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Abstract—Network pruning is an effective technique that1

reduces the computational costs of networks while maintaining2

accuracy. However, pruning requires expert knowledge and3

hyperparameter tuning, such as determining the pruning rate4

for each layer. Automatic pruning methods address this chal-5

lenge by proposing an effective training-free metric to quickly6

evaluate the pruned network without fine-tuning. However,7

most existing automatic pruning methods only investigate a8

certain pruning granularity, and it remains unclear whether9

metrics benefit automatic pruning at different granularities.10

Neural architecture search also studies training-free metrics to11

accelerate network generation. Nevertheless, whether they apply12

to pruning needs further investigation. In this study, we first13

systematically analyze various advanced training-free metrics for14

various granularities in pruning, and then we investigate the15

correlation between the training-free metric score and the after-16

fine-tuned model accuracy. Based on the analysis, we proposed17

FreePrune score, a more general metric compatible with all18

pruning granularities. Aiming at generating high-quality pruned19

networks and unleashing the power of FreePrune score, we20

further propose FreePrune, an automatic framework that can21

rapidly generate and evaluate the candidate networks, leading to22

a final pruned network with both high accuracy and pruning rate.23

Experiments show that our method achieves high correlation on24

various pruning granularities and comprehensively improves the25

accuracy.26

Index Terms—Automatic pruning, neural architecture search27

(NAS), pruning granularities, pruning metric.28
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I. INTRODUCTION 29

DEEP learning applications have been flourishing in a 30

spectrum of fields, such as computer vision, speech 31

recognition, and natural language processing [1], [2], [3]. 32

However, the explosively increased model size hinders 33

the deployment of deep learning models on embedded 34

devices, which have limited computational and storage 35

resources [4], [5], [6]. To effectively address this problem, 36

model compression emerges as a promising solution [7], [8]. 37

Network pruning is one of the prevailing compression 38

techniques to reduce the computation and storage overhead 39

by reducing the number of model parameters [9]. However, 40

traditional network pruning schemes rely heavily on expert 41

knowledge and involve a cumbersome hyperparameter tuning 42

process, causing significant training costs and deficient pruning 43

rates [10]. To address this challenge, automatic pruning has 44

emerged through modeling the pruning problem as a search 45

process for better-pruned substructures. Fig. 1 illustrates the 46

automatic network pruning pipeline. Based on the original 47

network model, pruning strategies, such as irregular pruning, 48

block pruning, and filter pruning, are applied to specify 49

the sparse patterns of the pruned models. And optimization 50

methods, such as reinforcement learning [11], [12], [13] and 51

evolutionary algorithms [14], [15], [16], [17], [18], are 52

employed to generate a large set of pruned candidates. Next, 53

evaluation metrics are used to evaluate the candidates, aiming 54

at selecting high-quality pruned subnetworks that meet the 55

latency goal and hardware constraints. The final selected 56

network is fine-tuned to obtain the ultimate pruned network. 57

Among the automatic pruning pipeline, the evaluation 58

metric plays a crucial role in evaluating and selecting the high- 59

quality pruned subnetworks, which can achieve high-pruning 60

rates while maintaining model accuracy. Conventionally, 61

the magnitude is utilized to measure the importance of 62

the weights, where the ones with small magnitudes are 63

deemed redundant and removed [19], [20], [21], [22]. 64

NetworkSlimming [23] adopts the γ in the batch norm (BN) 65

layer as the importance metric, and the filters with small 66

γ values are removed. Besides, entropy-based [24] and KL- 67

divergence-based metrics [25] are also proposed. However, the 68

metrics mentioned above require manually setting the pruning 69

rates for each layer, which causes tremendous training costs 70

and undesired pruning quality. Recent studies have researched 71
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Fig. 1. Pipeline of automatic network pruning.

