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Abstract—With the increasing demand for edge device-1

powered location-based services in indoor environments, Wi-Fi2

received signal strength (RSS) fingerprinting has become popular,3

given the unavailability of GPS indoors. However, achieving4

robust and efficient indoor localization faces several challenges,5

due to RSS fluctuations from dynamic changes in indoor environ-6

ments and heterogeneity of edge devices, leading to diminished7

localization accuracy. While advances in machine learning (ML)8

have shown promise in mitigating these phenomena, it remains an9

open problem. Additionally, emerging threats from adversarial10

attacks on ML-enhanced indoor localization systems, especially11

those introduced by malicious or rogue access points (APs),12

can deceive ML models to further increase localization errors.13

To address these challenges, we present SENTINEL, a novel14

embedded ML framework utilizing modified capsule neural15

networks to bolster the resilience of indoor localization solutions16

against adversarial attacks, device heterogeneity, and dynamic17

RSS fluctuations. We also introduce RSSRogueLoc, a novel18

dataset capturing the effects of rogue APs from several real-world19

indoor environments. Experimental evaluations demonstrate that20

SENTINEL achieves significant improvements, with up to 3.5×21

reduction in mean error and 3.4× reduction in worst-case22

error compared to state-of-the-art frameworks using simulated23

adversarial attacks. SENTINEL also achieves improvements of24

up to 2.8× in mean error and 2.7× in worst-case error compared25

to state-of-the-art frameworks when evaluated with the real-26

world RSSRogueLoc dataset.27

Index Terms—Adversarial attacks, adversarial training, cap-28

sule neural networks, device heterogeneity, evil twin attacks,29

man-in-the-middle attacks, rogue access points (APs), Wi-Fi30

received signal strength (RSS) fingerprinting.31

I. INTRODUCTION32

IN RECENT years, indoor localization has gained attention33

for its versatile applications across several industries, such34

as healthcare, asset tracking, smart homes, location-based35

advertising, and much more [1]. Technology giants, such as36

Apple, Google, Meta, and Microsoft, are making substantial37

investments in indoor localization research to improve the38
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accuracy and reliability of indoor location-based services [2]. 39

However, achieving high-precision indoor localization remains 40

a formidable challenge due to the inherent complexities and 41

dynamic nature of indoor environments. 42

Traditional navigation systems, such as the global position- 43

ing system (GPS), have found widespread adoption in popular 44

tools, such as Google Maps, Apple Maps, and Waze, mainly 45

owing to their commendable localization accuracies in outdoor 46

settings. However, the dependence of GPS on satellite signals 47

and clear sky visibility poses a significant limitation, rendering 48

this approach ineffective for indoor use [3]. In response to this 49

challenge, researchers have shifted their attention to alternate 50

wireless infrastructures that could be a better fit for localization 51

across indoor spaces, such as Wi-Fi, Bluetooth, and ZigBee. 52

Among these alternatives, Wi-Fi-based localization systems 53

utilizing received signal strength (RSS) have gained significant 54

traction [1], [2], [3], [4]. This surge in popularity for this 55

solution is attributed to the ubiquitous availability of Wi-Fi 56

in indoor spaces and the capability of modern edge devices 57

to capture Wi-Fi RSS, making it a viable option for indoor 58

localization [4]. 59

Wi-Fi RSS is obtained by measuring the signal strength 60

of nearby Wi-Fi routers or access points (APs) via edge 61

devices. This captured RSS data can be used to estimate 62

the current indoor location of an edge device. As the edge 63

device moves, it periodically captures new RSS measure- 64

ments, reflecting the edge device’s mobility. Leveraging this 65

changing RSS data, many techniques have been proposed for 66

accurate indoor localization, with geometric model-based [5] 67

and fingerprinting model-based [4], [6] approaches emerging 68

prominently. Geometric models utilize propagation methods, 69

such as trilateration [7] and triangulation [8] to pinpoint an 70

edge device’s location. However, these solutions are prone 71

to inaccuracies as they are particularly sensitive to RSS 72

fluctuations caused by dynamic changes and complexities 73

within indoor environments. On the other hand, fingerprinting 74

model-based systems eschew propagation methods by creating 75

a database of Wi-Fi RSS patterns (“fingerprints”) of visible 76

Wi-Fi APs collected throughout the indoor space to estimate 77

location. Fingerprinting models have been shown to exhibit 78

greater resilience to RSS fluctuations, demonstrating higher 79

accuracies than geometric methods [4], [9]. 80

Fingerprinting-based localization solutions comprise two 81

distinct phases: 1) an offline phase and 2) an online 82

phase. During the offline phase, Wi-Fi RSS fingerprints are 83

systematically captured across multiple reference points (RPs) 84
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Fig. 1. Impact of rogue APs on three popular ML-based indoor localization
solutions [15], [16], [17] from prior work.

