up offloading closure generation for a GEMV kernel. All the
arguments that refer to the nonglobal variable buffer’s or constant buffer’s are
captured and used to generate a closure struct typedef and a closure function
that unpacks the argument struct and calls the original kernel. Finally, the
kernel template is replaced with a function pi_cl_team_fork, which takes the
newly generated closure as an argument and offloads its execution to all the
eight cluster cores.

Deeploy, closure generation consists of three parts: 1) the 476

closure function itself, which encapsulates a code segment; 2) 477

the closure environment, which contains every free variable 478

used within the code segment and must be passed to the 479

closure function; and 3) the closure invocation, which is either 480

an offloading function or a call to the closure function. 481

Deeploy implements closures as the standard C functions by 482

generating a function call around the target code segment and 483

passing the closure environment as a struct pointer. Deeploy 484

captures the relevant free variable expressions by analysing 485

the abstract syntax tree (AST) of the underlying code segment 486

using the Mako templating library [38]; since the function 487

signature of the kernel template is known to Deeploy, it can 488

extract arguments used in the kernel template that refer to local 489

buffers, and pass them to the closure using an argument struct. 490

During code generation, the closure generation pass hoists the 491

closure function definition into the global context, inserts code 492

for constructing the argument struct and returns the function 493

call to the hoisted closure as the new code segment for the 494

subsequent code generation passes. 495

An important application for the Deeploy’s closures is to 496

facilitate operator offloading, which is required for program- 497

ming processor-based accelerators like compute clusters or 498
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loosely coupled, memory-mapped accelerators like NPUs. An499

