
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 1

LightFS: A Lightweight Host-CSD Coordinated File
System Optimizing for Heavy Small File Accesses

Jiali Li , Zhaoyan Shen , Duo Liu , Member, IEEE, Xianzhang Chen , Senior Member, IEEE,
Kan Zhong, Zhaoyang Zeng , and Yujuan Tan

Abstract—Computational storage drive (CSD) improves the1

data processing efficiency by processing the data within the stor-2

age. However, existing CSDs rely on the host-centric file systems3

to manage the data, where the layouts of files are retrieved4

by the host and sent to the CSD, resulting in additional I/O5

overhead and reduced processing efficiency, especially in heavy6

small file accesses. Moreover, the lack of consistency mechanisms7

poses potential consistency issues. To address these challenges, we8

propose LightFS, a lightweight host-CSD coordinated file system9

for the CSD file management. To reduce task offloading overhead,10

LightFS builds an index file .ndpmeta which summarizes the files’11

metadata and shares between the host and CSD to enable CSD to12

retrieve the file layout in storage directly. To ensure consistency,13

LightFS employs a metadata locker and an update synchronizer.14

The metadata locker leverages the out-of-place update feature15

of the flash to capture a snapshot of the file to be written16

without any data copy, while the update synchronizer triggers17

metadata updates by monitoring the addresses of written blocks18

to ensure that the modified file is successfully written to the CSD.19

We implement and evaluate LightFS on a real testbed, and the20

results demonstrate that LightFS achieves 3.66× performance21

improvement on the average in real-world operations.22

Index Terms—Computational storage, file system, in-storage23

computing, near-data processing (NDP).24

I. INTRODUCTION25

THE AMOUNT of data generated worldwide is expected26

to grow to 175 ZB by 2025 [1], however, the “storage27

Manuscript received August 2, 2024; revised GENMONTH, GENDAY
GENYEAR; accepted August 3, 2024. This work was supported in part by
the National Natural Science Foundation of China under Project 62372073
and Project 62072059; in part by the Fundamental Research Funds for the
Central Universities under Project 2023CDJXY-039, Project 2024CDJGF-
032, and Project 2024CDJGF-003; in part by the Chongqing Post-Doctoral
Science Foundation under Project 2021LY75 and Project cx2023080; and
in part by the Open Project Program of Wuhan National Laboratory for
Optoelectronics under Project 2022WNLOKF018. This article was presented
in the International conference on compilers, architectures, and synthesis for
embedded systems (CASESs) 2024 and appears as part of the ESWEEK-
TCAD Special Issue [DOI: 10.1109/TCAD.2024.3443010]. This article was
recommended by Associate Editor S. Dailey. (Corresponding author: Duo
Liu.)

Jiali Li, Xianzhang Chen, Zhaoyang Zeng, and Yujuan Tan are with the
College of Computer Science, Chongqing University, Chongqing 400044,
China.

Zhaoyan Shen is with the School of Computer Science and Technology,
Shandong University, Shandong 266590, China, and also with the Wuhan
National Laboratory for Optoelectronics, Huazhong University of Science and
Technology, Wuhan 430074, China.

Duo Liu and Kan Zhong is with the School of Big Data and Software
Engineering, Chongqing University, Chongqing 400044, China (e-mail:
liuduo@cqu.edu.cn).

Digital Object Identifier 10.1109/TCAD.2024.3443010

wall” problem posed by slow storage interfaces severely 28

hampers the efficiency of the data processing [2], [3]. Near- 29

data processing (NDP) architecture is seen as an effective 30

way to solve the storage wall problem by processing the data 31

within storage to avoid the heavy I/O transmission overhead. 32

The storage device that supports in-storage computing tasks 33

(i.e., NDP task) is called the computational storage drive 34

(CSD), which is widely used in the database [4], [5], [6], 35

recommendation system [7], [8], AI [9], etc. To keep com- 36

patibility with the existing I/O stacks, many CSDs [10], [11], 37

[12], [13] utilize the file systems for the data management. 38

However, the adoption of traditional file systems will lead to 39

performance and consistency problems. 40

When the host offloads an NDP task to CSD, CSD 41

needs to retrieve the file data in storage directly. However, 42

the traditional storage devices only support the block 43

interface [14], leaving CSDs unaware of file semantics. Thus, 44

how to tell the CSD where to find the file, i.e., retrieve 45

file layout is an essential step in CSD task offloading. 46

There are two types of file management methods used in 47

CSD, the host-centric file system [10], [11], [15], [16] 48

and the in-storage file system [12], [17], [18], as shown in 49

Fig. 1. 50

1) Host-centric file system applies the traditional file system 51

architecture where the file is managed by the host 52

completely. As shown in Fig. 1(a), when offloading the 53

NDP task, the host needs to ❶ read the flash to get 54

the file metadata block and ❷ retrieve the file layout 55

(i.e., the block numbers of the file). The directories and 56

inodes are read level by level, hence steps ❶ and ❷ 57

typically need to be repeatedly executed several times 58

before retrieving the file layout. After that, the host ❸ 59

sends NDP request, including operations and file layout 60

to CSD. The task manager in CSD ❹ retrieves the file 61

data according to the given layout and ❺ sends it to the 62

computing unit. 63

2) In-storage file system offloads the whole file system into 64

storage devices and provides the file interface to the 65

host. As shown in Fig. 1(b), host ❶ sends the NDP 66

request, including operations and file path to CSD after 67

❷ permission check in kernel. After the task manager 68

receives the file path, it will ❸ retrieve the file layout 69

from the in-storage file system by ❹ multiple flash reads, 70

like the host-centric file system. Finally, the retrieved 71

file data is ❺ computed. 72

These methods incur two problems as follows. 73

1937-4151 c© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

https://orcid.org/0000-0002-0691-0457
https://orcid.org/0000-0001-9526-6634
https://orcid.org/0000-0002-3040-2065
https://orcid.org/0000-0001-8987-377X
https://orcid.org/0009-0000-7253-3971
https://orcid.org/0000-0002-9055-5389

2 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS

Fig. 1. Architecture comparisons between traditional architectures and
LightFS. (a) Host-centric file system. (b) In-storage file system. (c) LightFS.

