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Abstract—In this article, we rethink the dataflow processing
paradigm to a higher level of abstraction to automate the
generation of multi-instance compute and memory platforms
with interfaces to I/O devices (sensors and actuators). Since
the different compute instances (NPUs, CPUs, DSPs, etc.) and
I/O devices do not necessarily have compatible interfaces on a
dataflow level, an automated translation is required. However,
in multidimensional dataflow scenarios, it becomes inherently
difficult to reason about buffer sizes and iteration order without
knowing the shape of the data access pattern (DAP) that
the dataflow follows. To capture this shape and the platform
composition, we define a domain-specific representation (DSR)
and devise a toolchain to generate a synthesizable platform,
including appropriate streaming buffers for platform-specific
tensorization of the data between incompatible interfaces. This
allows platforms, such as sensor edge AI devices, to be easily
specified by simply focusing on the shape of the data provided
by the sensors and transmitted among compute units, giving
the ability to evaluate and generate different dataflow design
alternatives with significantly reduced design time.

Index Terms—Data orchestration, hardware platform genera-
tion, multidimensional data flow, synchronization.

I. INTRODUCTION

W ITH the advent of domain-specific architectures in the
edge and cloud computing, there exists an increasing

demand to rethink the dataflow processing paradigm to a
higher level of abstraction by providing an expressive dataflow
formalization and transformation approach for automated gen-
eration of multi-instance compute and memory platforms with
interfaces to I/O devices (sensors and actuators).

The different compute instances (NPUs, CPUs, DSPs, etc.)
and I/O devices do not necessarily have compatible interfaces.
The automatic translation between the incompatible interfaces
on the protocol level as well as the implementation of the 1-D
data-flow on the top of the interfaces is well understood and
can be realized by generating of protocol adaptors and the use
of FIFO buffers.
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In the multidimensional case, however, it is inherently
difficult to reason about buffer sizes and iteration order without
knowing the shape of the DAP, i.e., its tensorization of
data, that the data-flow follows. To implement compatible
communication between the aforementioned platform compo-
nents or between the compute and memory instances, either
the functional workload at the compute instances or the
interconnect structure needs to be adapted.

While a lot of research is being put into effi-
cient data orchestration from and to a compute instance
(Buffets [1], Stash [2], Patch Memory [3], Stream-Dataflow
Acceleration [4], Accelerator Store [5]), and the generation or
implementation of efficient datapaths for compute instances
(Rubick [6], Spatial Tensor Accelerator [7], TENET [8],
UltraTrail [9], ShiDianNao [10], and Versa-DNN [11]), we
have not yet observed a lot of work put into the interconnects
of multiple compute instances with complete or partial incom-
patible DAPs.

To our best knowledge, existing multi-instance compute
systems can generally be put into two categories: 1) memory-
based system designs and 2) peer-to-peer system designs.
Systems of the first category communicate with a memory
and a controller to orchestrate the data movement (e.g., [1],
[2], [4], and [5]). Systems of the second category usually
communicate in a streaming-like manner, where platform
components provide the necessary data to their interconnected
components (e.g., [12] and [13]). In both the categories, the
issue with incompatible DAPs exists.

Furthermore, due to the growing demand for multi-instance
compute systems in embedded systems, a low-overhead and
scalable solution that allows for rapid and easy generation of
multicompute instance systems is necessary.

To this end, we introduce GOURD which defines a DSR of
connecting components and their DAP. GOURD also provides
an automatic translation tool that generates the translation
units called Streaming Buffers when incompatible DAPs need
to be connected. A high-level representation of the issue and
our solution to this is shown in Fig. 1.

Our main contributions are as follows.
1) Designing a DSR of compute instances and their DAPs.
2) Derivation of appropriate Streaming Buffers between the

components with incompatible DAPs.
3) Implementing a tool to automatically translate the DSR

into synthesizable RTL.

II. RELATED WORK

Several approaches have been presented to design and
implement highly efficient datapaths for the components or
data orchestration between them and a memory.
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Fig. 1. Overview of GOURD, showcasing our proposed DSR that can
describe a platform and the DAPs of its components. Our representation allows
to identify incompatible connections due to the components’ DAPs. GOURD’s
proposed hardware generator converts the DSR to Streaming Buffer translation
unit, enabling connection components with incompatible DAPs.

Buffets [1] are hierarchically composable hardware compo-
nents that implement an explicit decoupled data orchestration
between the arbitrary compute instances and a global memory
system. This approach provides an efficient data orchestration.
Compared to our work this work focuses only on efficient
communication with higher level memory hierarchies.

Stash [2] are hardware components that unify the benefits
from the local scratchpads and caches. They can globalize the
local scratchpad memory space by an user-defined translation
function. Stash focused on a highly efficient data orchestration
functionality for single compute instances, but neglected the
influence of the underlying data shape on the design.

Patch Memory [3] provides a scratchpad-like memory for
image processing. They consider a domain-specific shape of
the data, but do not apply their approach to out-of-domain
DAP and only consider single compute instances.

Unified Buffers [14] implement a HalideIR-based compila-
tion scheme onto a custom compute and generated memory
instances that use novel abstraction for push memories. They
show the potential of their approach by scheduling machine
learning and image processing applications with Halide and
mapping them to a custom CGRA with push memory abstrac-
tion. Our work focuses on reusing highly efficient existing
components and enabling a connection between them while
also providing flexibility on the memory architecture.

Stream Dataflow [4] present a programming paradigm on
data streaming workloads for CGRA architectures by introduc-
ing configurable control components that manage the dataflow
from memory to CGRA. They highlight the usefulness of
the data streaming approach on CGRA compute instances.
Compared to design, we focus on multi-instance compute
platforms and adapting the dataflow in between them.

Accelerator Store [5] is a shared memory space between
compute instances. For this, they developed a system that

allows individual compute instances to request memory in a
shared memory space which is freed when the instance does
not need it anymore. With their contribution, they focus on the
memory scale-ability issue of multicompute instances. In our
work, we focus on the interconnectivity between multicompute
instances.