training-free metrics to skip the laborious hyperparameter72

tuning and model training process. Eagleeye [26] proposes73

to update the BN layers with the dataset while not updating74

the weights, such that the network accuracy can be somewhat75

recovered and used as an indicator to judge the quality76

of the pruned subnetworks. Nonetheless, it only evaluates77

filter pruning, which is prone to failure at high-pruning78

rates. Synflow [27] has proposed a data-independent iterative79

synaptic flow pruning, while only unstructured pruning is80

evaluated. The prior training-free metrics usually only evaluate81

one pruning granularity, and it prompts us to consider whether82

there exists a more general metric that can be applied across83

different pruning granularity scenarios.84

Akin to pruning, the neural architecture search (NAS) can85

also search for a compact network topology [28], [29], [30].86

Recent studies on NAS have introduced a range of training-87

free evaluation metrics. Nonetheless, different from network88

pruning, the training-free metrics in NAS pay more attention89

to the characteristics of the overall network structure. For90

instance, NASWOT [31] constructs training-free metrics based91

on network expressiveness, and TE-NAS [32] constructs the92

metric based on network expressiveness and trainability. The93

connection between network pruning and NAS motivates us94

to explore how the local characteristics of the weights and95

the structural property of the network affect pruning, and how96

they apply to different pruning scenarios.97

Drawing from the above, we aim to conduct a systematic98

evaluation of the applicability of these metrics and construct99

a more universally applicable training-free metric. Unlike100

prior studies that focused solely on a single granularity of101

pruning, we extend our investigation to encompass different102

granularities to fully unleash the potential of the evaluation103

metrics. We have investigated the characteristics of the BN104

layer distribution in pruned networks. Based on the analysis,105

we further propose FreePrune score, a training-free evalua-106

tion metric for rapidly selecting candidate pruning networks107

according to the distribution of BN statistics. FreePrune score108

demonstrates a strong correlation with the final accuracy of109

the pruned subnetworks across various pruning granularities,110

effectively streamlining the identification of better-pruned111

structures. Furthermore, to generate a large number of pruned112

candidates and automate network pruning in conjunction with113

our proposed metric, we construct an evolutionary algorithm-114

based automatic pruning framework FreePrune. Meanwhile, a115

relaxed global pruning technique is employed to initialize the116

subnetwork population and expedite network evolution.117

We summarize our contributions as follows. 118

1) We systematically analyze and evaluate the mainstream 119

training-free evaluation metrics regarding their applica- 120

bility on various granularities, and it guides further study 121

on automatic pruning and evaluation metrics. 122

2) We study the characteristics of the distribution of BN 123

layers in pruned networks and further propose FreePrune 124

score, a training-free metric that can be applied to 125

various pruning granularities and used as a plug-in for 126

rapid evaluation of pruned models. 127

3) We propose an automatic pruning framework that can 128

effectively compress the search space and generate 129

promising candidate subnetworks, leading to a final 130

high-quality pruned network. 131

4) Extensive experiments demonstrate that FreePrune score 132

and the pruning framework hold consistent efficiency in 133

searching for high-quality pruned networks. 134

II. RELATED WORK AND BACKGROUND 135

A. Granularity for Network Pruning 136

The effectiveness and applicability of network pruning are 137

influenced by the granularity of the pruning. Additionally, 138

pruning granularity also significantly impacts the deployment 139

of embedded terminals due to the diverse scenarios and 140

requirements. Regarding pruning granularity, pruning tech- 141

niques can be categorized into unstructured pruning and 142

various structured pruning. Unstructured pruning removes 143

specific neurons in a neural network, while structured pruning 144

follows specific rules to prune the weights of a particular 145

structure. Unstructured pruning lightens neural networks by 146

pruning neurons or connections. For instance, Han et al. [19] 147

utilized weight magnitudes to determine importance, removing 148

connections and weights below a specified threshold, fol- 149

lowed by fine-tuning to restore network accuracy. A convex 150

optimization procedure is employed to execute unstructured 151

pruning in [33], aiming to identify sparse subsets within the 152

original weights. 153

In contrast, structured pruning prunes network weight 154

parameters according to specific rules. For example, 155

He et al. [34] adopted the geometric median for filter prun- 156

ing, pruning similar redundant filters to minimize similarity 157

between filters. DBP [35] takes a sequence of consecutive 158

layers as a block and removes redundant blocks according to 159

the discrimination of their output features. Unlike previous 160

studies focusing solely on specific types of pruning, our 161

investigation considers diverse pruning scenarios, encompass- 162

ing both unstructured and various structured pruning to fully 163

explore the potential of pruning and better serve deployment 164

on embedded terminals. 165

B. Metrics for Pruning and NAS 166

Evaluation metrics play a pivotal role in the process of 167

selecting pruned subnetwork structures. As the automatic 168

pruning pipeline illustrates, a robust evaluation metric can 169

effectively guide network pruning to select high-quality sub- 170

network structures. Previous works [21], [23], [34] do not 171

rely on input data and directly evaluate the importance of 172
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(a)

(b)

Fig. 2. Overview of the systematic analysis and our proposed framework FreePrune. (a) Systematic analysis. (b) FreePrune framework with FreePrune score.