1) Performance Degradation: Is caused by the structure74

of the traditional file system. Before sending an NDP75

request, file path parsing and metadata reading need to76

be done level by level, resulting in significant additional77

I/O overhead, and the NDP request has to be blocked78

before the layout is retrieved. Even worse, with the79

development of AI, social networks, embedded devices,80

etc., the data is often stored as large numbers of81

small files [19], [20], [21], leading to heavy small file82

accesses. When confronted with this scenario, CSD must83

retrieve the layout of each file independently, resulting84

in additional I/O overhead that amounts to over 50%85

(detailed in Section II-C), diminishing the advantage of86

CSD in retrieving and processing the data within the87

storage. Although the in-storage file system can reduce88

the communication time with the host, it still requires a89

lot of additional flash reads to retrieve the file layout.90

2) Data Consistency: Due to the presence of page cache,91

out-of-order writes[22], and I/O schedulers[23] in the92

operating system, the exact timing of when a file is93

written to the storage is unknown. If an NDP request is94

sent on a writing file, inconsistent data may be read by95

the NDP request (detailed in Section II-D). Typically,96

current CSDs address this issue by file locking and force97

synchronization [10], [11], but this approach results in98

request blocking and reduced processing efficiency.99

To address these problems, we propose a lightweight file100

system LightFS that runs across the host and CSD. The101

architecture of LightFS is shown in Fig. 1(c). LightFS consists102

of two components: 1) LightFS-Host and 2) LightFS-CSD.103

Their primary roles are to handle the user requests in the host104

and manage the file metadata in the CSD. LightFS tackles the105

aforementioned problems with the following two key designs.106

1) To reduce task offloading overhead, LightFS builds an107

in-storage index file, .ndpmeta, which is recognizable by108

both LightFS-Host and LightFS-CSD. This allows the109

CSD to directly retrieve the file layout from the storage.110

As shown in Fig. 1(c), when LightFS-Host ❶ receives111

an NDP request, it converts the file/directory path to an112

inode number (ino) list and ❷ sends it to the CSD after113

a permission check. LightFS-CSD ❸ retrieve the file114

layout using the ino rather than the full path name. The115

.ndpmeta file records the layout of each file, so LightFS-116

CSD can ❹ retrieve the layouts of a batch of files with a117

single flash read and quickly send the flash read requests 118

for ❺ computing, avoiding separate handling for each 119

file. 120

2) To ensure consistency, LightFS employs a metadata 121

locker and an update synchronizer. The metadata locker 122

locks the file before a file is written, and the update 123

synchronizer monitors written blocks to update the 124

metadata immediately when all the blocks of a file are 125

written. To avoid NDP task blocking when file writing, 126

LightFS takes advantage of the out-of-place update 127

mechanism of flash, records the physical addresses of 128

the file, and forbids garbage collection before the file is 129

written to CSD. This mechanism improves concurrency 130

performance while ensuring the file data consistency. 131

We implement the LightFS prototype based on Linux and a 132

real testbed cosmos plus OpenSSD [24], to demonstrate the 133

performance improvement of LightFS with the host-centric 134

and in-storage file system. The experimental results show that 135

LightFS can achieve an average of 88× (with warmup) and 136

26.8× (without warmup) task offload acceleration when pro- 137

cessing heavy small files. For real-world operations, LightFS 138

can achieve 3.66× data processing accelerations on average. 139

In summary, the contributions of this article include as 140

follows. 141

1) As far as we know, we are the first to reveal the 142

consistency problem and the I/O overhead in heavy 143

small file access in existing CSDs, providing a compre- 144

hensive understanding through the detailed experimental 145

analysis. 146

2) We propose LightFS, a lightweight host-CSD coordi- 147

nated file system that innovatively builds and shares 148

the index files between the host and CSD to reduce 149

the file access overhead in NDP task offloading, while 150

maintaining compatibility with the existing software. 151

3) We implement a LightFS prototype on a real testbed and 152

demonstrate the performance improvement by compared 153

with widely used file management methods in CSDs. 154

The remainder of this article is organized as follows. In 155

Section II, we introduce the task offloading overhead and 156

inconsistency problems in CSD. Section III presents the design 157

of LightFS. Section IV evaluates the LightFS and analyses the 158

result. Section V concludes this article. 159

II. BACKGROUND AND MOTIVATION 160

In this section, we will introduce the task offloading 161

workflow of current CSDs, then reveal the performance and 162

inconsistency problems in detail. 163

A. Background of CSD and Flash 164

The concept of CSD was first proposed for the hard 165

disk drive (HDD) [3]. However, due to the slow speed of 166

HDD, storage interface bandwidth was not a performance 167

bottleneck. With the development of flash, solid-state drive 168

(SSD) bandwidth has increased significantly, making stor- 169

age interfaces gradually become the bottleneck for the data 170

processing [11], thus SSD-based CSD became the research 171

hotspots [5]. Compared to the commercial SSD, CSD [25] 172

LI et al.: LightFS: A LIGHTWEIGHT HOST-CSD COORDINATED FILE SYSTEM OPTIMIZING 3

Fig. 2. NDP task offloading workflow.

