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Abstract—Contemporary multiprocessor systems-on-chips1

(MPSoCs) continue to confront energy-related challenges,2

primarily originating from off-chip data movements. Nonvolatile3

memories (NVMs) emerge as a promising solution with their4

high-storage density and low leakage, yet they suffer from slow5

and expensive write operations. Writebacks from higher-level6

caches and responses from off-chip memory create significant7

contention at the shared nonvolatile last-level cache (LLC),8

affecting system performance with increased queuing for critical9

reads. Previous research primarily addresses the performance10

issues by trying to mitigate contention through the bypassing11

of NVM writes. Nevertheless, off-chip memory energy, one12

of the most critical components of system energy, remains13

unaddressed by state-of-the-art bypass policies. While certain14

energy components, such as leakage and refresh, depend on15

system performance, performance-optimizing bypass policies16

may not ensure energy efficiency. Aggressive bypass decisions17

aimed only at performance enhancement could degrade cache18

reuse, potentially outweighing reductions in leakage and refresh19

energies with the increase in off-chip dynamic energy. While20

both performance and off-chip memory energy are influenced21

by both cache contention and reuse, the tradeoffs for achieving22

optimal performance versus optimal energy are different. We23

introduce nonvolatile last-level cache bypass for optimizing24

off-chip memory energy (NOVELLA), a novel bypass policy25

for the nonvolatile LLC, to optimize off-chip memory energy26

by exploiting tradeoffs between cache contention and reuse,27

achieving a balance across different components of the energy.28

Compared to a naïve no-bypass baseline, while state-of-the-art29

reuse-aware bypass solutions reduce off-chip memory energy30

consumption by up to 8%, and a contention- and reuse-aware31

bypass baseline by 12%, NOVELLA achieves significant energy32

savings of 21% across diverse SPEC workloads.33

Index Terms—Cache bypass, energy-efficient memory systems,34

last-level cache (LLC), memory, nonvolatile memory (NVM).35
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I. INTRODUCTION 36

SYSTEM-LEVEL energy efficiency is a pivotal aspect of 37

modern SoC design. Although contemporary multipro- 38

cessor systems-on-chips (MPSoCs) integrate several processor 39

cores and accelerators, off-chip data movements remain the 40

energy Achilles heel, responsible for over 60% of the total 41

system energy [1]. Last-level cache (LLC) serves as the final 42

line of defense against expensive off-chip accesses, making 43

the requirement for larger LLCs crucial in today’s systems. 44

As conventional technologies, such as SRAM and DRAM, 45

consume excessive leakage power when scaled, nonvolatile 46

memory (NVM) technologies, such as STT-MRAM, PCM, 47

DWM, ReRAM, and FeRAM, have received serious research 48

attention because of their higher-storage densities and low- 49

leakage power. However, NVMs suffer from major limitations. 50

STT-MRAM, which offers the highest endurance among all 51

other NVMs and emerges as one of the most promising 52

alternatives to SRAM in designing future LLCs, still struggles 53

with inefficient write operations, which are 2-5× slower than 54

reads [2], [3]. 55

Fig. 1 illustrates the architectural overview of our MPSoC. 56

The first two levels of caches (L1, L2) are private to each 57

processor core, whereas the LLC is shared among all cores. 58

As fast access speed is a crucial requirement for private 59

caches, they are typically implemented with SRAM. To meet 60

emerging applications’ demand for reducing costly off-chip 61

memory accesses through larger LLCs, we target an NVM 62

implementation for the LLC, which offers more density at 63

low leakage. When a core requests data, it first checks its 64

private caches. If the data is not found (cache miss), a read 65

request (Arrow 1 ) is sent to the LLC, where it is enqueued 66

into the request queue. If the data is present in the LLC 67

(cache hit), it responds to the corresponding L2 cache with the 68

requested data. Otherwise, the request is sent to the off-chip 69

main memory. Upon fetching the data from the main memory, 70

a response arrives back at the LLC. The LLC controller 71

then creates a copy of the response data and forwards it 72

to the requesting core for maintaining its progress (Arrow 73

3 ). The original response is inserted into the response 74

queue for later writing (Arrow 4 ). Apart from responses, 75

evictions from L2 caches generate another source of NVM 76

write operations, known as writebacks, which are enqueued 77

into the request queue (Arrow 2 ). Because NVM writes are 78

2 − 5× slower than reads (shown in different colors, Fig. 1), 79

writebacks and responses contend with read requests for the 80

available LLC bandwidth, introducing longer queueing delays 81
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Fig. 1. Overview of system architecture. Writebacks from higher-level
caches and responses from off-chip main memory exacerbate LLC contention,
delaying critical reads, and affecting overall system performance.