Dutta et al. [12] presented a translation scheme for window
synchronous data flows [15] that uses a multidimensional
FIFO system to interconnect compute instances. In comparison
to that, we do not require a fixed memory architecture and
also allow DAP on the consuming interface to define loop
reordering in the form of data access pattern reordering
(DAPR). In addition, our generation DSR provides enough
domain information to automatically generate hardware with-
out transforming it into a data flow graph description for
further analysis.

Although existing designs and systems excel within their
respective domains, a gap exists in seamlessly intercon-
necting components and integrating comprehensive system
information. The design and implementation of such systems
necessitate expert knowledge and substantial engineering
effort. GOURD addresses this challenge by automatically
generating optimized hardware based on the design intent,
while still maintaining the flexibility to incorporate the exist-
ing expertise, thereby drastically facilitating the development
process.

III. MOTIVATION AND GENERAL APPROACH

Data streaming applications are an established part of
nowadays embedded platforms. These applications range from
classical examples, such as audio and video processing
to the state-of-the-art topics of efficient implementation of
neural network architectures [16], [17]. Platforms usually
consists of multiple components with carefully engineered
communication-channels and dataflows. Changing components
require manual adaptation of the platform. We observe that
DAP in data streaming applications are often described as
a multidimensional iteration spaces. For example, an image
sensor iterates over three dimensions when transmitting an
RGB image: 1) the width; 2) the height; and 3) the channels.
Another example is a neural network accelerator that reads
several input features in an application-defined order [9], [10],
[18], [19]. These iteration spaces are often defined as the
nested for-loops. The iteration space can be interpreted as a
tensor, where each dimension is defined by the length of the
for-loops.

Data-producing components often transmit data linearly
within their iteration space. For example, the previously
described image sensor is a data-producing component that
iterates its 3-D iteration space in a predefined application-
specific order. It could first iterate over the channel dimension
before moving to the next pixel in the width dimension
and finally in the height dimension. On the other hand,
data-consuming components can read data multiple times or
skip over some data. For example, in convolutional neural
networks, data-consuming components often read the data
following the iteration order of a moving kernel.
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Interconnected components have to be designed such that
they can 1) understand the incoming data or 2) build a trans-
lation unit that makes the dataflow of incompatible interfaces
compatible. Designing a set of compatible components often
requires a lot of engineering effort. To tackle this issue,
we introduce a DSR that captures the tensor-shaped data
and their iteration order. With this representation, we can
easily test if interfaces define incompatible dataflows and
automatically generate configurable Streaming Buffers that
perform the data translation. An overview of the solution
(GOURD) is shown in Fig. 1. The generator is implemented
within the MLIR [20]/CIRCT [21] environment.

Terminology As shown in Fig. 1, we consider each compo-
nent as a black box that communicates with other components
through channels. A channel can be either a port or a
streaming interface. A port is a simple end-to-end connection.
A streaming interface can be extended with the tensor shape
of the data that it transmits. In the scope of this article, a
DAP defines the shape of the iteration domain and the iteration
order of it as shown in Fig. 1. A DAP is described by a set
of nested for-loops. The shape of the loops are summarized
as window access pattern (WAP). A formal definition will
be provided in Section III-A. Streaming interface channels
can define multiple DAPs which we consider exclusively
active alternatives that can be selected during the system’s
runtime, by reconfiguring the respective component. Channels
are connected via connections. A connection logical associates
a number of channels on the left side (lhs) that produce the data
to a number of channels on the right side (rhs) that consume
the data. Connections define a many-to-many relationship
between channels, but only one producing channel can send
the data at a time. We require connecting components whose
interfaces define DAPs to define at least one connectable
pattern. DAPs are connectable when the DAP of a consuming
interface only accesses iteration domain instance vectors (IVs)
which are in the iteration space spanned by the DAP of
the producing interface. In our framework, we require that a
component with a streaming interface can be stalled by the
subsequent component when the receiving component is not
ready. A data-consuming component can be stalled until the
data from a data producing component is valid. Finally, we
introduce a semantic that allows change of the iteration order
of a DAP from a producing to a consuming interface.

The generator of GOURD is split into multiple steps that
are outlined in Fig. 2. As depicted in Fig. 1, the generator takes
the DSR as input and generates Streaming Buffer hardware
components. The generated Streaming Buffer ensures that a
consuming interface receives the required data in the correct
order. The steps outlined in Fig. 2 successively refine the
generated Streaming Buffer into a syntheziable RTL description.
These steps will be further explained throughout the remainder
of this chapter. The labels in the figure correspond with the
headlines in Section III.

A. GOURD Abstraction Level and Definitions

This section introduces a formal definition of the data
structures required by our dialect and elaborates on the
terminologies we introduced in Section III.

Fig. 2. Steps that GOURD performs to automatically generate hardware.
The letters correspond to the sections in Section III

Algorithm 1 Loop Nest Example
// Adjust UBs so that WAPs do not walk out of bounds

1: for all i0 ∈ {0, 4 − W1[UB][0] + 1} in stride of 1 do
2: for all i1 ∈ {0, 4 − W1[UB][1] + 1} in stride of 1 do
3: for all i2 ∈ {0, 2} in stride of 1 do
4: for all i3 ∈ {0, 2} in stride of 1 do
5: DATA[i0 + i2][i1 + i3]
6: end for
7: end for
8: end for
9: end for

A WAP is defined through an M-dimensional loop nest
with the 3M parameters. Each for-loop consists of a set of
three parameters: 1) lower bound (LB); 2) upper bound (UB);
and 3) stride (ST), which are termed configuration. The loop
counts from LB to UB − 1 in steps of ST . A WAP W is
defined as

W =
⎛
⎝LB UB ST

⎞
⎠ ⊆ N

M×3 (1)

where the 0th row represents the configuration of the outer-
most loop and the M − 1th row is the configuration of the
innermost loop. The dimension dim W = M describes the
number of loops in a WAP. A column of a WAP can be
accessed with W[LB|UB|ST][i] for 0 ≤ i < M. A valid WAP
requires that W[LB][i] < W[UB][i] and 0 < W[ST][i] ∀i.

Multiple WAPs can be combined into a DAP DP that visits
a region in the iteration space multiple times

DP = (
W0 · · · WN−1

) ⊆ N
(M×3)×N (2)

where W0≤j<N are WAPs that all have the same dimensions.
We require that every WAP Wi does not leave the geometric
area defined by it predecessor Wj, with j < i. To access the jth
WAP we use the notation DP[j]. The dimension dim DP = N
of a DAP equals the number of referenced WAPs within it.

