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Abstract—As the digital landscape continues to evolve, the1

security of computing systems has become a critical concern.2

Power-based covert channels (e.g., thermal covert channel s3

(TCCs)), a form of communication that exploits the system4

resources to transmit information in a hidden or unintended5

manner, have been recently studied as an effective mechanism to6

leak information between malicious entities via the modulation of7

CPU power. To this end, dynamic voltage and frequency scaling8

(DVFS) has been widely used as a countermeasure to mitigate9

TCCs by directly affecting the communication between the10

actors. Although this technique has proven effective in neutraliz-11

ing such attacks, it introduces significant performance and energy12

penalties, that are particularly detrimental to energy-constrained13

embedded systems. In this article, we propose different system-14

informed countermeasures to power-based covert channels from15

the heuristic and machine learning (ML) domains. Our proposed16

techniques leverage task migration and DVFS to jointly mitigate17

the channels and maximize energy efficiency. Our extensive18

experimental evaluation on two commercial platforms: 1) the19

NVIDIA Jetson TX2 and 2) Jetson Orin shows that our approach20

significantly improves the overall energy efficiency of the system21

compared to the state-of-the-art solution while nullifying the22

attack at all times.23

Index Terms—Countermeasures, covert channels, energy effi-24

ciency, machine learning (ML), security threats, security.25

I. INTRODUCTION26

IN TODAY’s evolving digital landscape, the significance27

of security and data privacy in the modern computing28

environment cannot be overstated. Within this context, covert29

channel communication has been recently highlighted as an30

emerging security threat for modern computing systems [1].31

In such a domain, power-based covert channels leverage the32

power consumption of a system to communicate information33

between malicious applications in a stealthy manner. The typ-34

ical mechanism to modulate the power of a system is through35

intensive computation on the device’s processing elements,36
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such as CPU [2], GPU [3] or FPGA-based components [4]. 37

Commonly, power-based covert channels are implemented as 38

TCCs, where the processing power translates into temperature 39

variations that are used as the medium for the communication. 40

In order to mitigate the threat of TCCs, and power-based 41

covert channels in general, several detection and counter- 42

measure techniques have recently emerged [5], [6], [7], [8], 43

[9], especially for general-computing devices. Even in such 44

platforms, the challenge of such techniques resides in effec- 45

tively detecting and mitigating the attack while reducing the 46

performance impact on the system. In the countermeasure 47

domain for such channels, DVFS has been proposed [5], [6], 48

as the default mechanism to tackle the attack. By dynamically 49

switching between high and low frequencies for the process- 50

ing device, the countermeasure technique affects the power 51

consumption of the device and the system, and hence directly 52

interferes with the covert communication. However, as it has 53

been shown, reducing the frequency of the CPUs affects the 54

performance of applications executing there. Current coun- 55

termeasures do not consider the system information in the 56

techniques, which can significantly affect its energy consump- 57

tion and performance. For a many-core system, for example, 58

when the attack is present at all times, the performance loss 59

for a benchmark application set due to the countermeasure has 60

been known to reach up to 25% [6], whereas the effect on 61

the energy on the system due to the countermeasure has not 62

properly been evaluated in the state-of-the-art. While energy 63

efficiency might not be the most relevant metric for general- 64

purpose computing platforms, for modern energy-constraint 65

embedded systems it is a critical factor, hence we target our 66

work to such devices. 67

To highlight the effect on performance and energy of the 68

uninformed state-of-the-art DVFS countermeasure for power- 69

based covert channels, especially on embedded systems, we 70

show the following motivational example. 71

1) Motivational Example: Fig. 1 shows different scenarios 72

for an application set executed on an NVIDIA Jetson TX2 73

embedded board. As shown, the device has two CPU clusters: 74

1) an ARM CPU cluster with a Quad-Core ARM Cortex-A57 75

and 2) a dual-core NVIDIA Denver 2 cluster. As initial state, 76

five applications from the SPEC2006 [10] benchmark suite and 77

a malicious TCC transmitter (named “tcc”) are executed on the 78

system. Shortly after beginning the execution, the malicious 79

application’s core is detected, using a proven detection tech- 80

nique (e.g., [8] and [9]). As a countermeasure, we first apply 81

DVFS to the core where the malicious application executes, 82
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Fig. 1. Effect of applying migration and DVFS on the energy and
performance (makespan) of the system.

