
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 1

ARTEMIS: A Mixed Analog-Stochastic In-DRAM
Accelerator for Transformer Neural Networks

Salma Afifi , Graduate Student Member, IEEE, Ishan Thakkar , Member, IEEE,
and Sudeep Pasricha , Fellow, IEEE

Abstract—Transformers have emerged as a powerful tool for1

natural language processing (NLP) and computer vision. Through2

the attention mechanism, these models have exhibited remarkable3

performance gains when compared to conventional approaches4

like recurrent neural networks (RNNs) and convolutional neural5

networks (CNNs). Nevertheless, transformers typically demand6

substantial execution time due to their extensive computations7

and large memory footprint. Processing in-memory (PIM) and8

near-memory computing (NMC) are promising solutions to accel-9

erating transformers as they offer high-compute parallelism and10

memory bandwidth. However, designing PIM/NMC architectures11

to support the complex operations and massive amounts of data12

that need to be moved between layers in transformer neural13

networks remains a challenge. We propose ARTEMIS, a mixed14

analog-stochastic in-DRAM accelerator for transformer models.15

Through employing minimal changes to the conventional DRAM16

arrays, ARTEMIS efficiently alleviates the costs associated with17

transformer model execution by supporting stochastic computing18

for multiplications and temporal analog accumulations using a19

novel in-DRAM metal-on-metal capacitor. Our analysis indicates20

that ARTEMIS exhibits at least 3.0× speedup, and 1.8× lower21

energy compared to GPU, TPU, CPU, and state-of-the-art PIM22

transformer hardware accelerators.23

Index Terms—In-DRAM processing, processing in memory,24

stochastic computing (SC), transformers.25

I. INTRODUCTION26

IN RECENT years, the capabilities of transformer neural27

networks have revolutionized the landscape of artificial28

intelligence, eclipsing traditional architectures like recurrent29

neural networks (RNNs) and convolutional neural networks30

(CNNs) across a spectrum of sequence and vision-based31

tasks [1]. Renowned models, such as BERT [2], ALBERT [3],32

and GPT-4 [4], have emerged as leading solutions in natural33

language processing (NLP), with unparalleled accuracies in34

tasks ranging from machine translation to named entity35

recognition and question-answering. Transformers have also36

Manuscript received 8 August 2024; accepted 9 August 2024. This work
was supported by the National Science Foundation (NSF) under Grant CNS-
2139167. This article was presented at the International Conference on
Compilers, Architectures, and Synthesis for Embedded Systems (CASES)
2024 and appeared as part of the ESWEEK-TCAD Special Issue. This article
was recommended by Associate Editor S. Dailey. (Corresponding author:
Salma Afifi.)

Salma Afifi and Sudeep Pasricha are with the Department of Electrical and
Computer Engineering, Colorado State University, Fort Collins, CO 80523
USA (e-mail: salma.afifi@colostate.edu; sudeep@colostate.edu).

Ishan Thakkar is with the Department of Electrical and Computer
Engineering, University of Kentucky, Lexington, KY 40506 USA (e-mail:
igthakkar@uky.edu).

Digital Object Identifier 10.1109/TCAD.2024.3446719

demonstrated success across various visual tasks, facilitated 37

by the implementation of vision transformers (ViTs) [5]. 38

However, as the pursuit of higher accuracies leads to 39

the development of increasingly complex transformer neural 40

networks, a surge in model size and parameter count has 41

been observed. Large transformer networks, designed to cap- 42

ture intricate relationships within ever-expanding sequences, 43

demand billions of parameters [3], [4]. Yet, this exponential 44

growth in parameters is not without consequences. With each 45

increase in model size and sequence length, the communica- 46

tion overhead required to move parameters between memory 47

and compute units becomes a bigger bottleneck. Notably, the 48

energy consumption linked to data transfers between proces- 49

sors and off-chip memory now exceeds that of a floating-point 50

operation by a factor of two orders of magnitude [6]. 51

Current ASIC and FPGA-based accelerators tailored for 52

transformers, such as [7] and [8], encounter challenges 53

stemming from restricted parallelism and constrained off- 54

chip memory bandwidth, thereby limiting their acceleration 55

capabilities. In contrast, memory-based acceleration meth- 56

ods, such as processing in-memory (PIM) and near-memory 57

computing (NMC), have shown great potential for speeding 58

up transformer execution by exploiting extensive parallelism, 59

reducing data movement costs, and offering scalable memory 60

bandwidth [9], [10], [11]. In-DRAM processing, in particular, 61

is of significant interest as it leverages and extends a ubiquitous 62

memory component (i.e., DRAM) found in all computing plat- 63

forms. However, this approach presents two major challenges: 64

1) executing the intensive operations required by transformers 65

and 2) efficiently managing intramemory data movement. 66

Transformer models involve a combination of multiply-and- 67

accumulate (MAC) operations along with complex functions, 68

such as reduction and Softmax. Previous research has inte- 69

grated MAC operations within DRAM bit-cell arrays using 70

sense amplifiers (S/As) [6]. This approach necessitates the 71

digital implementation of MAC operations in DRAM-based 72

PIM accelerators, which is achieved by decomposing a single 73

MAC operation into multiple functionally complete memory 74

operation cycles (MOCs) [6], [9]. Consequently, this approach 75

leads to a heightened number of MOCs for MAC operations in 76

state-of-the-art in-DRAM processing architectures, presenting 77

a significant challenge. Moreover, implementing functions like 78

reduction and Softmax digitally within DRAM bit-cell arrays 79

is not straightforward. Integrating embedded logic within the 80

DRAM blocks to leverage NMC offers a possible solution to 81

this challenge. However, this can lead to a large added area 82

1937-4151 c© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

https://orcid.org/0009-0006-0376-8754
https://orcid.org/0000-0002-7289-1530
https://orcid.org/0000-0002-0846-0066

2 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS

overhead. Also, effectively orchestrating dataflow, scheduling,83

and managing the data movement and various operations in84

both PIM and NMC contexts presents a complex and nontrivial85

task. Although the hierarchical structure of DRAM allows for86

highly parallelized execution across multiple DRAM banks,87

the movement of data is severely limited by the single88

bus shared among all banks. Traditional PIM methodologies89

typically employ layer-based dataflow schemes. However, due90

to the large number of parameters in transformer models, such91

dataflows can result in over 60% of the transformer’s inference92

execution time consumed in data movement alone [9].93

In this article, we present ARTEMIS, the first in-DRAM94

accelerator that uses mixed analog-stochastic computations95

for accelerating transformer neural networks. Due to trans-96

formers’ distinctive architecture of transformers and their97

intensive reliance on MAC computations, ARTEMIS employs98

stochastic computing (SC) for multiplication operations. This99

allows our accelerator to perform a single multiply operation100

in 34 ns instead of 1600 ns with traditional in-DRAM101

PIM solutions [6]. Accumulations are performed using a102

temporal analog accumulation approach which significantly103

reduces data movement overheads and enables fast and accu-104

rate successive data accumulations. To further address the105

intramemory data movement bottleneck, an optimized token-106

based dataflow tailored for the stochastic-analog computational107

flow, is implemented. Memory resources are thus assigned108

for computations across different layers based on the input109

tokens [9], [10]. Accordingly, each memory bank processes110

and stores the intermediate results related to a specific set111

of tokens, thereby reducing the amount of data transferred112

between layers. In summary, our work makes the following113

novel contributions: 1) we design a novel in-DRAM hard-114

ware accelerator called ARTEMIS by combining principles115

of stochastic and analog computing, to accelerate multiple116

existing variants of transformer neural networks; 2) we develop117

a novel in-DRAM analog accumulation unit by repurposing a118

custom metal-oxide-metal capacitor (MOMCAP) specifically119

for analog computing; 3) we efficiently combine dataflow120

and control mechanisms and implement intra- and inter-121

bank microarchitectures to reduce data movement latencies122

and energy overheads; and 4) we demonstrate that our123

proposed architecture outperforms GPU, TPU, CPU, and124

several state-of-the-art PIM transformer neural network accel-125

erators through a comprehensive comparison.126

The remainder of this article is organized as follows.127

Section II provides a background on transformers, SC,128

DRAM structures, and accelerating transformers using PIM.129

Section III describes the ARTEMIS framework and our130

optimization efforts at the device, circuit, and architecture131

layers. Details of the experiments conducted, simulation setup,132

and results are presented in Section IV. Finally, Section V133

presents concluding remarks.134

II. BACKGROUND135

A. Transformer Neural Networks136

The original Transformer neural network model [1] is based137

on L layers of encoder and decoder blocks as shown in Fig. 1.138

Fig. 1. Transformer neural network architecture overview.