within a building floorplan. These fingerprints are then often85

utilized to train a machine learning (ML) model, enabling86

it to capture underlying patterns and features within the87

collected RSS fingerprints [10]. Once trained, this ML model88

is deployed on the edge device, making it available in the89

online phase for real-time indoor location predictions.90

In the online phase, the RSS fingerprints may exhibit91

fluctuations due to diverse factors in the indoor environments.92

These factors include signal attenuation, reflections from93

objects, human interference, and multipath fading, which can94

introduce fluctuations in the collected RSS fingerprints [11].95

Furthermore, edge device heterogeneity exacerbates this issue.96

Even among edge devices utilizing the same Wi-Fi chipset97

(from the same manufacturer), differences in hardware, soft-98

ware, antenna configurations, and firmware settings can99

introduce fluctuations in RSS fingerprints [11]. As a result,100

training an ML model can be challenging as heterogeneous101

and noisy RSS can result in poor generalization and result in102

inaccurate location predictions. Priors works have shown up to103

a 41% reduction in location accuracy due to these factors [12].104

Additionally, the often-overlooked factor of adversarial attacks105

can not only perturb the RSS fingerprints (thereby introducing106

stronger fluctuations) but also compromise the accuracy and107

effectiveness of localization with the edge device, emphasizing108

the need for more robust and secure localization systems.109

Adversarial attacks can mislead popular ML models,110

including state-of-the-art deep learning (DL) algorithms that111

have been shown to be vulnerable to adversarial examples.112

Goodfellow et al. [13] verified the discovery by misleading113

the popular GoogLeNet [14] model with adversarial examples.114

Similarly, ML-based indoor localization systems also face115

the threat of adversarial attacks. The presence of malicious116

(or rogue) APs in the building floorplan can be used to117

create adversarial attacks by mimicking a legitimate AP and118

broadcasting erroneous RSS values. In Fig. 1, we illustrate119

the detrimental impact of the presence of rogue APs on120

three popular ML-based indoor localization solutions based on121

K-nearest neighbors (KNNs) [15], Gaussian process classifier122

(GPC) [16], and deep neural networks (DNNs) [17]. This123

experiment was conducted on an indoor path in a building124

measuring 55 m in length containing 55 RPs (1 RP per meter),125

with up to 203 visible APs (per RP). The experiment incor-126

porated the popular fast gradient sign method (FGSM) [30]127

technique to simulate the presence of rogue APs, resulting in128

significantly increased indoor localization errors, with average129

error increases of 3.33× for KNN, 3.0× for GPC, and 5.71×130

for DNN, highlighting the negative impact of the rogue APs131

on localization accuracy.132

To tackle the challenges posed by RSS fluctuations in 133

dynamic indoor environments, edge device heterogeneity, and 134

rogue AP attacks, in this work we introduce SENTINEL, a 135

novel embedded ML framework that employs modified capsule 136

neural networks tailored specifically for indoor localization 137

and rogue AP resilience, offering a more practical, secure, 138

and real-time solution for indoor localization. The major 139

contributions of our SENTINEL framework are as follows. 140

1) We design a novel modified capsule neural network 141

specifically for the RSS fluctuation challenges in indoor 142

localization, tailored to a) overcome the spatial invari- 143

ance problem in prior DL-based indoor localization 144

efforts and b) enable lightweight deployment on edge 145

devices. 146

2) We study the effects of rogue AP attacks and propose 147

an adversarial training setup together with the modified 148

capsule neural network for resilience against adversarial 149

(rogue) AP attacks for the first time in indoor localiza- 150

tion. 151

3) We introduce a new Wi-Fi RSS fingerprint dataset called 152

RSSRogueLoc [35] that captures AP attacks from rogue 153

APs in real-world indoor environments for the first time. 154

4) We conduct a performance comparison with SENTINEL 155

against state-of-the-art indoor localization solutions, to 156

highlight its effectiveness in the presence of diverse 157

adversarial attacks, edge device heterogeneity, and RSS 158

fluctuations across diverse indoor building paths. 159

II. RELATED WORK 160

Wi-Fi fingerprinting-based indoor localization has gained 161

significant recognition, evident in competitions hosted by 162

industry giants like Microsoft and NIST [2]. Several classical 163

ML-based solutions, such as ones based on the KNN [15] 164

and GPC [16] algorithms, have showcased their poten- 165

tial in addressing RSS fluctuations arising from dynamic 166

effects in indoor environments. These fluctuations encom- 167

pass various factors, including human interference, obstacles, 168

movement of furniture or equipment, variable population den- 169

sity, signal interference, reflections by objects, and shadowing 170

effects [19], [40], [41]. 171

Despite the demonstrated promise of these ML solutions, 172

they often face challenges in maintaining robustness against 173

fluctuations introduced by edge device heterogeneity. The 174

heterogeneity issue arises from differences in Wi-Fi chipsets 175

and noise filtering software employed by different manu- 176

facturers of edge devices. As these chipsets and software 177

stacks are crucial for extracting RSS fingerprints [11], [19], the 178

heterogeneity within them introduces additional complexities 179

for traditional ML-based indoor localization systems. 180

In response to these challenges, researchers have explored 181

the use of more powerful DL algorithms for indoor localiza- 182

tion, including DNNLOC [17], MLPLOC [18], LC-DNN [19], 183

CNNLOC [21], SANGRIA [22], ANVIL [23], and TIPS [24]. 184

DNNLOC [17], MLPLOC [18], and LC-DNN [19] employ 185

DNNs along with improved RSS preprocessing methods 186

to enhance feature correlation in the RSS fingerprints. 187

CNNLOC [21] proposes a modified convolutional neural 188
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Fig. 2. Spatial invariance problem in DL algorithms. Both cases are classified
as valid human faces by a CNN model.