as it is the state-of-the-art countermeasure technique [6].83

Because of the clustering, the DVFS technique is applied to the84

whole ARM cluster, producing high performance and energy85

penalties in the system since all other applications executing86

in the same cluster are affected.87

In order to show how this overhead can be reduced, we88

depict an alternative scenario, where we arbitrary migrate the89

malicious application from an ARM core to a Denver core,90

by dynamically exchanging the cores where omnetpp and tcc91

are executing, before applying DVFS. Because the offending92

application is now on the Denver cluster, we apply DVFS on93

that cluster, therefore affecting only one other application. By94

doing so, we are able to massively reduce the energy and95

performance overhead in the system.96

As it is shown, while this arbitrary decision is able to97

reduce the overhead penalties in comparison to blindly apply-98

ing DVFS, the performance and energy penalties are still99

significant. In a real setup, the dynamic state of the system100

(i.e., type of applications, CPUs’ frequencies, system load,101

etc.,) creates a complex environment where the ideal execution102

scenario for the current application set is not easy to predict.103

Because of this, we propose to employ system information as104

input to the countermeasure technique in order to tackle the105

attack holistically and efficiently.106

In this article, we focus on the challenge of mitigating107

power-based attacks in an energy-efficient manner. We seek to108

highlight this problem, which has not been done properly for109

embedded devices, and address it, by including information110

about the system as input to the countermeasure itself. We 111

propose the use of system-informed techniques based on 112

the combination of DVFS and dynamic task migration to 113

mitigate power-based covert channels. By doing so, we are 114

able to reduce the energy and performance penalties of the 115

countermeasures on the real platform, while still mitigating 116

the attack. 117

2) Contributions: The contributions of our work are the 118

following. 119

1) We propose for the first time the use of system-informed 120

techniques as countermeasures for power-based covert 121

channels. 122

2) We devise new countermeasures to power-based covert 123

channels from the heuristics and ML domain that com- 124

bine for the first time DVFS and dynamic task migration 125

to tackle the attack. 126

3) We deploy both our proposed countermeasures and the 127

state-of-the-art DVFS approach on a real embedded 128

platform. Our extensive evaluation demonstrates how 129

our techniques mitigate the attack while significantly 130

reducing both the energy and the performance penalties. 131

II. RELATED WORKS 132

A. Power-Based Covert Channels 133

In power-based covert channels, malicious applications 134

manipulate the power consumption of a device to communicate 135

information in a stealthy manner. While some approaches 136

leverage the power directly as the medium for the com- 137

munication for memory [11], CPUs [12] or cross devices 138

communication [13], the most common power-based covert 139

channels from a countermeasure perspective are TCCs, where 140

the means for the communication is the temperature variation 141

due to the power changes. Since the early implementation 142

of TCCs on multicore systems [2], faster and more reliable 143

covert channel implementations have appeared by leveraging 144

new modulation and encoding mechanisms [14], [15]. These 145

techniques have shown stable and improved transmission rates 146

(bps) with significantly low-error rates between 1%−11% [1]. 147

These types of power-based covert channels have spread 148

to utilize different new resources, such as GPUs [3], 3-D 149

multicore systems [16], and solid-state disks (SSDs) [17]. 150

B. Detection Techniques 151

Detection techniques for power-based covert channels 152

stem again from the TCC field. As detection mecha- 153

nisms, approaches employ both time and frequency domain 154

information about the performance of the cores, in instruc- 155

tions per cycle (IPC) or instructions per second (IPS), to 156

determine which core acts as a transmitter. Since the covert 157

channel requires the malicious transmitter application to 158

increase and decrease the power through periodic patterns 159

of intensive computation and idle states, the core where the 160

malicious transmitter application executes can be identified 161

by performance analysis [6]. With the advent of new attacks, 162

detection approaches have evolved from threshold-based 163

heuristics [6] to lightweight ML-based approaches [8], [9], 164

which can accurately identify the core where the transmitter 165
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application is executed in fast response times (i.e., around166