The encoder transforms the input sequence into a coherent 139

continuous representation of tokens, which is subsequently 140

processed by the decoder. As the decoder executes, it iter- 141

atively generates a single output while incorporating the 142

preceding outputs. The two main subblocks in the encoder 143

and decoder blocks are the multihead attention (MHA) and 144

feed forward (FF) layers. The MHA layer implements the self- 145

attention mechanism which has gained significant traction in 146

sequence learning and NLP, particularly in scenarios where 147

long-term memory is essential. The input to the MHA layer 148

(I ∈ RN×D) with N number of tokens, is first processed by 149

three linear layers. The linear layers generate the query (Q ∈ 150

RN×D), key (K ∈ RN×D), and value (V ∈ RN×D) matrices 151

by multiplying the input matrix I by weight matrices (WQ ∈ 152

RD×D), (WK ∈ RD×D), and (WV ∈ RD×D), respectively. The 153

MHA is composed of H number of heads where the dimension 154

D is split across all heads. The scaled dot-product attention is 155

then computed as follows: 156

Head(I) = attention(Q, K, V) = softmax
(

QKT/
√

D
)
.V. (1) 157

The output of the MHA is the concatenation of the self- 158

attention heads’ outputs, followed by a linear layer. The FF 159

layer consists of two dense layers with a RELU activation in 160

between. 161

Newer transformer-based pretrained language models, such 162

as BERT and its variants [2], [3], adopt a configuration 163

consisting solely of the transformer encoder block and a 164

classification output layer. Similarly, the ViT model also 165

employs L encoder layers, followed by a multilayer perceptron. 166

The ViT model inputs are sequence vectors representing an 167

image [5]. 168

B. Stochastic Computing 169

SC simplifies computational complexity by utilizing 170

extended sequences of individual bits to represent numerical 171

values. By trading off precision and representation density, SC 172

can achieve simpler logic design and lower-power consump- 173

tion. Consequently, it has received a lot of attention recently 174

in fields, such as image/signal processing, control systems, 175

deep neural networks (DNNs), and general-purpose comput- 176

ing [13], [14]. A system utilizing SC typically encapsulates 177

three main steps: 178

1) Data Generation and Representation: SC employs 179

extended independent bit-streams to represent real numbers 180

AFIFI et al.: ARTEMIS: A MIXED ANALOG-STOCHASTIC IN-DRAM ACCELERATOR 3

probabilistically, with the occurrence rates of 1 s and 0 s181

within the streams representing the corresponding real values.182

Equation (2) and (3) outline examples for stochastically183

representing two binary numbers184

X1 = 6

10
→ x1(stoch.) = 0110101101 (2)185

X2 = 4

10
→ x2(stoch.) = 1010010001. (3)186

Pseudo-random number generators like linear-feedback shift187

registers (LFSRs) are frequently employed to generate the188

stochastic numbers, but such methods are susceptible to189

random variations, leading to inaccurate computations [15].190

Alternatively, stochastic representations can be obtained deter-191

ministically using a decoder or a look-up table (LUT) which192

eliminates the inaccuracies caused by random fluctuations or193

correlations between bit-streams [15].194

2) Stochastic Arithmetic Functions: SC performs compu-195

tations by statistically manipulating input bit-streams. Most196

functions found in binary computing are also accommodated197

within SC [16]. However, binary computing functions that198

usually entail complex digital circuits can be performed with199

SC using simple logic gates. For example, a multiplication200

operation can be computed by a single AND gate using the201

stochastic bitstreams. Multiplying the two numbers from (2)202

and (3) would be computed as follows:203

X1 × X2 = x1&x2 = 0010000001(= 0.2). (4)204

The product of X1 and X2 is expected to yield a real205

value of 0.24, yet the bitwise AND operation of x1 and x2206

produces a result of 0.2. Thus, SC can experience a degree of207

precision loss. Within our ARTEMIS accelerator, we introduce208

methodologies aimed at overcoming such inaccuracies.209

3) Stochastic to Binary Number Conversion: Stochastic210

numbers involve a storage overhead of O(2n) due to the211

necessity of representing an n-bit real value with 2n bits. To212

mitigate this overhead, operand storage in SC typically adopts213

the binary format, necessitating stochastic-to-binary (S_to_B)214

conversions of operands. Such conversions are often performed215

using a popcount (PC) unit, which tallies the number of 1’s in216

a stochastic bitstream to derive the corresponding binary value.217

However, PC units present several challenges due to their218

high area, latency, and energy overheads [17], [18]. ARTEMIS219

employs a low-overhead technique for S_to_B conversions.220

While some prior works have started to explore SC for221

conventional DNN acceleration [13], [19], to the best of our222

knowledge, ARTEMIS represents the first architecture that223

tailors SC for accelerating transformer neural network models.224

C. DRAM Structure and Operation225

A DRAM chip features a hierarchical architecture consisting226

of banks, subarrays, and tiles. Within each subarray, there227

exists a 2-D array of DRAM cells, each comprising an228

access transistor and a capacitor (1T1C). These subarrays are229

further divided into smaller tiles. The local bit-line, which230

encompasses multiple cells, is linked to an S/A that actively231

manipulates the charge while serving as a row buffer [20]. The232

baseline memory framework utilized in this work is Samsung’s233

high-bandwidth memory (HBM) [12]. HBM usually com- 234

prises several stacks where each stack consists of a 4-layer 235

HBM chip. These stacks consist of multiple DRAM slices 236

positioned atop the base die, enabling significantly enhanced 237

bandwidth and reduced access latency compared to traditional 238

2-D DRAM configurations. Each chip is further divided into 239

channels and each channel is composed of several DRAM 240

banks. 241

A read operation in DRAM involves three phases: 242

1) precharge; 2) activate; and 3) restore. During precharge, bit 243

lines are set to (Vdd/2). In the subsequent activate phase, bit 244

lines are released while the target cells are accessed. Charge 245

is then distributed between the cell and bit-line parasitic 246

capacitance. The S/A engages to detect and amplify the subtle 247

voltage variation. The amplified voltage variation is then 248

restored to the target cells in the restore phase. In a write 249

operation, S/As read and amplify data from the DRAM chip’s 250

internal bus, which is written to the target cells during the 251

restore phase. 252

D. Memory-Based Computing 253

Memory-based computing systems have received significant 254

attention from both industry and academia. Such systems can 255

be broadly categorized into PIM and NMC architectures. PIM 256

embeds logic directly within the memory arrays, allowing it 257

to perform computations on the stored data without notable 258

data movement. It utilizes the inherent operations already 259

performed within the memory arrays (i.e., read and write) [21]. 260

NMC integrates logic in proximity of the memory system [22]. 261

This can entail placing compute units in the HBM’s logic 262

die [23], in near-bank I/O, or in the near-subarray circuits 263

inside the memory bank [24]. NMC typically incurs a higher- 264

area overhead, but it still reduces the necessity for data 265

movement by performing computations closer to the data 266

storage location, without altering the tile structure. Despite 267

presenting some manufacturing challenges, recent advance- 268

ments in DRAM die-stacking technology, such as HBM, have 269

mitigated various concerns about practicality and cost [25]. 270

While DRAM-based in-memory computing has been widely 271

explored, alternative memory technologies have also received 272

much attention. For example, recent studies have shown that 273

some emerging nonvolatile memory technologies, including 274

ReRAM and phase change memory, possess capabilities 275

extending beyond mere storage functions. These technologies 276

can perform logic operations, supporting both computation and 277

memory tasks, thereby facilitating PIM architecture develop- 278

ment [26]. Accordingly, several previous works have proposed 279

utilizing such technologies for accelerating DNNs, including 280

CNNs [27], RNNs [26], and transformers [11]. However, 281

such architectures introduce a distinct set of challenges, e.g., 282

ReRAM cells suffer from reliability issues [27]. ARTEMIS 283

therefore leverages the prevalent and ubiquitous DRAM tech- 284

nology for computational tasks while integrating PIM and 285

NMC principles. This enables rapid and energy-efficient accel- 286

eration of transformer neural networks. 287

In-DRAM PIM computing approaches integrate process- 288

ing units within DRAM subarrays, leveraging the inherent 289

4 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS

Fig. 2. Componentwise analysis for accelerating transformer neural network
computations on traditional PIM architectures.