For example, a DPbase1 that describes a 2 × 2 convolution
within a 4 × 4 windows is represented as

DPbase1 =
((

0 4 1
0 4 1

)

︸ ︷︷ ︸
W0

(
0 2 1
0 2 1

)

︸ ︷︷ ︸
W1

)
. (3)

The resulting loop nest is shown in Algorithm 1.
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Given a set of DAPs D we define the union DAP to be

DPD =
⋃

DP∈D
DP. (4)

For example, the union of the DAP

DPbase2 =
((

0 4 1
0 4 1

))
(5)

and DPbase1 (3), D := {DPbase1,DPbase2} can be written as

DPD = DPbase1 ∪ DPbase2

=
((

0 4 1
0 4 1

) (
0 2 1
0 2 1

))
. (6)

An IV can be defined w.r.t. WAP or DAP. Given a WAP W
with dimension M and a set of loop indices i0, . . . , iM−1 for
each loop of W, an IV of WAP IW is defined as

IW = (i0, . . . , iM−1)
ᵀ. (7)

For example, the IVs of the example in Algorithm 1 can be
written as

IW0 = (i0, i1)
ᵀ, IW1 = (i2, i3)

ᵀ. (8)

The IV IDP of a DAP with dimension N is obtained by
applying the function m

m : NM×N → N
M

(IW0, . . . , IWN−1

) 	→

⎛
⎜⎜⎝

∑N−1
j=0 IWj[0]

...∑N−1
j=0 IWj[M − 1]

⎞
⎟⎟⎠ (9)

to the tuple (IW0, . . . , IWN−1), where Wj ∈ DP with dim Wj =
M ∀j. For example, the IV in Algorithm 1 is

IDbase1 = m
((IW0, IW1

)) =
(

i0 + i2
i1 + i3

)
. (10)

The set of all IVs spans the iteration domain. A value of an IV
can be accessed with I[k], 0 ≤ k < dim I. The lexicographical
order of two IVs Ilhs and Irhs with dimension d = dim Ilhs =
dim Irhs is

Ilhs < Irhs := (Ilhs[0] < Irhs[0]) ∨
d−1∨
i=1

⎡
⎣Ilhs[i] < Irhs[i] ∧

i∧
j=0

Ilhs[i] = Irhs[i]

⎤
⎦.

(11)

Comparing IVs is only possible when the indices of the values
in both IVs are in the same order. A different order can be
present when a DAP defines a DAP reordering (DAPR). A
DAPR is as an index-permutation function π : Ind(IDP) →
Ind(IDP) of IV IDP with Ind(IDP) := {0, . . . , dim IDP − 1},
which is defined w.r.t. an incoming data stream. This means
that DAPRs are only allowed to be defined by a data-
consuming component’s interface. For example, assuming that
DPbase2 (5) is defined by a consuming component’s interface
and defines a reordering that swaps the order in its IV in
relation to the IV derived from the DAP of a producing
component’s interface. In this case, the DAPR is translated
into a function

π : Ind
(IDPbase2

) → Ind
(IDPbase2

)

i 	→
{

0, i = 1
1, i = 0.

(12)

Intuitively, this DAPR swaps the index positions in IDbase2 :

(13)

To this end, we formalize the definition of two connectable
DAPs, DPlhs and DPrhs as follows.

1) If DPrhs does not define a DAPR, every IDPrhs must be
in the iteration domain spanned by IDPlhs .

2) If DPrhs defines a DAPR, the reversed permutation of
IDPrhs must be in the iteration domain spanned by IDPlhs .

B. GOURD Domain-Specific Representation

We implement GOURD’s DSR as a custom dialect within
the MLIR [20]/CIRCT [21] environment. We opted for this
environment as it already provides a comprehensive set of
functions for dialect manipulation and offers the possibility
for SystemVerilog (RTL) hardware generation. Furthermore,
expressing the DSR as MLIR/CIRCT dialect forms a simple-
to-write and easy-to-understand layer top of the formalism
introduced in Section III-A that is exposed to the users of
GOURD. An example of the dialect is shown in Listing 1.

As can be seen, components and their channels are
described with simple intermediate representation (IR) con-
structs. Streaming interfaces can implicitly describe their DAP
by defining it in terms of nested WAP. DAPRs are imple-
mented with the existing MLIR/CIRCT language constructs.
When describing a system with the IR, the interfaces of two
connected components have to define at least one connectable
DAP. During hardware generation, we only consider all the
pairs of every connectable DAP. Also, as mentioned at the
beginning of Section III, we restrict the dimensionality of a
DAP of data-producing component’s interface to one, as they
usually iterate their DAP in a linear order.

The data structures of our generator rely on the abstraction
formalism introduced in Section III-A. For example, the DAP
of the component comp1 from interface in in the example
(Listing 1) is formally written as shown in (3). The DAPR
defined by the DAP base2 [formally shown in (5)] from
interface in of comp1, in the example (Listing 1), is formally
written as shown in (12).

We will use the example defined in Listing 1 as example to
showcase the behavior of the generator during the hardware
generation process.

C. Initial DSR Processing

The initial processing of the DSR splits connections
between interfaces whose DAPs are not equal.

Then, we annotate connections whether their DAPs are
equal or not. This step is illustrated in Fig. 3(a).

D. Insert Streaming Buffers

A Streaming Buffer is a component inserted between
the previously marked unequal connections of streaming



SCHMID et al.: GOURD: TENSORIZING STREAMING APPLICATIONS 5

Listing 1. Example of our custom MLIR [20]/CIRCT [21] dialect GOURD
that implements our DSR. The example shows two components with multiple
ports and interfaces. The interfaces define the shape of their data as DAPs
which are represented as nested WAPs.