example of closure generation for the operator offloading to500

the octa-core cluster is shown in Fig. 3.501

Tiling code generation is implemented as a pass as well.502

Deeploy supports DMA engines and uses them in tiling code503

generation to move tiles between different memory hierarchy504

levels according to the tiling solution computed in tiling and505

memory scheduling. To hide the latency of DMA transfers,506

Deeploy can configure tiling for the operators to use double-507

buffering, which constrains the tiling solution to reserve twice508

the required space for every input and output tile. During code509

generation, Deeploy schedules the data fetching and writeback510

to occur in parallel with the kernel execution to minimize the511

latency.512

IV. TINYSTORIES LLAMA MODEL513

As a concrete example of our deployment flow for the514

next-generation EFMs, we quantize and deploy an SLM on a515

heterogeneous MCU, Siracusa, introduced in Section V. We516

chose a Llama2 model pretrained on the TinyStories dataset [8]517

from HuggingFace,2 with a hidden size dm = 64, h = 16518

parallel attention heads, N = 8 layers, and an intermediate size519

dff = 256 for the feed-forward layer. The model architecture520

is shown in Fig. 4. Note that, however, any SLM fitting the521

memory constraints of the target platform can be deployed522

with the same flow.523

Like all the other decoder-based language models, the524

Llama model we use in this work has two fundamental525

inference modes, which we refer to as the autoregressive526

and parallel inference modes, and generates its response in527

two distinct phases, the prompting and generation phases; the528

prompting phase ingests the initial sequence of the user input529

tokens, whereas the generation phase generates the model’s530

output tokens autoregressively.531

A. Prompting Phase532

Inferences follow a two-pass regime. First, the text input is533

translated into a sequence of tokens, typically referred to as534

the prompt. The prompt can have an arbitrary sequence length535

Sp, up to the size of the context window of the model.536

In the first pass of the model, the prompt is processed to537

produce the first output token. Since, all the tokens of the538

prompt are available ab initio, the decoder can process them539

in a parallel single-shot fashion by applying causal masking540

of the attention matrix [39]. This first pass generates the first541

token output and the K and V matrices, which may be reused542

in the subsequent generation phase. This process parallels543

the function of encoder layers used in the first Transformer544

models [39].545

B. Generation Phase546

In the generation phase of the inference process, output547

tokens are generated one at a time using the previous token548

outputs as the model’s input. While every step of the genera-549

tion phase may use the same parallel inference mode described550

2https://huggingface.co/Maykeye/TinyLLama-v0

in the previous Section, doing so would require recomputing 551

all the previous tokens’ K and V submatrices. Therefore, the 552

K and V matrices of the previous inference steps are typically 553

cached in memory to avoid the quadratic cost of recomputing 554

them [39]. 555

As the parallel and autoregressive inference modes require 556

different tradeoffs in memory allocation for KV caching and 557

storage of intermediate results we deploy them using separate 558

ONNX models which reflect these tradeoffs. For the parallel 559

inference mode we export an ONNX model with a single 560

input and output for the token sequence and outputs for 561

the computed KV submatrices which are stored for the next 562

generation phase. For the autoregressive inference mode, we 563

use an ONNX model that additionally requires the cached 564

KV submatrices. While computing outputs using KV caches 565

is significantly more efficient regarding the absolute number 566

of operations, loading and storing the KV caches induces 567

significant data movement, and the smaller operator dimen- 568

sions make the generation phase much more challenging to 569

accelerate. 570

V. DEPLOYMENT PLATFORM 571

This Section introduces the hardware platform used in this 572

work as a deployment target to deploy the SLM introduced 573

in Section IV and goes over the NPU-specific backend imple- 574

mentation in Deeploy. 575

A. Siracusa 576

Siracusa [13], is a low-power, heterogeneous RISC-V MCU 577

implemented in TSMC 16 nm technology, which is the mul- 578

tiaccelerator SoC targetted in this work. Siracusa is designed 579

for efficient AI inference, which can leverage its dedicated 580

NPU, N-Eureka, and generalistic digital signal processing 581

(DSP) tasks, which can exploit both dedicated XpulpNN 582

ISA extensions [33] enabling single instruction multiple data 583

(SIMD) processing of low-precision integers, as well as an 584

accelerator cluster of eight RISC-V cores which enable single 585

program multiple data (SPMD) processing. 586

To enable single-latency access from the cluster cores 587

to the L1 tightly coupled data memory (TCDM), all the 588

cores and the 16 L1 memory banks are connected through 589

a TCDM interconnect using one 32-bit port each, granting 590

a total memory bandwidth of 256 bit per cycle to the com- 591

pute cluster. The cluster’s TCDM memory banks are also 592

accessible from the N-Eureka accelerator using nine-bank 593

wide, 288 bit accesses. To manage contention on accesses 594

to the single-ported memory banks, Siracusa integrates a 595

lightweight, programmable access arbiter, which allows the 596

set the maximum number of stall cycles for the accelerator; 597

if accesses from the core-side interconnect cause accelerator 598

access to stall for the programmed number of cycles, the 599

arbiter will stall core accesses and grant it to N-Eureka. 600

The N-Eureka accelerator uses a mixed-weight-precision 601

bit-serial datapath, which is optimized for executing dense 602

3×3, depthwise 3×3, and dense 1×1 convolution opera- 603

tions with 8 bit activations and 2 bit to 8 bit convolution 604

weights [13]. To support the bit-serial nature of the datapath, 605
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Fig. 4. Overview of the Llama model deployed in this work. The eight decoder layers of the model are shown on the left and consist of an RMSNorm -
Self-Attention - RMSNorm - Feed-Forward layer stack. Input 1© in the self-attention inset corresponds to the token input. Input 2© corresponds to the rotational
embedding used in Llama models. Input 3© are the KV cache inputs used during the autoregressive inference. Notably, during the autoregressive inference,
the new row of the K and V matrices computed on the input token are appended to the KV cache.