network (CNN), to improve on these efforts by enhancing189

the model’s ability to capture relevant features in the RSS190

fingerprints. SANGRIA [22] employs DNN-based autoen-191

coders while ANVIL [23], [42] utilizes attention neural192

networks, to improve focus on critical input features. TIPS [24]193

leverages transformer-based encoding of RSS fingerprints194

for improved resilience against fluctuations introduced by195

dynamic indoor environments and device heterogeneity.196

However, these approaches are still significantly impacted by197

more complex heterogeneity effects in emerging devices and198

are also susceptible to adversarial attacks, due to the spatial199

invariance problem in DL algorithms.200

Most DL algorithms, particularly CNNs, suffer from the201

spatial invariance problem where the DL algorithm has a202

propensity to focus solely on the presence of features in203

the data while neglecting the precise relative positions of204

the features [25]. Alterations in the position of each feature205

can lead to mispredictions by the DL model. This limitation206

is illustrated in Fig. 2, where the VGGFace algorithm [26],207

a CNN-based model, struggles to differentiate between the208

two faces. In the figure on the left, a normal human face is209

depicted, while the figure on the right presents an abnormal210

face with jumbled feature positions. The model assigns the211

same output classification probability to both cases. The212

concern regarding feature positions is particularly relevant in213

the context of RSS fingerprints for indoor localization, where214

positions of certain features represent crucial information and215

can be specific to a particular RP. When an edge device moves216

to a different RP, the positions of these features may undergo217

changes based on the characteristics of the new RP location.218

Thus, it is imperative to account for the dynamic nature of219

feature positions when designing practical indoor localization220

solutions.221

To address this limitation and enhance feature extrac-222

tion, researchers have embraced more recent DL algorithms,223

such as vision transformers (VITAL) [27], [43] and capsule224

neural networks (EDGELOC) [28] for indoor localization.225

VITAL [27], uses vision transformers, introduces posi-226

tional encoding for each feature, aiming to overcome the227

spatial invariance limitations posed by CNNs. Similarly,228

EDGELOC [28] uses a simple capsule neural network derived229

from [38], treating each captured feature as a vector, con-230

sidering both magnitude and direction of features. These231

frameworks show the potential to greatly mitigate the effects232

of dynamic environments and heterogeneity for indoor local-233

ization. However, the introduction of adversarial attacks234

especially arising from rogue APs can not only jumble the 235

feature positions but also introduce new malicious features 236

in the data. Such attacks can easily mislead state-of-the-art 237

localization frameworks and compromise user security. 238

Adversarial training has emerged as a potential solution to 239

address the challenges from adversarial attacks in ML [29]. 240

Popular solutions typically incorporate a subset of adversarial 241

samples along with the training data to allow robustness in the 242

presence of adversarial attacks during inference. Adversarial 243

samples are generated using several popular adversarial meth- 244

ods out of which the FGSM [30] has been widely employed 245

to simulate the effects of adversarial attacks, owing to its 246

simplicity. ADVLOC [31] and CALLOC [32] are two recent 247

solutions that incorporate adversarial training, aiming to 248

address the effects of adversarial attacks in indoor localization. 249

Both ADVLOC [31] and CALLOC [32] integrate FGSM 250

samples during training for adversarial resilience. CALLOC 251

additionally employs curriculum learning along with attention 252

neural networks to enhance feature extraction between the 253

original and adversarial samples, to improve overall robust- 254

ness. Nevertheless, both solutions fall short of addressing 255

the multitude of challenges associated with dynamic envi- 256

ronments, heterogeneity, and adversarial attacks concurrently. 257

Additionally, these solutions heavily rely on simulated data 258

for measuring the efficacy of the model’s performance against 259

adversarial attacks in the online phase. Their performance in 260

real-world adversarial scenarios has not yet been carefully 261

studied. 262

After carefully studying the simultaneous challenges of 263

dynamic environments, edge device heterogeneity, adversarial 264

attacks, and lack of real-world adversarial attack data to 265

measure the effectiveness of adversarial resilience in indoor 266

localization, in this work we propose SENTINEL, a novel 267

embedded ML framework that goes beyond state-of-the-art 268

DL solutions to better address the spatial invariance problem 269

and improve robustness using an enhanced capsule neural 270

network with techniques that more comprehensively improve 271

resilience to real-world indoor localization challenges. Another 272

important contribution of our work is the design of a newly 273

curated RSS fingerprint dataset called RSSRogueLoc [35] that 274

captures the presence of rogue APs within indoor building 275

paths, to analyze the impact of adversarial attacks on indoor 276

localization frameworks in real-world environments, for the 277

first time. 278

III. ADVERSARIAL ATTACKS IN INDOOR LOCALIZATION 279

Adversarial attacks involve deliberately perturbating input 280

data to deceive an underlying ML model [30]. This perturba- 281

tion typically consists of adding noise to individual data values 282

(datapoints) either by introducing new or malicious features 283

(new datapoints) or disrupting the magnitude and positions 284

of features in the input data. These adversarial perturbations 285

exploit limitations in the manner in which features and patterns 286

are learned by the ML model during training, thereby causing 287

mispredictions with the ML model [30]. 288

In the context of indoor localization, Wi-Fi RSS fingerprints 289

are measured in decibels referenced to 1 mW (dBm) and 290
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Fig. 3. RSS fluctuations in indoor environment depicting real-world scenarios
with and without the presence of rogue APs.

typically range from −100 dBm (weak signal) to 0 dBm291

(strong signal). These fingerprints are very susceptible to292

fluctuations due to dynamic indoor environments and edge293

device heterogeneity, and perturbations due to adversarial294

attacks especially in the presence of rogue APs, as shown in295

Fig. 3. Rogue APs can perturbate specific or all datapoints296

within an RSS fingerprint. This perturbed data may exhibit297

features characteristic of a different RP location, leading to298

increased prediction errors, as shown in Fig. 3.299

Rogue APs pose a threat to indoor localization systems300

by introducing deliberate perturbations through two distinct301

pathways: 1) the transmitter side and 2) the channel side.302

1) Transmitter Side: This attack is executed from the303

transmitter side, specifically on the APs deployed in304

the indoor environment. The attack targets a legitimate305

AP in the environment, attempting to infect it with306

malicious data (malware). Once successful, the resulting307

rogue AP gains complete control over the legitimate AP,308

compromising the security of any operations performed309

by the legitimate AP. This poses a significant security310

risk, as the rogue AP can now manipulate RSS, leading311

to an increase in localization errors. This attack can312

compromise the robustness of the indoor localization313

solution in that environment.314

2) Channel Side: This attack is executed from the channel315

side, specifically within the spatial domain between316

a legitimate AP and the edge device. The rogue AP317

monitors communication between the legitimate AP318

and edge devices and introduces carefully calibrated319

interference with the signals traveling through this space.320

Once successful, the rogue AP can manipulate the RSS321

captured by the edge device, that may mimic the char-322

acteristics of a different RP location. This manipulation323

compromises the robustness of the indoor localization324

solution, as the altered RSS can lead to increase in325

localization errors.326

A. Rogue AP Attack Implementation327

Rogue APs possess the capability to execute a variety of328

attacks. Notably, these attacks can be launched with minimal329

information about the target system, rendering them as gray-330

box attacks. The nature of gray-box attacks makes rogue APs331

an attractive choice for adversaries, as they do not require332

comprehensive knowledge of the indoor localization system.333

Fig. 4. Evil twin attack during indoor localization.

This characteristic transforms rogue AP implementation into a 334

more plug-and-play system for executing adversarial attacks. 335

We next describe the two types of rogue AP attacks, illustrat- 336

ing their underlying methods and potential consequences. 337

1) Evil Twin Attacks: This transmitter side rogue AP attack 338

involves the creation of a malicious wireless network 339

that mimics a legitimate one. The rogue AP utilizes 340

malware to infect a legitimate AP, allowing it to gather 341

critical information, such as the service set identifier 342

(SSID), media access control identifier (MACID), and 343

other network parameters [36]. By replicating these 344

parameters, the rogue AP tricks edge devices into 345

connecting to it, masquerading as an authentic AP. Fig. 4 346

demonstrates the implementation of the evil twin attack, 347

which is explored for the first time in the context of 348

indoor localization, as part of this work. The rogue AP 349

initiates the attack by targeting a legitimate Wi-Fi AP, 350

mimicking its network parameters, and simultaneously 351

blocking all communications from the legitimate Wi-Fi 352

AP. Subsequently, the rogue AP broadcasts its own 353

malicious Wi-Fi network (masquerading the authentic 354

AP), that can inject malicious features into the RSS 355

fingerprint collected by the edge device. These malicious 356

features have the potential to falsify the edge device’s 357

perceived location, making it appear in a different location. 358

This compromise in location information poses a severe 359

threat to the entire indoor localization system. 360

2) Man-in-the-Middle Attacks: This channel side rogue 361

AP attack employs ARP (address resolution protocol) 362

spoofing techniques to intercept communication between 363

the legitimate Wi-Fi AP and the edge devices [37]. 364

Operating within the spatial domain between the AP 365

and the edge device, the rogue AP positions itself as an 366

intermediary, intercepting signals transmitted between 367

the legitimate AP and the edge device. Unlike direct 368

communication, the man-in-the-middle attack allows 369

the rogue AP to inspect, modify, or block the signals 370

before relaying them to their intended destination. This 371

interception provides the adversary with the capability to 372

alter RSS values in real-time, introducing discrepancies 373

in the RSS features captured by the edge device. Fig. 5 374

demonstrates the implementation of the man-in-the- 375

middle attack for indoor localization. 376

B. Adversarial Attack Methods 377

Adversarial perturbations, introduced by malicious entities, 378

pose a threat to ML models, particularly in privacy-sensitive 379

domains like indoor localization. We identify and focus on 380
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Fig. 5. Man-in-the-middle attack during indoor localization.