Fig. 3. Initial DSR processing and Streaming Buffer insertion. (a) Connection
splitting when DAPs defined by a component’s interfaces (shown as gray
boxes) are not equal. (b) Streaming Buffers are inserted in between those
connections between interfaces with unequal DAPs.

interfaces, as shown in Fig. 3(b). It handles the data transfer
according to the defined DAPs, for which it may require access
to a memory space of size #mem. Currently, GOURD does not
provide data preloading. This means that Ilhs of the producing
side interface must be smaller or equal than Irhs of the
consuming side interfaces. When this condition is not fulfilled,
the Streaming Buffer tells the producing interface to stop
transmitting via the corresponding ready signal. This condition
will be formalized in Section III-F4. The Streaming Buffer
has to store data which was transmitted by the producing
interface but is still required by the consuming interfaces in
later steps. For example, consider the second case of the data
transmission example in Fig. 4. DPlhs transmits the data in
row-major manner while DPrhs reads the data following the
order of a 2-D convolution. The second data element that is
transmitted is required in the first iteration of Wc,1 as well as

Fig. 4. Different combinations of DAPs that can occur when connecting
interfaces. These DAPs also visually represent the three DAP-alternatives of
component’s comp1 interface in shown in listing 1.

in the second iteration of it. The data element must therefore
be kept in memory. In addition to that, the subsequent data
elements (3–6) must also be kept in memory as they are also
required in later steps. The exact amount of data that requires
buffering can be computed by virtually iterating the DAPs
of the connected components while keeping the track of how
many elements of DPlhs need to be stored before they are
not required any longer in later steps of DPrhs. The runtime
of virtually iterating does not scale well with increasing
dimensionality of the WAP and the DAP. Consider a system
constituted of a producing interface with a 1D-DAP and a
consuming interface with a 3D-DAP. Each WAP consists of
five dimensions, whose maximum UB value is 28. Determining
the exact memory requirements of such a system can be
extremely computationally intensive. For example, our Python
implementation took several hours to complete this process.
Therefore, instead of trying to estimate the exact memory
requirement, we propose to compute an UB of the memory
space size with the DAP of the producing interface (DPlhs =
(Wp,0)) and the DAP of the consuming interface (DPrhs =
(Wc,0 Wc,1 · · · )). The UBs are derived from the geometrical
shape of the DAPs, their dimension and whether a DAPRs is
present or not. We divide the calculation of the size #mem
into three cases, which represent the different combinations
of DAPs that can occur when connecting interfaces. An
illustration of all the three cases is presented in Fig. 4. Since
the movable area of a WAP is confined to the geometrical area
of the WAP at the dimension above, it is sufficient to estimate
the required memory space with the WAP (Wc,1) on the first
dimension of DPrhs.

1) Same Direction: In the first case shown in Fig. 4, the
DAPs have the same dimension, and DPrhs only has a different
lower/upper bound or different stride values. This means the
Streaming Buffer does not require access to the memory space
as it is sufficient to forward the data from a producing interface
according to the definition of the DAP on the consuming
interface. Therefore, the required memory space #mem is 0.

2) No DAPR But Change in Data Access Pattern: In the
second case shown in Fig. 4, the DAP of the consuming
interface must have a dimension greater than 1 and no DAPR
is defined. To compute the UB we make use of the geometric
shape of DPrhs and the iteration order of it. Because GOURD
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currently does not include loops bounds that are dependent
on the state of other loops in the loop nest, we can statically
infer that some of the transmitted data is not used anymore in
subsequent iterations, whenever Wc,1 is moved. This can be
nicely seen in the second case of Fig. 4. The first data element
of DPlhs is accessed once in the first iteration of DPrhs. In
subsequent steps of DPrhs, this field is not accessed again.
Since DPrhs does not define a DAPR in this case, the window
of Wc,1 cannot jump backward but continuously follows the
direction layouted by DPlhs. For the computation of the UB,
we consider the case where the minimum amount of data is
freed in each move of Wc,1 and the producing interface cannot
send more data (Ilhs > Irhs). The required memory space is
estimated as

#mem = Wc,1[UB][0] (14)

when the IV have only a single dimension, and

#mem = (Wc,1[UB][0] − 1) ·
dimIDPlhs−1∏

i=1

Wp,0[UB][i]

︸ ︷︷ ︸
count the transmitted until the last iteration of Wc,1

+ Wc,1[UB][1] ·
dimIDPlhs−1∏

i=2

Wp,0[UB][i]

︸ ︷︷ ︸
count the remaining data in the last iteration of Wc,1

(15)

in any other cases. For example, the required memory space
of the consuming interface in defined in Listing 1 configured
with the DAP base1, which is shown in (3) and the DAP

DPbase =
((

0 4 1
0 4 1

))
(16)

of the producing interface out is

#mem = 1 ·
2−1∏
i=1

DPbase[0][UB][i] + 2 ·
2−1∏
i=2

DPbase[0][UB][i]

= 1 · 4 + 2 · 1 = 6. (17)

This is also represented by the golden colored fields in the
second case of Fig. 4.

3) DAPR and Possible Change in Data Access Pattern:
In this case, the consuming interface defines a DAPR and
may have a different DAP as the producing interface. The
data transmitted by the producing interface must be stored
for the dimensions with misaligned IV indices. For example,
the left interface produces an RGB image following a DAP
that iterates in the order p-width, p-height, and p-channel. The
consuming interface processes the input using a 3D-kernel
where the kernel, i.e., Wc1 iterates in the order w-channel,
w-height, and w-width. We have misaligned indices in width
and channel. Here, one has to store all the transmitted data
from p-width and p-channel. Informally, the required memory
space can be written as p-width · p-channel · p-height. An
illustration of this scenario is shown in Fig. 5 case 1.