for critical reads, thereby creating performance bottlenecks.82

Such contention is a major concern even in contemporary83

MPSoCs with SRAM LLCs [4], [5], [6], and gets aggravated84

in next-generation MPSoCs with NVM LLCs.85

Prior works unanimously focused on improving system86

performance or reducing NVM cache energy [3], [7], [8], [9],87

neglecting off-chip memory energy considerations. However,88

across our real-world workloads, off-chip memory accounts89

for 64% of the total memory-system energy, with LLC90

contributing only around 9%. The off-chip memory energy91

comprises three components: 1) static; 2) dynamic; and 3)92

refresh. Static and refresh energies, accounting for 60% of93

the total off-chip memory energy, correlate closely with94

overall system performance, while the dynamic component95

is influenced by LLC reuse, which controls the volume of96

off-chip memory traffic. Prior bypass policies either overem-97

phasize cache reuse [3], [7], [10], [11], or mitigate contention98

for enhancing system performance at the expense of cache99

reuse [6]. An excessively aggressive bypass, despite having the100

potential for enhancing performance, could affect cache reuse101

and overpower improvements in static and refresh energies102

with the increase in dynamic memory energy (DynE). Both103

performance and off-chip memory energy are influenced by104

cache contention and reuse, but the tradeoffs for optimizing105

performance versus energy differ. We exploit this tradeoff in106

NOVELLA, a dynamic cache bypass policy for NVM writes,107

to mitigate off-chip memory energy bottlenecks and help108

scale next-generation systems against the memory power wall.109

In an NVM cache, any write operation creates bottlenecks,110

so NOVELLA is designed to make bypass decisions for111

all sources of NVM writes. Our major contributions are112

summarized as follows.113

1) While existing bypass policies for NVM cache focus114

only on performance and/or cache energy, we, to the115

best of our knowledge, are the first to primarily target116

optimizing off-chip memory energy through NVM cache117

bypass.118

2) A balance across different memory energy components 119

is manifested by tradeoffs between the implications of 120

bypass decisions on NVM cache reuse and contention. 121

We investigate these tradeoffs and exploit them in 122

NOVELLA. 123

3) Energy implications of bypassing different sources of 124

NVM writes vary across different workloads. We iden- 125

tify and leverage such application-specific tradeoffs in 126

NOVELLA. 127

4) To model the asymmetric implications of NVM reads 128

and writes on shared LLC contention, we enhanced the 129

cache timing model of the gem5 simulator and plan to 130

make an open-source release of the enhancement. 131

The remainder of this article is organized as follows. 132

Section II summarizes relevant prior works, Section III motivates 133

the key energy tradeoff, Section IV discusses the proposed 134

policy, and Section V presents its hardware implementation. 135

Section VI covers the experimental setup, evaluation, results, 136

and overheads, followed by the conclusion in Section VII. 137

II. RELATED WORK 138

Prior works addressed NVM cache performance and energy 139

challenges primarily through hardware-based approaches [3], 140

[8], [12], [13], emphasizing cache bypass techniques to address 141

inefficient NVM writes. Korgaonkar et al. [3] proposed write 142

congestion aware bypass (WCAB), which, based on the 143

average occupancy of the request queue and the liveness of 144

data, bypasses writebacks to mitigate NVM cache contention. 145

WCAB primarily focused on enhancing system performance 146

but also estimated its impact on memory energy, serving as 147

one of our baselines in Section VI. Using sampling predictors, 148

Ahn et al. [7] bypassed various sources of redundant NVM 149

writes to reduce NVM cache energy. Zhang et al. [9] designed 150

an NVM cache bypass technique based on a theoretical model 151

of data reuse statistics. Analytically estimating the benefits 152

of caching data in terms of their impact on access latency, 153

Wang et al. [8] proposed a runtime bypass policy for NVM 154

writes. A selective NVM cache inclusion policy is designed 155

by Cheng et al. [14] to store only a subset of data from higher- 156

level caches for improving NVM cache energy. 157

Bypass policies have also been explored for conventional 158

caches. Wu et al. [10] proposed a signature-based hit pre- 159

dictor (SHiP), which associates each cache reference with a 160

signature, incrementing a counter on hits and decrementing 161

on evictions without reuse. SHiP bypasses a cache fill if its 162

signature corresponds to a counter of value zero, anticipating 163

distant reuse. Li et al. [11] proposed a bypass policy that tracks 164

reuse distances of cache fills and associated victims, caching 165

data only when the fill has incurred reuse distance less than 166

that of associated victims in the past. Park et al. [15] proposed 167

a bypass first policy (BFP), bypassing fills by default, and 168

caching them later if they are predicted to offer spatial or 169

temporal reuse. Bagchi et al. [6] proposed a response bypass 170

mechanism that dynamically exploits the tradeoff between 171

cache contention and reuse to enhance system throughput, 172

addressing contention concerns overlooked by other policies. 173

These policies are considered baselines in Section VI. 174
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(a) (b)

Fig. 2. Motivational example demonstrating off-chip memory energy and performance profiles of two SPEC workloads (from Table III). In (a), performance
enhancements lead to overall energy efficiency when LLC reuse (which controls dynamic energy) is minimally impacted. In (b), bypassing NVM writes
of certain types degrades LLC reuse significantly, increasing DynE so much that it outweighs reductions in static and refresh energies achieved through
performance enhancement. This motivates the need for balancing different off-chip memory energy components to achieve overall energy efficiency.