three popular adversarial methods in this work: 1) FGSM [30];381

2) projected gradient descent (PGD) [33]; and 3) momentum382

iterative method (MIM) [34]. Given the gray box nature of383

adversarial attacks (evil twin and man-in-the-middle attacks,384

discussed above), adversaries exploit minimal information385

about the localization framework. These methods introduce386

carefully calibrated perturbations into the RSS fingerprints387

using the ML model’s loss function, making them a practical388

choice for studying the nuanced effects of adversarial attacks389

in indoor localization.390

1) FGSM: FGSM leverages the gradient information of391

the ML model’s loss function with respect to the input392

data. This method perturbs the original input data by393

adding a small, controlled perturbations in the direc-394

tion of the gradient sign. This intentional perturbation395

systematically alters both the magnitude and positions396

of features within the input data. Consequently, this397

perturbation can mislead the ML model by indicating398

features at a different RP location, thereby increasing399

errors in location predictions400

η = ε ∗ sign(∇J(θ, X, Y)) (1)401

XAdv = X + η. (2)402

In the equations above, η represents the perturbations, θ403

represents the parameters of the ML model, and X and404

Y denote the RSS fingerprint and RP class, respectively.405

The hyperparameter ε controls the magnitude of the406

perturbation and (∇J(θ, X, Y) denotes the loss function407

of the ML model. XAdv is the perturbated RSS data.408

2) PGD Method: PGD extends the concepts of FGSM409

by offering a more sophisticated approach in gen-410

erating adversarial examples. PGD modifies FGSM411

by eliminating the sign function in (1) and clip-412

ping the perturbations between X and ε. While413

FGSM introduces perturbations in a single step,414

PGD refines the perturbation over multiple iterations415

{XAdv (0), XAdv (1), . . . , XAdv(N), XAdv(N+1)}.416

XAdv(0) = X (3)417

η = ClipX,ε

{
ε ∗ ∇J(θ, X, Y)

L|∇J(θ, X, Y)|2

}
(4)418

XAdv(N+1) = XAdv(N) + η. (5)419

In (3), X denotes the original input data and XAdv (0)420

denotes the perturbed adversarial sample at the initial421

iteration (0). Equation (4) computes perturbations η422

using a clipped function applied to the gradients of the423

loss function ∇J(θ, X, Y) and L|∇J(θ, X, Y|2 represents424

the squared L2 norm (ridge regularization) of the gradi- 425

ents of the loss function. This normalization step ensures 426

that the perturbation is scaled appropriately, maintaining 427

stability in generating the adversarial sample, while 428

being clipped between X and ε (magnitude of the 429

perturbation). These perturbations are added to XAdv(N) 430

iteratively, as shown in (5). This iterative refinement 431

process enhances the potency of adversarial samples by 432

introducing a more calibrated manipulation in feature 433

magnitude and positions within the RSS fingerprint data, 434

leading to more potent adversarial samples compared to 435

FGSM. 436

3) MIM: MIM further refines the adversarial samples from 437

PGD, by incorporating momentum into the perturbation 438

generation process to enhance the efficiency of the 439

perturbation search 440

XAdv(N+1) = ClipX,ε

{
α ∗ XAdv(N) + η

}
. (6) 441

The perturbation η is calculated using (4), similar to the 442

PGD approach. In (6), α is applied as momentum to the 443

XAdv(N) of the previous iteration, while being clipped 444

between X and ε (magnitude of the perturbation). By 445

incorporating momentum into the perturbation genera- 446

tion process, MIM effectively manipulates RSS features 447

and positions, leading to adversarial samples that induce 448

more significant errors in the localization process, com- 449

pared to FGSM and PGD. This enhanced perturbation 450

poses substantial challenges to the robustness of indoor 451

localization solutions. 452

C. Adversarial Attack Formulation for ML Indoor 453

Localization 454

In formulating adversarial attacks for indoor localization 455

systems, we employ the three distinctive methods discussed 456

above: FGSM, PGD, and MIM. Our objective is to generate 457

adversarial data by introducing perturbations that modify the 458

features embedded within an RSS fingerprint. To generate 459

potential real-world adversarial data effectively, we leverage 460

two key parameters. 461

1) Perturbation Strength (ε): This crucial hyperparameter 462

is used in FGSM, PGD, and MIM methods to introduce 463

perturbations to the RSS fingerprints. In generating 464

adversarial samples for indoor localization, we sys- 465

tematically adjust the ε value to encompass various 466

perturbation strengths applicable in real-world scenarios. 467

We vary ε from 0.1 to 0.5 to reflect a practical per- 468

turbation scenario tailored for indoor localization [39]. 469

This range is considered acceptable because it strikes a 470

balance between being subtle enough to evade detection 471

and significant enough to effectively test the system’s 472

robustness. Smaller values of ε (closer to 0.1) represent 473

minor perturbations that are less likely to be noticed but 474

might not challenge the system’s defenses effectively, 475

while larger values (up to 0.5) represent more noticeable 476

perturbations that can more rigorously test the model’s 477

resilience. 478
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Fig. 6. Overview of the SENTINEL framework, including the offline (training) phase and online (inference) phase.