Given a DAPR function π , we define

k = min
0≤j<dimIDPrhs

j �= π(j) (18)

Fig. 5. Example memory size of a 3-D DAPs with different DAPRs.

as the lowest dimension index where the indices start to
misalign. The memory size can then be computed as

#mem0 =
dimIDPlhs−1∏

i=k

Wp,0[UB][i]

︸ ︷︷ ︸
compute the size of the initial estimate

(19)

by multiplying the outer-most UBs of the producing DAP
starting from k. In the example shown in Fig. 5 case 1, the
misaligned index is the outer-most index, i.e., k = 0; hence
the entire incoming data need to be stored. The required
memory space is illustrated with golden colors. However,
this is not sufficient to fully compute the required memory
space. Consider the previous example with slightly different
iteration order, where the producer iterates in the same order,
but the consumer iterates in the order w-height, w-width, and
w-channel, as illustrated in Fig. 5 case 2. There, the outer-
most dimensions align, i.e., k = 1. Thus, the required memory
size would be p-height · p-width. This is sufficient as long as
w-channel = 1 but fails when the kernel window moves into
the w-channel dimension. Therefore, the previously computed
required memory size in (19) has to be scaled accordingly.
We define

s =
{

min
0≤j<k

Wc,1[UB][j] > 1 k > 0

0
(20)

as the lowest dimension where Wc,1 requires to moves into
and

#fac =
{

Wc,1[UB][s] · ∏k−1
i=s+1 Wp,0[UB][i] s > 0

1
(21)

as the scaling factor. The factor multiplies the UB values of
each dimension where Wc,1 moves into. We use Wc,1[UB][s]
in the lowest dimension as it results in a lower estimated value
for the memory space. The final required memory space is
estimated with

#mem = #mem0 · #fac. (22)

Considering the previously described case with
w-channel > 1. In this case #fac would assume the value
w-channel. It is not necessary to scale #mem0 with p-channel
because the outer dimensions are not reordered. Visually this
is represented by Wc,1 being confined to the golden colored
and golden striped area shown in Fig. 5 until it has to move
to the next field in the channel dimension.

For example, the required memory space of the consuming
interface in (Listing 1) configured with DPbase2 (5) with the
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Fig. 6. Streaming Buffer macro-architecture and different templates that define different ways to compute the IVs of the consuming interface and producing
interfaces. The hardware generation process of GOURD automatically decides which template to implement.

DAPR (12), coupled with the DAP of the producing interface
DPbase (16) can be written as

#mem =
2−1∏
i=0

DPbase[0][UB][i] · 1 = 4 · 4 = 16. (23)

Visually, this is represented by the golden colored fields in
the third case of Fig. 4. The total required memory space
for a Streaming Buffer is calculated by iterating over all
the combinations of lhs and rhs DAPs connected to the
buffer, computing the required memory space and taking the
maximum value. This value is annotated to the Streaming
Buffer, along with the maximum bitwidth of all the connecting
interfaces.

E. Select Memory Architecture

The fabric of a Streaming Buffer as shown in Fig. 6,
contains a memory wrapper that determines the memory
architecture of the buffer. The implementation of a memory
architecture uses the generated control signals, which will be
described in Section III-F. Optionally, it can use a set of
memory macros that are loaded from a memory macro library.
A memory wrapper can have parameters that affect its memory
architecture implementation. For instance, if a buffer needs
access to a memory space, the memory wrapper could define
that its memory architecture implements the memory space
as a set of split memory macros, wherein the split factor is
parameterizable. Due to the memory architecture of a memory
wrapper, it might be necessary to increase the memory space.
This can be due to the lack of fitting the memory macros or
implementation details. This concept of memory wrappers also
allows to adapt the existing highly efficient data orchestration
systems, such as Buffets [1], Stashes [2], Accelerator Store [5],
etc. The memory architecture of a memory wrapper connects
the signals of the interfaces connected to the Streaming Buffer
accordingly. During this step, we select the memory wrapper
that fits best for this Streaming Buffer based on a locally
optimized scheme. The scheme selects a memory wrapper
based on an area and energy estimate that is computed over
all the memory wrappers and their memory architecture.
The memory architecture is selected at this stage to provide
information about the actual size of the total addressable
memory space of the buffer, which is required to generate
signals with the correct bitwidth in subsequent steps.

F. Generate Streaming Buffer Instance

This section describes the proposed macro-architecture of
a Streaming Buffer shown in Fig. 6. A buffer is responsible
to receive and transmit the data according to the DAPs
defined by its connecting interfaces. A consuming interface
IFi RHS with DAP DPrhs is able to receive the data from
the producing interface IF LHS with DAP DPlhs when both
DAPs are connectable and I[i]

DPrhs
≤ IDPlhs . The first condition

must be fulfilled by definition. The second condition ensures
that the data required in the current instance of I[i]

DPrhs
is

already transmitted by the producing interface. The producing
interface can transmit data as long as the precedence relation
IDPlhs ≤ I[i]

DPrhs
is not violated. A Streaming Buffer has a

single lhs and multiple rhs. The lhs is connected to one of
the producing interfaces at a time. The connected interface
can be changed during the runtime of the system. The rhs
has as many interfaces as consuming interfaces are connected
to the Streaming Buffer. The currently required data element
is described by the current state of the IVs. These vectors
are also used to generate the control signals which will be
explained in Section III-F4. The computation scheme of the
vectors IDPlhs , I[i]

DPrhs
changes depending on the defined DAP.

For example, the computation of an IV for a DAP with dimen-
sion 1 requires no summation (see (9) with N = 1); hence
no hardware unit that computes the summation is required.
Another example is a DAP that defines a DAPR. In this case,
a hardware unit is required that reverses the DAPR in the IV.
The necessary hardware units are selected based on previously
described condition. The conditions are also shown on the rhs
in Fig. 6. A producing interface cannot, per definition, define
a DAPR. This reduces the computation schemes to V1,V4
for these interfaces. During hardware generation, GOURD
automatically selects the minimum necessary hardware units
to compute a IV. The following enumeration provides a
brief introduction of the components in a computation
scheme.

1) Index Generation Unit (IGU): Iterates the iteration
domain for each loop dimension according to the LB,
UB, and ST values of a DAP, similar to the example in
Algorithm 1.

2) Flattening Unit: Computes the IV of a DAP according
to (9).

3) Mapping Unit: Reorders the values in a IV of a con-
suming interface to reverse the DAPR, so that the order
of the indices matches the order of IV of the producing
interface.



8 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS

Fig. 7. Macro-architecture of the IGU with flattening unit. This also
represents the architecture of template V2 shown in Fig. 6.