In hybrid SRAM-NVM caches, write-intensive data are175

dynamically identified and migrated to SRAM for miti-176

gating NVM write overheads [13], [16]. NVM caches are177

also implemented with regions of different retention times,178

while placing data according to the cache access pat-179

tern [12], [17], [18]. Zhou et al. [19] proposed a circuit-level180

optimization to proactively terminate redundant NVM writes.181

Zero-valued NVM cache data are encoded by Jung et al. [20]182

to save NVM write energy. To circumvent DRAM scal-183

ing issues, high-density NVMs (e.g., PCM) have been184

explored for main memories [21]. Researchers also explored185

energy-aware memory controller policies. Wu et al. [22]186

dynamically migrated memory pages to consolidate shorter187

idle periods into longer ones, therefore exploiting the low-188

power states to control the background power consumption.189

Lai et al. [23] demoted ranks with less critical reads to low-190

power modes, while prioritizing the service of critical reads191

for maintaining performance. Energy-aware memory controller192

policies [22], [23] are orthogonal to our cache bypass-based193

approach and could be applied in parallel for further energy194

efficiency.195

III. MOTIVATION196

For next-generation NVM caches, bypass techniques197

are shown to be beneficial for improving overall system198

performance as well as reducing cache energy consump-199

tion [3], [7], [8], [9], both of which are synergistic objectives200

for cache bypass policies. These bypass policies circumvent201

the performance penalties of slow NVM writes, reducing the202

cache leakage energy, while also reducing the cache dynamic203

energy as a direct consequence of bypassing some NVM204

writes. Nevertheless, prior works did not explore the potential205

of NVM cache bypass in addressing off-chip memory energy,206

which is the most challenging system energy bottleneck.207

For an LLC, which is shared by an increasing number208

of cores and accelerators, both contention and reuse are209

crucial system-level factors controlling the consumption of 210

off-chip memory energy. Bypassing NVM writes aggressively 211

could alleviate LLC contention and reduce the consump- 212

tion of static and refresh components of off-chip memory 213

energy through improvements in overall system performance. 214

However, aggressive bypass could disturb LLC reuse (or local- 215

ity) and, if not controlled carefully, could outweigh the energy 216

efficiency achieved through performance improvements. Also, 217

while the latencies for multiple off-chip memory accesses can 218

be hidden (memory-level parallelism), the energy overheads 219

cannot be hidden in the same manner as delays. Therefore, an 220

energy-efficient bypass policy for NVM LLC should carefully 221

consider this key tradeoff. Based on profiling of real-world 222

SPEC applications (from the pool of evaluation workloads 223

in Table III, Section VI-A) with a state-of-the-art NVM 224

cache bypass solution [3] and a few baseline strategies, we 225

demonstrate the tradeoff in detail as follows. 226

Fig. 2 illustrates the trends in different components of 227

off-chip memory energy alongside corresponding trends in 228

system performance measured as the workload execution 229

time. Fig. 2a and b show energy and performance profiles 230

of two SPEC workloads, i.e., mixes 10 and 2, respectively, 231

from Table III, Section VI-A. Energy components are plotted 232

along the left Y-axis (in nanojoules), while the normalized 233

execution time is shown along the right Y-axis. In Fig. 2, 234

the DynE, influenced by overall LLC reuse, is depicted 235

separately in each bar plot, while the static and refresh 236

energies, both dependent on overall execution time, are com- 237

bined (StatE + RefE). For each mix, results across four 238

different cache bypass policies are presented along the X-axis. 239

While WCAB [3] is the state-of-the-art NVM cache bypass 240

policy, the other three are constructed by us. The aggressive 241

writeback bypass (AWB) bypasses writebacks aggressively, 242

writing all responses. Conversely, aggressive response bypass 243

(ARB) bypasses responses, caching all writebacks. The no- 244

bypass baseline (NBB) is a naïve policy serving as a global 245

baseline. NBB does not apply any bypass, writing all data to 246
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NVM cache. The execution time of each policy is normalized247

relative to that of NBB.248

In Fig. 2(a), we observe that the dynamic off-chip memory249

energy remains almost the same in NBB and WCAB, whereas250

AWB and ARB lead to a 4% reduction and a 9% increment251

in the dynamic off-chip memory energy compared to NBB.252

As the implications of these bypass strategies on LLC locality253

are similar, the dynamic energy does not undergo drastic254

variations. WCAB, AWB, and ARB mitigate NVM LLC255

contention to varying extents, resulting in 2%, 19%, and 44%256

improvements in overall execution time, respectively, over257

NBB. As a result, the static and refresh energies are also258

reduced almost proportionally, leading to overall improve-259

ments in off-chip memory energy consumption by 2%, 14%,260

and 25% over NBB for WCAB, AWB, and ARB, respectively.261

In summary, Fig. 2(a) demonstrates a real-world execution262

scenario where improvements in overall system performance263

lead to reductions in off-chip memory energy, given the similar264

impacts of bypass decisions on LLC locality.265

Fig. 2(b) presents another scenario where different bypass266

policies have considerably different implications for LLC267

locality. For instance, WCAB enhances performance by 20%268

over NBB, resulting in a 14% reduction in overall off-chip269

memory energy consumption compared to NBB. Similarly, for270

AWB, a 27% reduction in the overall execution time leads271

to a 17% reduction in the consumption of off-chip memory272

energy. For WCAB and AWB, despite the dynamic component273

of off-chip memory energy increasing over NBB by 1.71× and274

3.25×, respectively, the improvements in system performance275

successfully translate to overall energy reductions. However,276

the situation differs significantly for ARB, which, in its attempt277

to mitigate LLC contention through ARB, disrupts cache278

locality to such an extent that the dynamic off-chip memory279

energy escalates by a factor of 21.68× over NBB. This drastic280

deterioration in dynamic energy outweighs the comparatively281

smaller reductions in the other two performance-dependent282

energy components (static and refresh), leading to a 43%283

increase in overall off-chip memory energy. Fig. 2(a) and (b)284

emphasize the tradeoffs between different components of off-285

chip memory energy, with one being dependent on LLC286

reuse and the other two being correlated to overall system287

performance. Also, bypassing different sources of NVM writes288

(writebacks versus responses) explores this tradeoff dispropor-289

tionately for different workloads. This important observation290

motivates us to develop an adaptive bypass policy for NVM291

LLC that strategically exploits this tradeoff and dynamically292

modulates its emphasis on mitigating LLC contention and293

maintaining LLC reuse so as to reduce the consumption of294

off-chip memory energy across diverse workloads.295

IV. PROPOSED METHODOLOGY296

We introduce nonvolatile LLC bypass for optimizing297

off-chip memory energy (NOVELLA), which dynamically298

bypasses NVM writes to reduce off-chip memory energy299

consumption. NVM writes are significantly slower than reads,300

exacerbating LLC contention. Bypassing NVM writes could301

enhance performance by alleviating LLC contention. However,302

our focus is on reducing off-chip memory energy. By exploit- 303

ing tradeoffs between LLC contention and reuse for balancing 304

different memory energy components, NOVELLA achieves 305

overall energy efficiency. 306

A. Key Ideas and Execution Scenarios 307

We present an overview of NOVELLA by illustrating differ- 308

ent execution scenarios and how NOVELLA adapts its bypass 309

decision for different sources of NVM writes across these 310

scenarios. For this purpose, we consider three categories of 311

real-world applications: 1) LLC agnostic (LA); 2) LLC heavy 312

(LH); and 3) memory heavy (MH). While LA applications 313

produce less LLC contention, the other two result in significant 314

contention. However, while LH applications lead to most of 315

their memory accesses being served from LLC (high-LLC 316

access rate with the majority producing hits), MH applications 317

lead to most of their accesses being served from off-chip main 318

memory (high-LLC access rate with the majority producing 319

misses). The key ideas are summarized as follows. 320

1) When MH applications are co-executed, there is already 321

significant pressure on off-chip memory due to the 322

majority of memory accesses being directed there, caus- 323

ing us to be conservative in bypassing both sources of 324

NVM writes. Although an aggressive bypass could miti- 325

gate LLC contention, it could worsen DynE significantly, 326

leading to overall energy inefficiency. 327

2) The two sources of NVM writes, writebacks and 328

responses, have asymmetric implications for off-chip 329

memory energy. While bypassing responses may 330

increase memory energy by compromising LLC locality 331

and potentially losing future LLC hits, bypassed write- 332

backs not only risk converting future LLC hits into 333

misses but also immediately increase off-chip memory 334

traffic, affecting off-chip memory energy in a more 335

direct way. 336

3) Responses exhibit a range of reuse patterns, with some 337

being more valuable than others. Certain responses may 338

be deemed dead if they are never referenced between 339

their fill and eviction. We prefer caching of more 340

important response data while potentially bypassing the 341

rest. Such selective response writes could help mitigate 342

LLC contention, but without increasing off-chip memory 343

traffic significantly. If the underlying reuse profile is 344

more diverse, selective writes could also enhance cache 345

locality by preventing premature evictions of useful data. 346

4) For the co-execution of LA applications, where the 347

majority of memory accesses are handled by private 348

caches, a significant portion of responses filled to LLC 349

are not reused from LLC. However, evicted cache lines 350

from private caches (writebacks) stored in LLC present 351

more opportunities for reuse. Therefore, despite the main 352

memory experiencing less pressure, we prefer caching 353

writebacks while selectively caching useful responses. 354

In Fig. 3, we present four execution scenarios: cases A (co- 355

execution of LH applications) and B (co-execution of MH 356

applications), C (co-execution of LH and MH applications), 357

and D (co-execution of LA applications) in Fig. 3(a)–(d), 358
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(a) (b) (c) (d)