2) Compromised APs (ϕ): This parameter represents the479

quantity of legitimate APs that are subject to com-480

promise by the rogue AP within the indoor system.481

In a typical scenario, rogue APs selectively attack a482

subset of legitimate APs. We utilize ϕ as a parameter to483

investigate the impact of the quantity of compromised484

APs on indoor localization perform performance. ϕ is485

set to range from 0 to 100, indicating the percentage of486

attacked APs, thus covering the spectrum from 0% to487

100% of compromised APs. These attacked APs then488

introduce perturbations defined by the parameter ε.489

IV. SENTINEL FRAMEWORK: OVERVIEW490

The SENTINEL framework consists of three key compo-491

nents: 1) adversarial training; 2) fingerprint image generation;492

and 3) and the capsule neural network, as shown in Fig. 6.493

The framework initiates in an offline phase, where RSS494

fingerprints are captured across different RPs within the495

building floorplan. Multiple fingerprints are collected per RP496

to effectively capture data variability. These fingerprints are497

labeled and stored in an RSS fingerprint database, forming498

the offline training data for the SENTINEL framework. To499

fortify the framework against adversarial attacks, we employ500

an adversarial training mechanism (discussed in Section IV-A),501

which introduces adversarial samples derived from the RSS502

fingerprint database. Post-adversarial training, we transform503

both original (from RSS fingerprint database) and adversarial504

fingerprints into fingerprint images using the fingerprint image505

generation mechanism (discussed in Section IV-B), resulting506

in grayscale images. These grayscale images encapsulate507

crucial information about the indoor floorplan. The grayscale508

images then serve as input to the capsule neural network509

modified for the task at hand and carefully designed to address510

the spatial invariance problem in DL. The capsule neural511

network comprises five subcomponents: 1) convolutional layer512

(CONV); 2) primary capsule (PC) layer; 3) outer capsule (OC) 513

layer; 4) an agreement-based routing algorithm; and 5) the 514

majority voting layer (all discussed in Section IV-C). 515

The domain-specific capsule neural network, once trained, 516

is deployed on edge devices for predictions during the online 517

phase. In the online phase, the edge devices (with the pre- 518

trained ML model), scan for available RSS fingerprints at an 519

unknown RP location. These received fingerprints are inher- 520

ently susceptible to RSS fluctuations and potential adversarial 521

attacks (introduced by rogue APs). 522

A. Adversarial Training Mechanism 523

The SENTINEL framework enhances its resilience against 524

adversarial attacks by implementing an adversarial training 525

mechanism. This approach fortifies our capsule neural network 526

by exposing it to a diverse mixture of adversarial and clean 527

RSS examples during the training process. The fundamental 528

concept behind adversarial training is to modify the loss 529

function by incorporating adversarial examples, thereby ren- 530

dering the capsule neural network resistant to adversarial 531

attacks 532

∇J(θ, X, Y) = ∇J(θ, X, Y) + ∇J(θ, X + η, Y). (7) 533

In (7), η represents the perturbation introduced into the input 534

data using different adversarial methods, such as FGSM, PGD, 535

and MIM, calculated using the gradients of the loss function 536

[(1), (3), and (5)] with respect to the input data. In Section V, 537

we evaluate the performance of various adversarial training 538

methods to assess SENTINEL’s efficacy in defending against 539

adversarial attacks in the online phase. 540

B. Fingerprint Image Generation 541

Post creation of the RSS fingerprint database (with clean 542

+ adversarial samples), the fingerprints are transformed into 543

grayscale images to encapsulate crucial information about the 544
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indoor floorplan. Initially, the RSS fingerprints are arranged545