The IVs are used to compute linearized memory addresses
(addrlhs and addrrhs). The linearization constants are com-
puted using the UB values of the currently selected left DAP
(DPlhs). DPlhs is used for the linearization of the IVs for the
left and rhs to ensure addressing the correct address space even
when the UB of a DAP of the rhs is smaller. The addresses
are computed according to the following equation:

address(I) = linearizing constant (24)
dimI−2∑

j=0

I[j] ·
︷ ︸︸ ︷
dimI−1∏
k=j+1

DPlhs[0][UB][k] + I[dim I − 1]

where DPlhs denotes the selected DAP of the currently selected
data-producing interface. For example, the linearized address
of IDPbase1 (9) using DPbase (16) is

address
(IDPbase1

)

= IDPbase1[0] · DPbase[0][UB][1] + IDPbase1[1]

= (i0 + i2) · 4 + (i1 + i3). (25)

The entire Streaming Buffer is configurable through a set of
configuration registers which are only generated when required
and can be configured with an APB interface IF Control,
also shown in Fig. 6. These registers are

Clhs,igu,[lb,ub,st] := bounds for the IGU on the left side

Crhs,igu,i,[lb,ub,st] := bounds of the i-th IGU on the right side

Crhs,map,i := mapper-config of the i-th right side

Clin := the constants for the linearizer.

The following sections provide an in-depth description of
the macro-architecture of the components and the macro-
architecture of the linearization unit, as well as an explanation
to the necessary control signals of the Streaming Buffer.

1) Index Generation Unit and Flattening Unit: The IGU is
responsible to generate the loop counters for every DAP of an
interface. The counter behave similarly to the loop counters
shown in Algorithm 1. For every DP in the set D of all DAP
of an interface defines, a total amount of

∑
W∈DPD dim W

counters are required. The output of the IGU represents the IV
of all WAP in DPD. Fig. 7 shows the macro-architecture of the
IGU. Each counter has configurable lower and UBs values and
strides. The configuration is stored in the previously introduced
registers. Equivalently to (9), the output values of the IGU
have to be flattened to obtain IDPD . For this, we introduce a
flattening unit that computes IDPD from the output of the IGU,
similar to the example shown in (10). The macro-architecture
of the flattening unit is also shown in Fig. 7. The summation is

(a) (b)

extend

REGREG

extend

Linearizer

multiply accumulate:

Fig. 8. Macro-architectures of the mapping unit and the linearizer.
(a) Mapping unit that reorders an IV according to a DAPR. (b) Linearizer
that computes an address from a set of IV.

computed by a set of adders. The output value of the flattening
unit represents IDPD . It is not always necessary to generate a
flattening unit. Consider the case where dim(DPD) = 1 (see
(9) with N = 1). In this case, it is sufficient to forward the

output of the IGU to obtain IDPD .
Interfaces with multiple DAPs that have different dimen-

sionality can disable counters which are not needed by current
selected DAP ∈ D.

2) Mapping Unit: The control signals that will be intro-
duced in Section III-F4 are derived from the relation of IVs
IDPlhs , I[i]

DPrhs
shown in Fig. 6. In the presence of DAPR

πi, the position of an entry within I[i]
DPrhs

differs to the
position in IDPlhs . This means, for example, that it is not
straight forward to compute the lexicographical order as shown
in (11). It would be necessary to compare the kth position
in IDPlhs with the πi(k)th position in I[i]

DPrhs
. This increases

the complexity of hardware generation. To circumvent this,
we introduce a mapping unit that reverts the permutation
introduced by connecting every πi(k)th in I[i]

DPrhs
position to the

kth position of the outgoing IV. The introduced configuration
registers select the current active DAPR. Note that, reversing
the permutation of an IV does not change the iteration order
defined by the DAP. Formally, the mapping unit reorders the
values in a IV of a consuming interface according to all DAPR
π ∈ F , where F denotes the set of all DAPRs defined in the
DAPs of a consuming interface. For completeness, if F �= ∅,
we associate every DAP without DAPRs with an identity
DAPR. If the domain of an DAPR has fewer dimensions
than the incoming IV, we extend the DAPR by mapping
the values of the indices that are outside of the domain
to a default value. The macro-architecture of the mapping
unit is shown in Fig. 8(a). The algorithm that generates the
mapping unit is defined in Algorithm 2. The algorithm works
as follows: For each DAPR in F it creates a list that stores
which indices of the incoming IV have to be mapped to
which indices of the outgoing IV. Thereafter, the list lengths
are equalized by appending a default value to the list to
ensures that DAPRs with different dimensions can be used.
This synthetically raises the dimension of DAPRs with a lower
dimension to a higher one. The previous process is repeated
for each remaining DAPR in F . Finally, a connection between
the correct incoming and outgoing indices is created. When
multiple DAPR exists the algorithm, creates a set of MUXes
that multiplexes between the different DAPRs. The control



SCHMID et al.: GOURD: TENSORIZING STREAMING APPLICATIONS 9

Algorithm 2 Create Mapping Unit
Input: List of DAPRs: F ,

IV: I
Output: Ireordered
1: Ireorded = (); B = {}// Init. output with empty vector, init. B as dictionary
2: for all n, π : N → N ∈ enumerate(F) do

// Map indices that are outside of the domain of π to the default value zero
3: for all i ∈ 0, . . . ,sizeof(B) do
4: if sizeof(B[i]) < n then
5: B[i].append(0)
6: end if
7: end for

// Gather the indices from I and map it the correct index
8: for all i ∈ 0, . . . , d do
9: B[i].append(I[π(i)])

10: end for
11: end for

// Create output multiplexers to the output instance vector
12: for all i ∈ 0, . . . ,sizeof(B) do
13: Ireordered = (Ireordered ,create_multiplexer(B[i])

)ᵀ
14: end for

signal of the MUX is connected to the introduced configuration
register.

3) Linearizer: A linearizer has an input of K IVs and
computes an address from one IV according to (24). Its
macro-architecture is shown in Fig. 8(b). The linearization
constants Cin are computed from the selected DAP of the pro-
ducing interface during hardware generation of the Streaming
Buffer. IVs with different dimensions are extended by append-
ing a constant values to them. Which IVs is used is decided
with a control signal, that will be introduced in Section III-F4.
The result of the linearizer is a memory address that can be
used by the memory wrapper to address the memory space.