N-Eureka requires its weights to be stored in a nonstandard bit-606

interleaved data format, which requires offline transposition,607

padding, and bit shuffling of CNN weight tensors. N-Eureka608

is designed as an output-stationary accelerator, opting to cache609

small input tiles and streaming weights. To execute operations610

larger than its internal buffers, it integrates a hardware tiler611

with a programmable number of tiles and strides between612

the dimensions and fixed tile sizes that match the buffer613

sizes. To increase the available memory bandwidth for the614

N-Eureka’s weights and minimize off-chip access to fetch615

weights, the cluster integrates a neural memory subsystem616

(NMS), which contains two dedicated 4 MiB memory subsys-617

tems, implemented in static random access memory (SRAM)618

and MRAM technology, respectively, which are designed to619

hold the weights for the N-Eureka accelerator and are attached620

through a dedicated 256 bit per cycle weight data port.621

The compute cluster and N-Eureka are located in a shared622

clock domain, the heterogeneous cluster, which communicates623

with the remainder of the SoC, mainly consisting of a624

controller core, 2 MiB L2 memory, and peripherals, through a625

64 bit wide advanced extensible interface bus (AXI) bus, which626

can be used by a DMA integrated within the cluster, to transfer627

the data between the L1 and L2 memories autonomously.628

While Siracusa is equipped with significant computing629

capabilities through two dedicated accelerators and sizeable630

on-chip memory, deploying an advanced neural network on631

this device is a challenging problem. While weight storage for632

the layers that can be executed on N-Eureka is plentiful, all633

the other layers’ activation, weight, and output tensors must634

be tiled to fit within 256 KiB of L1 memory. Furthermore,635

memory transfers between L2 and L1 should be orchestrated636

using the DMA to minimize stalling.637

B. Deeploy Integration638

We address the deployment challenges posed by Siracusa’s639

heterogeneity through an augmented Backend model. This640

section gives an overview of the additions implemented to use641

Deeploy for deploying SLMs on Siracusa and, more generally,642

of the modifications needed to support a generic new platform643

in our deployment tool.644

Fig. 5. Overview of the Siracusa SoC featuring its DSP-enhanced octa-core
RISC-V cluster and host controller (red), NPU (orange), complex memory
hierarchy with two levels of scratchpad memory and a NMS (blue), two
arbitrated interconnects toward the L1 memory and an AXI interconnect
(green), and peripherals, such as the cluster DMA and chip-level I/O (purple).

As Deeploy’s core primitives are optimized kernels, we 645

chose the PULP-NN [33] kernel library, which integrates 646

parallel kernels as well as single-core implementations, as 647

our target for utilizing the octa-core cluster. The PULP-NN 648

kernels focus on efficient implementations of fused linear and 649

quantization layers. We support fused layers through lowering 650

passes that match the supported operator combinations and 651

merge them in the frontend of Deeploy. We further added 652

the fused linear operator TCs, which add the kernel-specific 653

constraints besides providing general geometric constraints. 654

We implement function offloading to both the NPU and the 655

octa-core compute cluster in Siracusa using the closure system 656

as detailed in Section III-D. 657

The N-Eureka accelerator provides greater compute capa- 658

bilities than the octa-core cluster for the CNN operators, 659

achieving a peak throughput in the range of hundreds of 660

GOp /s for pointwise and 3×3 convolutions. Even though 661

SLMs do not employ these types of operations, we add a 662

custom linear layer to pointwise convolution lowering pass 663

that converts GEMM operators with compile-time constant 664
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weight matrices into pointwise convolutions. This method665