network structures, usually through regularization methods. On173

the other hand, works [24], [25], [36], [37] utilize input data174

for assessing the importance of network structures, typically175

analyzing gradients, features, and other aspects.176

Recent advancements in both automatic pruning and NAS177

have introduced a range of training-free metrics: while the178

former focuses on identifying high-quality pruning structures,179

the latter seeks superior network topologies. However, a180

notable discrepancy arises in the granularity of metric con-181

struction. Automatic pruning typically formulates metrics from182

the connections between neurons or the neurons themselves,183

to minimize the perturbation to the original network and184

thereby attain high-quality sparse substructures. Consequently,185

it places greater emphasis on the local attributes of the186

network, such as the fluctuations in neuron gradients and the187

variations in network accuracy. For example, EagleEye [26]188

restores the performance of pruned networks by adjusting their189

batch normalization (BN) layers, leveraging network accuracy190

as a metric. GraSP [38] and Synflow [27] select the network191

that can effectively preserve the performance of the original192

network as the high-quality pruning structure by considering193

the impact of pruning on network gradients.194

On the other hand, NAS endeavors to obtain a high-quality195

network topology, necessitating a comprehensive consideration196

of the overarching impact and characteristics of the entire197

network. For instance, Zen-score [39] utilizes the Gaussian198

complexity to characterize the number of linear activation199

regions in the network, thereby representing the expressiveness200

of the network. NASWOT [31] focuses on the number of201

representable activation regions in the network and uses202

Hamming distance to measure the similarity between differ-203

ent inputs, thus constructing a kernel matrix to reflect the204

network expressiveness. TE-NAS [32] utilizes the number of205

representable linear activation regions in the network to reflect 206

its expressiveness while utilizing the neural tangent kernel to 207

represent the network trainability. 208

Given the differences and connections of the training-free 209

metrics in the fields of NAS and pruning, we conducted 210

a systematic analysis and comparative experiments across 211

various pruning granularities to explore their adaptability. 212

III. METHODOLOGY 213

In this section, we systematically analyze the applicability 214

of various training-free metrics in network pruning across 215

different levels of granularity and pruning rates to explore 216

how the local characteristics of the weights and the structural 217

property of the network affect pruning. Building upon this, 218

we propose a more universally applicable training-free metric, 219

named FreePrune score, and develop a comprehensive auto- 220

matic pruning framework FreePrune, capable of handling all 221

granularities. 222

Fig. 2 illustrates systematic analysis and the proposed 223

automatic pruning framework FreePrune. Fig. 2(a) shows the 224

systematic analysis process. Initially, we obtain the pruning 225

configurations of each layer through random sampling to 226

generate the candidate networks with various pruning rates. 227

Subsequently, we execute pruning schemes with various granu- 228

larities, such as filter pruning, unstructured pruning, and block 229

pruning. The fine-tuning is then performed to produce multiple 230

sets of candidate pruned networks. Finally, we evaluate the 231

effectiveness of the training-free metrics in indicating network 232

performance by measuring the correlation between the metrics 233

and the final network accuracy. Further elaboration on these 234

procedures will be provided in Sections III-A and III-B. Based 235

on our systematic analysis, We discover that the BN layer 236
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itself can serve as a reliable indicator for the pruned network237