can directly access data and process it by built-in hardware173

accelerators [26] or embedded processors [7], and then only174

return results back to the host. CSD avoids the transfer of175

large amounts of the raw data, thereby improving the data176

processing efficiency.177

SSD and CSD typically use NAND flash as the storage178

medium [6], [27]. The read and write granularity of NAND179

flash is page, usually with sizes of 4, 16 KB, or higher.180

NAND flash chip is addressed by discrete physical addresses,181

but SSD needs to expose continuous logical addresses to the182

host. To bridge the gap, SSD utilizes a mapping table called183

flash translation layer (FTL) to translate the user-requested184

logical addresses into physical addresses of flash. NAND flash185

features write-after-erase, meaning before writing to a page,186

the block that the page locates needs to be erased first, a block187

typically comprising several dozen pages. Erasing incurs high188

overheads, so SSDs usually write modified data to another189

block’s page, and then update the FTL to point that logical190

address to the new physical page. This strategy is known as191

the SSD’s out-of-place update strategy [28]. Therefore, until192

a block is erased, the data inside can still be accessed via the193

physical addresses, a feature that LightFS utilized.194

B. NDP Task Offloading Workflow195

Many CSDs still utilize the block interface to communicate196

with the host, and the host employs the traditional file systems197

to manage the data on the CSD [10], [11], [15] for compati-198

bility purposes. Due to this limitation, CSD can only read the199

data by the block number and lacks the file system semantics200

inside CSD. Therefore, these file system-based CSDs require201

the host to use the filefrag function to call the fiemap system202

call to obtain the layout of files.203

The typical NDP task offloading workflow is depicted in204

Fig. 2. When an application ❶ sends an NDP request to the205

library, it utilizes the ❷ filefrag function to obtain the file206

layout from the file system. Subsequently, the file system207

executes the “❸ resolve the file path and sends a read request208

to retrieve the data block of the next path level, → ❹ read the209

flash, and → ❺ return the metadata flow” layer by layer until210

retrieving the layout of the given file path. Once the layout211

is ❻ returned to the library, the NDP request, including file212

layouts and operations, is ❼ sent to the CSD. CSD then ❽213

retrieve the file data based on the given file layouts, then ❾214

send the file to the computing unit, and finally ❿ return the215

result.216

Although in-storage file systems can avoid frequent data217

transfers between CSD and host during the file layout retrieval,218

existing in-storage file systems still utilize the traditional file219

FSR

frag-s

FSR

frag-s

0 500 1000 1500
Latency (us)

N
o
W
ar
m
up

W
ar
m
up

FSR

frag-m

frag-s

FSR

frag-m

frag-s

0 50 100 150 200 250 300 350 400
Latency (us)

N
o
W
ar
m
up

W
ar
m
up

Fig. 3. Latency breakdown of motivation examples. (a) Single file request.
(b) Multiple file request.

systems [12], [18], so multiple flash reads within the CSD are 220

still required to obtain the layout of a file. 221

C. NDP Task Offloading Overhead 222

As described above, each NDP task needs to retrieve the 223

file layout before offloading, which brings a lot of redundant 224

I/O and reduces the CSD efficiency, especially when dealing 225

with heavy small file access. Heavy small file accesses refer 226

to scenarios, such as log analysis and retrieval [21], sensor 227

data analysis [20], and dataset access during AI training 228

[29], [30]. These applications need to access a batch of small 229

files during execution. If the host sends an NDP request 230

for each file separately, the additional overhead brought by 231

filefrag and communication is significant. We demonstrate the 232

overhead through an experiment. We employ three methods 233

for offloading NDP tasks: 1) single-threaded filefrag (referred 234

to as frag-s); 2) multithreaded filefrag (referred to as frag-m); 235

and 3) an in-storage file system FSR [12], [31]. We offload 236

STATS64 [10] NDP tasks for 1 [Fig. 3(a)] and 100 [Fig. 3(b)] 237

16 KB files, respectively, and measure the average latency per 238

file with breakdowns. Details of the experimental setup can be 239

found in Section IV-A. 240

The results are shown in Fig. 3. We define a metric, percent- 241

age of additional overhead (PAO), to quantify the unnecessary 242

overhead during the NDP task processing of each file, which 243

includes operations, such as retrieving and transferring the file 244

layouts. PAO is defined as 245

PAO = Retrieve File + DMA + Others

Total Latency
. 246

A higher PAO indicates lower efficiency of the NDP tasks, 247

the ideal value of PAO is 0. When processing a single file 248

[Fig. 3(a)], if the system is warmed up, both frag-s and FSR 249

have a PAO of 55.3%; if not, frag-s and FSR have PAOs of 250

4 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS

Fig. 4. Inconsistency problem in CSD.