2 s for the frequency domain-based approach). As a base for167

our countermeasure technique, we assume that such a detector168

already exists in the system, as the aforementioned state-of-169

the-art approaches have shown great performance at detecting170

TCCs.171

C. Countermeasures to Power-Based Covert Channels172

As previously indicated, countermeasures to power-based173

covert channels are mostly focused on TCCs. Notably, since174

no detection technique is 100% accurate, simply halting a175

potentially offending application is not an option. The state-of-176

the-art for such attacks covers mainly noise and DVFS-based177

approaches. dynamic voltage and frequency scaling (DVFS) is178

a technique that has been historically used as a resource man-179

agement mechanism to optimize power, temperature, aging,180

and energy efficiency in different domains [18], [19]. As a181

countermeasure to power-based covert channels, DVFS has182

been proven [3], [5], [6] as a successful mechanism to mitigate183

the attack. Scaling up or down the frequency of a processing184

element changes its power and temperature response, hence185

directly jamming the communication medium between trans-186

mitter and receiver in a covert channel. However, throttling187

the cores can produce significant performance degradation188

in the applications that execute there. Even in a simulation189

environment, when an attack is present at all times in a190

many-core environment, DVFS has been reported to produce191

25% performance loss [6] in an application set. Nonetheless,192

DVFS remains the state-of-the-art countermeasure to power-193

based attacks, as it directly targets the root medium for the194

transmission: power consumption. The evaluation of DVFS as195

a countermeasure to power-based covert channels on embed-196

ded systems has not been done previous to this work. As197

we show in Section IV-D the performance loss of solely198

applying DVFS on an embedded system reaches around 70%199

on average, with some applications experiencing losses greater200

than 150% (see Fig. 1). We compare our countermeasure201

techniques against the β-based DVFS-only approach [6], as it202

remains the reference countermeasure technique.203

Other countermeasures have employed power-based204

noise [7], [20] to interfere with transmission, resulting in205

a power overhead similar to that of the DVFS approaches.206

Although the performance overhead of these noise-based207

approaches in the system has not been evaluated, the jamming-208

noise approach requires periodic unnecessary processing on209

the core where the potential attacker executes at all times,210

which restricts the performance of other applications executing211

on the same core or cluster. Moreover, this approach has been212

shown to fail to mitigate enhanced attacks [6].213

Task migration has previously been used as a standalone214

countermeasure to both side and covert channels. Specifically215

in many-core systems [21] proposed a task migration heuristic216

for side channel mitigation aimed at avoiding cache colocation217

between attacker and victim. Similarly, in [22], dynamic task218

migration has been employed to mitigate TCCs by increasing219

the physical distance between the transmitter and any potential220

receiver core. Although effective, this countermeasure assumes221

a multicore system in which the physical separation could be 222

significant enough to produce heat transfer decay. However, 223

increasing this separation distance might be impossible in 224

an embedded system with just a few cores. Moreover, this 225

countermeasure assumes that the receiver can only read the 226

thermal sensor on its core to decode the signal. In practice, 227

any user-space application is commonly allowed to read most 228

of the thermal sensors of the system, which means that no 229

matter the distance between the transmitter and the receiver, 230

the transmission would still be possible. In contrast, our 231

techniques employ dynamic task migration as a technique 232

to optimize efficiency while the countermeasure mechanism 233

remains as DVFS, which directly affects the power, hence 234

mitigating the attack from its root. 235

In summary, no other countermeasure in the state-of-the- 236

art for covert channels has leveraged task migration combined 237

with DVFS to mitigate the attacks. Moreover, to the best of 238

our knowledge, no other countermeasure in the state-of-the- 239

art has employed a system-informed technique to tackle both 240

security and efficiency. 241

D. Combining Task Migration and DVFS 242

The combination of task migration and DVFS to navigate 243

the complex runtime dynamics has been proposed in the 244

literature to achieve different optimization goals in nonsecurity 245

domains. Through the joint usage of task migration and 246

DVFS, Pourmohseni et al. [23] aimed to maximize the overall 247

system performance under a temperature constraint. Targeting 248

the same goal, a more recent work [24] proposed a cache 249

contention-aware ML-based technique that also employs task 250

migration and DVFS jointly. Using the same mechanism, 251

Marinakis et al. [25] also aim at maximizing performance but 252

under a power budget constraint. As shown by these recent 253

works, the task of optimizing different system goals is not 254

simple. The combination of task migration and DVFS has then 255

proven to be a valid mechanism to achieve this optimization. 256

In a similar way, we seek to bring this resource-management 257

mechanism to the security domain for the first time, to mitigate 258

power-based covert channels, while optimizing the energy 259

efficiency of the system. 260

III. SYSTEM-INFORMED AND EFFICIENT MITIGATION OF 261

POWER-BASED COVERT-CHANNEL ATTACKS 262

As previously discussed in the motivational example in 263

Section I, blindly applying DVFS, as done in the state-of-the- 264

art, can lead to high performance and energy penalties. To 265

tackle this problem, we intend to introduce system information 266

into the covert channel migration strategies by combining task 267

migration with DVFS. Each mitigation strategy attempts to 268

address the following challenge at runtime: Once an attacker 269

is detected, What is the best state the system should transition 270

into (enforced by task migration) before applying DVFS, 271

such that energy efficiency is maximized while the attack 272

is mitigated? In the following subsections, we show the 273

design and implementation considerations for our proposed 274

techniques, which seek to address exactly this challenge. 275
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Fig. 2. Overview of the orchestration resource management application.

A. Enabling System and Application Awareness276

As previously introduced, in this article we propose277

system-informed techniques to mitigate power-based covert278

channels through the combination of DVFS and dynamic279

task migration. To support the techniques, we implemented a280

resource management orchestration application. This orches-281

tration application, depicted as an overview in Fig. 2, is282

in charge of generating the experiment parameters (e.g.,283

workloads and initial mapping configurations), launching284

the applications, periodically monitoring the system metrics,285

selecting the countermeasure policy, and finally enforcing the286

technique by migrating the applications and applying cluster-287

level DVFS where required by the countermeasure technique.288

For the application set, we generate random workloads289

consisting of combinations of applications from the SPEC2006290

benchmark and a functional power-based covert channel291

transmitter in a one-application-per-core manner. Moreover,292

our monitoring tool periodically gathers execution metrics293

from the system, CPUs, and the cache, such as IPS, cache294

accesses, cache misses, and system power every 100 ms.295

We use perf [26] as the back-end mechanism to collect296

the performance counters information (both CPU and cache),297

and the platform’s power, we read the board’s power sensor298

accessible through Linux the file system.299

B. Heuristic-Based Mitigation300

To reduce the overhead in the system due to an uninformed301

countermeasure, we propose a simple yet effective technique302

that considers the performance of the cores to decide an303

efficient application mapping at run-time.304

Our worst-performing cluster—best-performing core305

(WPCBPC) heuristic follows the principle of reducing the306

effect of performance penalty due to DVFS. It does so by307

moving the attacker application first to the cluster that has308

the worst performance. Then within that cluster, it selects the309

most performing core as the candidate for migration before310

Algorithm 1: Our WPCBPC Heuristic

1 Input: attack_core, curr_mapping
Result: new_mapping: New application mapping

configuration
2 cluster0_cores← {0, 3, 4, 5};
3 cluster1_cores← {1, 2};
4 IPS_cluster0← 0;
5 IPS_cluster1← 0;
6 all_IPS← {};
7 for core in all_cores do
8 all_IPS.push(getIPS(core)) ; /* Gets the

performance for each core */
9 end

10 for core in cluster0_cores do
11 IPS_cluster0.push(all_IPS[core]) ;

/* Performance for Cluster 0 */
12 end
13 for core in cluster1_cores do
14 IPS_cluster1.push(all_IPS[core]);

/* Performance for Cluster 1 */
15 end
16 target_cluster← cluster1_cores;
17 if average(IPS_cluster0) < average(IPS_cluster1) then
18 target_cluster← cluster0_cores;
19 end
20 max← 0;
21 cid←−1;
22 for core in target_cluster do
23 if all_IPS[core] > max then
24 max← all_IPS[core];
25 cid← core ; /* Finds the best

performing core */
26 end
27 end
28 new_mapping← curr_mapping;
29 moving_app← curr_map[cid];
30 new_mapping[attack_core] = moving_app;
31 new_mapping[cid] = curr_mapping[attack_core];
32 return new_mapping;

enforcing the new application mapping dynamically in the 311

next scheduling epoch. The full pseudo-algorithm for this 312

technique is shown in Algorithm 1. In the algorithm, we first 313

collect the performance information (IPS) from each core 314

(lines 7–15). Then we identify the worst-performing cluster, by 315

comparing the averages of the accumulated IPS (lines 16–19) 316

over the last second of execution. The reason for selecting the 317

worst-performing cluster as the host to the potential attacker 318

is that the application of the subsequent DVFS policy will 319

affect the overall performance the least. To further enforce 320

this, we then select the best-performing core from that cluster 321

(i.e., g the core with the highest IPS over the last second 322

of execution) as the final candidate to which the malicious 323

application should be migrated (lines 22 and 27). In this way, 324

the best-performing application from the soon-to-be-affected 325

cluster will not be affected by the performance penalty due to 326
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Fig. 3. Overview of the ML-based countermeasure techniques.