performance. We investigate the statistical characteristics of238

the BN layers of the pruned network and propose a novel239

and more universally applicable training-free metric FreePrune240

score. We will show more details in Section III-C.241

To further enable automatic pruning under various242

granularity and pruning rate constraints, we propose an evolu-243

tionary algorithm-based pruning framework, which integrates244

FreePrune score as depicted in Fig. 2(b). Initially, to compress245

the pruning configuration search space, we propose a relaxed246

global pruning method to establish the initial pruning config-247

uration. Then, the Elitist Preservation evolutionary algorithm248

is deployed for the rapid generation and evolution of candi-249

date pruned subnetwork structures. The FreePrune score to250

efficiently is used to select a better-pruned candidate structure.251

Finally, at the end of the evolution process, the framework can252

generate a high-quality pruned subnetwork that satisfies the253

constraints. More details will be shown in Section III-D.254

A. Definition and Network Evolution255

Given a CNN model N with L layers and its parameter256

set W, where W = (W1, W2, . . . , WL−1, WL), Wl represents257

the parameters of the lth layer of the model. Let L represent258

the loss function of the model and D = {(xi, yi)}n
i=1 represent259

the model dataset, then model pruning can be formulated as260

W∗ = arg min
W∗

L(N (W∗),D), s.t. C < Constraints (1)261

where W∗ = (W∗
1 , W∗

2 , . . . , W∗
L−1, W∗

L) is the subset of262

the original model parameters. W∗
l ⊂ Wl. C denotes the263

constraints satisfied by the model after pruning, such as264

the number of model parameters and the model inference265

latency. The objective of pruning is to find an optimal set266

of substructure parameters that minimize the loss of down-267

stream tasks while satisfying constraints. In this work, we268

let R = (R1, R2, . . . , RL−1, RL) represent the pruning rates269

of the model N , where Rl denotes the parameter pruning270

rate of the model lth layer, and Rl ⊂ (0, 1], Rl ⊂ R.271

This is also the population encoding representation in the272

evolutionary algorithm, where the pruning rate of each layer273

of the network is encoded as a real number within a specific274

range, thus characterizing different pruned subnetworks under275

specific pruning scenarios. Following the fitness evaluation276

conducted with our proposed FreePrune score, the better-277

pruned subnetwork structure is retained for subsequent rounds278

of evolution.279

By conceptualizing network pruning as a search problem,280

the candidate pruned network structures evolve and generate281

continuously, guided by FreePrune score, ultimately producing282

a high-quality pruned network.283

B. Systematic Evaluation284

To systematically analyze the applicability of training-free285

metrics in both pruning and the NAS fields, we commence286

with a series of comparative and analytical experiments across287

various pruning granularity and pruning rate scenarios. The288

correlation coefficients and network accuracy are used as the289

evaluation criteria for the performance of metrics.290

For the selection of training-free metrics, we choose typical 291

indicators from both pruning and NAS domains. In the pruning 292

domain, we select the accuracy-based metric EagleEye, as 293

well as the gradient-based Gradnorm and Synflow. In the NAS 294

domain, we choose NASWOT and Zen-score, which reflect 295

the network expressiveness. 296

The main metrics covered in this article are as follows: 297

1) EagleEye proposes to adjust the BN layer through a small 298

batch of data to restore network performance and uses the 299

adjusted network accuracy as the metric; 2) Gradnorm per- 300

forms network forward propagation through small batches 301

of data and calculates the resulting Euclidean sum of the 302

gradients as the metric; 3) Synflow proposes to iteratively 303

preserve the synaptic flow while avoiding layer collapse and 304

employs synaptic saliency score as the measure of network 305

performance; 4) NASWOT utilizes the count of activated 306

regions in a neural network to signify network expressiveness 307

and proposes a kernel matrix as the metric by computing the 308

Hamming distance on the activation of the hidden layer; and 309

5) Zen-score measures the expressive capability of a network 310

based on the expectation of Gaussian complexity and employs 311

a scaling factor to address the issue of scale sensitivity. 312

To assess the effectiveness of the training-free metrics, we 313

use the Spearman and Kendall correlation coefficients. These 314

rank correlation measures indicate monotonic relationships 315

and can efficiently quantify the correlation between metric 316

scores and the final accuracy of the pruned network. 317

To investigate the impact of pruning granularity and rates, 318

we first analyzed two extreme scenarios: 1) filter pruning 319

and 2) unstructured pruning. We randomly selected 100 sets 320

of candidate pruned networks for CIFAR-10 on VGG under 321

various constraints and calculated the correlation between the 322

evaluation scores of each metric and the final accuracy of 323

the pruned networks after fine-tuning. For the mini-ImageNet 324

with the ResNet18 network, we randomly selected 80 sets of 325

candidate pruned networks. 326

Table I displays the correlation of each metric under filter 327

pruning and unstructured pruning. For the filter pruning 328

scenario, EagleEye, Zen-score, and NASWOT exhibit high- 329

correlation coefficients, while Synflow demonstrates average 330

correlation coefficients. Conversely, Gradnorm shows a low 331

correlation, indicating its unsuitability as a metric for the 332

filter pruning scenario. For unstructured pruning, EagleEye 333

maintains high-correlation coefficients with Zen-score, while 334

Gradnorm shows poor correlation with NASWOT, suggesting 335

their ineffective application in this scenario. 336

To further illustrate the indicative effect of each metric, 337

we show the final accuracy of the pruned network resulting 338

from the selection of each metric. As shown in Fig. 3, the 339

upper section displays the accuracy of VGG on the CIFAR-10 340

dataset, while the lower part displays ResNet18 on the mini- 341

ImageNet dataset. Fig. 3 demonstrates that both EagleEye and 342

Zen-score exhibit a more balanced indication capability when 343

subjected to varying pruning granularities and pruning rates, 344

indicating their potential to identify the high-quality network. 345

Additionally, the average accuracy also reflects the stability 346

of the metric, the higher the correlation coefficient, the better 347

the metric tends to be, and the higher the average accuracy of 348
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TABLE I
CORRELATION COEFFICIENTS OF EACH METRIC AT DIFFERENT PRUNING

RATES FOR FILTER PRUNING AND UNSTRUCTURED PRUNING

the resulting candidate networks tends to be. Note that certain349

instances of top_acc values are lower than avg_acc because the350

top_acc selected by the indicator is not the highest accuracy.351

To explore the applicability of training-free metrics across352

different pruning granularities, we examine block pruning with353

varying block sizes. Block pruning, as a relatively fine-grained354

pruning method within structured pruning, adjusts pruning355

granularity by varying the size of the pruning blocks. This356

flexibility enhances its compatibility with hardware platforms357

in embedded systems, facilitating acceleration and increasing358

its research value.359

We evaluate the EagleEye and Zen-score for various block360

pruning scenarios, as they have a better correlation in both361

filter and unstructured pruning, and the accuracy of the362

resulting network is higher than the other metrics, showing363

their potential in various pruning granularity scenarios.364

Fig. 3. Final accuracy of the network selected by each metric. The bar
represents the accuracy of the best network selected by each metric and the
line represents the average accuracy of the top five networks selected by each
metric.

TABLE II
CORRELATION COEFFICIENTS OF EACH METRIC AT DIFFERENT PRUNING

RATES FOR BLOCK PRUNING IN BLOCK SIZE 16×16 AND 32×32

Table II shows the correlation of EagleEye and Zen-score 365

for different pruning rates and different block sizes. Zen- 366

score consistently shows high-correlation coefficients, whereas 367

EagleEye exhibits a decrease in correlation coefficients as 368

block size and pruning rate increase, diminishing its predictive 369

effect. 370

This prompts us to delve into the underlying causes of 371

the differing adaptability between the two metrics, as their 372

main distinction lies in the use of accuracy in EagleEye, 373

a metric reflecting network local characteristics, while Zen- 374

score constructs a macroscopic metric from the perspective 375
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Fig. 4. Last layer feature map of VGG. Where “B64” and “B32” stand
for block pruning with size 64×64 and 32×32, respectively. (a) Original
feature map. (b) Feature map after B64 pruning and BN adaption. (c) Feature
map after block 32×32 pruning. (d) Feature map after B32 pruning and BN
adaption.