Fig. 3. Illustrative example of NOVELLA, demonstrating NVM write bypass decisions across different execution scenarios. (a) Case A: As main memory
experiences less pressure, we opt for writeback bypass because of their high contention and low-reuse potential, while selectively caching responses based on
their predicted usefulness. (b) Case B: We opt for caching of writebacks and conservative bypassing of responses due to the main memory already experiencing
significantly high pressure, generated by high volume of off-chip memory traffic. (c) Case C: We opt for caching of writebacks because of the off-chip main
memory experiencing considerable pressure, while selectively caching responses based on their predicted usefulness. (d) Case D: Despite the main memory
experiencing low pressure, we prefer caching writebacks because of their higher-reuse potential, while selectively caching responses based on their predicted
usefulness.

respectively. For a simpler representation, we do not show359

private caches and cores separately but highlight LLC con-360

trollers, which comprise two different modules for making361

bypass decisions for two different sources of NVM writes:362

1) Writeback Bypass and 2) Response Bypass. These modules363

control the flow of incoming NVM writes into their respective364

controller queues (Req Queue and Resp Queue), enqueuing365

a writeback or a response only if its data is decided to be366

cached. For illustrative purposes, we show a four-core system.367

In Fig. 3, conditional actions (e.g., enqueuing of responses) are368

represented by dotted arrows, whereas actions that are always369

performed (e.g., response forwarding, scheduling of pending370

accesses from the queues into the NVM LLC, enqueuing of371

writebacks) are shown in solid arrows. While the thick dotted372

arrow indicates frequent actions, thin dotted arrows represent373

relatively infrequent ones. Building upon the ideas discussed374

above, we outline NOVELLA’s bypass decisions as follows.375

1) Case A: In this case [Fig. 3(a)], responses are found376

to be more crucial than writebacks from the perspective of377

LLC data reuse. Writebacks, on the other hand, do not impact378

LLC locality as strongly as responses do, but contribute more379

toward LLC contention. As previously discussed (Point 1),380

the main memory experiences relatively less pressure in381

case A because of LLC filtering the majority of memory382

accesses from reaching main memory. Therefore, we can383

afford to bypass writebacks (solid arrow in Fig. 3(a) directing384

writebacks toward the main memory) to alleviate the NVM385

LLC contention. We take response reuse into considera-386

tion while making bypass decisions for them (Point 3). As387

highlighted in Point 1, we have the liberty to be selec-388

tive in caching responses in case A [indicated by a thin389

dotted arrow leading responses to the response queue in390

Fig. 3(a)].391

2) Case B: In this case [Fig. 3(b)], we experimentally392

observe that even an aggressive form of writeback bypass393

(such as AWB, discussed in Section III) could enhance394

system performance minimally, but ends up increasing off- 395

chip memory energy considerably. Therefore, because of the 396

critical impact of bypassing writebacks on memory energy 397

(Point 2), particularly in this scenario (Point 1), we prefer to 398

cache writebacks, as represented by the solid arrow following 399

writebacks into the LLC request queue in Fig. 3(b). On 400

the other hand, bypassing responses very aggressively helps 401

mitigate NVM LLC contention (and improve performance) 402

but at the expense of degraded LLC reuse, which might 403

outweigh the improvements in static and refresh energies 404

with increased DynE. Therefore, we are conservative also 405

in bypassing responses (Point 1), as indicated by the thick 406

dotted arrow in Fig. 3(b) leading responses to the response 407

queue. We prioritize caching writebacks, following the most 408

conservative approach, due to their asymmetrically stronger 409

impact on memory dynamic energy compared to the other 410

NVM write source (as indicated in Point 2). 411

3) Case C: In this diverse execution scenario [Fig. 3(c)], 412

we prefer caching writebacks [as shown by the solid arrow 413

leading writebacks to the LLC request queue in Fig. 3(c)] 414

because of their crucial impact on the energy of off-chip main 415

memory (Point 2), which already experiences considerable 416

memory traffic from MH applications (Point 1). As indicated 417

in Point 3, responses exhibit diverse reuse behavior in this 418

case. This creates opportunity for us to be selective in caching 419

only useful responses, as shown in Fig. 3(c) by the thin dotted 420

arrow directing responses to the LLC response queue. 421

4) Case D: In this scenario [Fig. 3(d)], although the co- 422

execution of LA applications exerts less pressure on off-chip 423

main memory due to limited memory accesses beyond private 424

L2 caches, we prioritize caching writebacks [as shown by 425

the solid arrow leading writebacks to the request queue in 426

Fig. 3(d)] due to their high-LLC reuse potential (Point 4). 427

Meanwhile, responses demonstrate comparatively lower reuse 428

at LLC compared to writebacks, allowing us to be selective 429

in caching only useful response data. 430
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B. NOVELLA Methodology431