86.2% and 83.7%, respectively, due to the need for multiple251

I/O operations to read the file metadata from the storage.252

When processing multiple warmed-up files [Fig. 3(b)], the253

PAOs for frag-s, frag-m, and FSR are 22.5%, 46.5%, and254

39%, respectively. The higher PAO for frag-m is because255

it can leverage the parallelism of flash channels, resulting256

in much lower read times compared to the other methods.257

However, frag-m cannot eliminate additional overhead, such258

as individually sending requests for each file, resulting in high259

PAO, significantly impacting the execution efficiency of NDP260

tasks.261

Therefore, frag-s and FSR fail to fully exploit the par-262

allelism of flash channels, leading to significantly inferior263

performance compared to frag-m. However, in frag-m, the264

overhead of individual file layout retrieving and task sending265

takes up a lot of time. To address these issues, LightFS stores266

the layout of small files in an index file and supports in-storage267

layout retrieval. This approach optimizes the parallelism of268

flash channels, and minimizes the number of flash reads and269

communications between the host and CSD.270

D. Inconsistency Problem271

After a file is modified by an application, the actual written272

time of the file data is unknown due to the page cache and273

I/O scheduler in the operating system. This does not pose274

consistency problems in traditional storage devices because275

the host can track the write status. However, the CSD cannot276

access the host I/O stack status and must read directly from277

the storage, potentially reading a partially modified file.278

We illustrate this potential consistency problem with a279

simple example as shown in Fig. 4. Suppose a file contains280

blocks (d1, d2, d3), and the host sends an NDP request to281

process this file in storage. If the file is written before or282

during the NDP operation, block (d1, d2) is modified to block283

(d1′, d2′) in the host. But the write order and time of (d1′, d2′)284

is not determined, so the data read by NDP request may be285

an inconsistent state, such as (d1′, d2, d3) and (d1, d2′, d3),286

resulting in an error result. Some CSDs prevent this problem287

by locking the file [10], [11], preventing the NDP request288

and write request from executing simultaneously. However,289

file lock does not eliminate this problem because the updated290

file may delay writes, the data still may be written during291

the execution of the NDP request, thus the NDP request292

still will read the inconsistent data. Some CSDs force file293

synchronize [15] after each file write to ensure that the file294

data is written to storage, but this will cause task blocking and295

reduce the performance of the CSD. To address this problem,296

LightFS takes a snapshot of written files without any data copy297

by recording the physical address of files and prohibits garbage298

collection of the block. And LightFS accurately triggers the 299

metadata updates by monitoring the written blocks. 300

III. LIGHTFS DESIGN 301

In this section, we will introduce the design details 302

of LightFS, including architecture, workflow, and 303

synchronization mechanism. 304

A. Overview of LightFS 305

LightFS aims to enable CSDs to directly retrieve file layouts 306

in storage and minimize the number of required I/O operations 307

to read the file layouts. LightFS also needs to ensure the 308

consistency of retrieved files, i.e., preventing access to files 309

that are updating. To achieve this, LightFS constructs an index 310

file called .ndpmeta which is recognizable by both the host and 311

CSD. This file stores the metadata required for the offloading 312

NDP tasks. LightFS consists of two components: 1) LightFS- 313

Host and 2) LightFS-CSD, which seamlessly collaborate to 314

efficiently offload NDP tasks and update the metadata. 315

The structure of LightFS is shown in Fig. 5. LightFS-Host 316

is an user-space process that receives the user requests and 317

handles the metadata updates in the background. The main 318

functions of LightFS-Host include as follows. 319

1) Checking permissions for NDP requests, converting 320

paths into ino list, and sending them to LightFS-CSD. 321

2) Sending write notification requests to LightFS-CSD 322

before write requests. 323

3) Recording written files and periodically executing syn- 324

chronization then sending the updated file layouts to 325

LightFS-CSD. 326

The primary functions of LightFS-CSD include as follows. 327

1) The NDP task dispatcher retrieves the file layouts from 328

the metadata cache in CSD, and then reads them for 329

process. 330

2) The metadata locker records the physical addresses of 331

files in write notifications requests and forbids garbage 332

collection at those addresses. 333

3) The update synchronizer monitors written block num- 334

bers and triggers metadata updates after blocks are 335

written. Both host and CSD have a metadata cache, each 336

caching a portion of the .ndpmeta file. Detailed data 337

layouts and workflows are presented below. 338

B. Layout of LightFS 339

To keep compatibility with the existing I/O stacks and file 340

systems, LightFS stores the index file .ndpmeta on the backend 341

file system. Upon initialization, .ndpmeta is generated in each 342

directory that needs to be processed by CSD and stores the 343

metadata of every file and subdirectory within that directory. 344

The primary fields of .ndpmeta are illustrated in Table I. 345

1) Data Structure: The .ndpmeta file comprises two parts: 346

1) a header and 2) a body with multiple entries, which, 347

respectively, store the metadata about each file and .ndpmeta 348

in subdirectories. The header primarily contains the num- 349

ber of files/subdirectories in this directory and permissions 350

information about them. The aggregated permissions are used 351

to efficiently check permissions. When sending NDP requests 352

LI et al.: LightFS: A LIGHTWEIGHT HOST-CSD COORDINATED FILE SYSTEM OPTIMIZING 5

Fig. 5. Architecture of LightFS.