of network expressiveness. Further experimentation revealed376

that the primary reason for the failure of EagleEye was the377

detrimental impact of feature map degradation on network378

accuracy. As shown in Fig. 4 is the last layer output feature379

map of VGG on a single sample of the CIFAR-10 dataset. The380

feature map shows significant damage with a pruning rate of381

95% and a block size of 32 × 32 even after BN adaption, and382

the collapse becomes increasingly apparent as the granularity383

increases. And this ultimately impacted the network accuracy,384

showing the limitation of this accuracy-based metric.385

Zen-score utilizes the upper bound of Gaussian complexity386

to measure the number of linear activation classes, which in387

turn reflects the expressive power of the network. Meanwhile,388

it employs the variance of the BN layers to mitigate the reduc-389

tion in discriminative power caused by the BN operations.390

Using the network expressiveness as a metric gives Zen-391

score stronger adaptability than EagleEye. However, it fails392

to thoroughly investigate how the BN layers capture network393

information.394

C. FreePrune Score395

EagleEye and Zen-score show better-indication performance396

than other metrics, it suggests that the BN statistics are397

promising to serve as the indicators. Inspired by prior studies,398

we analyze the statistics of the BN layers and propose399

the FreePrune score. Diverging from the aforementioned400

approaches, our metric originates from the BN layer itself and401

takes into account the effects of both mean and variance. We402

directly assess the ability of the pruned network to capture403

information through the statistical parameters of the BN layer,404

thereby formulating the training-free evaluation indicator to405

effectively reflect the pruning performance.406

The statistical parameters of the BN layers include the407

mean and variance, which are related to the input data of the408

network, and are computed as (2) for a mini-batch of size N.409

During the training phase, the above statistical parameters are 410

updated by exponential moving average as in 411

μ = 1

N

N∑

i=1

xi, σ 2 = 1

N − 1

N∑

i=1

(xi − μ)2 (2) 412

μt = mμt−1 + (1 − m)μ, σ 2
t = mσ 2

t−1 + (1 − m)σ 2 (3) 413

where xi denotes the ith sample in the mini-batch of size 414

N, t denotes the time step, and m signifies the momentum 415

parameter. During the training phase, the variables μ and σ 2
416

are used to update μt and σ 2
t in the current computation. 417

During the evaluation phase, the BN statistical parameters 418

utilized in the computation are denoted as μT and σ 2
T . T 419

denotes the final time step. 420

As we further investigate the relationship between these 421

statistical parameters and network structure through extensive 422

experiments, we uncover that the distribution of statistical 423

parameters plays a pivotal role in determining the performance 424

of the pruned network and is independent of the input data. 425

Fig. 5 depicts the relationship between the distribution of sta- 426

tistical parameters and the network structure. Fig. 5(a) shows 427

the distribution of the original network, while Fig. 5(b)–(d) 428

show the distribution for block pruning, filter pruning, and 429

unstructured pruning, respectively. Within each type of pruning 430

scenario, the distributions are presented from left to right, 431

showcasing the statistical parameters for the better-pruned 432

network structure followed by the worse-pruned network 433

structure. 434

It can be observed that after network pruning, the distri- 435

bution of variance shifts leftward compared to the original 436

network, which represents the loss of network information. 437

However, the better-pruned network structure exhibits a 438

smaller shift, indicating better preservation of the original 439

network information. Regarding the mean values, although 440

they are distributed on both sides of the numerical zero, 441

the better-pruned network structure has a wider range of 442

data distribution compared to the worse-pruned network 443

structure. 444

To quantify the deviation of the statistical parameters of the 445

BN layer between the pruned and original networks, and to 446

assess the impact of this deviation on network performance, 447

we select 100 groups of pruned networks at each pruning 448

granularity for analysis. Specifically, for variance distance, we 449

first calculate the accumulated difference between the variance 450

of the pruned network and those of the original network 451

across all layers, and then we divide it by the number of 452

channels. For the mean distance, we first calculate the standard 453

deviation of the mean values in both the pruned network and 454

the original network, and then we accumulate the difference 455

between the two standard deviations across all layers. The 456

deviation distance can be formulated as follows: 457

⎧
⎨

⎩
var_dis = ∑L

l=1

((
σ 2

l

)ori − (
σ 2

l

)pruned
)
/c

mean_dis = ∑L
l=1

(
std

(
μori

l

) − std
(
μ

pruned
l

))
.

(4) 458

The L represents the number of BN layers in the network, 459

(σ 2
l )ori and μori

l , (σ 2
l )pruned and μ

pruned
l represent the BN statis- 460

tical parameters of the original network and pruned networks, 461
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(a) (b) (c) (d)

Fig. 5. Histogram of the frequency distribution of mean and variance data for the second BN layer of the VGG network after Gaussian initialization and
forward propagation of a batch of data, with the pruning rate of 95% for each granularity. (a) Original network. (b) Network for block pruning. (c) Network
for filter pruning. (d) Network for unstructured pruning.

Fig. 6. Visualization of the distances of BN statistics between pruned
networks and original network. The horizontal axis represents the normalized
distance at different granularities. The color depth indicates the accuracy after
normalization at each granularity. The results are obtained using the VGG
network with a 95% pruning rate on the CIFAR-10 dataset.

respectively. The c represents the number of channels in462

the lth layer. The results are presented in Fig. 6, where the463

color depth represents the different network accuracy. The464

horizontal axis denotes the cumulative BN deviation distance465

between the 100 groups of pruned networks and the original466

network across different pruning granularities, and the distance467

increases in the direction of the arrow. For ease of comparison,468

we normalize both the accuracy and the deviation distance at469

different pruning granularities to show the trend. It can be470

observed that the smaller the deviation distance between the471

BN statistical parameters of the pruned network and that of472

the original network, the better the performance of the pruned473

network tends to be.474

Drawing from the above, the BN layer deviation distance475

between the pruned network and the original network, which476

can also be viewed as the degree of loss in information capture477

ability, demonstrates its potential to indicate the performance478

of the pruned network. Considering that the BN layer statistical 479

parameters of the original network can be regarded as con- 480

stants, we simplify the calculation of (4) by only accumulating 481

the BN layer statistical parameters of the pruned network. In 482

this case, the variance distance is equivalent to the cumulative 483

mean of the variances of each BN layer, and the mean distance 484

can be simplified as the cumulative standard deviation of the 485

means of each BN layer. Notably, to enhance discriminability, 486

we employ a logarithmic function to amplify the differences 487

between the layers of the network. Consequently, we propose 488

FreePrune score, which is calculated as 489

FreePrune_score = Var_score + βMean_score 490

where

{
Var_score = ∑L

l=1 log
(
Mean

(
σ 2

l

))

Mean_score = ∑L
l=1 log(Std(μl)).