DVFS. Finally, we create the new mapping configuration in327

the system (lines 28 and 31) where the cores belonging to the328

attacker and the best-performing application on the candidate329

cluster have been exchanged.330

C. Machine Learning-Based Mitigation331

To further explore other system-informed techniques, in332

this section, we introduce some ML-based countermeasures333

to power-based covert channels. Through different supervised334

ML algorithms, we seek for our models to learn the behavior335

of the system when mitigating the attack, and predict the336

best-possible task migration scenarios at run-time. Instead of337

relying on heuristics, this approach attempts to quantify the338

impact of different mitigation strategies on the overall energy339

efficiency of the system.340

Fig. 3 shows a high-level overview of our ML-based mit-341

igation. Our approach follows a four-step process both for342

design and runtime. First, at design time, the process starts by343

generating a random workload from the SPEC2006 benchmark344

suite plus the malicious application, as an initial mapping 1©.345

Then we start the execution of the workload and wait for a346

random delay (i.e., between 1 and 10 seconds) before starting347

the monitoring 2© to encounter different execution phases for348

the applications. After that, we collect the performance (IPS)349

for each core, cache misses and accesses, and system power350

information periodically every 100 ms for a window of 1 s.351

When the collecting period expires, we create a new random352

mapping for the current workload and then apply DVFS to the353

cluster to which the malicious application will be moved 3©.354

Then we set the new core’s affinity to each application, which355

enforces the dynamic task migration to the workload following356

the new mapping. Finally, we again collect the statistics for357

the workload under the new mapping configuration 4©. In358

addition to the mentioned metrics, we compute the energy 359

efficiency (Instructions per Joule) obtained as a consequence 360

of the migration and DVFS for the new mapping configuration. 361

We repeated this process more than 5000 times, collecting 362

over 180 individual data points per iteration. With the obtained 363

metrics for all the iterations, we form a training data set where 364

each row contains a representation of the original mapping, 365

its statistics, the representation of the new mapping, the new 366

statistics, and the obtained energy efficiency. This dataset 367

is then used to train the ML models we employ for the 368

countermeasure technique. 369

At run time, our techniques are applied in a continuous 370

process which starts from an initial running mapping config- 371

uration 5©. Then, we accumulate and collect the execution 372

metrics over the most recent second of execution 6©. After 373

that, for each possible nonredundant mapping variation, we 374

call the ML model to predict energy efficiency 7©. It is 375

important to note that in order to reduce the number of 376

possible mapping predictions, we ignore mapping variants 377

where all applications would reside in the same cluster but 378

in different cores. Although technically different, these are 379

redundant mappings in the sense that all applications are set to 380

execute within the same DVFS domain, and the DVFS action 381

would affect the same applications in the same manner. After 382

the energy efficiency prediction is performed for all possible 383

mappings, we select the new mapping variant that produces the 384

highest-efficiency value as the new mapping configuration for 385

the system. Finally, we enforce this new mapping configuration 386

by applying task migration and then DVFS to the cluster where 387

the malicious application is set to execute 8©. This process is 388

then repeated until the workload finishes the execution. 389

The following subsections describe in more detail each one 390

of the steps involved in the design and implementation of the 391

ML-based techniques. 392

1) Training Data Generation and Preprocessing: 393

Following the steps depicted in the design-time phase of 394

Fig. 3, we generate a dataset of ∼1M data points. The dataset 395

first undergoes standardization and scaling in order to adjust 396

the distribution of each feature to have a mean of zero and 397

a standard deviation of one, thereby enhancing the model’s 398

ability to converge during training. The scaling parameters 399

are saved for usage at runtime. Finally, we perform a random 400

split of 80% / 20% training / testing of the data set to prepare 401

for the model training phase. 402

2) Feature Selection and Model Training: The problem at 403

hand is a regression problem that can be solved with various 404

ML algorithms, e.g., decision trees, random forests (RFs), 405

neural networks (NNs), etc., where the label is set as the 406

energy efficiency of the system after migration. Therefore, 407

we first train different regressors from the scikit-learn Python 408

library [27] with their default parameters using the raw dataset 409

in order to identify the most promising algorithm for this 410

specific problem. Table I shows the root-mean-square error 411

(RMSE), R2 and mean-absolute error (MAE) scores achieved 412

by the different models, with the extreme gradient boosting 413

(XGBoost), RF and NN models outperforming the other 414

regressors. We then focus on training optimized models with 415

each of the three selected algorithms, as follows. 416
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We start with the XGBoost model since feature selection can417