TABLE I
MAIN FIELDS OF .ndpmeta

for a large number of small files (e.g., “scan directory /A/”),353

reading the inode of each file to check permissions can be time354

consuming. To mitigate this, we summarize the permissions355

field (i.e., uid, gid, and mode) of all the files within the header356

if their permissions field is the same. This design is predicated357

on the assumption that the files in a directory typically have358

the same permissions. Thus, if files in a directory share the359

same permissions, they are checked once in the header to avoid360

redundant I/O before NDP task sending. However, if there are361

files with different permissions, the permissions field will not362

be set, and LightFS needs to check permissions file-by-file.363

The body of .ndpmeta mainly consists of 1) the extent364

(i.e., file layout) of each file or subdirectory, to retrieve the365

file in storage directly; 2) the name of the file, to efficiently366

resolve the file path; and 3) the ino of the file, to send requests367

to CSD. Notably, the extents field of a subdirectory’s entry368

stores the layout of the .ndpmeta file within it, enabling CSD369

to directly obtain the layout of subdirectories. The name and370

extents field may not be long enough to store the complete file371

name and layouts of a file. When the file name is too long,372

we use the space of the file’s next entry in the body and mark373

it in the flag to avoid space waste in short file names. If there374

are too many extents, it means that this is not a small file375

and LightFS will give up on storing the layout of this file. At376

this time LightFS takes the traditional method, to get the file377

layout through the filefrag and send it to the CSD.378

2) Metadata Cache: Host and CSD load .ndpmeta into the379

metadata cache upon the system startup and cache misses.380

However, the memory of CSD is limited [24]. Fortunately,381

the LightFS-Host and LightFS-CSD only require certain fields 382

of .ndpmeta, thus the metadata caches of host and CSD, 383

respectively, cache specific fields of .ndpmeta. 384

The main function of LightFS-Host is to check requests 385

and convert path names to ino. Therefore, its metadata cache 386

mainly consists of aggregated uid, gid, and mode for quick 387

permission comparison, as well as the names and ino of 388

files/subdirectories for searching the file names and converting 389

them into the ino lists. The main function of LightFS-CSD 390

is to retrieve the required file layout based on the ino lists. 391

Therefore, its metadata cache mainly contains extents for 392

reading the files, ino for retrieving the files corresponding to 393

the ino lists in requests, and flags for determining whether it 394

is a file or a subdirectory. 395

3) Space Overhead: LightFS requires additional storage 396

and memory space to store and cache .ndpmeta as follows. 397

1) Storage Space Overhead: Typically, LightFS only needs 398

an additional 128B of space for each file and directory. 399

When the average file size is 16 KB, the additional space 400

overhead is only 0.78%; 401

2) Memory Footprint: when caching the metadata of 10 000 402

files, the memory footprint for the host and CSD is 625 403

and 723 KB, respectively (since neither the host nor the 404

CSD needs to cache the entire index file). This overhead 405

is much smaller than the memory size of mainstream 406

CSDs [9], [24]. 407

C. Workflow of LightFS 408

We will introduce the workflow of LightFS from the 409

perspective of different request execution processes. 410

1) Initialize: Before using LightFS, initialization is 411

required, similar to formatting in other file systems. The 412

purpose of initialization is to generate a .ndpmeta file in the 413

directory specified by the user. LightFS iteratively fetches 414

metadata for each file or directory to build the .ndpmeta 415

file. Since the parent directory needs to store the metadata 416

of the .ndpmeta in subdirectories, LightFS uses a depth-first 417

approach to build from the bottom directory upward. After 418

initialization, fsync is used to ensure consistency and allow 419

LightFS-CSD to read out the root directory’s .ndpmeta. The 420

initialization only needs to be executed once for each directory. 421

6 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS

In subsequent system startups, LightFS read the .ndpmeta file422

from the underlying file system to build the metadata cache.423

2) I/O Request: Applications use libLightFS for POSIX-424

like file read and write operations, interacting with the425

LightFS-Host. Only write operations may cause inconsisten-426

cies, so libLightFS checks for write flags in open requests,427

sending a notification to lock the file layout if needed.428

Afterward, write requests are sent directly to the kernel I/O429

stack. The written file path is added to an unsync list, and430

LightFS-Host periodically executes sync to allocate blocks for431

these files. Unlike fsync, sync avoids blocking by pushing432

I/O requests to the kernel, reducing overhead. After a file433

is closed, its layout is retrieved by filefrag and updated in434

metadata, with low overhead (about 5us) since the file is still435

in memory. Detailed descriptions of the metadata locker and436

update synchronizer are in Sections III-D and III-E.437

3) NDP Request: Applications can send NDP requests to438

LightFS-Host through libLightFS. LightFS-Host first checks439

whether the permissions of the application process match those440

requested for the file or directory. If the permission check441

passes, LightFS-Host resolves the path in the metadata cache442

to locate the corresponding entry. During locating, LightFS-443

Host records the inos of each level of the path, forming an ino444

list, which is then sent to the NDP task dispatcher in LightFS-445

CSD. The reason for sending the ino list instead of the raw446

path string includes as follows.447

1) Reducing DMA data transfer volume.448

2) Decreasing CSD memory usage, as only inos need to449

be cached in CSD for the file indexing rather than the450

strings.451

3) Speeding up CSD matching, as matching each directory452

or file requires only integer calculations without time-453

consuming string parsing and matching.454

After receiving the ino list, the NDP task dispatcher obtains455

the target file’s extents (if the inode list points to a file), or456

all the file’s extents (if the inode list points to a directory)457

inside the target directory from the metadata cache. Then read458

data based on these extents and processes by the computing459

unit. In particular, if the file is being locked by a metadata460

locker, then the physical address will be fetched directly. If the461

target inode is not cached in the metadata cache, the .ndpmeta462

file will be read level by level to build the cache.463

D. Metadata Locker464

When an NDP request processes a written but not fully465

flushed file, the partially written file data will affect the466

consistency of the data read by the NDP request. Therefore,467

the file must be locked before the file is written to CSD468

completely. In order to lock files and avoid request blocking469

as much as possible, we propose the metadata locker. The key470

idea of the metadata locker is to leverage SSD’s out-of-place471

update mechanism as mentioned in Section II-A to lock the472

previous version of the file. Thus, before modifying a file, the473

metadata locker locks the file by recording the file’s physical474

addresses and forbids garbage collection on these addresses,475

equivalent to saving a snapshot of this file but without any copy476

of the data. NDP requests retrieve the required data through477

Fig. 6. Workflow of metadata locker.