mechanism of a DRAM read operation, discussed earlier.290

Through the utilization of RowClone [29], data transfer291

between different DRAM rows is achieved by concurrently292

activating the target row while restoring data to the origi-293

nal row. This process involves two consecutive activations294

followed by the precharge stage, known as the activate-295

activate-precharge (AAP) primitive [20]. Each AAP cycle296

corresponds to one MOC. Subsequent studies expanded upon297

this approach to incorporate fundamental functions within298

DRAM subarrays. For instance, Ambit [20] concurrently299

activates three DRAM rows to execute bulk bitwise AND and300

OR operations in 3 MOCs, while ROC [30] employs only two301

DRAM rows with an additional diode placed between each302

two bit-cells situated. This allows ROC to perform AND and303

OR operations in only 2 MOCs.304

E. PIM for Transformer Neural Network Acceleration305

Memory-based PIM hardware accelerator designs have306

been extensively explored for traditional DNNs, such as307

CNNs [6], [13], [19]. Nevertheless, extending such architec-308

tures to transformer models can be inefficient. This is due309

to two main aspects inherent to transformer models: 1) the310

unique and intensive computations within the transformer311

layers and 2) the massive amount of data that needs to be312

moved between layers. Conventional PIM systems implement313

arithmetic functions digitally by breaking down the functions,314

such as multiplication, into several MOCs. A single MUL315

operation can require up to 1600 ns as described in DRISA [6].316

To assess the impact of such time-consuming operations on317

the overall transformers’ computational execution time, we318

conducted a detailed analysis focusing on the computations319

performed within transformer layers in encoder-only [2], [3]320

and encoder-decoder [1] architectures using the DRISA accel-321

erator [6]. Our analysis in Fig. 2 shows that over 90% of the322

time spent accelerating transformer computations is consumed323

by the DRAM arrays performing MatMul operations in the324

MHA and FFN layers. This motivates optimizing the MatMul325

operations.326

Prior efforts have attempted to address the MatMul bot-327

tleneck for DNN PIM acceleration. For example, a few328

previous works proposed using in-DRAM SC for accelerating329

CNNs. Such accelerators have demonstrated improvements330

over conventional PIM solutions. For example, SCOPE intro- 331

duced a hierarchical and hybrid deterministic (H2D) SC 332

arithmetic technique, capable of executing a single MAC 333

operation in 200 ns [13]. Another example is ATRIA which 334

leverages bit-parallel stochastic arithmetic-based acceleration 335

of CNNs within modified DRAM arrays that can perform 336

16 MACs in 85 ns [19]. Other efforts explored specifically 337

accelerating a transformer’s MAC operations using alternative 338

technologies, such as ReRAM-based memory architectures, 339

as in ReBERT [11]. However, as discussed in the previous 340

section, leveraging ReRAM cells for PIM acceleration presents 341

complex challenges. Conversely, ARTEMIS is the first acceler- 342

ator to tailor in-DRAM SC specifically for transformer models. 343

By integrating PIM and NMC, ARTEMIS employs SC for 344

multiplication operations and analog-based computations for 345

accumulation operations. This innovative approach signifi- 346

cantly surpasses the computational capabilities of prior efforts, 347

achieving 64 MAC operations in just 48-ns per subarray. 348

It should be noted that optimizing transformer neural 349

network computations without sufficient optimizations for 350

dataflow and software scheduling can still considerably limit 351

improvements with PIM. Accordingly, ARTEMIS not only 352

focuses on optimizing the execution of a transformer’s com- 353

putations but also on efficiently improving and reducing the 354

latency involved with interbank and intrabank data communi- 355

cation. Memory-based systems tailored for conventional DNNs 356

usually employ optimizations in the software layer aimed at 357

maximizing parallelism only. Thus, a layer-based dataflow 358

scheme is used to allocate sufficient memory resources based 359

on the computations in each layer. This approach necessi- 360

tates loading the entire data to be processed before each 361

layer begins executing. Previous works outlined how such 362

approaches when extended to transformers can result in 363

most of the execution time being spent on data handling 364

(movement, loading, reorganization, etc.) [9]. Alternatively, 365

employing a token-based dataflow has been proven more 366

efficient when accelerating transformer models [9], [10]. This 367

entails mapping the transformer computations to the memory- 368

based system based on a token-sharding mechanism, as 369

initially introduced in TransPIM [9]. Another accelerator that 370

elaborates on the advantages of such a scheduling approach 371

is HAIMA [10] where a hybrid SRAM-DRAM architecture 372

is used for the various MatMuls and data movements of 373

their outputs. ARTEMIS adapts and enhances the token- 374

based dataflow to our stochastic-analog computational flow for 375

efficient interbank data movement while also implementing an 376

energy-efficient intrabank data movement micro-architecture. 377

III. ARTEMIS IN-DRAM ACCELERATOR: OVERVIEW 378

In this section we describe our in-DRAM transformer accel- 379

erator, ARTEMIS. Within an 8-GB HBM module, ARTEMIS 380

implements minimal modifications to the conventional DRAM 381

bank and subarray architectures, as shown in Fig. 3. In the 382

DRAM tiles, these modifications involve incorporating small 383

circuits [indicated in orange in Fig. 3(d)] and integrating a 384

MOMCAP atop each tile as shown in Fig. 3(b). Additionally, 385

within each DRAM bank, a near-subarray compute unit 386

AFIFI et al.: ARTEMIS: A MIXED ANALOG-STOCHASTIC IN-DRAM ACCELERATOR 5

Fig. 3. ARTEMIS architecture overview showing. (a) Design of a single bank composed of 128 subarrays, each with 32 tiles. (b) Schematic layout of
MOMCAP using metal layers (M4–M7). (c) Structure of the first NSC unit. (d) Structure of the first tile.