be performed implicitly as part of its learning process. The418

algorithm identifies the most informative features through its419

tree-building mechanism, where it calculates a gain metric for420

each feature. This gain reflects the contribution of the feature421

to the model’s predictive accuracy, with higher values indicat-422

ing more importance and correlation with the efficiency label.423

To further refine the feature selection process, hyperparameter424

tuning is conducted through a grid search technique, aided by425

the GridSearch library from scikit-learn. The hyperparameters426

explored in the search include the number of estimators (up427

to 300), maximum depth of the trees (up to 9), learning rate,428

subsample ratio, and the column sample by tree. After explor-429

ing this search space, the following features are shortlisted430

for each core: cache accesses and misses, retired instructions,431

the encoded ID of the running applications, and the energy432

efficiency of the system before migration. The grouping of433

features per core is of particular importance, as it guides the434

model to learn the individual characteristics of the core as435

part of its cluster. The grid search yielded a final XGBoost436

model that used 10 estimators with a maximum tree depth437

of 6, which achieved a very high-prediction accuracy with438

MAE and RMSE scores of barely 0.19× 109 and 0.31× 109,439

respectively.440

Based on the feature importance insights obtained from441

training the XGBoost model, the same list of features is442

maintained for training the NN model. The search for the443

model topology, including the depth and breadth of layers, is444

performed using the Keras Tuner. The nonlinear ReLU activa-445

tion function is incorporated in each hidden layer to introduce446

nonlinearity and the Adam optimizer is used to effectively447

manage back-propagation and the learning rate during training.448

The final obtained NN model consists of 3 hidden layers with449

32, 32, and 16 neurons. Though slightly less accurate than the450

XGBoost model, the NN model also achieved a very high-451

prediction accuracy of the energy efficiency label, with MAE452

and RMSE scores of 0.29× 109 and 0.45× 109, respectively.453

Finally, with the same list of features as the two previous454

models, we train a RF model, by using GridSearch to explore455

a search space of parameters, including the number of trees456

in the forest and the maximum depth of each tree. The457

final model, which uses 100 trees, achieves a slightly higher-458

prediction accuracy compared to the NN model, with MAE459

and RMSE scores of 0.26× 109 and 0.45× 109, respectively.460

IV. RESULTS AND DISCUSSION461

A. Experimental Setup462

1) Evaluation Platform: For our evaluation, we conducted463

experiments on two real-world commercial embedded boards:464

the NVIDIA Jetson TX2 and NVIDIA Jetson Orin Nano.465

The Jetson TX2 platform features a heterogeneous two-466

clustered architecture with a Quad-Core ARM Cortex-A57 and467

a Dual-Core NVIDIA Denver 2 64-bit CPU. The Jetson Orin468

Nano also has a two-clustered architecture, with one cluster469

consisting of a Quad-Core ARM Cortex-A74 and the other470

cluster having a Dual-Core ARM Cortex-A74. Besides the471

TABLE I
PREDICTION ACCURACY OF DIFFERENT ML ALGORITHMS ON THE

VALIDATION DATASET

difference in the CPUs, the Jetson Orin boards features an 472

extra cache level, i.e., a 4MB L3 shared cache for both clusters. 473

These boards present a heterogeneous computing scenario, 474

comprised of clusters and cores with different capabilities that 475

follow the trend of modern high-end embedded devices, such 476

as those in the automotive or mobile industry. 477

Both platforms run Ubuntu as the operating system (18.04.6 478

LTS on the Jetson TX2 and 20.04.6 LTS on Jetson Orin). 479

Notably, while the different experiments are undergoing no 480

other application is executing besides normal OS operation. 481

Furthermore, we set the power management governor of 482

the boards to “userspace,” which avoids system-controlled 483

changes in the CPUs’ frequencies. Additionally, we restore 484

the frequency level of the cores to the maximum value before 485

executing each workload. 486

2) Benchmark Application Set: As the application set for 487

our experiments, we use two benchmark suites. First, for 488

training the ML-based models and general evaluation pur- 489

poses, we employed 18 applications from the SPEC2006 490

benchmark suite, all using the intermediate (i.e., the so-called 491

“train”) input size from the suite. The set includes applications 492

both from the integer and floating point benchmarks. The 493

full list is the following: gcc, milc, bzip2, sphinx3, astar, 494

lbm, bwaves, mcf, zeusmp, namd, h264ref, gobmk, povray, 495

gromacs, cactusADM, omnetpp, hmmer, and leslie3d. The 496

remaining applications from the SPEC2006 suite were not 497

used due to compilation or execution errors on the board. As 498

a second application suite, we employ the full set (i.e., apps 499

and kernels) from the PARSEC 2 benchmark [28], using the 500

simlarge input size. These applications are exclusively used 501

for evaluation purposes i,e., they not used for any training and 502

hence are unseen to the techniques. In Section IV-E we employ 503

these applications to show how our proposed system-informed 504

techniques can perform well independently of the application 505

characteristics with which where they were trained. 506

3) Malicious Application: The overview for both the mali- 507

cious transmitter and receiver applications is shown in Fig. 4. 508

The malicious transmitter is a C++ functional covert chan- 509

nel application that modulates the power of the system to 510

transmit information. Similar to other power-based covert 511

channels [5], [15], [16], we employ encoding and modulation 512

mechanisms, such as return-to-zero and on-off-keying on the 513

transmission. When encoding a bit of 1, the application contin- 514

uously performs a compute-intensive kernel that increases the 515
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Fig. 4. Overview of the transmitter and receiver malicious applications.

power consumption of the system. It consists of floating-point516

operations (i.e., square-root) combined with a busy-waiting517

loop. For a bit of 0, the malicious transmitter sleeps to reduce518

the power consumption.519

To evaluate the communication, we implement a simple off-520

line receiver which upon saving the power measurements from521

the sensors, filters them and then decodes and de-serializes the522

bits employing a threshold-based approach as done on other523

approaches (e.g., [5]). For the purposes of the evaluation, the524

channel frequency is set around 15 Hz. Due to modulation,525

the transmission speed of the channel is approximately 2.67526

bits per second, which is in the normal range for power-based527

covert channels (e.g., TCCs [2], [3]). As we show further in528

Section IV-C when no countermeasure is present in the system,529

the channel can communicate information reliably with low-530

error rates (i.e., less than 5%).531

B. Baseline and Naive Policies532

As a baseline for comparison with our proposed techniques,533

we implement the state-of-the-art DVFS technique from [6]534

(called simply “DVFS” in our experiments). This technique535

periodically toggles the frequency level of the CPUs from the536

highest value to a random low value, and vice-versa, to manip-537

ulate the power of the system and interfere with the attack.538

In our experiments, the high-value frequency is the maximum539

allowed frequency for the boards (i.e., 2000 MHz for the TX2540

and 1500 MHz for the Orin). As low frequencies, we employ541

the four lowest levels available in the boards (345, 500, 625,542

and 806 MHz for the TX2 and 115, 192, 268, and 345 MHz543

for the Orin). We employ a β value of 9, as used in [6]. In544

our setup, this means that while DVFS is applied, the affected545

cores execute at the high frequency for 0.25 ms and then at the546

lower frequency for 2.25 ms. To further visualize the effect of547

the DVFS on the malicious transmitter application, in Fig. 5548

we show the power signal from the Jetson TX2 platform for the549

transmission of a packet of 0xb5 without the countermeasure550

Fig. 5. Power signal of the Jetson TX2 platform during the transmission of a
packet of 0xb5 at a maximum core frequency (up) and while applying DVFS
to the attacking core (down). The annotated bits correspond to the decoded
packet by the receiver module.