these physical addresses, thus avoiding NDP request blocking 478

caused by the file writes. The workflow of metadata locker is 479

shown in Fig. 6. 480

Specifically, upon libLightFS receiving an open request with 481

a write flag, LightFS-Host will ❶ send a write notification 482

request to the metadata locker of LightFS-CSD. The meaning 483

of the write notification request is to notify CSD that the file 484

is about to be written, but it is unpredictable when the data 485

will be written to the storage. The application cannot write 486

data to the backend file system until the write notification 487

request returns because if the file system writes the new data 488

to the original logical address, the logical address recorded 489

in LightFS-CSD will point to the partially updated data. 490

Although the metadata locker leads to task blocking on the 491

subsequent write requests (locking each file takes about 20us 492

by our evaluation), it is still better than the file lock in that the 493

metadata locker only needs to block the requests for a period 494

of time when opening, without impacting the subsequent write 495

requests. 496

When the metadata locker receives a write notification 497

request, it ❷ adds the ino from the request to the locked file 498

list and ❸ creates a shadow address table for the file. The 499

shadow address table records the physical addresses of the 500

locked file. The metadata locker first locates the logical address 501

of the file in the metadata cache and finds the corresponding 502

physical address in the FTL, then ❸ adds these physical 503

addresses to the shadow address table. Subsequently, the 504

metadata locker ❹ adds the flash blocks corresponding to these 505

physical addresses to the GC forbid list, indicating that garbage 506

collection operations cannot be performed on these blocks. 507

Once the above steps are completed, the signal ❺ returns to 508

the open functions, allowing applications to ❻ freely write. 509

When an NDP request needs to retrieve the layout of the file, 510

it will get the physical addresses of the file from the metadata 511

locker. Therefore, the metadata locker ensures the consistency 512

of files and avoids the task blocking to improve the request 513

concurrency. 514

E. Update Synchronizer 515

The metadata locker effectively locks the file, but deter- 516

mining the time of unlocking the file and updating the 517

metadata poses a challenge. As discussed in Section II-D, 518

data written by the host’s traditional I/O stack may not be 519

immediately written to storage, leading to unpredictable write 520

LI et al.: LightFS: A LIGHTWEIGHT HOST-CSD COORDINATED FILE SYSTEM OPTIMIZING 7

Fig. 7. Workflow of update synchronizer.