(NSC) is introduced for every subarray, comprising basic387

digital circuits and LUTs that are easily integrated and syn-388

thesized using the same DRAM memory technology at 22389

nm. The transformer layer operations are realized through390

three main computations, namely, MAC, analog-to-binary391

conversion (A_to_B), and near-subarray computation. All392

modifications implemented in the DRAM tiles utilize basic393

digital components, such as diodes and transistors, which394

can be integrated through a cost-effective manufacturing pro-395

cess [25]. ARTEMIS follows a hardware-software co-design396

approach and integrates several dataflow and scheduling397

optimizations, allowing it to efficiently exploit the HBM’s398

parallelism and also overcome intramemory data movement399

bottlenecks. The following sections describe the components400

and optimizations of our proposed architecture.401

A. Multiply and Accumulate402

1) Stochastic Multiplications: While SC reduces the over-403

all number of MOCs necessary for MAC operations during404

multiplications [19], it introduces considerable challenges405

related to output precision. Several previous SC-based accel-406

erators for conventional neural network acceleration have407

attempted to tackle this issue. For example, the utilization408

of SCOPE’s H2D SC arithmetic [13], which incorporates409

computational S/As, has been shown to enhance CNN infer-410

ence accuracy; however, it comes with a notable increase in411

area overhead. ATRIA [19] addresses stochastic multiplication412

inaccuracies by increasing the bit width required for stochas-413

tic representation, at the expense of reducing parallelism.414

Another approach in [31] redesigns the stochastic multiplier415

to utilize transition-coded unary (TCU) numbers for realizing416

bit-parallel deterministic stochastic multiplications, resulting417

in a reduction of computational errors by up to 32.2%.418

However, the implementation in [31] requires the integration419

of additional circuits and logic gate arrays.420

In contrast to relying on a multiplier circuit like the421

one described in [31], ARTEMIS introduces deterministic422

stochastic multiplication utilizing TCU numbers within the423

DRAM bit-line logic. TCU numbers are stochastic bit-streams424

where all the “1”s are grouped at either of the stream’s 425

trailing ends. This approach eliminates the need for additional 426

circuitry within DRAM tiles, enabling the exploitation of 427

parallelism while minimizing area overhead and mitigating 428

SC multiplication inaccuracies. Initially, the transformer layer 429

parameters are distributed across ARTEMIS subarrays. To 430

ensure accurate operation of the deterministic multiplication 431

method, the first operand is generated using a binary-to- 432

transition-coded-unary (B_to_TCU) decoder, followed by a 433

bit-position correlation encoder, while the second operand is 434

generated using a B_to_TCU decoder only. Each multipli- 435

cation operation involved in the MatMuls in a transformer’s 436

MHA and FF layers is then performed stochastically. 437

In contrast to previous stochastic in-DRAM transformer 438

accelerators, which require multiple MOCs or complex 439

multiplier circuits [13], ARTEMIS computes one MUL oper- 440

ation by executing only two MOCs to copy the operands 441

into two distinct computational rows. This is achieved by 442

extending the method in [30] for fast and energy-efficient 443

SC logic operations where ARTEMIS reserves the entire 444

first two rows in each subarray for SC multiplications. As 445

shown in Fig. 3(d), these two rows are connected with diodes 446

between each pair of bit-cells and the AND result is thus 447

computed and stored in the first computational row. A read 448

operation is subsequently performed by precharging the bit 449

lines using the EQ signal which controls the precharge unit 450

(PU). Computational row #1 is then activated by asserting 451

WLcomp_row1, and enabling the S/As using the sensen signal. 452

Our baseline memory architecture incorporates an open-bit- 453

line approach [12] where only half of each DRAM bank’s 454

subarrays are operated concurrently at a time. Thus, as shown 455

in Fig. 3(a), each DRAM tile is connected to two sets of S/As, 456

where one half of the bit lines (128 out of 256 columns) are 457

operated using the S/As set at the bottom, while the other 458

half are connected to the set at the top. ARTEMIS represents 459

signed 8-bit binary numbers as 128-bits stochastic streams plus 460

1 sign bit, which is captured using a per-subarray added bit- 461

line column. Accordingly, each row in a tile stores all positive 462

or all negative numbers and each tile can process up to two 463

multiply operations at a time. 464

6 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS

2) Analog Temporal Accumulations: Stochastic-based465

addition has been shown to introduce considerable errors [13].466

In pursuit of both accuracy and speed during addition467

operations, we utilize analog accumulation facilitated by a468

MOMCAP within each DRAM tile in the HBM. ARTEMIS469

repurposes S/As to convert the number of 1’s in a stochastic470

product value into a proportional analog voltage on the471

MOMCAP. This serves to convert the stochastic product472

value into an analog representation. Multiple analog voltage473

values representing multiple different stochastic product values474

can be sequentially accrued on the MOMCAP via analog475

accumulation. The customized H-shaped MOMCAP, shown476

in Fig. 3(b), optimizes capacitance without increasing the477

overall tile area of ARTEMIS. They are integrated into DRAM478

arrays with minimal modification to the array itself, since479

they are implemented using different metal layers stacked480

on DRAM tiles. The feasibility of incorporating MOMCAPs481

within DRAM structures has been effectively demonstrated482

in [32] and [33]. While prior research, such as [32], replaced483

conventional embedded-DRAM cell capacitors with similar484

MOMCAPs to extend retention times, the use of MOMCAPs485

for in-DRAM analog computing was first proposed in [33] for486

accelerating CNNs. ARTEMIS is the first work that uses the487

MOMCAP for in-DRAM analog computing of transformers.488

The capacitance of the MOMCAP is contingent upon the489

capacitor’s area, which determines the maximum number of490

consecutive accumulations it can accommodate. A higher491

number of accumulations enhances performance by reduc-492

ing the need for frequent data conversions. However, as493

MOMCAPs are constructed using metal layers (M4–M7), their494

area must align with that of the tile to prevent an increase495

in overall size. Thus, we conducted a detailed analysis to496

determine the maximum number of accumulations achievable497

with varying capacitance values. An appropriate area budget498

to support up to 20 consecutive accumulations for each499

MOMCAP was thus established (see results in Section IV-B).500

Each MOMCAP connects an analog lane which is con-501

nected directly to the S/A circuits, as shown in Fig. 3(d).502

To enhance performance and achieve higher parallelism, each503

operational DRAM tile performing two multiplications at a504

time utilizes two MOMCAPs; its own as well as that of the505

nonoperational DRAM tile above or below it as shown in506

Fig. 4. Accordingly, up to 40 MAC operations can be accom-507

modated by each operational DRAM tile before requiring any508

data movement or conversions. The accumulation operation509

proceeds as follows: following one multiplication operation510

and storage of the output bits by the tile’s S/As, each bit-511

line holds a value of 1 or “0.” To convert this stochastic512

data into analog charge for accumulation on the MOMCAP,513

a stochastic-to-analog (S_to_A) circuit is implemented, com-514

prising two transistors [Fig. 3(d)]. This configuration supplies515

adequate voltage for the capacitor to detect all necessary516

voltage level changes. Upon toggling signal K1, all bit lines517

within the same tile connect to the two MOMCAPs (Fig. 4),518

resulting in two concurrent accumulations of charge, each519

directly proportional to the number of its connected bit-520

lines storing 1 values. Subsequently, as the following sets of521

operands undergo multiplication, their two outputs are once522

Fig. 4. MOMCAPs charging during analog accumulation step.

again stored in the two MOMCAPs, effectively adding to the 523

previous multiplication results. 524

B. Analog to Binary Data Conversion 525

The analog values preserved within each tile’s MOMCAP 526

require conversion into binary numbers for subsequent pro- 527

cessing upon reaching the MOMCAP’s charge capacity. 528

ARTEMIS refines the circuits and timing signals from 529

AGNI [18], achieving a reduced latency of 31 ns for the 530

S_to_B conversion compared to AGNI’s 56 ns. The enhanced 531

S_to_A conversion circuit is described in the previous section. 532

ARTEMIS employs a two-step process for analog-to-binary 533

conversion: 1) analog-to-transition-coded-unary (A_to_U) and 534

2) transition-coded-unary-to-binary (U_to_B). Activation of 535

the A_to_U circuit involves toggling control signal B1 to 536

connect the stored MOMCAP value and the tiles’ bit lines. 537

Subsequently, the S/As are repurposed as voltage comparators 538

by precharging bit lines to distinct voltage levels determined 539

by the voltage divider circuit. The MUX sel signal controls 540

the voltage divider circuit. This process yields A_to_U data 541

conversion. Next, activation of the U_to_B unit is initiated by 542

asserting the ISO signal, allowing the TCU number to traverse 543

a priority encoder. Finally, each tile’s binary result is latched 544

for transmission to an NSC unit (discussed in Section III-C). 545

C. Near-Subarray Compute Unit 546

The NSC unit is composed of simple digital circuits and 547

LUTs with one NSC assigned to each subarray. It handles the 548

acceleration of the tiles’ partial sum accumulations, nonlinear 549

functions, and B_to_TCU data conversions. 550

1) Reduction Operations: Following the computation of 40 551

MAC operations as explained in the previous sections, each 552

tile in the bank will have a partial sum output stored in its local 553

latches. All the tiles’ partial sums need to thus be gathered 554

and reduced. Each subarray’s NSC unit is equipped with 555

a 2-input 8-bit binary adder/subtractor to handle the partial 556

sum accumulations. Section III-D2 outlines the intrabank data 557

movement scheme applied in ARTEMIS to efficiently handle 558

transferring all the tiles’ data to the NSC units. Each subarray’s 559

AFIFI et al.: ARTEMIS: A MIXED ANALOG-STOCHASTIC IN-DRAM ACCELERATOR 7

Fig. 5. ARTEMIS dataflow scheme examples showing: (a) Per-subarray vector multiplication flow with two subarrays and two tiles and (b) token-based
dataflow scheme for computing attention scores in MHA layers with three banks.