(top) and while the DVFS countermeasure is active (bottom). 551

As can be seen from the figure, the final decoded message is 552

significantly affected by the changes in the power. We properly 553

evaluate the transmission error rates produced by the different 554

countermeasures techniques further in Section IV-C. 555

Furthermore, besides evaluating our system-information 556

countermeasures, we develop two extra naive approaches and 557

one semi-informed technique for comparison purposes. These 558

approaches do not consider the system information explicitly 559

but rather apply a fixed action. 560

The two naive techniques are fixed core on cluster 0 (FC0) 561

and fixed core on cluster 1 (FC1). In the FC0 approach, 562

we always migrate the malicious application to the first 563

core within the 4-processor cluster. In the FC1 technique, 564

we move it to the first core within the 2-processor cluster. 565

Additionally, in our evaluation we include an extra heuristic. 566

This straightforward semi-informed heuristc, which we name 567

worst-performing core (WPC), finds the core with the lowest- 568

IPS value and assigns the attacking application to that core 569

regardless of the cluster organization. For these three addi- 570

tional policies, when other applications are executing in the 571

newly selected core for the malicious application, we exchange 572

the applications’ cores so that the policy is always followed 573

in the same manner as our WPCBPC heuristic. After the 574

migration happens, we apply DVFS to the affected cluster to 575

mitigate the attack. 576

All the experiments that follow include the state-of-the-art 577

DVFS approach [6], the naive techniques, and our system- 578

informed approaches for comparison purposes. 579

C. Covert Channel Mitigation 580

In this first experiment, we evaluate the effectiveness of 581

the different countermeasure techniques to mitigate the attack 582

by affecting the transmission. To do so, we sent a total of 583
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TABLE II
AVERAGE RESULTS FOR THE BASELINE AND THE DIFFERENT COUNTERMEASURE APPROACHES UNDER

50 DIFFERENT WORKLOADS ON THE JETSON TX2 PLATFORM

TABLE III
AVERAGE RESULTS FOR THE BASELINE AND THE DIFFERENT COUNTERMEASURE APPROACHES UNDER

50 DIFFERENT WORKLOADS ON THE JETSON ORIN PLATFORM

Fig. 6. BER for the transmitter attack with no countermeasure applied (base)
and with each one of the evaluated countermeasure techniques on the Jetson
TX2 platform.

800 bits as 8-bit packets using the malicious transmitter. We584

implement a simple receiver that reads the power of the system585

and decodes the information being transmitted.586

Fig. 6 shows the results from this experiment. When no587

countermeasure is active (Base), the bit error rate (BER) from588

the transmission is very low (e.g., less than 5%). However,589

once the countermeasures are active, the BER increases590

drastically. Because of the transition to low frequencies in591

the DVFS, the power of the system tends to decrease, as592

seen in Fig. 5. This means that most of the bits of 1 would593

be interpreted as 0 while the bits of 0 are likely interpreted594

correctly. For a transmission with a balanced quantity of 1’s595

and 0’s, the expected error rate due to the countermeasure is596

then 50%. As seen in the figure, this is exactly the case for597

all of the techniques. Ultimately, this experiment shows that598

all the proposed countermeasures are effective for mitigating599

power-based covert channels.600

D. Energy and Performance Penalty601

In order to evaluate the energy and performance penalty602

of the different countermeasure techniques we devised an603

experiment where we generated 50 random workloads from the604

application set. After the workload generation, we simultane-605

ously run the applications alongside the malicious transmitter606

application. The transmitter application executes at all times 607

until the workload finishes. To replicate the behavior of a 608

covert channel detector, we wait for a period of 1 s after the 609

workload is launched, before triggering the countermeasure 610

technique. Then, we continue to apply the countermeasure 611

until the full workload has finished the execution. This process 612

is repeated for all the countermeasure techniques: the state-of- 613

the-art DVFS approach (DVFS), FC0, FC1, WPC, WPCBPC, 614

NN, RF, and XGBoost (XGB). Notably, to keep fairness, all 615

techniques are evaluated with the same workload set. The 616

orchestration of the experiment and corresponding monitoring 617

is done by the resource management application, as described 618

in Section III-A. To reduce the effects of cached data in the 619

experiments, we run all the workloads with one technique 620

before moving to the next technique. The workloads are 621

executed in the same order for all techniques. Additionally, 622

we add delay of about 5 s between each workload to let the 623

system return to a semi-idle state before a new execution. 624

Tables II and III show the averaged metrics obtained from 625

the experiment for the baseline (no countermeasure applied) 626

and all the different techniques on the two evaluation plat- 627

forms. As a metric for performance, we report the average 628

execution time of the whole workload from the moment we 629

launch all the applications (done simultaneously) until the last 630

application finishes its execution (i.e., makespan). 631

We measure the average power consumption of each run. 632

Then, we compute the energy and energy-delay Product 633

(EDP), as a measurement of the efficiency of the system. 634

Notably, since the resource management orchestration applica- 635

tion executes in the system concurrently with the workload the 636

overhead in the system due to techniques is already included 637

as part of the obtained metrics. 638

From the tables, it is clear that all the countermeasures 639

affect negatively the energy and performance of the system. 640

It is important to notice that this effect is expected as it is 641

the cost of mitigating the attack. Notably, the power in the 642

system due to countermeasures is overall reduced, as it can 643

also be seen in Fig. 7. From the normalized power, it would 644

seem as if the state-of-the-art DVFS and FC0 are the best 645

approaches. This again is a product of the frequency reduction 646
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Fig. 7. Normalized power in the system due to the different countermeasures
on both evaluation platforms.