allows us to deploy all the linear layers in Transformer models666

as shown in Fig. 5, on the NPU.667

C. Deployment Setup668

As explained in Section IV, the dual inference modes of669

the decoder-only models require different deployment strate-670

gies, as the autoregressive inference mode requires significant671

memory for KV caching. We deploy two model prototypes672

to accommodate this difference, one for the autoregressive673

inference mode and one for the parallel inference mode.674

The autoregressive inference mode model uses additional675

network inputs corresponding to the previous sequences’ KV676

caches. Other than that, the deployment setup between both677

models is equal. We allocate all the graph inputs and outputs678

as the global variable buffers in Siracusa’s L2 memory, and679

annotate all the local variable buffers modeling intermediate680

tensors in L2 as well. In deployment scenarios that use681

Siracusa’s NMS, we allocate all linear layer weights in the682

NMS but use L2 for all the activations.683

Unless stated differently, all the network operators are684

executed on the cluster and use Deeploy’s TCF to generate685

tiled inference code, which orchestrates transfers of input,686

weight, and output tensors between the L2 and L1 memories.687

For the operators executed on the NPU, weights are stored688

in the NMS in their entirety and ingested by the accelerator689

without moving them into L1 first, leveraging the increased690

available bandwidth from the NMS.691

VI. RESULTS692

This section discusses the measurement results of deploying693

the TinyStories SLM on Siracusa and benchmarking results of694

general Transformer layers. First, we discuss the setup used695

to measure the performance results on Siracusa. Finally, we696

present our benchmarking and end-to-end silicon measure-697

ments, as well as the profiling experiments of our compiler.698

A. Deployment Evaluation Setup699

To evaluate the model’s performance in the autoregressive700

mode and for causally masked parallel inference, we measure701

each inference step individually with code generated by702

Deeploy. We start from the empty KV caches for causally703

masked parallel inference and process N input tokens simulta-704

neously. We start from the KV caches of the previous inference705

step for all the experiments in the autoregressive mode. To706

calculate the average throughput and energy per token, we take707

the average over all 256 inference steps.708

We report all the power numbers measured on a Siracusa709

prototype board using a Keysight N6715C DC, supplying all710

the operating voltages and measuring current. We perform711

all the experiments under nominal conditions, i.e., 0.8 V712

supply voltage and 360 MHz operating frequency of the cluster713

domain. We measure power consumption for every inference714

by averaging the power consumption of the model run in a715

continuous loop.716

We measure four distinct deployment scenarios. In the717

first scenario, single-core deployment, we only generate code718

using a single RISC-V core. In the second scenario, octa-core719

Fig. 6. Performance results for linear layer operators offloaded on N-Eureka
using Deeploy code generation. The highlighted inset shows that the NMS’
added storage and bandwidth leads to performance gains of up to 2.1× in
memory-bound operator configurations. In large linear layer configurations,
the speedup achieved by the NPU is 25× compared to the octa-core
implementation, and another 1.6× when using the NMS for weights.

deployment, we generate code using all the eight RISC-V cores 720

of the cluster without using the NPU. In the third scenario, 721

NPU without NMS deployment, we generate code using all 722

the eight RISC-V cores and N-Eureka without offloading 723

weights to the NMS. In the final scenario, NPU with NMS 724

deployment, we generate code using all the eight RISC-V cores 725

and N-Eureka with the NMS. We use the Siracusa Backend in 726

Deeploy to generate code for all the scenarios. 727

B. Microbenchmarking Results 728

To validate our approach of offloading GEMM operators on 729

N-Eureka, we first measure the performance of N-Eureka and 730

the RISC-V cluster on the GEMM kernels. Specifically, we 731

study the performance of the Q, K, and V projections in the 732

attention layer and linear layer performance in feed-forward 733

layers for different sequence lengths S in the parallel inference 734

mode. For the Llama model we study in this article, these 735

projections use dimensions 256 → 64 and 64 → 256. Our 736

measurements are shown in Fig. 6. 737

Transitioning from the single-core to octa-core cluster exe- 738

cution, we measure a performance improvement of 6.2×, 739

thanks to the low-overhead parallelization on the cluster 740

cores. Transforming the linear layer operators into pointwise 741

convolutions as explained in Section V-B, enables execution on 742

the NPU, which reduces the latency by 25× compared to the 743

octa-core implementation due to the NPU’s significant com- 744

pute resources for the convolution operations. Furthermore, 745

we reduce the data movement by allocating the convolution 746

weights to the NPU’s NMS, increasing the effective memory 747

bandwidth available to N-Eureka. These optimizations improve 748

the performance, especially on the memory-bound tasks, like 749

the linear layers in attention blocks with low sequence length, 750

by 2.1× compared to the NPU execution without the NMS. 751

We further profile the execution performance of a repre- 752

sentative encoder layer as commonly found in nonregressive 753

Transformer models. For our benchmarking, we chose a 754

configuration with the hidden size dm = 64 and h = 16 755

parallel attention heads and an intermediate size dff = 256, 756

paralleling the decoder layer in Fig. 4. We measure an increase 757

in throughput of 17.8× when leveraging the NPU to compute 758
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TABLE I
CUMULATIVE LATENCY AND ENERGY FOR A 256-STEP INFERENCE OF

THE SLM ON SIRACUSA USING THE NPU WITH NMS

Fig. 7. Cycle breakdown of parallel inference in the studied SLM. Due
to the larger contribution of operations from the matrix multiplications using
the NMS performance of offloaded GEMM operators increases by 17.8×,
and end-end-performance improves by 61 % for sequence length 32 while
maintaining low overheads of only 9%, even when fully leveraging both the
cluster and NPU.