NSC is responsible for accumulating all the partial sums560

computed in that subarray. Additionally, each NSC manages561

the accumulation of the output from the NSC unit following562

it, as illustrated in Fig. 5(a). In the example used in the figure,563

NSC 1 and NSC 2 first accumulate all the values output from564

their respective subarrays in subround 2. Afterwards, NSC 1565

receives and accumulates the resultant output from NSC 2566

in subround 3. To accommodate both positive and negative567

numbers, ARTEMIS performs MAC operations initially for568

all positive numbers (identified by the sign-bit column),569

consolidating the final positive result at each subarray’s NSC570

unit. This process is then repeated for negative numbers, with571

their result subsequently subtracted from the positive result572

previously gathered using the same adder/subtractor block in573

each NSC.574

2) Softmax: Each NSC unit is equipped with repro-575

grammable LUTs to handle fast execution of nonlinear576

functions. Nonlinear functions, such as ReLU (used in FFN577

layers) and GELU (used in ViTs), can be realized using stand-578

alone LUTs. However, the Softmax function that is frequently579

required in each head of the MHA layers, poses two main580

challenges. First, as expressed in (5) below, Softmax involves581

computationally expensive division and numerical overflow582

operations. Second, exploiting parallelism is a nontrivial task583

since all results from the previous MatMul need to be584

generated first before computing the Softmax output for each585

value. To overcome both challenges, we employ the log-sum-586

exp approach, used in various previous works, such as [34],587

as shown in the equation588

Softmax(yi) = exp(yi − ymax)∑D
j=1 exp

(
yj − ymax

)589

= exp

⎛
⎝yi − ymax − ln

⎛
⎝

D∑
j=1

exp
(
yj − ymax

)
⎞
⎠

⎞
⎠.590

(5)591

This allows us to divide the Softmax execution into592

four main operations: ① finding ymax; ② performing593

ln(
∑D

j=1 exp(yj − ymax)); ③ subtracting (ln) output from (yi −594

ymax); and ④ performing the final (exp) function. As the Y 595

matrix is being generated from the MatMul preceding the 596

Softmax operation (QKT) in the scaled dot product attention 597

block, the output yi is fed directly to a 2-input 8-bit comparator 598

with a local register to hold the current ymax, thus pipelining 599

the execution of ①. Following the generation of matrix Y 600

and storing ymax in all NSC units, ① is computed using the 601

blocks labeled with ② in Fig. 3(c). Subtraction ③ is then 602

performed using the Softmax adder/subtractor and finally, ④ 603

is computed using the exp LUT. The orchestration of data 604

movement and pipelining of Softmax is further elaborated on 605

in Section III-D2. 606

3) Binary to TCU Data Conversion: The transformer’s 607

intermediate results are inputs to the next operations or layers. 608

For example, the Softmax output S in the MHA’s scaled 609

dot-product attention evaluation, is used to compute S × V 610

(see Fig. 1). Accordingly, all values in matrix S need to be 611

converted from binary to stochastic bitstreams to be used 612

in stochastic multiplications. As explained in Section III-A1, 613

ARTEMIS uses a deterministic multiplication method, where 614

the first operand is generated using a B_to_TCU decoder, 615

followed by a bit-position correlation encoder, while the 616

second operand is generated using a B_to_TCU decoder only. 617

Thus, the B_to_TCU block in each NSC unit comprises of a 618

B_to_TCU decoder and a bit-position correlation encoder as 619

shown in Fig. 3(c). Depending on the order of the operand, the 620

output of the B_to_TCU block will be that of the B_to_TCU 621

decoder only or that of the bit-position correlation encoder. 622

The bit-position correlation encoder ensures that the condi- 623

tional probability of the 1st operand given the 2nd operand 624

matches the marginal probability of the 1st operand [18]. 625

D. Dataflow and Scheduling Optimizations 626

1) Dataflow and Interbank Communication: To maximize 627

HBM parallelism and overcome the data movement bottleneck 628

when accelerating transformer models with a layer-based 629

dataflow [6], [35], [36], [37], ARTEMIS adapts a token-based 630

data sharding dataflow [9], modified for its stochastic-analog 631

computational flow. In a transformer model, a sequence input 632

8 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS

is transformed into a series of input embeddings, where each633

embedding vector corresponds to a “token” [1]. Each token634

encapsulates specific features from the input sequence. Layer-635

based dataflow maps all the tokens to the same bank(s)636

responsible for computing the first transformer layer. Data637

output from the first layer is then transferred to the next638

bank(s) associated with performing the next layer’s compu-639

tations. Given the large number of model parameters in a640

transformer and the shared data bus of HBM, which allows641

only one bank to transfer its data at a time [12], this leads to642

significantly high congestion and data movement latencies.643

Alternatively, token-based dataflows map the data across the644

HBM banks based on input tokens. The primary advantage645

of employing token-based data sharding is the facilitation of646

data reuse across various layers by consolidating computations647

of tokens within the same memory location. This approach648

reduces the cost of data movement while capitalizing on649

memory-level parallelism, as different banks can indepen-650

dently handle computations and data movements for allocated651

tokens.652

Following token sharding, each bank manages computations653

for its assigned segments throughout the entire transformer654

inference process. Token-based data sharding is implemented655

on input tokens before the linear layers of the initial encoder656

block. Accordingly, when the number of tokens, N, used in a657

model is greater than the number of banks, K, in the HBM658

module, each bank will operate on Nb = (N/K) number of659

tokens.660

To exploit the parallelism and performance improvements661

offered by our architecture’s stochastic-analog computational662

scheme, ARTEMIS utilizes each tiles’ row of latches and663

the NSCs to handle data being placed on or received from664

the HBM’s links. Prior to transferring the banks’ data to its665

neighboring bank, the stochastic output is converted to binary666

using the per-tile B_to_S circuits, which significantly reduces667

the number of bits transferred. Upon arrival to the neighboring668

bank, the data is first received by the NSC units where it is669

input to the B_to_S block. Using the per-tile latches rows,670

the stochastic numbers are then moved in a pipelined manner671

to the appropriate tiles where they are directly written to672

the target and computational rows to be used in the next673

computations.674

Fig. 5(b) illustrates an example of processing the first linear675

layers (Q, K, V generation), and the attention score computa-676

tion (Y = QKT) in the MHA layer. Initially the input matrix is677

distributed based on the token-sharding mechanism explained678

above, where each bank will operate on (Ii ∈ RNB×D). In679

Round 1, each bank will generate its own local Qi, Ki, and Vi,680

each with size NB × D. Each bank then computes its local681

attention scores using the stored Qi and Ki, and by the end of682

Round 2, each bank will have generated the partial attention683

score matrix Yi,i. To correctly generate the complete attention684

score matrix, each bank will need to transfer its own Ki685

matrix to all other banks. Similar to TransPIM [9], a ring and686

broadcast network is utilized to minimize the latency cost of687

the data movement steps in Rounds 3 and 4. As each bank i688

receives the partial Kj matrices from all the banks, it will keep689

on generating partial attention score matrices Yi,j till all the690

values are computed in Round 3. The next steps in the MHA 691

layer entail the Softmax operation and the attention output 692

computation (Si × Vi). When performing the latter, rounds 2, 693

3, and 4 will need to be repeated as partial Vi will also need 694

to be exchanged between all the banks for correct operation. 695

2) Intrabank Communication: Fig. 5(a) outlines the under- 696

lying operation flow in the bank 1 subarrays when generating 697

one value in the Q matrix. In this example the dimension of Q 698

is 80 and thus to calculate the first value, q0,0, the first row from 699

the partial input matrix I0 needs to be multiplied by the first 700

column in the query weight matrix WQ. This results in vector 701

multiplication with size 80. As explained in Section III-A, 702

ARTEMIS follows an open-bit-line architecture where only half 703

the subarrays in a bank are activated at a time. Accordingly, 704

in the example in Fig. 5(a), only one out of the two subarrays 705

will be activated concurrently. For simplicity, we also assume 706