The NOVELLA controller has two major components:432

1) Writeback Bypass: Each time an evicted dirty cache line433

from one of the higher-level caches arrives at NVM434

LLC, we make a decision regarding whether to write the435

data into LLC or bypass it. If the data is selected to be436

written, we insert the writeback into the request queue.437

Otherwise, we send the writeback to the main memory438

to store the updated data there.439

2) Response Bypass: Whenever a response from the main440

memory reaches NVM LLC, we immediately for-441

ward a copy of the data to the core waiting for it.442

Simultaneously, we make a decision regarding whether443

to write the data into LLC. If so, we insert the response444

into the response queue. Otherwise, the response is445

simply dropped, as the data has already been forwarded.446

Based on the ideas discussed in Section IV-A, we make447

runtime bypass decisions for writebacks and responses. This448

involves identifying cases A, B, C, and D at runtime. While a449

lower-LLC access rate indicates case D (co-execution of LA450

applications), higher-access rates correspond to the other three451

scenarios, i.e., cases A, B, and C. Among these three cases, a452

significantly low-LLC miss rate indicates case A (co-execution453

of LH applications), a much higher-miss rate represents case454

B (co-execution of MH applications), while intermediate miss455

rate values correspond to case C (co-execution of both LH and456

MH applications).457

Algorithm 1 describes the steps involved in NOVELLA.458

While Lines 1 - 7 capture the steps involved in Writeback459

Bypass, Lines 8 - 21 discuss steps involved in Response460

Bypass. When a writeback WAcc reaches NVM LLC (line461

1 ), we check whether the LLC access rate (AR) is above a462

threshold (ARTh), and the miss rate (MR) is within a certain463

lower threshold, i.e., MRThL (line 2 ). If so, we identify464

the execution scenario to be case A, and decide to bypass465

WAcc (line 5 ). Because writebacks create significant LLC466

contention in case A (discussed in Section IV-A1), such bypass467

decisions help alleviate NVM LLC contention. However, in468

case the data for WAcc, i.e., WBlk, is already present in LLC,469

we invalidate the data to prevent any future request from470

fetching stale data from the LLC (line 4 ). In all other471

execution scenarios (cases B, C, or D), we decide to cache472

the writeback data, and therefore, insert WAcc into the LLC473

request queue (line 7 ).474

When a response WAcc returns from the main memory con-475

taining the requested data, we create a copy of it (W′
Acc, line476

9 ) and forward it to the higher-level cache (line 10 ). This477

facilitates the requesting processor core to obtain data faster478

and maintain progress. Meanwhile, we decide whether to write479

the response or bypass it (Lines 11 - 21 ). For this decision,480

we estimate whether the response data is useful. In cases C481

and D, we assess the usefulness of responses differently than482

in the other two cases, as a single criterion is not effective483

across all four cases (more insight in Section VI-B). Again, to484

identify different execution scenarios, we use both LLC access485

and miss rates. If the access rate (AR) is low, we identify the486

scenario as case D (line 11 ) and consult the reuse prediction487

Algorithm 1: NOVELLA: Nonvolatile LLC Bypass for
Optimizing Off-Chip Memory Energy

Input: WAcc: Write access to NVM LLC
Input: WBlk: Target LLC block for NVM write
Input: MR: NVM LLC miss rate
Input: AR: NVM LLC access rate
Input: DeadCBlk: Number of past dead fills for WBlk

Input: FillCBlk: Number of past fills for WBlk

Input: RC: Predicted RC for WAcc

Input: MRThL and MRThH : Lower and higher thresholds
on NVM LLC miss rate

Input: ARTh: Threshold on NVM LLC access rate
Input: DPTh: Threshold on WBlk’s dead probability
// Writeback Bypass

1 if WAcc is a writeback then
2 if MR < MRThL AND AR > ARTh then
3 if WBlk �= null then
4 Invalidate(WBlk) // upon a cache

hit, invalidate the data

5 Send WAcc to main memory

6 else
7 Enqueue WAcc to the request queue

8 else
// Response Bypass

9 W′
Acc = Copy(WAcc) // creating a
forwardable copy of data

10 Forward W′
Acc to higher-level cache

11 if AR ≤ ARTh then
12 if RC > 0 then

// data anticipated useful
13 Enqueue WAcc to the response queue

14 else
15 if MR ≥ MRThL AND MR < MRThH then
16 if RC > 0 then

// data anticipated useful
17 Enqueue WAcc to the response queue

18 else

19 DPBlk =
(

DeadCBlk

FillCBlk

)

20 if DPBlk < DPTh then
// data anticipated useful

21 Enqueue WAcc to the response queue

table (RPT), a small buffer maintaining the reuse history of 488

certain prior responses [11]. Each RPT entry comprises a 3- 489

bit saturating counter. We index into the RPT using hashed 490

instruction program counter (PC) of the incoming response. 491

Initially, all the reuse counters in RPT are reset to 0. If the 492

hashed instruction PC of the incoming response WAcc matches 493

against an existing entry in the RPT, the corresponding counter 494

is incremented. When RPT becomes full and there is a need 495

to allocate a new entry, we evict the oldest entry. So, when the 496
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Fig. 4. Hardware implementation of NOVELLA controller. Demultiplexers
1 and 12 execute the decisions taken for LLC writebacks and responses,

respectively, regarding whether to bypass them or insert them into their
respective controller queues for LLC writes. The critical path is shown in red.