4) Control Signals: The control signals for the previously
introduced components are generated from a set of rules
defined by the relation of the IV IDPlhs of the producing
interface and the IVs I[i]

DPrhs
of K consuming interfaces shown

in Fig. 6. We define the following four relations.
1) The Streaming Buffer must read from its memory space

when the current data element for a consuming interface
was already transmitted by the producing interface

ψi =
(
I[i]

DPrhs
< IDPlhs

)
. (26)

2) The Streaming Buffer can forward a data element when
the states of a consuming and producing interface are
equal

φi =
(
IDPlhs = I[i]

DPrhs

)
. (27)

3) The Streaming Buffer has to write to its memory space
when a data element transmitted by the producing
interface is not yet required by the consuming interface

ϕi =
(
IDPlhs < I[i]

DPrhs

)
. (28)

4) The Streaming Buffer must only read from its memory
space for one consuming interface i:

ρi = ψi if i = 0 else ψi ∧ ¬ρi−1. (29)

A Streaming Buffer generates a single address for the rhs
(addrrhs) as shown in Fig. 6. Multiple accesses to its memory
space have to be scheduled to prevent memory conflict.
The fourth condition is a logical argument that extends the
condition defined in (26). The condition ρi is set, when ψi

of the ith consuming interface is set and ψj of all the other
interface j with lower index (j < i) are not set. It is used
to select which I[i]

DPrhs
is connected to the right linearizer in

Fig. 6. After the Streaming Buffer loaded the data from a
consuming interface, it continuous loading the data for another
consuming interface when the corresponding ρi condition is
set. GOURD gives data transmission to consuming interfaces
precedence over data transmission from producing interfaces.
This property is implemented by observing if a Streaming
Buffer requires to read from its memory space. For this we
derive four state variables for each consuming interface from
the current value of ρi and it values in the previous time
step ρ∗

i :

As long as the Streaming Buffer does not load any data
from memory it signals the producing interface its readiness
to receive data. Incoming data can be directly forwarded to
a consuming interface when φi is set. When the Streaming
Buffer has to load data from memory, it signals the producing
interface to stop sending data. Simultaneously, the Streaming
Buffer starts to access the memory space and forwards the
data to the correct consuming interface. The wl, cl, and sl are
used to generate the necessary interface and control signals
when the Streaming Buffer accesses the memory space.

5) Memory Wrapper Instantiation: We further instantiate
the memory architecture of the selected memory wrapper
described in Section III-E. Then, the buffer fabric is concluded
by an APB bus interface which allows reconfiguration of the
registers (introduced in Section III-F) at runtime.

G. Generate Wrapper

The final step generates a wrapper that connects all the
Streaming Buffers and components. Streaming buffers with
multiple producing interfaces use an MUX and a control
register to select one interface. One-to-many connections use
a merging unit to combine signals. Ready flags of interfaces
connected to an MUX or merging unit are disabled when
inactive. An APB interface is added to the wrapper, connecting
the Streaming Buffers and control registers.

IV. TESTING AND VALIDATION

We functionally evaluated GOURD by verifying that the
generated Streaming Buffers behave according to the definition
in the IR. The design is tested at RTL and postsynthesis
level and compared to our Python model. We use the tools
Xcelium [22] 23.09 and Genus [23] 22.14 by Cadence design
systems. The synthesis target technology is 22FDX from
GlobalFoundries [24] with standard cells from Synopsys [25].
We use a memory wrapper with a memory architecture that
allows the implementation of the memory space of a Streaming
Buffer with 0 < 2k split memory macros. We verified that the
equations to estimate the memory space UB in Section III-D
are correct by comparing the estimated value of randomly
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Fig. 9. Relation between the size of a Streaming Buffer fabric with and
without memory wrapper to the total Streaming Buffer size. The markings
and color represent the different analysed WAP dimensions (WD). The x-axis
is scaled in log-scale.

generated DAPs with our Python model that virtually iterates
the entire iteration space.

A. DAP, WAP, and DAPR Influence on Streaming Buffer

To analyse the influence of different component parameters
we devised an experiment that shows the change in area given
different parameters. To this end, we created a system of two
connected components and varied the following parameters:
DAP-dimension ∈ {1, . . . , 4}, WAP-dimension ∈ {1, . . . , 5},
the UB values of the WAP ∈ {21, . . . , 28}, and the DAPR
(every permutation). The transmitted bitwidth is set to 32
bit. The result is shown in Fig. 9. The markings and color
represent the different analyzed WAP-dimensions (WDs). The
x-axis in log-scale shows the total buffer size in μm2. The
y-axis displays the Streaming Buffer fabric area in μm2 with
and without the memory wrapper. We can see that the growth
without the memory wrapper is logarithmic with increasing
total Streaming Buffer fabric size for both DAPs with and
without loop reordering. We also observed that a single
reordering does not affect the fabric size much. This can be
explained because the mapping unit which is generated in
Section III-F2 is inferred without MUXes. After all, only a
single loop reordering exists. As can be seen in the upper-right
plot in Fig. 10, without loop-reording some buffer fabric sizes
are zero. This happens when the DAPs of the producing and
consuming interfaces are equal.

In the fabric size with the memory wrapper, we observe
that the size briefly rises logarithmical before continuing to
rise linearly. This comes from the hardware architecture of
the memory wrapper. From this figure, we conclude that the
general buffer fabric presents an implementation of a scalable
solution that does not result in an exceeding area overhead.
However, we also observe that the necessary buffer sizes
depend heavily on the DAPs, which should be considered
during the component selection. Finally, we remark, that more
efficient memory wrapper architectures helps decrease the
overhead introduced by it.