Fig. 8. Performance and energy penalty over the baseline implementation in
the system due to the different countermeasure techniques on the Jetson TX2
platform.

Fig. 9. Performance and energy penalty over the baseline implementation in
the system due to the different countermeasure techniques on the Jetson Orin
platform.

due to the DVFS mechanism. However, as our further results647

show, from an energy and performance point of view the case648

is exactly the opposite. As our following results indicate, the649

power consumption of the system while the countermeasure650

is active is not an indication of the efficiency of the system,651

especially considering the performance penalty.652

To better dissect and analyze the impact on the system’s653

efficiency due to the countermeasures, we plot the performance654

and energy penalty for both platforms in Figs 8 and 9. As can655

be seen, the state-of-the-art DVFS countermeasure has a high656

overhead of about 70% for the Jetson TX2 and about 62%657

for the Jetson Orin. This is a significant difference over the658

reported 25% for general purpose multicore system [6]. This659

means that the performance penalty due to DVFS countermea-660

sure is significantly higher on an embedded system. This is an661

interesting effect that has not been reported before this work.662

Fig. 10. EDP penalty in the system due to the different countermeasures on
both evaluation platforms.

Moreover, the FC0 technique has the worst performance 663

and energy penalty in both platforms. This outcome can be 664

expected since this approach forces the DVFS to be applied 665

to the bigger cluster, which consistently affects more cores 666

(and applications) at all times when applying DVFS. On 667

the other hand, the naive FC1 technique effectively reduces 668

the performance and energy penalties when compared to the 669

simple DVFS approach by affecting fewer cores. 670

More importantly, our system-informed approaches reduce 671

the performance penalty by up to 40% and up to 60% for 672

the Jetson TX2 and Orin, respectively, when compared to 673

the state-of-the-art technique. From an energy perspective, 674

our system-informed techniques reduce the penalty due to the 675

DVFS state-of-the-art countermeasure by about 20% in the 676

Jetson TX2 and up to 50% in the Jetson Orin. Moreover, 677

when combining the effect of both energy and performance in 678

EDP form, as can be seen in Fig. 10, it is clear that system- 679

informed approaches are generally more energy-efficient than 680

the reference and their naive counterparts. At their best, these 681

techniques managed to reduce the EDP penalty by up to 84% 682

and 142% for the TX2 and Orin boards, respectively, when 683

compared to the simple state-of-the-art DVFS technique. 684

Our two other ML-based techniques resulted in slightly less 685

EDP reduction compared to our XGB-based technique in the 686

TX2 platform, while RF outperformed XGB on the Orin board. 687

On the Jetson TX2 board, our NN reduced the penalty by 688

about 70% while our RF reduced it by 48% compared to the 689

simple state-of-the-art DVFS technique. Given the observed 690

performance of the two models at design time (Table I), this 691

result was not necessarily expected, as RF outperformed NN in 692

terms of prediction accuracy. One possible explanation for this 693

might be that the RF model experiences inefficient memory 694

access due to the unpredictable traversal across its numerous 695

decision trees, leading to irregular and intensive memory 696

usage, thereby increasing the processor’s energy demand 697

for memory accesses. On the other hand, our NN benefits 698

from more structured and regular memory access patterns, 699

reducing memory bandwidth requirements, and minimizing 700

data movement across the processor cores, thereby further 701

conserving energy. This represents an example where the 702

execution of the policy itself as part of the system changes the 703

expected behavior. As a result, the accuracy superiority of RF 704

was suppressed on this board, eventually leading to a longer 705
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TABLE IV
AVERAGE RESULTS FOR THE BASELINE, STATE-OF-THE-ART, AND SYSTEM-INFORMED COUNTERMEASURES