that only subarray 1 is “ON” for all the vector multiplication 707

operations. As discussed in Sections III-A and III-C, each 708

tile can perform 40 MAC operations before converting the 709

accumulated analog value stored in the MOMCAPs to binary 710

values. Thus, tile 1 in subarray 1 will perform stochastic multiply 711

operations using subvectors I0[0:39] and WQ[0:39] and perform 712

the analog temporal accumulations for multiply outputs 0 to 19 713

only. Meanwhile, tile 1 in subarray 2 will accumulate multiply 714

outputs 20 to 39 using its own MOMCAP and associated logic. 715

Similar operations will be computed in tiles 2 in subarrays 1 716

and 2. 717

By the end of subround 1, each tile’s binary partial sum 718

output will be stored in the tile latches. These values will 719

then be transferred to the NSC units in a pipelined manner, 720

till both values from each subarray reach the NSC and are 721

immediately added using the adder/subtractor circuit as shown 722

in subround 2. The last step (subround 3) is then to move 723

the partial sum output from NSC 2 to NSC 1 to be further 724

reduced into q0,0. Since the sign bits column corresponds to 725

both values stored in each operational tile, in this example, 726

NSC 1 is responsible for forwarding the sign bit to NSC 2 as 727

well. 728

3) Execution Pipelining and Scheduling: To further exploit 729

parallelism, ARTEMIS pipelines the transformers’ operations. 730

Fig. 6 outlines the pipelining model adopted by our architec- 731

ture when accelerating an MHA layer in one bank. The MHA 732

operations are divided into 8 steps as shown in the top half 733

of Fig. 6. First, when generating the Qi, Ki, and Vi matrices, 734

ARTEMIS pipelines the following: 1) performing the in-situ 735

MAC operations within the DRAM tiles; 2) pipelining the data 736

movement using the row of latches; and 3) accumulating the 737

binary partial sums in the NSC units. As shown in Fig. 6, 738

this efficiently hides the latencies associated with the intra- 739

bank data movement and the NSC reduction operations. This 740

pipelining scheme is applied when performing any MatMul 741

operations in the MHA and FFN layers in the transformer’s 742

encoder or decoder blocks. After generating the local attention 743

score partial matrix by computing Qi × Ki
T , each bank will 744

need to send its local Ki matrix to all other banks using the 745

ring and broadcast technique discussed earlier. 746

While ARTEMIS significantly reduces the latencies asso- 747

ciated with performing transformer operations, the interbank 748

AFIFI et al.: ARTEMIS: A MIXED ANALOG-STOCHASTIC IN-DRAM ACCELERATOR 9

Fig. 6. ARTEMIS pipelining within one bank for MHA layers.

data movement step is predominately the most time-consuming749

step based on our analysis. Nevertheless, our hardware accel-750

erator mitigates this latency by overlapping the interbank data751

movement with the B_to_S data conversions, Softmax, and the752

next MatMul to be executed (Si×Vi) as shown in the pipelined753

flow in Fig. 6. Data is transferred between banks in binary754

using a 256-bit link and as new data arrives to a bank, instead755

of first writing the value to the DRAM arrays, ARTEMIS756

directly passes it through the B_to_TCU blocks in the NSC757

units to prepare the stochastic multiplication operands. These758

values are then written in the tiles’ computation rows to be759

used immediately in the MAC operations. Such optimizations760

not only result in faster execution but also reduce energy761

consumption associated with the eliminated DRAM write762

operations. As the attention score matrices are being generated763

in each bank, the output values are being input concurrently to764

the Softmax 8-bit comparators to keep updating ymax (see (5)).765

Other Softmax operations, such as the subtractions and the766

final exponent calculation, are also pipelined when computing767

(Si × Vi) as shown in Fig. 6.768

IV. EXPERIMENTAL RESULTS769

We developed a comprehensive simulator in Python to770

estimate the performance and energy costs of our proposed771

accelerator by accurately modeling all hardware components772

and in-DRAM operations. The simulator considers both soft-773

ware and hardware mapping, while performing the layerwise774

mapping for each transformer model and dataset. The costs775

associated with each modeled hardware component were776

derived through extensive analysis and simulations. DRAM777

area estimates were obtained using CACTI-3D [38], while778

latency values for per-tile circuits were calculated using779

detailed LTSPICE simulations. All circuits within the NSC780

units and latches were synthesized using Cadence Genus,781

TABLE I
ARTEMIS PER SUBARRAY HARDWARE OVERHEAD

TABLE II
ARTEMIS HBM CONFIGURATION PARAMETERS

TABLE III
TRANSFORMER MODEL CONFIGURATIONS

with the resulting latency, power, and area values reported in 782

Table I. Finally, the energy values for HBM operations are 783

based on specifications from Samsung’s HBM [12], as shown 784

in Table II, based on 22 nm DRAM technology. eact is the 785

activation energy associated with an ACTIVATE operation for 786

a DRAM row in one bank. The datapath energies for moving 787

data within the DRAM chips are composed of 1) traversing 788

the local data-lines and the master data-lines from the row 789

buffer to the global S/As (GSA) (ePre−GSA), 2) traversing 790

the path from the GSAs to the DRAM I/Os (ePost−GSA), and 791

3) traversing the I/O channel between the DRAM and GPU 792

(eI/O) [12]. 793

The DRAM bank structure in our architecture is slightly 794

rearranged in comparison to previous work and conventional 795

HBM architectures [9], [12]. Each subarray is comprised of 796

only 256 rows, allowing for faster operation per subarray and 797

higher parallelism. While this results in slightly increased area 798

and power consumption, such organization is better aligned 799

with SC. Based on our SPICE simulations, one MOC in 800

ARTEMIS is equivalent to 17 ns. Moreover, the overall power 801

budget for ARTEMIS is 60 W, in alignment with the HBM 802

conventional DRAM power budget [12]. Five transformer 803

model workloads were considered in all our experiments: 804

1) Transformer-base; 2) BERT-base; 3) ALBERT-base; 4) ViT- 805

base; and 5) OPT-350. Details of these models are shown in 806

Table III. 807

10 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS

TABLE IV
TRANSFORMER MODEL METRICS

TABLE V
ARTEMIS PER-COMPONENT CALIBRATION ACCURACY

A. Computational Error and Accuracy Analysis808

Given that SC demands 2N bits for each N-bit binary809

number, neural network model compression, particularly810

through quantization, can enhance the overall performance.811

Our analysis indicates that 8-bit model quantization results812

in transformer inference accuracy levels comparable to those813

achieved with full precision (FP32), as depicted in Table IV.814

The % accuracy metric is used to assess transformer-base,815

BERT-base, Albert-base, and ViT models used for translation,816

sentiment analysis and image classification tasks, respectively.817

Meanwhile the BLEU score metric is reported for the OPT-818

350 model that is used for a text-generation task. ARTEMIS819

represents the 8-bit parameter values stochastically with 128820

bits plus one sign bit. We conducted detailed error analysis to821

assess the efficacy of each approximate computing operation822

in ARTEMIS as shown in Table V. The calibration accuracy823

represents the threshold in bits below which the computation824

results remain entirely accurate. For instance, in stochastic825

multiplication, the output will begin to show small errors826

when the binary numbers involved exceed 4.68 bits in length.827

The mean absolute errors (MAEs) normalized to the maxi-828

mum voltage supported by each operation, were accumulated829

and integrated into each transformer model inference. The830

resultant accuracy drop was found to be minimal as shown831

in Table IV. Table IV presents the inference accuracies for832

the models employed in our experiments, for the baseline833

FP32, quantized 8-bit precision, and quantized 8-bit precision834

with SC multiplications cases. Through the avoidance of835

stochastic additions and the adoption of an optimized approach836

to stochastic multiplications, ARTEMIS demonstrates minimal837

accuracy degradation, averaging at 1.4% compared to FP32838

and 0.5% compared to quantized 8-bit models.839

B. MOM Analog Capacitor Accumulation Analysis840

To determine the optimal parameters for our custom841

MOMCAP within the DRAM tiles, we carefully modeled and842

simulated 128 bit lines alongside the tile’s circuits [shown843

in Fig. 3(d)] utilizing LTSPICE. We analyzed the voltage844

behavior of charge accumulation on the MOMCAP across a845

spectrum of capacitance values, ranging from 4 pF to 40 pF,846

Fig. 7. ARTEMIS experimental results for MOMCAP voltage behavior
when storing multiple consecutive accumulations of 128-bit numbers from the
DRAM tile bit lines.