access rate is low, we decide to bypass WAcc if its predicted497

reuse (RC) is zero; otherwise, we enqueue WAcc into the498

response queue for writing data later (line 13 ). If the access499

rate is high (line 14 ), and the miss rate lies in between MRThL500

and MRThH (line 15 ), we identify the scenario as case C501

and decide to write responses of nonzero reuse count (RC),502

as estimated from RPT (line 17 ). When the access rate is503

high (line 14 ), but the miss rate is below MRThL (case A)504

or above MRThH (case B), we assess the usefulness of the505

response fill by calculating the current probability of it being506

dead, i.e., DPBlk, based on the fill history. To compute the507

dead-probability, we divide the number of dead fills so far for508

the cache block (DeadCBlk) by the number of times the block509

is filled so far (FillCBlk), as indicated in line 19 . A block-510

fill is marked dead if we observe no reuse for it before its511

eviction. If the probability exceeds a certain threshold, DPTh,512

we anticipate the fill to be dead and decide to bypass the513

response. Otherwise (line 20 ), we insert the response into514

the response queue for a future write (line 21 ). While ARTh515

is decided from LLC access profiles of our workloads, the516

size of the RPT, miss rate thresholds (MRThL and MRThH),517

and dead probability threshold (DPTh) are determined through518

sensitivity analysis.519

V. CONTROLLER IMPLEMENTATION520

In Fig. 4, we illustrate the implementation of NOVELLA521

controller. The miss and access rates of NVM LLC (MR,522

AR) and the other thresholds are available as registers inside523

the LLC controller. Using gate 5 , we identify whether524

the execution scenario resembles case A, and, based on the525

output of 5 , demultiplexer 1 decides whether to send the 526

writeback to the main memory (bypass) or enqueue it into the 527

request queue (write). To maintain functional correctness, we 528

send a control signal from the bypass path of the demultiplexer 529

1 to the LLC so as to invalidate the existing cache block in 530

case of an LLC hit. In Fig. 4, this control signal, named Inv, 531

is represented by a dotted blue line. 532

The output of AND gate 7 indicates case C, while the 533

output of gate 6 represents cases A or B. Combining the 534

output of gate 7 and the output of comparator 4 which 535

indicates the access rate to be within ARTh (i.e., case D), 536

OR gate 8 represents scenarios where NOVELLA consults 537

the RPT to estimate the reuse of an incoming response. 538

For that, we use hashed instruction PC of the instruction 539

corresponding to the response cache block as our signature. 540

The bit-width of the signature determines the size of the RPT, 541

with RPT containing 2K entries if the signature is of K bits. In 542

Section VI-F, we empirically determine K with a sensitivity 543

analysis. If the predicted reuse (RC) is greater than zero, we 544

signal the demultiplexer 12 , through gates 9 and 11 , to 545

consider caching the response and enqueue it into the response 546

queue. If RC is zero, we signal the demultiplexer 12 to 547

drop the response (bypass). For cases A or B, indicated by the 548

outcome of gate 6 , we estimate the dead probability (DP) of 549

the response fill using the cache block’s fill history, recorded 550

as additional cache metadata. We signal demultiplexer 12 , 551

through gates 10 and 11 , to bypass the response if the 552

dead probability is beyond the threshold DPTh. If a response 553

is decided to be bypassed, we simply drop the response 554

(represented in Fig. 4 by the symbol ⊗), as the data for every 555

response is forwarded to the cores. 556

For any incoming NVM LLC write, NOVELLA’s decisions 557

can be processed in parallel to the actual service of accesses 558

from the controller queues. Such decisions involve combina- 559

tional circuits (the critical path is highlighted in Fig. 4), and 560

the only scenario it lies on the critical path is when there are 561

no pending accesses in any of the controller queues and the 562

LLC is idle. However, in our experiments across diverse SPEC 563

workloads, we did not observe this scenario. 564

VI. EXPERIMENTS AND RESULTS 565

A. Setup 566

We use the gem5 simulator for experimental evaluation. 567

Table I captures the details of our underlying system archi- 568

tecture. Essential cache parameters are collected from CACTI 569

and NVSim for 22 nm technology node. To measure DRAM 570

energy consumption, we use DRAMPower [24] tool, which 571

extracts from gem5 performance counters necessary for the 572

energy calculation. We use gem5’s system emulation (SE) 573

mode, which offers limited support for SPEC CPU 2017 574

benchmarks. Therefore, we use SPEC CPU 2006 benchmarks, 575

known to offer memory access characteristics comparable 576

to that of SPEC CPU 2017 benchmarks [25]. We fast- 577

forward through 1 billion instructions, warm up caches for an 578

additional 150 million instructions, and subsequently execute 579

250 million instructions for any workload. For characterizing 580
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Fig. 5. Comparison of DRAM energy consumption for NOVELLA and other baselines.

TABLE I
SYSTEM CONFIGURATIONS

TABLE II
SPEC WORKLOAD CATEGORIZATION

benchmarks (Table II), we execute them in a standalone581

environment. While LA applications send fewer accesses to582

the LLC, LH and MH applications have most of their accesses583

producing LLC hits and misses, respectively. NOVELLA584

estimates cache miss rate from performance counters collected585

for cumulative LLC miss and access counts. While this586

approach captures the long-term behavior of LLC miss rates,587

NOVELLA’s reuse-aware careful bypass decisions disturb588

LLC reuse minimally, preserving the sanctity of the classifica-589

tion (e.g., preventing LH workloads from being misclassified590

as MH). Baselines WCAB [3], SHiP [10], OBM [11],591

BFP [15], COBRRA [6] and NBB are already discussed in592

Sections II and III. We use two different sets of workloads:593

1) sensitivity and 2) evaluation. The sensitivity set consists594

of 32 workloads [26] for determining the values of policy595

parameters (Section VI-F). Once parameters are finalized, a596

set of 12 evaluation workloads (Table III) is used for the 597

final evaluation. Both sets are diverse in their compositions, 598

created randomly, with more representatives from LH and 599

MH applications, which are more interesting to us than LA 600

applications that have limited interactions with LLC. We select 601

a different set for determining parameters to demonstrate that 602

parameters tuned on any similar set can effectively work on 603

the evaluation set. 604

B. Overall DRAM Energy 605

Fig. 5 illustrates the comparison of total DRAM energy con- 606

sumption of NOVELLA against six baseline policies across 12 607

evaluation workloads. The Y-axis shows normalized DRAM 608

energy, calculated by dividing each policy’s DRAM energy 609

by that of naïve NBB, with the X-axis showing different 610

workloads. As shown in Fig. 5, while WCAB [3], SHiP [10], 611

OBM [11], BFP [15], and COBRRA [6] reduce the overall 612

DRAM energy consumption by 4%, 4%, 6%, 8%, and 12%, 613

respectively, over NBB, NOVELLA, with a significant energy 614

gain of 21%, outperforms all baselines. While WCAB, SHiP, 615

OBM, and BFP overlook LLC contention, emphasizing LLC 616

reuse, COBRRA, designed for an SRAM LLC, does not 617

address all sources of NVM writes and focuses specifically on 618

system throughput, leading to suboptimal energy gains. 619

For workloads entirely consisting of LH applications (mixes 620

2 and 3), bypassing writebacks is more energy-efficient. The 621

AWB policy, discussed in Section III, offers a 28% energy gain 622

for these mixes, while ARB increases DRAM energy by 25%. 623

As shown in Fig. 5, WCAB achieves an average energy gain of 624

14% over NBB. For these LH workloads, BFP and OBM yield 625

energy gains of 8% and 1%, respectively, while SHiP increases 626

the DRAM energy by 7%. Although COBRRA exploits the 627

tradeoff between LLC contention and reuse, it increases 628

DRAM energy by 5% because it aggressively bypasses 629

responses and caches writebacks. Nevertheless, NOVELLA, 630

with adaptive bypass decisions for the two sources of NVM 631

writes, i.e., writebacks and responses, achieves an energy 632

saving of 28% across these workloads, outperforming state- 633

of-the-art techniques by significant margins. 634

Across workloads consisting entirely of MH applications 635

(mixes 4 and 5), aggressive bypassing (especially of write- 636

backs) is energy-inefficient. While aggressively bypassing 637
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TABLE III
EVALUATION WORKLOADS

Fig. 6. Comparison of DRAM dynamic energy consumption for NOVELLA and other baselines.