(5) 491

The L represents the number of BN layers in the network, 492

σ 2
l represents the variance of the lth BN, while μl represents 493

the mean of the lth. β denotes the balancing parameter, which 494

is set to 0.5 in our experiment. Specifically, we initialize the 495

parameters of the pruned network using Gaussian initializa- 496

tion. Then, we perform forward propagation using a randomly 497

generated batch of data that follows a Gaussian distribution to 498

update the statistical parameters of the BN layers and adjust 499

their distributions. It is worth noting that this process does 500

not involve backpropagation, therefore, it does not include 501

the updating of learnable parameters and does not require 502

the training process of the network, making it achievable at 503

minimal cost. Finally, the FreePrune score is calculated based 504

on (5). 505

FreePrune score shows a clear correlation between the 506

score and the network trainability. As is illustrated in Fig. 7. 507

Network structures containing greater values of the metrics 508

attain greater accuracy in a reduced number of training 509

iterations, resulting in faster network convergence. This also 510

indicates that our proposed FreePrune score can effectively 511

reflect the trainability of the network under different pruning 512

scenarios. 513
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Fig. 7. FreePrune score for network trainability of ResNet18 with a pruning
rate of 75%.

Algorithm 1 FreePrune Framework
Input: Target of pruning rate Rp, population size N, iteration

round T , original model weights W;
Output: The high-quality pruned subnetwork N∗;

1: Perform global pruning to determine the pruning rate R =
(R1, R2, ..., RL−1, RL) for each layer;

2: Determine the upper bound Rub and lower bound Rlb of
the search space according to Eqn. (6);

3: for each t ∈ [1, T] do
4: for each n ∈ [1, N] do
5: Perform mutation and crossover with the elitist

preservation;
6: if Params(n) meets Rp then
7: Construct candidate subnetwork N with individual

encoding Rn and initialize N by N(0, 1);
8: Perform selection according to Eqn. (5);
9: end if

10: end for
11: end for
12: Obtain the pruned subnetwork encoding with high quality;
13: Load W to the pruned subnetwork according to

Eqn. (1);
14: Fine-tune the pruned subnetwork until convergence to

obtain N∗;
15: return The high-quality pruned subnetwork N∗

D. FreePrune Framework514

To efficiently generate a large number of pruning candi-515

date structures and automate network pruning in conjunction516

with our proposed metric. We further propose the FreePrune517

framework. Specifically, FreePrune mainly consists of three518

components: 1) network structures encoding and search519

space construction; 2) network structures evolution; and 3)520

FreePrune score evaluation.521

Algorithm 1 illustrates the procedure of our proposed522

framework. It begins by scaling the search space through523

relaxed global pruning, as depicted in step 1 of Fig. 2.524

Subsequently, the Elitist Preservation evolutionary algorithm525

is employed to evolve candidate pruning structures, which are526

then filtered using our proposed FreePrune score, as elaborated527

in steps 2 and 3. Finally, the algorithm returns the high-quality528

pruned subnetwork that satisfies the constraints, corresponding529

to step 4 of Fig. 2.530

For the structural encoding of the pruned network, we adopt 531

the continuous real number encoding to represent the pruning 532

rates of each layer in the network, which provides a more 533

abundant selection space for pruning candidate structures. 534

Then we determine the feasible upper and lower bounds of the 535

pruning rates to characterize the complete network structure, 536

defining the search space for candidate pruned networks. 537

Specifically, we determine the initial pruning rates R = 538

(R1, R2, . . . , RL−1, RL) for each layer of the network under 539

a specific total pruning rate using magnitude-based global 540

pruning, where Rl ⊂ (0, 1]. The search space is extremely 541

large, making it difficult to find an optimal starting point and 542

slowing down the search process. This increases the likeli- 543

hood of encountering local optima. To address these issues, 544

we leverage prior knowledge in network pruning [40] and 545

introduce the relaxed global pruning technique to efficiently 546

reduce the search space. In detail, we introduce a fluctuation 547

ξ above and below this baseline to adjust the upper bound Rub 548

and lower bound Rlb of each layer’s pruning rate encoding, 549

respectively. The bounds are as follows: 550

{
Rub = min(R + ξ, 1)