which are distinguished by various colors in Fig. 7. The linear- 847

ity and symmetry observed in the steps of charge accumulation 848

on the MOMCAP denote its stable performance and its ability 849

to accurately differentiate between distinct voltage levels [39]. 850

Based on our detailed experimental and numerical analysis, 851

such behavior was a result of accurately controlling the 852

charging time of each step, which was set to 1 ns. Each voltage 853

increment in the graph represents the accumulation of a 128-bit 854

number. Consequently, the maximum number of accumula- 855

tions corresponds to the number of linearly increasing voltage 856

steps until saturation occurs. As depicted in Fig. 7, increased 857

capacitance enhances the capacitor’s ability to accommodate a 858

greater number of accumulations. Nonetheless, as previously 859

outlined, higher capacitance leads to a larger area overhead. 860

Hence, we have opted for a MOMCAP size aligning with 861

ARTEMIS’ tile area of 338 µm2, which corresponds to an 8 pF 862

capacitance. This enables the accumulation of 20 consecutive 863

dot products per MOMCAP. 864

C. Dataflow and Scheduling Optimization Analysis 865

We conducted a sensitivity analysis to assess the impact of 866

the dataflow and execution pipelining optimizations described 867

in Section III-D. The speedup and normalized energy results 868

are shown in Fig. 8(a) and (b), respectively. The results 869

were obtained for executing the five transformer models on 870

ARTEMIS but using a layer-based dataflow scheme without 871

pipelining (layer_NP), a layer-based dataflow with pipelining 872

enabled (layer_PP), a token-based dataflow without pipelining 873

(token_NP), and finally our main ARTEMIS architecture with 874

token-based dataflow and execution pipelining (token_PP). 875

Despite HBM offering a bandwidth of up to 256-GB/s per 876

stack, the shared data link and the massive amount of values 877

that needs to be moved between the different transformer 878

layers vastly limit the acceleration of transformers on PIM 879

systems. On the other hand, utilizing the token-based data 880

sharding dataflow explained in Section III-D1, results in an 881

average speedup of 11.0× without pipelining enabled and 882

10.8× when pipelining is enabled in both dataflow schemes. 883

As shown in Fig. 8(b), employing the token-based dataflow is 884

also more energy efficient since the amount of data movement 885

is reduced. An average energy reduction of 3.5× is observed 886

without pipelining and also with execution pipelining enabled. 887

AFIFI et al.: ARTEMIS: A MIXED ANALOG-STOCHASTIC IN-DRAM ACCELERATOR 11

Fig. 8. Sensitivity analysis showing the impact of token-based dataflow and
execution pipelining on (a) speedup and (b) energy.

Pipelining also has an impact on speedup and energy since888

ARTEMIS efficiently pipelines various operations within each889

layer. On average, pipelining results in a speedup of 50%890

with the layer-based dataflow and 43% with the token-based891

dataflow. For energy consumption, pipelining results in 42%892

energy reduction with the layer-based dataflow and 43%893

reduction with token-based dataflow. We observed that the894

impact of pieplining and the token-based dataflow was greatest895

when accelerating ViTs. This is partly due to the model’s896

longer input sequences that still fit onto our architecture.897

Meanwhile, OPT exhibited slightly lower speedups since its898

sequence length is larger than the total number of banks in899

the baseline hardware configuration. This however indicates900

promising scalability results.901

D. Comparison With State-of-the-Art Computation Platforms902

We compared ARTEMIS with CPU, GPU, TPU, several903

state-of-the-art PIM transformer accelerators: TransPIM [9],904

HAIMA [10], and ReBERT [11], and an FPGA-based trans-905

former accelerator (FPGA_ACC) [7]. Note that ReBERT only906

focuses on BERT-based models and is not included in the907

comparisons for the other models. We used power, latency,908

and energy values reported for the selected accelerators, and909

directly obtained results from executing models on the GPU,910

CPU, and TPU platforms to estimate the energy, and inference911

latency for each model and dataset.912

1) Speedup Comparison: Fig. 9 shows the speedup com-913

parison between ARTEMIS, the compute platforms, and914

the transformer PIM accelerators considered. The speedup915

values are all relative to the CPU inference latency. On916

average, ARTEMIS achieves 1230×, 157×, 212×, 29.6×,917

Fig. 9. Speedup comparison between ARTEMIS, CPU, GPU, TPU, and PIM
accelerators.

Fig. 10. Energy comparison between ARTEMIS, CPU, GPU, TPU, and PIM
accelerators.

4.8×, 11.9×, and 3.6× speedup compared to CPU, GPU, TPU, 918

FPGA_ACC, TransPIM, ReBERT, and HAIMA, respectively. 919

The lower latencies observed with ARTEMIS can be attributed 920

to its ability to perform 64 MAC operations in only 48 ns using 921

SC and analog-based computing. Furthermore, our optimized 922

data mapping, movement, and scheduling schemes aided in 923

reducing the overall latency. 924

2) Energy Comparison: The energy comparison results for 925

ARTEMIS with the computing platforms and transformer PIM 926

accelerators considered are shown in Fig. 10. All the energy 927

values are normalized to the CPU. ARTEMIS achieved on 928

average 1443.3×, 700.4×, 1000.4×, 8.8×, 3.5×, 1.8×, and 929

6.2× lower-energy values compared to CPU, GPU, TPU, 930

FPGA_ACC, TransPIM, ReBERT, and HAIMA, respectively. 931

The reduced energy consumption observed with our architec- 932

ture can be explained in terms of the significantly reduced 933

number of required DRAM row activations when accelerating 934

transformers’ predominant computations, namely, MACs. This 935

results from SC enabling the compute-intensive multiplica- 936

tion operations to be realized using simple in-DRAM AND 937

operations along with the MOMCAP analog compute logic 938

facilitating fast and energy-efficient analog accumulations. 939

V. CONCLUSION 940

In this article, we presented a novel in-DRAM hardware 941

accelerator for transformer neural networks that combines 942

stochastic and analog computing and extends state-of-the- 943

art HBM architectures. Our proposed ARTEMIS architecture 944

demonstrated remarkably low-per-MAC latency through the 945

12 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS

utilization of bit-parallel SC for multiplications, coupled with946

analog domain accumulations. ARTEMIS exhibited at least947

3.0× speedup, and 1.8× lower energy when compared to948

GPU, TPU, CPU, and multiple state-of-the-art PIM trans-949

former accelerators. The results demonstrate the promise of950

utilizing in-DRAM stochastic and analog computations for951

transformer neural network acceleration.952

REFERENCES953

[1] A. Vaswani et al., “Attention is all you need,” in Proc. NIPS, 2017,954

pp. 1–11.955

[2] J. Devlin, M. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training956