writebacks is found to increase DRAM energy by 8% (AWB638

of Section III), WCAB, with conservative writeback bypass,639

shows marginal energy gain. While reuse-emphasizing bypass640

policies, such as SHiP, OBM, and BFP offer energy gains641

of 8%, 12%, and 13%, respectively, over NBB, COBRRA642

increases DRAM energy by 1%, reinforcing the inefficiency of643

aggressive bypass decisions for these workloads where DRAM644

is already burdened with LLC misses. However, NOVELLA645

achieves a 13% reduction in DRAM energy consumption.646

For mixes 8-11 co-executing LH and MH applications,647

NOVELLA offers 27%, 24%, 26%, 25%, and 3% higher-648

energy gain over baselines WCAB, SHiP, OBM, BFP, and649

COBRRA, respectively. Selective caching of responses proves650

energy-efficient for these workloads. For mix1 (LA workload),651

while WCAB increases DRAM energy by 1%, SHiP, OBM,652

BFP, COBRRA, and NOVELLA produce energy reductions653

worth 5%, 1%, 10%, 4%, and 3%, respectively, over NBB.654

NOVELLA achieves 9% and 14% higher-energy reduc-655

tions over bypass strategies using only RPT and only DP,656

respectively. DP captures a long-term history of response fills,657

making it suitable for careful bypassing of responses in cases658

A and B, while the short-term history of fills captured by659

RPT facilitates the preferred ARB for cases C and D. In660

cases A and B, the RPT-based reuse criterion tends to bypass661

responses in an overly aggressive way (82.7% on average),662

leading to overall energy inefficiency, particularly due to663

significantly high-DRAM dynamic energy (up to an 8.42×664

increase over NBB), whereas the DP-based criterion follows665

a more balanced bypass approach, which is preferred in such666

scenarios. Conversely, for cases C and D, the DP-based overly 667

conservative bypass (1.44% of responses) is significantly less 668

efficient than NOVELLA’s RPT-based bypass approach, which 669

benefits such workloads by bypassing 67% of responses. This 670

is why we use RPT in cases C and D and DP in cases A and 671

B to determine dead response fills. 672

We evaluated NOVELLA’s energy gains across 5-, 6-, 7-, 673

9-, and 10-core workloads (apart from 8-core workloads), and 674

observed DRAM energy reductions of 8%, 13%, 16%, 21%, 675

21%, and 19% compared to NBB across 5-, 6-, 7-, 8-, 9-, and 676

10-core workloads, respectively. 677

C. DRAM Energy Breakdown 678

Figs. 6 and 7 show normalized consumption of different 679

DRAM energy components for the policies across evaluation 680

workloads. Fig. 6 shows that WCAB, SHiP, COBRRA, and 681

NOVELLA increase DRAM dynamic energy by 7%, 33%, 682

17%, and 22%, respectively, while OBM and BFP reduce it 683

by 3% and 5%. Fig. 7 exhibits that WCAB, SHiP, OBM, BFP, 684

COBRRA, and NOVELLA reduce DRAM static and refresh 685

energies by 5%, 9%, 9%, 9%, 27%, and 32%, respectively, 686

compared to NBB. 687

Despite increasing DRAM dynamic energy by 35% for 688

LH workloads (mixes 2 and 3), WCAB achieves a 14% 689

overall energy gain by reducing the other energy components 690

by 16%. SHiP increases DRAM dynamic energy by 3.7× 691

compared to NBB, while only marginally reducing other 692

energy components, increasing DRAM energy by 7%. For 693
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Fig. 7. Comparison of DRAM static and refresh energy consumption for NOVELLA and other baselines.

Fig. 8. Summary of key tradeoffs. The LLC miss rate trends align with the DRAM dynamic energy (blue lines), while the performance speedup strongly
influences static and refresh energies together (green lines).

these mixes, OBM and BFP reduce DRAM’s dynamic energy694

by 4% and 3%, and combined static and refresh energies695

by 1% and 8%, respectively, over NBB. For these mixes,696

responses contribute significantly to LLC reuse. COBRRA’s697

ARB increases dynamic energy by 69%, but fails to reduce698

static and refresh energies sufficiently, resulting in a 5%699

increase in total DRAM energy over NBB. NOVELLA’s700

adaptive strategy of bypassing writebacks aggressively and701

responses carefully increases dynamic energy by 3.07× over702

NBB, but reduce the other energy components by 36%,703

resulting in a 28% overall energy gain across these workloads.704

For workloads consisting solely of MH applications (mixes705

4 and 5), While WCAB minimally impacts different energy706

components, SHiP improves both dynamic and combined707

static and refresh energies by 4% and 12%, respectively, over708

NBB, showing an overall energy savings of 8%. OBM and709

BFP reduce dynamic energy by 11% and 12% and static and710

refresh energies by 14% and 13%, achieving overall energy711

gains of 12% and 13%, respectively, over NBB. COBRRA’s712

ARB increases DRAM dynamic energy by 34%, and, despite713

a 27% reduction in static and refresh energy components,714

the overall DRAM energy still increases by 1% compared715

to NBB. Because of high-DRAM traffic volume, aggressive716

bypass decisions prove energy inefficient. Surpassing all these717

energy gains, as shown in Figs. 6 and 7, NOVELLA reduces718

both DRAM energy components by 13%, emphasizing the719

efficiency of dead-probability based conservative response 720

bypass for these workloads. 721

For mixes 8-11, co-executing LH and MH applications, 722

while WCAB shows marginal effects (within ±1%) on dif- 723

ferent energy components, SHiP increases DRAM dynamic 724

energy by 5% but achieves a 4% overall energy saving with 725

an 8% reduction in static and refresh energies. OBM and BFP, 726

with minimal impact on dynamic energy and 4% reductions 727

in combined static and refresh energies, offer overall energy 728

gains of 2% and 3%, respectively. Caching responses very 729

selectively proves energy efficient for these mixes. While 730

COBRRA increases dynamic energy by 2% and reduces 731

other energies by 42%, with an overall energy gain of 25%, 732

NOVELLA, with its RPT-based bypassing of dead response 733

fills, improves dynamic and static energy components by 2% 734

and 43%, respectively, achieving an overall energy gain of 735

27% over NBB. 736

D. Summary of Key Trade-Offs 737

Fig. 8 summarizes the key tradeoff between reuse- 738

dependent (dynamic energy) and performance-dependent 739

components (static and refresh energies) of DRAM energy. 740

While the left Y-axis shows normalized consumption of 741

various DRAM energy components, the right Y-axis displays 742

percentage improvements in execution time and percentage 743
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increases in NVM LLC miss rate. Different baseline policies744