Rlb = max(R − ξ, Rmin).
(6) 551

For values exceeding this range, we employ extreme values 552

corresponding to each pruning granularity scenario, such as 553

retaining a minimum of five channels (Rmin) for filter pruning. 554

This technique effectively saves search overhead. For ξ , we 555

empirically set this value as 30% to balance search efficiency 556

and accuracy in our experiment. 557

In terms of the network structure evolution, we employ 558

the Elitist Preservation strategy, where the individual with the 559

highest fitness in each generation is preserved as an elite indi- 560

vidual while evolving other nonelite individuals. This prevents 561

losing the optimal individual from the current population in 562

the subsequent generation, ensuring global convergence of the 563

genetic algorithm. 564

The iteration round T is an empirical parameter used to 565

balance search efficiency and final accuracy. If the iteration 566

round concludes without satisfying the pruning rate constraint, 567

the algorithm returns the current best individual. In this case, 568

the individual would re-enter the iteration as a prophetic 569

population individual, allowing for the further search for a 570

constraint-compliant solution at minimal cost based on the 571

previous search. Meanwhile, through the integration of our 572

relaxed global pruning technique with this evolutionary algo- 573

rithm, the solution can be attained in much fewer iterations. 574

Furthermore, unlike previous approaches that focus on a single 575

granularity of pruning, we integrate pruning schemes for 576

different pruning granularities. This allows for the automatic 577

realization of pruning under multiple pruning granularity 578

scenarios and constraints. 579

During the fitness evaluation stage, we directly utilize 580

FreePrune score as the criterion for evaluating the fitness of 581

the population. This allows for rapid evaluation and selection 582

of a large number of candidate populations without the need 583

for training. After a specified number of evolutionary rounds, 584

FreePrune score identifies the individual with the highest 585

fitness as the high-quality pruning scheme for the pruned 586
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subnetwork. Following specified epochs of network fine-587

tuning, the final high-quality pruned network can be obtained.588

IV. EXPERIMENTS589

In our experiments, we investigate classification down-590

stream task of VGG [41] on CIFAR-10 dataset [42] and591

ResNet18 [43] on mini-ImageNet dataset [44]. We selected592

EagleEye [26] and Zen-score [39] for comparison as they593

performed well in the previous comparative analysis. We visit594

granularities, including filter pruning, unstructured pruning,595

and block pruning with sizes 16 × 16 and 32 × 32 with596

different pruning rates.597

A. Experiment Setup598

We use the stochastic gradient (SGD) Descent algorithm599

for fine-tuning with a momentum of 0.9 and the batch size600

is set to 64. For VGG on CIFAR-10, the weight decay is set601

to 5e-3 and we fine-tune the network for 150 epochs with602

a learning rate of 0.0025. For ResNet18 on mini-ImageNet,603

the learning rate is set to 0.01, and 150 epochs are given604

for fine-tuning. The same set of candidate pruned networks605

is used for correlation coefficient evaluation separately. For606

the automatic pruning framework, we utilize the parameter607

pruning rates for each pruning granularity as constraint terms.608

The initial population size is set to 40, and the maximum609

number of evolution generations is set to 60 for VGG and610

80 for ResNet18, respectively. For each pruning scenario,611

we conducted five experiments to obtain the top pruned612

network accuracy and average accuracy under each metric. All613

experiments are implemented on RTX 3090 and Raspberry614

Pi4.615

B. Effectiveness of FreePrune Score616

We demonstrate the effectiveness of our proposed metric617

and framework by utilizing the correlation coefficient and the618

accuracy of the resulting network from selection as indicators,619

respectively.620

To illustrate the validity of the proposed FreePrune score,621

we use Spearman and Kendall correlation coefficients to622

quantify the correlation between our proposed FreePrune score623

and the final accuracy of the pruned network.624

Fig. 8 demonstrates the Spearman and Kendall correlation625

coefficients for each metric across various pruning scenarios.626

Fig. 8(a) and (c), respectively, depict the Spearman correla-627

tion coefficients for the VGG and ResNet networks under628

each pruning scenario, while Fig. 8(b) and (d), respectively,629

showcase the Kendall correlation coefficients for the VGG630

and ResNet networks under each pruning scenario. The631

numerical suffixes denote the pruning rate values within each632

pruning granularity scenario. According to the radar chart,633

although EagleEye has relatively high-correlation coefficients634

in some pruning scenarios, they are generally low under the635

block pruning scenario. This indicates that EagleEye struggles636

to effectively handle diverse pruning scenarios, particularly637

those with different structured pruning requirements. This638

limitation hinders the effective implementation of hardware639

pruning algorithms. Conversely, our proposed FreePrune score640

(a) (b)

(d)(c)

Fig. 8. Radar chart of Spearman and Kendall correlation coefficients for each
metric, where “F” stands for filter pruning, “B32” stands for block pruning
with size 32×32, “B16” stands for block pruning with size 16×16, and
“U” stands for unstructured pruning. (a) Spearman correlation coefficient for
VGG. (b) Kendall correlation coefficient for VGG. (c) Spearman correlation
coefficient for ResNet18. (d) Kendall correlation coefficient for ResNet18.