UNDER 25 UNSEEN WORKLOADS ON THE JETSON TX2 PLATFORM

TABLE V
AVERAGE RESULTS FOR THE BASELINE, STATE-OF-THE-ART, AND SYSTEM-INFORMED COUNTERMEASURES

UNDER 25 UNSEEN WORKLOADS ON THE JETSON ORIN PLATFORM

makespan and higher-energy consumption for the application706

workload compared to the NN. Even when their execution707

affects the performance and energy consumption of the system,708

our system-informed approach still significantly outperform709

the blind state-of-the-art approach.710

Interestingly, on the Jetson Orin board, RF outperforms NN711

as expected by the training. In fact, as Fig. 9 shows, RF and712

WPCBPC manage to produce at most 4% performance and 7%713

energy penalties in the system, which is a major improvement714

when compared to the state-of-the-art technique. In fact, this715

penalty is close to insignificant on this board, when compared716

to the case when no countermeasure is applied. We believe717

several factors contribute to this outcome. First, the Jetson718

Orin board features a unified 4MB L3 cache, which reduces719

the effect of the intense and irregular memory accesses the720

RF techniques had on the TX2 platform, which lacks an L3721

cache. Moreover, the Orin board’s homogeneous, modern, and722

more powerful CPUs further enhance performance, helping to723

achieve the expected results.724

E. Generalization to Unseen Workloads725

While our proposed system-informed heuristics are inher-726

ently application-agnostic (i.e., no application feature is727

considered in the migration logic), that might not necessarily728

be the case for the ML-based approaches. While we do not729

use features from the applications themselves as input to ML-730

models, since they are trained with execution traces from the731

SPEC2006 application set, it could be the case that the models732

are biased toward certain application behavior (e.g., memory733

or compute intensiveness).734

In order to show the generality and the effectiveness of our735

ML-based techniques under a wider diversity of applications,736

we devised an experiment where we ran 25 completely new737

workloads, where each workload is fully comprised of apps738

never seen during training from the PARSEC 2 benchmark.739

In each one of these new workloads, all applications are740

selected randomly from the PARSEC 2 full application list.741

Additionally, we have ensured that each application from the742

set appears at least in one workload. The results from this test 743

for both evaluation platforms can be seen in Tables IV and V. 744

For comparison purposes, we evaluate the baseline, the 745

state-of-the-art approach and the system-informed countermea- 746

sure techniques. As shown for both platforms, even though 747

new applications were unseen to the ML models during 748

training, they still achieve a very good performance, which is 749

consistent with our main experiments shown in Tables II and 750

III. Furthermore, as shown in Table V, XGB has delivered the 751

best performance out of the evaluated countermeasure tech- 752

niques, surpassing even the WPCBPC heuristic in the Jetson 753

Orin platform. This means that the ML-based techniques are 754

not only able to successfully generalize to unseen applications, 755

but can actually leverage the new workload characteristics to 756

overperform the other approaches. 757

F. Runtime Overhead Analysis 758

As mentioned in Section IV-D, the overhead that each 759

technique induces in the system from a performance and 760

energy point of view is already included in the final result 761

depicted in Table II, as the resource management orchestration 762

application runs in the system alongside the workload for all 763

the experiments. Moreover, the actual cost of task migration 764

in the applications themselves is also included already in the 765

reported metrics. 766

Nonetheless, in this section, we provide a more detailed 767

analysis on the part the overhead produced in the system by 768

each of the system-informed techniques. We omit the overhead 769

of the naive approaches (i.e., DVFS, FC0, and FC1) as no 770

processing is needed in the selection of new mapping to be 771

enforced by task migration. Table VI shows the overhead of 772

the system-informed techniques. As can be seen, the overhead 773

due to the heuristics is significantly lower than the ML-based 774

approaches since the computation needed to select the cluster 775

and core needed for the migration is rather simple for both 776

WPC and WPCBPC, and it only needs to be executed once 777

at each acting epoch (of 1 s). The ML-based approaches, 778

on the other hand, are called to predict the efficiency for 779

each possible nonredundant mapping confirmation. For the 780
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TABLE VI
OVERHEAD OF THE DIFFERENT SYSTEM-INFORMED TECHNIQUES ON THE

BOTH EVALUATION PLATFORMS

configuration of our evaluation platforms, this represents a781

maximum of 15 nonredundant mapping configurations to be782

evaluated. The number reported in Table VI is the accumulated783

overhead of the ML-base techniques for all calls. This means784

that in the worst case, the overhead of the techniques is rather785

small at about 128 ms. As a final remark, it should be noted786

that even though the heuristic approaches have much less787

overhead than the ML techniques, XGB is able to surpass the788

heuristics in terms of performance for the workloads as seen789

in Tables II and V. In other words, the overhead difference790

between both approaches is balanced by the improvement the791

XGB technique produces in the workload, which is in the792

end the relevant metric to compare both approaches on this793

platform.794

G. Machine Learning Versus Heuristics795

As our experimental evaluation has shown, our system-796

informed approaches are effective at mitigating the attack797

while reducing the energy and performance penalty on the798

system.799

While presenting techniques from both ML and heuristics800

domains, our intention in this article is not to indicate one best801

technique between the different approaches. On the contrary,802

as our results show, both approaches exhibit quite similar803

performance (the difference in EDP penalty in our main exper-804

iment between WPCBPC and XGB is less than 0.2%). We805

seek to show how both traditional and ML-based policies can806

effectively serve the purpose of an efficient countermeasure.807

Both approaches have advantages and disadvantages when808

used for this purpose. Both the WPC and our WPCBPC809

heuristics have low complexity and are very fast, as depicted in810

Table VI. These heuristics focus on optimizing performance,811

by reducing the negative effect of the DVFS mechanism.812

However, by only using IPS this approach does not consider813

the efficiency of the full system due to the current execution814

scenario. When dealing with diverse workloads, specially815

in a potentially more complex system (e.g., many-core),816

this information might not be sufficient to produce optimal817

results. The ML-based approaches, on the other hand, have a818

greater overhead when compared to the heuristics, but as just819

discussed in Section IV-F they compensate for this overhead820

by producing efficient execution scenarios. Moreover, the ML-821

based approach utilizes execution features to learn the behavior822

of the system, even hidden or nonmeasurable parameters.823

This means that with enough training, the approaches can be824

extended and adapted to perform well under diverse execution825

scenarios. Indeed, as we have demonstrated exactly this in826

Section IV-E, where the ML techniques were successfully able827

to generalize correctly to the new application set. Moreover,828

under this new execution scenario, the XGB model managed829

to outperform the best heuristic for the Jetson Orin board, 830

showing the potential advantage of the ML approach versus 831

the implemented heuristics. 832

By providing countermeasures from both heuristics and ML 833

domains we presented two successful avenues to the problem of 834

mitigating power-based covert channels in an efficient manner, 835

Regardless of their domain, our system-informed techniques 836

were able to defeat the state-of-the-art countermeasure, proving 837

to be the better solution to the problem. 838

V. CONCLUSION 839

In this article, we have highlighted the performance and 840

energy impact of traditional DVFS-based countermeasures to 841

power-based covert channels on embedded systems. We have 842

shown how the state-of-the-art DVFS method can produce up 843

to 70% performance penalty on an embedded platform when 844

the attack is present at all times, which differs greatly from 845

the reported penalty for general purpose multi-/many-core 846

systems. Moreover, we have proposed different techniques 847

from the heuristic and ML domain that, for the first time, 848

combine dynamic task migration and DVFS to mitigate 849

such attacks in an efficient and system-informed manner, 850

significantly reducing both energy and performance penalties. 851

From our experimentation on the commercial NVIDIA Jetson 852

TX2 and Jetson Orin embedded platforms, we were able to 853

successfully reduce the EDP penalty due to the state-of-the- 854

art DVFS-only countermeasure by more than 84% and 142%, 855

respectively, proving that our system-informed techniques are 856

a better approach to power-based covert channel mitigation. 857
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