are represented along the X-axis, with naïve NBB serving as745

the global baseline. WCAB, SHiP, OBM, BFP, COBRRA, and746

NOVELLA result in normalized static and refresh energies747

(combined) of 0.95, 0.91, 0.91, 0.91, 0.73, and 0.68, respec-748

tively (solid green trend line, Fig. 8). This strongly correlates749

with the performance speedups of 6%, 10%, 9%, 9%, 28%,750

and 33%, respectively (dotted green trend line, Fig. 8). The751

correlation is high, because of these energy components being752

almost proportional to the overall execution time. NOVELLA753

reduces average access delays at DRAM, LLC, L2, and L1754

caches by 13%, 55%, 43%, and 43%, respectively, compared755

to NBB. Since accesses are served in parallel at different756

memory levels, these delays are inherently parallel. WCAB,757

SHiP, OBM, BFP, COBRRA, and NOVELLA result in nor-758

malized DRAM dynamic energy of 1.07, 1.33, 0.97, 0.95,759

1.17, 1.22 (solid blue trend line in Fig. 8), correlating with760

the trend observed in increases in LLC miss rate of 0.33%,761

2.82%, 0.46%, −0.52%, 6.31%, and 5.71% by WCAB, SHiP,762

OBM, BFP, COBRRA, and NOVELLA, respectively, over763

NBB (dotted blue line in Fig. 8).764

The trend in overall DRAM energy is determined by the765

trends within its energy components. Therefore, in Fig. 8,766

the solid black line lies in between the solid blue and767

green lines. Because the combined static and refresh energy768

is more dominant than the dynamic energy, the overall769

energy trend aligns more closely with the trend in these two770

components. However, performance efficiency alone is not771

sufficient for achieving energy efficiency. Our comprehensive772

experimental analysis demonstrates that neither reuse-aware773

prior bypass policies, such as WCAB, SHiP, OBM, and BFP,774

nor contention- and reuse-aware policies, such as COBRRA,775

are the most energy-efficient, underscoring the effectiveness776

of NOVELLA.777

E. LLC and Memory-System Energy778

Across our workloads, DRAM, LLC, L2, and L1 caches779

consume 63.59%, 8.48%, 4.92%, and 23.01% of the whole780

memory-system energy, respectively. NOVELLA consistently781

reduces the static energy components of DRAM and all782

levels of caches by mitigating NVM LLC contention and783

improving execution time. Performance improvement reduces784

LLC leakage energy by 33%, and bypassing of expensive785

NVM writes reduces LLC dynamic energy by 41% compared786

to NBB, resulting in an overall LLC energy reduction of 34%787

over NBB. While NOVELLA reduces energy consumption of788

whole memory hierarchy by 20% over NBB, our optimizations789

are independent of processor energy consumption, and there-790

fore, can be applied together with core energy optimization791

techniques for a system-wide energy efficiency.792

F. Parameter Selection793

Parameters of NOVELLA are determined through experi-794

ments across 32 sensitivity workloads, discussed as follows:795

1) Miss Rate Thresholds: MRThL is varied in {0, 0.05, 0.1,796

0.2, 0.3, 0.4, 0.5}, resulting in energy gains of 8.6%, 11.2%,797

11.6%, 8.8%, 8.9%, 7.9%, and 2.4%, respectively. Higher798

values, such as 0.8 and 1.0, increase the memory energy by 799

2.4% and 6.1%, respectively, due to AWB. Therefore, we set 800

MRThL = 0.1 which leads to the highest-energy reduction. 801

MRThH is varied in the range 0.3-1 with a gap of 0.05 in 802

between, resulting in the energy gain to vary within 5%–12%. 803

We select MRThH = 0.8 as it produces the highest-energy 804

gain. 805

2) Dead Probability Threshold: We observe the energy 806

gain to be 10.1%, 9.5%, 11.6%, 11.3%, 11.2%, and 9.2%, 807

respectively, for DPTh’s value of 0.1, 0.2, 0.3, 0.4, 0.5, and 808

0.6. We opt for DPTh = 0.3 as it leads to the maximum energy 809

gain. 810

3) Reuse Predictor Table Size: We experiment with the 811

signature width (K) being 7, 8, 9, 10, 11, 12, 13, and 14 LSBs 812

of the instruction PC. RPTs of 128, 256, 512, 1024, 2048, 813

4096, 8192, and 16384 entries result in energy gain of 5%, 5%, 814

6%, 6%, 4%, 12%, 13%, and 12%, respectively. We choose 815

RPT’s size to be 4096 in order to reduce hardware overhead, 816

without significantly sacrificing energy gain. 817

G. Overhead 818

NOVELLA’s decisions do not lie on the critical path because 819

they are evaluated in parallel with the service of accesses 820

from LLC controller queues. NOVELLA’s energy and area 821

overheads are estimated using Synopsys technology library, 822

CACTI, and NVSim for 22nm technology. 9-bit fill and 6- 823

bit dead counters are added to each LLC line as additional 824

metadata, increasing tag array size from 720 KB to 960 KB. 825

NOVELLA’s storage (flip-flops, RPT) and logic units incur an 826

area overhead of 0.0792 mm2, which is 3% of total LLC area 827

(2.64 mm2). Across our workloads, DRAM consumes 0.297 828

J of energy, with NOVELLA adding an overhead of 0.0035 J, 829

which is 1.18% of the total DRAM energy. 830

VII. CONCLUSION 831

Addressing energy bottlenecks related to off-chip memory 832

accesses is crucial for sustainable computing. NOVELLA 833

reduces off-chip memory energy by exploiting tradeoffs 834

between LLC contention and reuse through NVM write 835

bypass. Across SPEC workloads, NOVELLA achieves 21% 836

and 10.23% higher-energy-savings compared to a no-bypass 837

solution and a state-of-the-art bypass solution, respectively. 838

We show that performance-optimal aggressive bypass policies 839

are not energy-optimal. In the future, we plan to investigate 840

a coordinated approach for energy-efficiency, involving both 841

LLC and DRAM controllers. We also plan to study the 842

problem in the presence of both demand and prefetch traffic. 843
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