demonstrates robust correlation coefficients across various 641

pruning granularities, particularly in the block pruning sce- 642

nario, demonstrating its adaptability. Moreover, it outperforms 643

Zen-score, with consistently higher values in all pruning 644

scenarios, as shown in the radar chart, where the FreePrune 645

score envelops Zen-score. 646

To further demonstrate the effectiveness and efficiency 647

of the proposed FreePrune score, we compare the network 648

performance resulting from the selection of pruned networks 649

using each metric. Consistent with the systematic analysis 650

experiments before, for each pruning scenario, we randomly 651

sampled a set of networks and selected the high-quality pruned 652

network using each metric. 653

Tables III and IV present the comparison of the accuracy 654

of the candidate pruned networks obtained by FreePrune 655

score under different constraints, where Top_acc represents 656

the top pruned network accuracy, and Avg_acc represents 657

the average accuracy of the top five candidate pruned 658

networks. The proposed FreePrune score consistently tends to 659

select networks with higher accuracy, especially in scenarios 660

with high-pruning rates, demonstrating the effectiveness of 661

our proposed metric. Notably, the average accuracy outper- 662

forms other methods, especially in block pruning scenarios. 663

Under other constraints, the accuracy of the pruned network 664

obtained through FreePrune score remains consistent with 665

others. 666

We also conduct ablation experiments to illustrate the 667

effectiveness of FreePrune. Specifically, we execute the com- 668

plete automatic pruning framework with a 75% pruning rate 669

on the ResNet18, and then we evaluate and compare the 670

capability of FreePrune and its components in identifying 671

high-quality pruned networks. The results are shown in 672

Table V. The Var_score and Mean_score demonstrate potential 673

in identifying high-quality pruned networks in coarse-grained 674

and fine-grained pruning scenarios, respectively, the proposed 675

FreePrune exhibits superior selecting capabilities across all 676

granularities and consistently outperforms both. 677
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TABLE III
COMPARISON OF THE ACCURACY FOR DIFFERENT METRICS SELECTING

NETWORKS WITH VGG ON CIFAR-10

TABLE IV
COMPARISON OF THE ACCURACY FOR DIFFERENT METRICS SELECTING

NETWORKS WITH RESNET18 ON MINI-IMAGENET

C. Effectiveness of FreePrune Framework678

To further demonstrate the effectiveness and efficiency of679

our proposed FreePrune, we implement the complete frame-680

work to find the high-quality pruned subnetwork for different681

pruning granularity and pruning rate scenarios. To make a fair682

comparison, we embedded EagleEye and Zen-score into the683

framework to compare with our proposed method, and for each684

metric, we conducted five experiments to determine the top685

accuracy and average accuracy.686

TABLE V
ABLATION STUDY OF FREEPRUNE ON RESNET18 USING THE

MINI-IMAGENET DATASET WITH A 75% PRUNING RATE

TABLE VI
COMPARISON OF THE ACCURACY FOR OUR PROPOSED FRAMEWORK

SELECTING NETWORKS WITH VGG ON CIFAR-10

As shown in Tables VI and VII, our proposed FreePrune 687

score can effectively obtain pruned networks with higher 688

accuracy in different pruning scenarios, and it has an advantage 689

in the average accuracy of the selected networks, which 690

demonstrates the effectiveness of our proposed method and 691

the automatic pruning framework. 692

To further demonstrate the superiority of our proposed 693

FreePrune score and the automatic pruning framework, we 694

prune the ResNet18 network on the mini-ImageNet dataset 695

with our framework and randomly sampled pruning config- 696

urations, respectively. As illustrated in Fig. 9, our proposed 697

framework improves the accuracy of the pruned network 698

compared to direct random sampling, with a particularly 699

notable improvement observed in scenarios with larger pruning 700

granularity. 701
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TABLE VII
COMPARISON OF THE ACCURACY FOR OUR PROPOSED FRAMEWORK

SELECTING NETWORKS WITH RESNET18 ON MINI-IMAGENET

Fig. 9. Comparison of the network accuracy of FreePrune score using the
automatic pruning framework and simple random sampling at different prun-
ing granularities. The results are obtained on mini-ImageNet with different
pruning rates for ResNet18.

It is noteworthy that by using our proposed method and702

automatic pruning framework, we can effectively obtain703

high-quality pruned network structures for various pruning704

scenarios. Taking filter pruning as an example, for both705

VGG and ResNet18 networks, accuracy improvements can706

be achieved while reducing the parameter count by 75% and707

FLOPs by nearly 60%. Moreover, even at higher-pruning708

rates, accuracy can be effectively maintained without sig-709

nificant degradation. As shown in Table VIII, we present710

the performance metrics of the pruned ResNet18 network711

running on a Raspberry Pi4, with inference time averaged by712

100 inference trials. Compared to EagleEye and Zen-score,713

our proposed automatic pruning framework yields a pruned714

network with comparable accuracy at a higher-pruning rate,715

thereby achieving faster inference speeds.716

TABLE VIII
PERFORMANCE COMPARISON OF RESNET18 PRUNED NETWORKS ON

RASPBERRY PI4 WITH FILTER PRUNING

V. CONCLUSION 717

We systematically evaluated the applicability of mainstream 718

training-free metrics across different pruning granularities 719

and proposed FreePrune score, a training-free metric based 720

on the distribution of BN statistical parameters. Building 721

upon this, we further proposed a comprehensive automatic 722

pruning framework FreePrune, capable of rapidly generating 723

candidate pruned networks and guiding network selection 724

with FreePrune score. FreePrune score demonstrates high 725

correlation across various pruning granularities and pruning 726

rates, making it a reliable tool for rapidly selecting high- 727

quality pruned networks. Extensive experiment results show 728

that FreePrune score and FreePrune framework consistently 729

outperform the prior studies. 730
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