times. For instance, if LightFS-CSD unlocks the file and521

updates metadata as soon as the file is closed, the file data522

may not yet be written to the CSD, resulting in NDP requests523

reading invalid the data. To address this issue, we propose524

the update synchronizer, which unlocks and updates LightFS525

when all the file data has been written to the CSD. The key526

idea of the update synchronizer is to monitor written blocks527

in the CSD and trigger metadata updates when all the blocks528

of a file data are received, to update the metadata as promptly529

as possible while maintaining the metadata consistency.530

The workflow of the update synchronizer is depicted in531

Fig. 7. It comprises a block monitor and update trigger in532

LightFS-CSD along with a periodic updater in LightFS-Host.533

When an application opens a file, it performs several steps:534

❶ adding the file to the unsync file list, ❷ sending a write535

notification to CSD, and ❸ locking the file using the metadata536

locker and writing the file to the kernel I/O stack as described537

in Section III-D. Upon completing the file write and closing538

it, libLightFS ❹ notifies LightFS-Host to mark the file as539

closed. To prevent excessive sync calls after each file write,540

LightFS employs the periodic updater to synchronize files at541

regular intervals. This periodic updater ❺ calls sync for each542

closed file in the unsync file list and retrieves the updated543

layout. The updated layout is then ❻ sent to both the update544

trigger and block monitor. The block monitor ❼ monitors the545

written addresses and compares them with the sent layout. If546

all addresses are received, it will ❽ trigger the update trigger.547

Subsequently, the update trigger ❾ updates the file layout in548

the metadata cache and notifies the metadata locker to unlock549

the file.550

Update of .ndpmeta: The update synchronizer only updates551

the metadata cache in LightFS-CSD. The updated .ndpmeta552

file is then written back by the host because it requires553

modification on the backend file system, only the host can554

update it. However, .ndpmeta needs to record the layout555

of .ndpmeta in subdirectories. Consequently, when a file is556

written in a directory, the .ndpmeta files in both the directory557

and its parent directory require updating. In that case, the558

issue of delayed writes and out-of-order writes of .ndpmeta559

files persists. If the cache of a .ndpmeta file is evicted560

and subsequently needs to be read again, there may still561

exist partially updated data. Therefore, updating .ndpmeta562

by the update synchronizer is still necessary to ensure con-563

sistency when the NDP requests retrieve the subdirectories564

layouts.565

Specifically, after LightFS-Host constructs the .ndpmeta file566

for each directory and calls fsync to ensure the metadata file567

is written to the CSD, LightFS-CSD reads the root directory’s 568

.ndpmeta to initialize the metadata cache, ensuring initial 569

consistency for all files and sub-directories. Before a file write, 570

LightFS caches the metadata of each level in the file path for 571

iterative updates. If files are modified, LightFS periodically 572

writes the updated metadata to the .ndpmeta file in the 573

backend file system. During updates, the metadata locker locks 574

the parent directory’s .ndpmeta to maintain consistent sub- 575

directory layouts for NDP requests. The update synchronizer 576

then updates the parent directory’s layout, and this iterative 577

update continues up the directory tree until reaching the 578

root directory or when a .ndpmeta is updated in its original 579

location. Hence, to maintain consistency, the root directory’s 580

metadata cache must be pinned, preventing eviction and 581

ensuring that consistent data is always retrieved. 582

F. Limitation of LightFS 583

LightFS does not make intrusive modifications to the kernel 584

and file system, its efficiency is subject to certain limitations. 585

First, LightFS still relies on filefrag to fetch the extent 586

of a file. However, unlike the traditional methods, LightFS 587

retrieves the layout in memory without redundant storage I/O. 588

Moreover, this layout retrieval occurs in the background, thus 589

not impeding the critical path of NDP task offloading. Second, 590

LightFS requires periodic calls of sync to ensure the file system 591

has allocated the data blocks. To mitigate this overhead in 592

the future, the block address allocation can be captured in 593

the kernel using eBPF. Third, modifications to a file entail 594

iteratively updating metadata in its parent directory, resulting 595

in issues of wandering trees [32]. Nevertheless, since CSD is 596

typically designed toward read-intensive applications [4], [33], 597

such issues are nonexistent in this scenario. This issue can be 598

solved by adopting an indirect index table similar to F2FS [32], 599

which is our future work. 600

IV. EVALUATION 601

In this section, we will introduce the experimental configu- 602

ration, followed by presenting and analysing the performance 603

improvement of LightFS compared to other methods. Our 604

evaluation of LightFS aims to address the following questions. 605

1) How does LightFS perform under different workloads 606

(e.g., different file sizes and counts)? (Section IV-B). 607

2) How does LightFS achieve its improvements? 608

(Sections IV-C and IV-D). 609

3) How does LightFS perform under the concurrent hybrid 610

requests? (Section IV-F). 611

4) How does LightFS perform under the real-world datasets 612

and operations? (Section IV-E). 613

5) How is the performance of LightFS on different backend 614

file systems? (Section IV-G). 615

A. Experiment Setup 616

1) Platforms: The host and CSD configurations are 617

detailed in Table II. We implement the LightFS-CSD pro- 618

totype on the cosmos plus OpenSSD platform [24]. It is 619

an open-source programmable SSD equipped with a 1 GB 620

DRAM and a Xilinx ZYNQ XC7Z045 controller with an ARM 621

8 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS

frag-s frag-m FSR LightFS frag-s frag-m FSR

1 10 100 200 300
0

100

200

300

400

500
La
te
nc
y
(u
s)

File Count
0

1

2

3

4

5

6

A
cc
el
er
at
io
n
ra
tio

1 10 100 200 300
0

100

200

300

400

La
te
nc
y
(u
s)

File Count
0

2

4

6

8

10

A
cc
el
er
at
io
n
ra
tio

1 10 100 200 300
0

100

200

300

400

La
te
nc
y
(u
s)

File Count
0

2

4

6

8

10

A
cc
el
er
at
io
n
ra
tio

1 10 100 200 300
0

100

200

300

400

500

600

La
te
nc
y
(u
s)

File Count
0

1

2

3

A
cc
el
er
at
io
n
ra
tio

1 10 100 200 300
0

100
200
300
400
500
600
700
800
900

La
te
nc
y
(u
s)

File Count
0

1

2

A
cc
el
er
at
io
n
ra
tio

(a) (b) (c) (d) (e)

Fig. 8. Average latency under different file count. (a) STATS32. (b) STATS64. (c) KNN. (d) Grep-ACC. (e) Grep-ARM.

(a) (b) (c) (d) (e)

1024 256 64 16 4
0

1k

2k

3k

4k

5k

La
te
nc
y
(u
s)

File Size (KB)
0
2
4
6
8
10
12
14

A
cc
el
er
at
io
n
ra
tio

1024 256 64 16 4
0

1k

2k

3k

La
te
nc
y
(u
s)

File Size (KB)
0

4

8

12

16

A
cc
el
er
at
io
n
ra
tio

1024 256 64 16 4
0

1k

2k

3k

La
te
nc
y
(u
s)

File Size (KB)
0

4

8

12

16

A
cc
el
er
at
io
n
ra
tio

1024 256 64 16 4
0k

3k

6k

9k

12k

15k

La
te
nc
y
(u
s)

File Size (KB)
0

1

2

3

A
cc
el
er
at
io
n
ra
tio

1024 256 64 16 4
0k
5k
10k
15k
20k
25k
30k
35k

La
te
nc
y
(u
s)

File Size (KB)
0

1

2

3

4

A
cc
el
er
at
io
n
ra
tio

Fig. 9. Average latency under different file size. (a) STATS32. (b) STATS64. (c) KNN. (d) Grep-ACC. (e) Grep-ARM.