into matrices or tensors, with shape of (H, W), where546

H represents the height (typically 1), and W signifies the547

width, representing the number of visible APs within the548

indoor environment. Each element in this tensor corresponds549

to the RSS measured by a specific AP at a particular RP. To550

convert these RSS fingerprint tensors into grayscale images, a551

mapping process is applied. This mapping function translates552

the RSS values into pixel intensities, ensuring that higher553

RSS values are represented with brighter pixels and lower554

RSS values with darker pixels. The resulting grayscale images555

have a shape of (N, H, W, C), where N denotes the RPs,556

H represents the height (usually 1), W signifies the width557

(number of visible APs), and C represents the number of558

channels (typically 1 for grayscale). This conversion preserves559

the spatial information of RSS across the indoor space,560

facilitating effective localization.561

C. Capsule Neural Network Architecture562

The capsule neural network is a pivotal component563

of the SENTINEL framework, comprising five subcompo-564

nents: 1) the convolutional (CONV) layer; 2) PC layer;565

3) OC layer; 4) an agreement-based routing algorithm; and566

5) a majority voting layer. The enhanced capsule neural567

network in SENTINEL possesses several key differences568

from EDGELOC [28] which uses a simple capsule neural569

network: 1) unlike [28], SENTINEL integrates a majority570

voting layer to enhance prediction output; 2) unlike [28],571

SENTINEL is tailored specifically for processing grayscale572

fingerprint images; 3) [28] targets device heterogeneity only,573

whereas SENTINEL optimizes hyperparameters differently574

to simultaneously target mitigation of dynamic environment575

induced RSS fluctuations, device heterogeneity, and adver-576

sarial attacks; and 4) SENTINEL is pruned in the number577

of capsules (both PC and OC layers) and neurons within578

each capsule, resulting in a more lightweight deployment on579

resource-constrained edge devices than [28] while maintaining580

accuracy. We compare SENTINEL against EDGELOC [28] in581

Section V. In the rest of this section, we describe the various582

components of our SENTINEL capsule neural network.583

1) Convolutional (CONV) Layer: The CONV layer cap-584

tures spatial features within the grayscale fingerprint585

images. This layer employs convolutional filter kernels586

to extract distinctive patterns and features from the587

input images. Let us denote the grayscale RSS finger-588

print image as IM, which has dimensions (N, H, W, C).589

The convolutional layer consists of multiple filters ker-590

nels, denoted as F, which are applied to IM. The591

F slide across the entire IM, performing element-592

wise multiplications and summations, generating feature593

maps that highlight spatial features within the IM594

CON(p, q) =
H∑

i=0

W∑
j=0

IM(p − i, q − j) ∗ F(i, j). (8)595

In the equation above, CON(p, q) denotes the feature596

at position (p, q) in the CONV feature map and F(i, j)597

represents the corresponding element of the filter kernel.598

IM(p − i, q − j) represents the pixel value of IM at 599

position (p− i, q− j). The summation is performed over 600

the height (H) and width (W) of F. During training, 601

the network learns the optimal values of F through 602

backpropagation. This process enables the CONV layer 603

to automatically detect and extract relevant spatial fea- 604

tures from the input RSS fingerprint images, providing 605

meaningful representations that contribute to the overall 606

accuracy of the localization process. 607

2) PC Layer: The PC layer receives the spatial features 608

extracted by the CONV layer and serves as the next 609

processing stage in the capsule neural network. A 610

capsule is defined as a group of neurons, where each 611

capsule within the PC layer generates a vector, referred 612

to as the “activity vector.” This vector captures both the 613

magnitude (presence) and position of each feature in 614

the RSS fingerprint. Unlike traditional neural networks 615

(such as MLPs and CNNs) where neurons in subsequent 616

layers are densely connected to all neurons in the 617

preceding layer, the PC layer consists of capsules, where 618

each capsule corresponds to a specific spatial feature 619

detected by the CONV layer. The activity vector (uij) for 620

capsule i is obtained through a series of computations 621

Si =
∑

j

Vij ∗ CONj (9) 622

uij = Squash(Si) = ||Si||2
1 + ||Si||2

∗ Si

||Si|| . (10) 623

In (9), Si represents the input for each capsule i, which 624

is calculated as the weighted sum of outputs from the 625

CONV layer using weight tensors (Vij). These weight 626

tensors determine the contribution of each feature from 627

the CONV layer, enabling the PC layer to selectively 628

focus on relevant spatial features. Subsequently, Si is 629

squashed using a nonlinear activation function known as 630

the squash function. The squash function transforms Si 631

into activity vectors uij, which represent the magnitude 632

and position of the detected spatial features within the 633

RSS fingerprint. This enables the PC layer to encode 634

spatial relationships between features, enhancing the 635

network’s ability to capture meaningful representations 636

of the indoor environment. 637

3) OC Layer: The OC layer performs classifications based 638

on the activity vectors (uij), received from the PC layer. 639

Each capsule in the OC layer corresponds to an RP class 640

which determines the probability of the input fingerprint 641

image belonging to that class. The classification process 642

in the OC layer involves computing the agreement score 643

between the uij and the weights tensors (Wij) associated 644

with each capsule in the OC layer 645

ai = uij ∗ Wij (11) 646

Pi = Softmax(ai). (12) 647

In (11), ai represents the agreement score for capsule i. 648

The Wij contains the weight tensors associated with 649

the connections between the PC and OC layers, deter- 650

mining the importance of each spatial feature for the 651
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classification of the corresponding RP class. In (12), Pi652

denotes the predicted RP of capsule i after applying the653

Softmax function to ai from (11). This function assigns654

probabilities to each RP class based on ai, facilitating655

the classification process.656

4) Agreement-Based Routing Algorithm: The agreement-657

based routing algorithm plays a crucial role in refining658

the weight tensors (Wij) between the PC and OC layers.659

After the OC layer receives activity vectors (uij) from the660

PC layer, the agreement scores (ai) are computed using661

(11), representing the agreement between the uij and662

Wij associated with each capsule in the OC layer. The663

goal of the routing algorithm is to iteratively adjust664

these weights tensors based on the ai achieved. The665

routing process involves several iterative steps, where666

ai are used to update the Wij in a way that maximizes667

agreement between the ai and the predicted RP classes.668

This iterative refinement enhances the network’s ability669

to accurately classify input fingerprint images.670

5) Majority Voting Layer: The majority voting layer is the671

final component of the proposed capsule neural network.672

This layer aggregates the predictions (Pi) generated by673

the OC layer for each capsule. The majority voting674

mechanism aims to determine the final prediction by675

selecting the RP class with the highest number of aligned676

predictions from the capsules in the OC layer677

Prediction = Argmax(P0, P1, . . . , Pn). (13)678

In (13), n represents the total number of RP classes. The679

Argmax function selects the RP class with the highest680

probability as the final prediction. By ensuring that a681

majority of capsules agree on the final class, the majority682

voting layer reduces the impact of erroneous predictions683

from individual capsules.684

V. EXPERIMENTS685

A. Experimental Setup686

In this section, we describe our experimental setup, designed687

to evaluate the performance of our proposed SENTINEL688

framework in real-world scenarios. Our objective is to conduct689

comprehensive comparisons with state-of-the-art indoor local-690

ization frameworks, including CNNLOC [21], VITAL [27],691

EDGELOC [28], ADVLOC [31], and CALLOC [32],692

using simulated (FGSM, PGD, and MIM) and real-world693

RSSRogueLoc [35] data. Data was collected during regular694

working hours, incorporating both dynamic and static occu-695

pants to reflect realistic conditions. Table I shows an overview696

of the real devices utilized in our experiments.697

To ensure a comprehensive evaluation across diverse envi-698

ronmental conditions, we select building floorplans with699

varying factors, such as path length, the number of visible700

APs, and environmental noise characteristics, as shown in701

Fig. 7. Our data collection strategy is designed to facilitate702

thorough training and testing of the SENTINEL framework.703

For each building floorplan, we allocate five fingerprints per704

RP for training and one fingerprint per RP, per device, and705

per building, for testing. Acknowledging the substantial effort706

TABLE I
DEVICES USED TO COLLECT RSS FINGERPRINTS

Fig. 7. Building floorplan layouts with varying path length, visible APs, and
characteristics.

required to gather a large volume of offline training data, we 707

restrict the collection of offline data to a single device. To 708

facilitate this, we designate the MOTO device as the primary 709

training device. All devices in Table I are used in the online 710

phase during testing. 711

The SENTINEL framework is configured with specific 712

architectural hyperparameters. The CONV layer is equipped 713

with 32 filters and the PC layer comprises eight capsules 714

with each capsule containing a dimension of 32 neurons. 715

Furthermore, the OC layer contains capsules equal to the 716

number of RP classes with a dimension of 32 neurons each, 717

trained over 300 epochs using the Adam optimizer (learning 718

rate = 0.001) and the sparse categorical cross-entropy loss 719

function. The capsule neural network architecture results in 720

a total of 2 117 687 trainable parameters, with a compact 721

model size of 8.07 MB, facilitating low overhead deployment 722

on most resource-constrained edge devices. Additionally, the 723

SENTINEL framework incorporates an adversarial training 724

mechanism aimed at enhancing its resilience against potential 725

adversarial attacks. Adversarial samples are generated using 726

the FGSM, PGD, and MIM approaches with ε set to 0.1 and 727

ϕ set to 100% (for training only). Each variant of our trained 728

capsule neural network, augmented with adversarial samples, 729

is denoted with a suffix. For instance, the model trained 730

without adversarial samples is referred to as SENTINEL- 731

NONE, while models trained with FGSM, PGD, and MIM 732

samples are labeled SENTINEL-FGSM, SENTINEL-PGD, 733

and SENTINEL-MIM, respectively. 734
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B. Effects of Adversarial Training on Heterogeneity735