B. Audio Processing Pipeline

Systems for classification or recognition of environmen-
tal audio signals are important issues in the study of

TABLE I
BUFFER EVALUATION FOR AUDIO PROCESSING PIPELINE

audio signal/speech recognition [16], [26]. Applications that
work with the audio data often consist of two main
stages: 1) extract features from the Mel frequency Cepstral
coefficients (MFCCs) and 2) classification with a neu-
ral network [27], [28]. Hardware implementations of these
systems typically require extensive engineering to optimize the
components, data flow, and interconnections. Changes in the
data flow can drastically affect the interconnects, necessitating
manual system adjustments. GOURD simplifies the process
by hiding the engineering overhead of changing the data flow
through its hardware generation capability. Thus, GOURD
can be used to rapidly narrow down the feasible system
configurations while determine the necessary Streaming Buffer
hardware. The pipeline includes black box models for a
microphone, FIFO, MFCC module, and neural network accel-
erator. The microphone sends audio samples to the FIFO,
the MFCC module samples 16000 audio samples from the
FIFO, computes 40 MFCC coefficients with a hop size of
160, and sends the output to the accelerator for convolutional
neural network processing. The accelerator has two possible
DAP. For the sake of simplicity, we only focus on the data-
transmitting interfaces of the components. An overview of the
modules and their DAPs is shown in Fig. 10. The MFCC
module has DAP DPMFCC and reads the incoming audio data
in chunks of 480 before it computes 1 × 40 output channels.
Thereafter, the inner WAP shifts by the hop size and the next
iteration begins. The accelerator computes a convolution with
a 3 × 1 kernel over the incoming input channels. Configured
with DAP DPNN0 , the accelerator is in a weight stationary
configuration, where it reads the incoming data as chunks
of 98 × 8 data and computes an intermediate output value.
In the case where the accelerator is configured with DAP
DPNN1 , it computes the output in an output stationary manner,
where a partial output value after each chunk of size 3 × 8 is
transmitted.

With our approach, we can easily explore the different
system compositions and their characteristics as shown in
Table I. The table shows the estimated buffer sizes according
to the equations defined in Section III-D and the actual fields
of the memory macros selected by the memory wrapper. The
difference in fields is due to the available memory macros.
In addition, we compare the number of steps it takes to
transmit the data according to the DAPs in the ideal case to
the simulative measured case. As shown, the ideal number of
steps is smaller than the number of steps determined by RTL
simulation. This is because a memory macro requires a step to
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Fig. 10. Example of an audio processing pipeline with configurable neuronal network accelerator and its internal DAP model in GOURD. With GOURD,
it is simple to generate the resulting Streaming Buffers; hence providing feedback to the designer which neural network accelerator configuration to choose.

Fig. 11. Structure diagram of a video/image processing pipeline. We use
GOURD to rapidly evaluate the impact of different design choices.

load the required data. Consider the second column Table I, the
difference in steps is 14 863−14 878 = 15, which corresponds
to the number of times the Streaming Buffer starts to load
the data from memory. The generated control signals allow
for no additional loading step when continuously accesses the
internal memory space.

C. Video Processing Pipeline

Video and image processing applications on embed-
ded devices often include downstream tasks using neural
networks [29], [30]. Examples include vehicle and pedestrian
detection [31], medical anomaly detection [32] and many
more. Designing these systems include a wide range of the
tuneable system and component parameters to optimize the
system with respect to the application constraints. An example
video processing pipeline for compressed-domain deep learn-
ing applications is depicted in Fig. 11 (cf. [32] and [33]).

The tuneable parameters are camera resolution, number
of pipeline stages to optionally include a DCT compo-
nent between the 2D-CONV for image preprocessing and a
quantization component. The DCT is used for compressed
feature extraction. The pipeline implementations influences
the complexity of the NPU stage at the end of the pipeline.
We show how GOURD can be used in the design process
of such a system. Given these parameters, we design three
versions of the video processing pipeline. Version 1 does
not use the DCT component. Version 2 includes the DCT.
Version 3 features a different computation scheme of the
DCT, where the feature extraction is split into horizontal
and vertical feature extraction. We use GOURD to easily
describe the different versions and the corresponding DAPs
for each black box component models. In addition, we explore
the influence of different camera resolutions on the pipeline
versions by implementing a sweep ranging from a resolution
from 340 × 340 to 1280 × 1280. The resolution values are
tuned such that the downstream components can work with the
dimension of the video. For every system configuration, we
synthesized the generated Streaming Buffers. This totals to 480
data points per pipeline version. Due to space limitations we

Fig. 12. Evaluation of the Streaming Buffers generated for the video/image
pipeline in Fig. 11 for different image sensor resolutions. The green data
points show the total size of all Streaming Buffers fabrics with the memory
wrapper (MW). The red data points show only the logic size of the Streaming
Buffer fabric.

cannot show the DAPs for each data point. We aggregate the
total Streaming Buffer fabric size with and without memory
wrapper. The result is shown in Fig. 12. GOURD implements
two Streaming Buffers for version 1, three for version 2,
and four for version 3. There are regions where the different
resolutions only lead to minor changes in the resulting area.
Since the register and signal sizes of a Streaming Buffer
are derived from the dimension of the DAP, they may be
generated with the same bitwidth. For example, a counter
register that counts up to 513 or 1023 requires the same
bitwidth. Similar behavior is observed regarding the size of
the memory wrappers. This is caused by the used memory
wrapper architecture, which only allows a power of two split
of memory macros. Using GOURD it is possible to easily
evaluate the influences of different system and component
parameters. At the same time, GOURD’s hardware generation
capability also provides synthesizable RTL hardware for the
Streaming Buffers; hence limiting additional engineering hours
and thus improving the productivity.

D. Prior Work

To the best of our knowledge GOURD represents a step
in a novel research direction. Current generator-based systems
for streaming the data applications, such as HLS systems,
allow to adding manually scaled FIFO components as the
data buffers [17], [34]. This means that the DAP of all the
components used must be compatible with each other. As
far as we observed, these systems cannot generate smart
components, such as our proposed Streaming Buffers based
on a simple dataflow description. The other two current state-
of-the-art research domains we observe consider: 1) efficient
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data transmission from and to hardware components and
2) optimization/generation of efficient hardware accelerators.
GOURD does not focus both the domains, but provides a
step combining both the domains toward an optimized multi-
instance approach for the heterogeneous systems.

V. CONCLUSION

Our paper proposes an approach for generating architectures
tailored to the data streaming applications. Using a minimal
DSR, we capture both the components and their DAPs. This
representation suffices to automatically generate synthesizable
RTL of Streaming Buffers. We demonstrate how our approach
applies to real-world applications, allowing rapid analysis of
different system parameters on the generated hardware. Our
approach is able to accommodate prevalent data orchestration
methodologies. They can be integrated into GOURD by
adapting their architecture into a memory wrappers. This
allows for rapid evaluation of the system alternatives with
minimal implementation overhead. Future work will include
incorporating component latency for better system evaluation.
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