of deep bidirectional transformers for language understanding,” 2018,957

arXiv:1810.04805.958

[3] Z. Lan, M. Chen, S. Goodman, K. Gimpel, P. Sharma, and R. Soricut,959

“Albert: A lite bert for self-supervised learning of language representa-960

tions,” in Proc. ICLR, 2019, pp. 1–17.961

[4] J. Achiam et al., “GPT-4 technical report,” 2023, arXiv:2303.08774.962

[5] A. Dosovitskiy et al., “An image is worth 16x16 words: Transformers963

for image recognition at scale,” in Proc. ICLR, 2020, pp. 1–21.964

[6] S. Li, D. Niu, K. T. Malladi, H. Zheng, B. Brennan, and Y. Xie, “Drisa:965

A DRAM-based reconfigurable in-situ accelerator,” in Proc. IEEE/ACM966

MICRO, 2017, pp. 288–301.967

[7] S. Lu, M. Wang, S. Liang, J. Lin, and Z. Wang, “Hardware accelerator968

for multi-head attention and position-wise feed-forward in the trans-969

former,” in Proc. IEEE SOCC, 2020, pp. 84–89.970

[8] Q. Panjie et al., “Accelerating framework of transformer by hardware971

design and model compression co-optimization,” in Proc. IEEE ICCAD,972

2021, pp. 1–9.973

[9] M. Zhou, W. Xu, J. Kang, and T. Rosing, “TransPIM: A memory-based974

acceleration via software-hardware co-design for transformer,” in Proc.975

IEEE HPCA, 2022, pp. 1071–1085.976

[10] Y. Ding, C. Liu, M. Duan, W. Chang, K. Li, and K. Li, “HAIMA:977

A hybrid SRAM and DRAM accelerator-in-memory architecture for978

transformer,” in Proc. ACM/IEEE Design Autom. Conf. (DAC), 2023,979

pp. 1–6.980

[11] M. Kang, H. Shin, and L.-S. Kim, “A framework for accelerating981

transformer-based language model on ReRAM-based architecture,” in982

Proc. IEEE TCAD, 2021, pp. 3026–3039.983

[12] M. O’Connor et al., “Fine-grained DRAM: Energy-efficient DRAM984

for extreme bandwidth systems,” in Proc. IEEE/ACM MICRO, 2017,985

pp. 41–54.986

[13] S. Li et al., “Scope: A stochastic computing engine for DRAM-based987

in-situ accelerator,” in Proc. IEEE/ACM MICRO, 2018, pp. 696–709.988

[14] I. Thakkar, S. Vatsavai, and V. P. Karempudi, “High-speed and energy-989

efficient non-binary computing with polymorphic electro-optic circuits990

and architectures,” in Proc. GLSVLSI, 2023, pp. 545–550.991

[15] M. H. Najafi, D. J. Lilja, and M. Riedel, “Deterministic methods992

for stochastic computing using low-discrepancy sequences,” in Proc.993

IEEE/ACM Int. Conf. Comput.-Aided Design (ICCAD), 2018, pp. 1–8.994

[16] D. Wu, J. Li, R. Yin, H. Hsiao, Y. Kim, and J. S. Miguel, “UGEMM:995

Unary computing architecture for GEMM applications,” in Proc.996

ACM/IEEE 47th Annu. Int. Symp. Comput. Archit. (ISCA), 2020,997

pp. 377–390.998

[17] K. Kim, J. Lee, and K. Choi, “Approximate de-randomizer for stochastic999

circuits,” in Proc. IEEE ISOCC, 2015, pp. 123–124.1000

[18] S. M. Shivanandamurthy, S. S. Vatsavai, I. Thakkar, and S. A. Salehi,1001

“AGNI: In-situ, iso-latency stochastic-to-binary number conversion for1002

In-DRAM deep learning,” in Proc. ISQED, 2023, pp. 1–8.1003

[19] S. Mysore, I. Thakkar, and S. Salehi, “Atria: A bit-parallel stochastic 1004

arithmetic based accelerator for in-DRAM CNN processing,” in Proc. 1005

IEEE ISVLSI, 2021, pp. 200–205. 1006

[20] V. Seshadri et al., “Ambit: In-memory accelerator for bulk bitwise 1007

operations using commodity DRAM technology,” in Proc. IEEE/ACM 1008

MICRO, 2017, pp. 273–287. 1009

[21] J. Ahn, Y. Sungjoo, M. Onur, and C. Kiyoung, “PIM-enabled 1010

instructions: A low-overhead, locality-aware processing-in-memory 1011

architecture,” ACM SIGARCH Comput. Archit. News, vol. 43, no. 3, 1012

pp. 336–348, 2015. 1013

[22] K. Soroosh, Y. Zha, J. Zhang, and J. Li, “Challenges and opportunities: 1014

From near-memory computing to in-memory computing,” in Proc. ACM 1015

ISPD, 2017, pp. 43–46. 1016

[23] P. Naebeom, R. Sungju, K. Jaeha, and K. Jae-Joon Kim, “High- 1017

throughput near-memory processing on CNNs with 3D HBM-like 1018

memory,” ACM Trans. Design Autom. Electron. Syst., vol. 26, no. 6, 1019

pp. 1–20, 2021. 1020

[24] M. Lenjani, “Fulcrum: A simplified control and access mechanism 1021

toward flexible and practical in-situ accelerators,” in Proc. IEEE HPCA, 1022

2020, pp. 556–569. 1023

[25] F. Gao, G. Tziantzioulis, and D. Wentzlaff, “ComputeDRAM: In- 1024

memory compute using off-the-shelf DRAMs,” in Proc. IEEE/ACM 1025

MICRO, 2019, pp. 100–113. 1026

[26] Y. Long, T. Na, and S. Mukhopadhyay, “ReRAM-based processing-in- 1027

memory architecture for recurrent neural network acceleration,” IEEE 1028

Trans. Very Large Scale Integr., vol. 26, no. 12, pp. 2781–2794, 1029

Dec. 2018. 1030

[27] X. Qiao, X. Cao, H. Yang, L. Song, and H. Li, “AtomLayer: A universal 1031

ReRAM-based CNN accelerator with atomic layer computation,” in 1032

Proc. DAC, 2018, pp. 1–6. 1033

[28] Y. Chen, “ReRAM: History, status, and future,” IEEE Trans. Electron 1034

Devices, vol. 67, no. 4, pp. 1420–1433, Apr. 2020. 1035

[29] V. Seshadri et al., “RowClone: Fast and energy-efficient in-DRAM 1036

bulk data copy and initialization,” in Proc. IEEE/ACM MICRO, 2013, 1037

pp. 185–197. 1038

[30] X. Xin, Y. Zhang, and J. Yang, “Roc: Dram-based processing with 1039

reduced operation cycles,” in Proc. DAC, 2019, pp. 1–6. 1040

[31] S. Vatsavai and I. Thakkar, “A bit-parallel deterministic stochastic 1041

multiplier,” in Proc. IEEE ISQED, 2023, p. 1. 1042

[32] C. Yu, T. Yoo, H. Kim, T. T.-H. Kim, K. C. T. Chuan, and B. Kim, “A 1043

logic-compatible eDRAM compute-in-memory with embedded ADCs 1044

for processing neural networks,” IEEE Trans. Circuits Syst. I, Reg. 1045

Papers, vol. 68, no. 2, pp. 667–679, Feb. 2021. 1046

[33] S. Afifi, I. Thakkar, and S. Pasricha, “STAR: A mixed analog stochastic 1047

in-DRAM convolutional neural network accelerator,” IEEE Design Test, 1048

2024, submitted to publication. 1049

[34] S. Afifi, F. Sunny, M. Nikdast, S. Pasricha, “TRON: Transformer neural 1050

network acceleration with non-coherent silicon photonics,” in Proc. 1051

Great Lakes Symp. VLSI, 2023, pp. 15–21. 1052

[35] M. F. Ali, A. Jaiswal, and K. Roy, “In-memory low-cost bit-serial 1053

addition using commodity dram technology,” IEEE Trans. Circuits Syst. 1054

I, Reg. Papers, vol. 67, no. 1, pp. 155–165, Jan. 2020. 1055

[36] C. Eckert et al., “Neural cache: Bit-serial in-cache acceleration of deep 1056

neural networks,” in Proc. ACM/IEEE ISCA, 2018, pp. 383–396. 1057

[37] M. Imani, S. Gupta, Y. Kim, and T. Rosing, “Floatpim: In-memory 1058

acceleration of deep neural network training with high precision,” in 1059

Proc. ACM/IEEE ISCA, IEEE, 2019, pp. 802–815. 1060

[38] “HP labs: CACTI.” 2014. [Online]. https://github.com/HewlettPackard/ 1061

cacti 1062

[39] Y. Li et al., “Capacitor-based cross-point array for analog neural 1063

network with record symmetry and linearity,” in Proc. ISVLSI, 2018, 1064

pp. 25–26. 1065

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Helvetica-Condensed-Bold
 /Helvetica-LightOblique
 /HelveticaNeue-Bold
 /HelveticaNeue-BoldItalic
 /HelveticaNeue-Condensed
 /HelveticaNeue-CondensedObl
 /HelveticaNeue-Italic
 /HelveticaNeueLightcon-LightCond
 /HelveticaNeue-MediumCond
 /HelveticaNeue-MediumCondObl
 /HelveticaNeue-Roman
 /HelveticaNeue-ThinCond
 /Helvetica-Oblique
 /HelvetisADF-Bold
 /HelvetisADF-BoldItalic
 /HelvetisADFCd-Bold
 /HelvetisADFCd-BoldItalic
 /HelvetisADFCd-Italic
 /HelvetisADFCd-Regular
 /HelvetisADFEx-Bold
 /HelvetisADFEx-BoldItalic
 /HelvetisADFEx-Italic
 /HelvetisADFEx-Regular
 /HelvetisADF-Italic
 /HelvetisADF-Regular
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