the linear layers, improving the end-to-end performance for759

the encoder layers by 61 %. We further quantify the overheads760

due to tiling and data marshaling overheads, measuring an761

end-to-end overhead of only 9 %.762

C. End-to-End Deployment Results763

We thoroughly evaluate the SLM deployed on Siracusa by764

benchmarking the two operating phases required to execute765

SLM, namely the prompting phase and the generation phase.766

Table I displays the cumulative runtime and energy for exe-767

cuting a 256-step inference in the parallel and autoregressive768

modes, where KV caching is used. The autoregressive mode769

outperforms the parallel mode, achieving a 23× speedup and770

a 26× improvement in energy efficiency. These improvements771

directly result from avoiding the costly recomputation of the772

KV matrices. Averaging the autoregressive inference mode’s773

cumulative latency and energy over 256 steps, we achieve774

an average throughput of 340 token per second at an average775

energy cost of 490 μJ/token.776

Since, the autoregressive mode maximizes the data reuse777

across the whole inference process, this mode can be consid-778

ered both during the prompting and generation phases detailed779

in Section IV. However, this strategy leads to the suboptimal780

results as running in the parallel mode for the prompting781

phase enables better utilization of the NPU without excessive782

recomputation of the KV matrices, as tokens are not fed back783

in this phase.784

The parallel inference mode’s performance for the SLMs785

studied in this work follows the trend of the benchmark shown786

in Fig. 7. While we benchmark the end-to-end performance of787

the decoder-only models in this work, the results in Fig. 7 also 788

apply to the encoder-based transformer models, as the parallel 789

inference mode is equivalent to the encoder layer execution 790

in such networks. In the autoregressive mode the speedup 791

achieved by employing the NPU is only 19%, which can be 792

attributed to the mode’s smaller operator sizing, leading to 793

stalling of the accelerator due to the reconfiguration overheads. 794

Additionally, the average proportion of time spent for the data 795

marshaling is 40% for the autoregressive versus just 14% for 796

the parallel modes, underlining the memory access intensity 797

inherent to KV caching, which drastically reduces the number 798

of computations leading to reduced arithmetic intensity. A 799

detailed analysis of runtime and breakdown of the operator 800

intensity for the end-to-end autoregressive inference is shown 801

in Fig. 8 plots 1© and 2©. 802

D. Deployment Overheads 803

An important metric for the quality of generated code is 804

the utilization of the system’s compute engines. To profile 805

the quality of our code, we measured the overheads incurred 806

by Deeploy for each autoregressive inference step in NPU 807

without NMS deployment and NPU with NMS deployment 808

shown in Fig. 8, plot 3©. The main difference between the 809

two scenarios is whether Siracusa’s NMS is used for the 810

compile-time constant GEMM weights. While the reduction in 811

overheads decreases from 33% to 7% with increasing sequence 812

lengths and arithmetic intensity, the weight memory drastically 813

reduces the relative time spent on the data movement in the 814

first steps of inference. This reduction of overheads is a crucial 815

advantage of the bottom-up compilation approach employed 816

by Deeploy; while the other compilers might not consider 817

low-level architectural features like memory hierarchy or only 818

expose a simplified model, Deeploy allows complete control 819

over the memory allocation and code generation to leverage 820

the knowledge of the target architecture fully. 821

E. Comparison With TinyML Compilers 822

While we designed Deeploy to deploy the state-of-the-art and 823

emerging SLMs, we also report the results on more classical 824

CNN and artifical neural network (ANN) workloads as defined 825

in the MLPerf tiny benchmark [41]. We compare Deeploy with 826

the state-of-the-art open-source Dory tool [28] using the same 827

open-source CNN kernels for PULP MCUs [33] we used in this 828

work. To ensure a fair, compiler-focused comparison, we do not 829

use the NMS or the NPUs of Siracusa. In this mode, both the 830

compilers only deploy cluster kernels with equivalent memory 831

constraints. As a third data point, we add measurements of 832

Deeploy-generated code on Siracusa when using the NMS and 833

NPU. Our results are shown in Table II. We find that Deeploy 834

generates code with an equivalent latency of Dory up to 1% 835

of variation, underlining that even though Deeploy chooses a 836

more general compilation approach than Dory, it does not incur 837

any performance penalties. 838

F. Comparison With the State-of-the-Art 839

Currently, most efforts on EFM deployment target mod- 840

els with more than a billion parameters on high-end 841
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Fig. 8. Performance results of end-to-end autoregressive inference. Plot 1© shows the runtime of each autoregressive inference step in three scenarios
corresponding to octa-core deployment, NPU without NMS deployment, and NPU with NMS deployment. The plot shows that the autoregressive inference on
Siracusa is highly memory-bound in all the scenarios, which is due to the transfer of the KV caches between L2 and L1; NPU with NMS deployment reduces
the runtime of every step by approximately 70 kcycles since the weights are stored untiled in the NMS, reducing the required L2 to L1 data transfers. The
second plot 2© shows a breakdown of the runtime in the different operators of the network and data marshaling overheads. Evidently, the higher compute
throughput of N-Eureka is unused due to the overall memory-boundedness. Finally, plot 3© shows that the data movement overhead reduction afforded by the
NMS decreases with increasing sequence lengths as the overhead of transferring KV caches increases.