In this section, we evaluate the performance of the SENTINEL736

framework under various adversarial training scenarios (FGSM,737

PGD, and MIM), separately. In Fig. 8, we present heatmaps738

depicting the performance of the four SENTINEL variants:739

1) SENTINEL-NONE; 2) SENTINEL-FGSM; 3) SENTINEL-740

PGD; and 4) SENTINEL-MIM. These models are individually741

trained on data collected exclusively from a single device742

(MOTO) and incorporate their respective adversarial training743

techniques. SENTINEL-NONE is trained without including any744

adversarial samples, providing a comparison of the effects of745

including adversarial training to the SENTINEL framework.746

Evaluation of these model variants are conducted using data747

acquired from all eight available devices across the five building748

floorplans, without any adversarial interference.749

In Fig. 8, the x-axis of each heatmap represents the testing750

devices, while the y-axis corresponds to the different buildings751

used for evaluation. Each cell within the heatmap indicates752

the average prediction error (in meters) across all RPs for753

a specific combination of test device and building floorplan.754

We observe differences in prediction errors across all the755

SENTINEL variants, due to the differences in adversarial756

training methods used. We note an increase in prediction errors757

when going from buildings 1–5, which can be attributed to758

increasing environmental dynamic causing higher variations in759

the selected building paths. For instance, building 1 exhibited760

low environmental noise, likely due to fewer people moving761

along the path during the testing. It also had relatively shorter762

path lengths, which overall resulted in lower prediction errors.763

In contrast, building 5 experienced higher environmental noise764

due to significantly more people moving along the path during765

the testing phase, and longer path lengths, leading to higher766

prediction errors. SENTINEL-FGSM consistently exhibits767

the lowest prediction errors, followed by SENTINEL-PGD,768

SENTINEL-NONE and SENTINEL-MIM. This trend suggests769

that while more advanced adversarial training methods like770

PGD and MIM may offer refined perturbations, they also771

introduce complexity and potential instability during training,772

leading to overfitting. The overfitting occurs because the adver-773

sarial samples generated by PGD and MIM involve multiple774

iterations of perturbations, making them more complex and775

causing feature mismatches between RP classes. As a result,776

the model may become overly specialized to these adversarial777

examples, reducing its ability to generalize well to unseen,778

real-world data. SENTINEL-FGSM however, stands out due779

to its balance between perturbation effectiveness and model780

stability. Its noniterative nature allows for smaller, controlled781

perturbations, reducing the chances of a feature mismatch782

between legitimate and FGSM samples.783

To illustrate the impact of device heterogeneity and assess784

the performance of the SENTINEL variants, we present785

Fig. 9 more clearly. Here, the x-axis represents the testing786

devices, and the y-axis denotes the prediction error in meters.787

Each bar represents the average prediction error per device788

across all building floorplans, with error bars included to789

indicate the range of errors observed per testing device,790

with the lower whisker representing the best case and the791

Fig. 8. Performance of the SENTINEL variants across different devices and
building floorplans.

Fig. 9. Performance summary for SENTINEL variants.

upper whisker representing the worst-case location error. In 792

Fig. 9, we observe that the average error per testing device 793

remains consistent for each SENTINEL variant. However, 794

the SENTINEL-NONE variant exhibits the least consistency 795

in prediction errors across the testing devices, with some 796

devices showing higher errors while others show lower 797

errors. This suggests lower resilience to heterogeneity for 798

the SENTINEL-NONE variant. Conversely, other SENTINEL 799

variants show consistent prediction errors regardless of the 800

training or testing devices used, indicating better heterogeneity 801

resilience. Furthermore, incorporating adversarial training not 802

only strengthens the robustness of the SENTINEL variants 803

against adversarial attacks but also improves their resilience 804

to heterogeneity. By subjecting the models to adversarial per- 805

turbations during training, the variants learn more generalized 806

features, making them less sensitive to fluctuations from the 807

testing devices. Particularly noteworthy is the performance of 808

SENTINEL-FGSM, with up to 1.48×–2.43× lower average 809

and worst-case errors compared to the rest of the SENTINEL 810

variants. 811

C. Evaluating the Impact of Varying Compromised APs (ϕ) 812

In this section, we investigate the impact of varying ϕ 813

in the testing phase, using different adversarial attack meth- 814

ods (FGSM, PGD, and MIM), on the performance of the 815

SENTINEL variants. To maintain consistency, we set the 816
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Fig. 10. Performance of the four SENTINEL variants on simulated
adversarial attacks through varying ϕ.

attack ε to 0.1, indicating 10% added perturbations per ϕ. In817

Fig. 10, the x-axis represents ϕ, ranging from 0 (no attacked818

APs) to 100 (all visible APs being attacked). The y-axis819

denotes prediction errors measured in meters and the line plots820

illustrate the performance of each SENTINEL variant under821

the three adversarial attack methods. In Fig. 10, each marker822

indicates the average prediction error across all testing devices823

and building floorplans.824

We observe that as ϕ increases, the prediction errors for825

all SENTINEL variants also increase. However, there is a826

stabilization point observed at approximately ϕ = 50% for827

most variants methods (except SENTINEL-NONE, which828

lacks adversarial training), suggesting that the performance829

of the SENTINEL variants remains relatively unaffected830

when a significant portion of APs are compromised. This831

stabilization point indicates that the SENTINEL variants are832

resilient to attacks involving large numbers of compromised833

APs. Additionally, most variants demonstrate resilience against834

various adversarial attack methods (except SENTINEL-835

NONE), as evidenced by the almost flat line in prediction836

errors. Specifically, when subjected to the FGSM attack,837

the SENTINEL-FGSM model exhibits 1.90×, 2.35×, and838

2.64× lower average errors compared to the SENTINEL-PGD,839

SENTINEL-NONE, and SENTINEL-MIM models, respec-840

tively. Similarly, under the PGD attack, the SENTINEL-FGSM841

model demonstrates 1.69×, 2.75×, and 2.40× lower average842

errors compared to the SENTINEL-PGD, SENTINEL-NONE,843

and SENTINEL-MIM models, respectively. Lastly, when influ-844

enced by the MIM attack, the SENTINEL-FGSM model shows845

1.67×, 2.71×, and 2.15× lower average errors compared to846

the SENTINEL-PGD, SENTINEL-NONE, and SENTINEL-847

MIM models, respectively.848

D. Evaluating the Impact of Varying Perturbations (ε)849

In this section, we explore the impact of varying lev-850

els of perturbation strength (ε) in the testing phase on851

the performance of all SENTINEL variants. Our objective852

is to investigate how the prediction performance of each853

SENTINEL variant is affected by changes in ε, ranging from854

0 (indicating no attack) to 0.5 (representing a 50% increase855

in added perturbations). In Fig. 11, the x-axis represents the856

Fig. 11. Performance of the three SENTINEL variants on simulated
adversarial attacks through varying ε.