TABLE II
LATENCY RESULTS OF DORY AND DEEPLOY ON THE MLPERF TINY

BENCHMARK, RUNNING ON SIRACUSA AT A CLOCK

FREQUENCY OF 360 MHz

microprocessors (MPUs) and embedded processors, such as842

the I.MX95 or NVIDIA Orin or mobile phone chips, fea-843

turing multi-GiB external memories and multi-W power844

envelopes [42], [43]. Even though our performance and effi-845

ciency are extremely competitive, quantitative comparisons846

against these deployments would be unfair in our favor as we847

target much smaller SLMs.848

Considering SLMs in the 100 s million parameters range,849

we compare our implementation on Siracusa with another850

small-scale Llama model for the edge devices, MobileLLM, by851

Liu et al. [44]. Liu et al. deploy a 125 MParameter SLM on an852

iPhone 13 featuring an A15 Bionic chip in 5 -nm technology853

using the highly optimized metal performance shaders (MPSs)854

backend for the Apple devices, achieving a throughput of855

64 token per second. While their paper does not profile the856

exact energy consumption of their models during inference,857

Liu et al. optimistically estimate the energy consumption of858

their setup with 12.5 mJ per token. Compared to this estimate859

on the iPhone 13’s A15 processor, the implementation of860

our SLM on the Siracusa MCU uses 26× less energy per861

token while achieving 5× more throughput, for a total 130×862

higher energy efficiency. When normalizing throughput with863

the number of operations per token of their network, we find864

that they achieve an equivalent of 4800 TinyStories Llama865

tokens per second. Under this estimate, our end-to-end energy866

efficiency on Siracusa implemented in an older 16 nm TSMC867

technology node is 1.7× higher.868

A comparison with a similar-scale (10 s million parameters) 869

model as ours is possible against the llama2.c [45] 870

implementation of the TinyStories-15M model on a 871

Samsung Galaxy Watch 4, demonstrated to achieve 872

22.1 token per second [46] using an Exynos W920 dual- 873

core ARM Cortex-A55 processor [47]. Neglecting the power 874

consumption of dynamic random access memory (DRAM) 875

accesses, only considering a power consumption of 300 mW 876

per core in Samsung 5 nm technology [48], we estimate the 877

power consumption during inference as 600 mW. Under this 878

assumption, the Galaxy Watch 4 achieves an energy efficiency 879

of 27 mJ per token, 55× lower than ours. Normalizing for the 880

operations per token, our energy efficiency is 13.4× greater, 881

even though the Exynos W920 is implemented in an advanced 882

Samsung 5 nm technology node. 883

VII. CONCLUSION 884

In this work, we presented Deeploy, a novel compiler 885

for DNNs allowing broad customizability of deployment 886

flows. We presented the integration of Siracusa, a heteroge- 887

neous RISC-V SoC featuring an octa-core compute cluster 888

and an NPU. We demonstrate the deployment of a SLM 889

trained on the TinyStories dataset on Siracusa, achieving 890

a state-of-the-art throughput of 340 token per second at an 891

average energy cost of 490 µJ per token in autoregres- 892

sive inference mode by efficiently leveraging the on-chip 893

KV caching. 894

We further analysed the efficiency of our generated code 895

via microbenchmarks, achieving the data marshaling over- 896

heads of only 9% on the Transformer encoder layers, 897

even when fully utilizing both the cluster cores and NPU 898

collaboratively. 899

Finally, we demonstrated that while the data marshaling 900

overheads are significant in the autoregressive inference mode, 901

the energy savings compared to executing the generation phase 902

of SLM in the parallel mode outweigh this drawback, reducing 903

the energy cost per token by 26× while increasing throughput 904

by 23×. 905
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In the future work, we plan to leverage Deeploy’s flexibility906

to support emerging computer architecture innovations, such as907

multiaccelerator SoCs integrating compute-in memory (CIM)908

macros.909
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