Fig. 12. Performance comparisons of all SENTINEL variants against state-
of-the-art indoor localization frameworks.

varying levels of ε, while the y-axis denotes the prediction 857

error in meters. Each bar in the plot signifies the average 858

prediction error across all testing devices, building floorplans, 859

and ϕ values. Additionally, error bars are included to depict 860

the range between the best (lower whisker) and worst-case 861

(upper whisker) prediction errors. Our analysis reveals that 862

as ε increases, there is a slight rise in prediction errors. 863

However, we observe that all SENTINEL variants stabilize 864

at approximately ε = 0.2 (except SENTINEL-NONE, lack- 865

ing adversarial training). This suggests that regardless of 866

the increase in perturbation strength, all SENTINEL models 867

demonstrate consistent performance. Furthermore, we observe 868

that the SENTINEL-FGSM variant consistently outperforms 869

all other SENTINEL variants. On average, SENTINEL- 870

FGSM demonstrates 1.48×, 2.81×, and 1.90× lower average 871

prediction errors compared to SENTINEL-PGD, SENTINEL- 872

NONE, and SENTINEL-MIM, respectively. The superior 873

performance of the SENTINEL-FGSM variant, even as ε 874

increases during testing, can be attributed to the robustness 875

gained through FGSM-based adversarial training. Although 876

the model was trained with a fixed ε value, the adversarial 877

training process encourages the model to capture underlying 878

patterns in feature positions that are susceptible to adversarial 879

attacks. This enables the model to generalize and adapt to 880

perturbations even on varying ε. In contrast, other methods 881

like PGD and MIM often induce significant perturbations 882

in underlying features, leading to overfitting and reduced 883

resilience during testing. The chosen epsilon range of 0–0.5 884

represents a practical attack range for indoor localization [39]. 885

E. Comparison Against State-of-the-Art Frameworks 886

In this section, we compare the performance of all 887

SENTINEL variants against state-of-the-art indoor localization 888

frameworks across various parameters, including different 889
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TABLE II
MODEL PARAMETERS, SIZE OF ALL FRAMEWORKS

devices, building floorplans, ε (ranging from 0 to 0.5), and ϕ890

(ranging from 0 to 100). Fig. 12 presents a box and whiskers891

plot, showcasing the comparison of the best case (lower892

whisker), worst case (upper whisker), and average (orange893

line) errors across all frameworks. This enhanced resilience894

can be attributed to the adversarial training and capsule895

neural network employed by the SENTINEL framework.896

The FGSM-based adversarial training introduces optimal897

adversarial features and feature dispositions (magnitude and898

positions), contrasting with other adversarial training meth-899

ods that may lead to overfitting. The proposed capsule900

neural network treats each feature as a vector, effectively901

recognizing and capturing underlying patterns between the902

original (clean) and adversarial samples during training.903

This enables the SENTINEL-FGSM model to demonstrate904

lower prediction errors across various scenarios and metrics905

compared to the other frameworks. The SENTINEL-FGSM906

model demonstrates 1.47×, 1.55×, 1.68×, 1.91×, 2.82×,907

2.83×, 3.13×, and 3.5× lower average errors compared to908

SENTINEL-PGD, CALLOC, ADVLOC, SENTINEL-MIM,909

SENTINEL-NONE, EDGELOC, CNNLOC, and VITAL,910

respectively. Additionally, recognizing the need for lightweight911

frameworks adaptable for resource-constrained edge devices,912

we analyze the parameter count and memory footprint of the913

various frameworks as shown in Table II. SENTINEL yields914

a compact model size of 8.07 MB.915

F. Evaluation on the New Real-World Rogue AP916

Attack Dataset917

In this section, we introduce a novel Wi-Fi RSS finger-918

print dataset named RSSRogueLoc [35], designed to capture919

the detrimental effects of rogue APs for indoor localization920

systems. Unlike prior works which primarily rely on sim-921

ulated adversarial attacks introduced by methods, such as922

FGSM, PGD, and MIM, RSSRogueLoc delves into real-world923

adversarial scenarios, particularly those involving rogue APs.924

Building on the dataset outlined in Section V-A, RSSRogueLoc925

introduces a secondary testing dataset comprising up to five926

new devices configured as rogue APs (devices detailed in927

Table III), designed to execute evil twin attacks as discussed928

in Section III-A, where each rogue is configured to impact one929

legitimate AP. The RSSRogueLoc fingerprints were collected930

by incrementally introducing rogue APs across all RPs within931

each building floorplan. This sequential escalation started from932

Rogue 0, signifying the absence of all rogues, followed by933

Rogue 1 with one rogue per RP per floorplan, Rogue 2 with934

two rogues per RP per floorplan, Rogue 3 with three rogues935

TABLE III
ROGUE AP DEVICES USED IN RSSRogueLoc

Fig. 13. Performance comparisons of all SENTINEL models against state-
of-the-art on the RSSRogueLoc dataset.

per RP per floorplan, Rogue 4 with four rogues per RP per 936

floorplan, and finally Rogue 5 with five rogues per RP per 937

floorplan. The testing fingerprints were collected using all 938

eight devices mentioned in Table I. This process unfolded 939

over several weeks, to thoroughly capture the complexities of 940

rogue AP configurations across numerous RPs and building 941

floorplans. 942

To provide additional insights into the performance 943

of all SENTINEL variants and state-of-the-art baseline 944

frameworks on the RSSRogueLoc dataset, we present Fig. 13. 945

The SENTINEL-FGSM model demonstrates 1.51×, 1.65×, 946

1.68×, 1.91×, 2.04×, 2.27×, 2.34×, and 2.80× lower 947

average error compared to SENTINEL-PGD, CALLOC, 948

ADVLOC, EDGELOC, SENTINEL-MIM, SENTINEL- 949

NONE, CNNLOC, and VITAL, respectively. 950

VI. CONCLUSION 951

The SENTINEL framework proposed in this work exhibits 952

resilience against RSS fluctuations arising from environmental 953

noise, edge device heterogeneity, and challenging adversarial 954

attacks, due to its novel combination of adversarial training 955

and modified capsule neural networks, while being relatively 956

lightweight for edge device deployment. Through rigorous 957

evaluation, we found that the SENTINEL-FGSM variant 958

consistently achieves the lowest indoor localization errors, 959

outperforming all baseline frameworks by 1.47×–3.5× in 960

average errors and 1.83×–3.4× in worst-case errors on sim- 961

ulated adversarial attacks. Moreover, our introduction of the 962

RSSRogueLoc dataset, designed to capture real-world effects of 963

rogue APs (performing evil twin attacks in real-time), further 964

highlights the superiority of the SENTINEL-FGSM variant. 965

With 1.51×–2.8× lower average errors and 1.63×–2.74× 966

lower worst-case errors compared to other state-of-the-art 967

frameworks. 968
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