TABLE II
HOST CONFIGURATIONS

Cortex-A9 processor. We equip cosmos plus OpenSSD with622

the two flash modules, each with 500 GB capacity and four623

flash channels, and are connected to the host via an eight-lane624

PCIe Gen2 interface. We implement the LightFS-CSD based625

on the firmware Greedy-FTL 2.7.0d [34]. About 1.5K LoC are626

added to the firmware.627

It should be noted that due to inherent compatibility628

constraints within the OpenSSD [34], the host is unable to629

utilize cutting-edge CPUs. Nevertheless, NDP tasks usually630

are I/O-intensive tasks, and the host only needs to retrieve631

the file layout and offloading tasks, thus the experimental632

results and conclusion will not be significantly impacted by633

the performance of the host’s CPU. We develop LightFS-Host634

atop an user-space nonvolatile memory express (NVMe) driver635

UNVMe [35], which ensures its seamless operability across a636

wide range of hosts.637

2) Comparisons: We compare LightFS with three NDP638

task offloading methods as follows.639

1) Filefrag-Single(frag-s): The most widely used task640

offloading method [10], [11], [15], [16] in computational641

storage that using the host-centric file systems. We642

obtain the block address of files through the fiemap643

system call and send them to the CSD.644

2) Filefrag-Multi(frag-m): The multithreaded Filefrag-645

Single, i.e., multiple Filefrag-Single threads are created,646

each of which retrieves the block address and sends NDP647

request independently. In our evaluations, frag-m usually648

TABLE III
EVALUATION APPLICATIONS

gets its best performance with eight threads, the same 649

number of I/O command queues as OpenSSD [24]. So 650

we use eight threads in all the afterward experiments. 651

3) FSR: An in-storage file layout retrieve method that 652

directly resolves the path of the file and reads the file in 653

CSD [12]. 654

Except for FSR, the backend file system of all the other 655

methods is Ext4. FSR only supports retrieving the data 656

layout in F2FS currently. Out of fairness, we will show the 657

performance of other methods on different file systems in 658

Section IV-G. 659

3) Applications: We evaluate five common in-storage com- 660

puting applications, detailed in Table III, with computation 661

times ranging from 17 to 500 us, noting that due to the 662

weaker performance of Cosmos Plus OpenSSD compared 663

to commercial CSDs [6], [9], execution times are generally 664

longer, but our results show that shorter computation times 665

lead to greater performance improvements with LightFS; all 666

results are averaged over five consecutive measurements, with 667

variance analysis discussed in Section IV-E. 668

B. Effect on Different Workload 669

We show LightFS’s performance compared to the other 670

methods across different applications, file counts, and file sizes 671

to analyse its performance improvements in various workloads. 672

LI et al.: LightFS: A LIGHTWEIGHT HOST-CSD COORDINATED FILE SYSTEM OPTIMIZING 9

(a) (b) (c) (d) (e)

Retrieve file layout Read file Compute DMA Others

22.2%

39.3%

36.5%

4.4%

frag-s frag-m FSR LightFS
0
50
100
150
200
250
300
350
400
450

La
te
nc
y
(u
s) 22.5%

46.5%

39.0%

6.1%

frag-s frag-m FSR LightFS
0
50
100
150
200
250
300
350
400

La
te
nc
y
(u
s) 24.0%

52.5%

39.4%

5.7%

frag-s frag-m FSR LightFS
0
50
100
150
200
250
300
350
400

La
te
nc
y
(u
s)

15.9%

18.1%

26.9%

0.9%

frag-s frag-m FSR LightFS
0

100

200

300

400

500

600

La
te
nc
y
(u
s)

11.5%

11.2%

17.6%

0.6%

frag-s frag-m FSR LightFS
0

100
200
300
400
500
600
700
800
900

La
te
nc
y
(u
s)

Fig. 10. Latency breakdown under different applications (with warmup). (a) STATS32. (b) STATS64. (c) KNN. (d) Grep-ACC. (e) Grep-ARM.

(a) (b) (c) (d) (e)

24.0%

41.5%

38.2%

12.7%

frag-s frag-m FSR LightFS
0
50
100
150
200
250
300
350
400
450

La
te
nc
y
(u
s)

23.7%

53.6%

40.3%

16.7%

frag-s frag-m FSR LightFS
0
50
100
150
200
250
300
350
400

La
te
nc
y
(u
s)

25.6%

55.9%

40.8%

17.9%

frag-s frag-m FSR LightFS
0
50
100
150
200
250
300
350
400

La
te
nc
y
(u
s)

16.4%

18.2%

28.0%

3.0%

frag-s frag-m FSR LightFS
0

100

200

300

400

500

600

La
te
nc
y
(u
s)

11.9%

11.6%

18.7%

1.9%

frag-s frag-m FSR LightFS
0

100
200
300
400
500
600
700
800
900

La
te
nc
y
(u
s)

Fig. 11. Latency breakdown under different applications (without warmup). (a) STATS32. (b) STATS64. (c) KNN. (d) Grep-ACC. (e) Grep-ARM.

For performance under different file counts, we fix the file size673

as 16 KB and gradually increase the number of files as shown674

in Fig. 8. The column depicts the average latency of processing675

each file under different methods, while the line depicts the676

acceleration ratio of LightFS compared to the other methods.677

LightFS demonstrates performance improvements across all678

the workloads. As the number of files increases, LightFS’s679

performance rapidly improves. It reaches its peak at 100 files680

and remains stable as the number of files continues to increase.681

This is because LightFS’s performance enhancement comes682

from batch-fetching file layouts to rapidly send the flash read683

operations in CSD, thereby improving the flash concurrency684

and avoiding the overhead of individually fetching metadata685

and sending requests for each file. Hence, as the number of686

files increases, LightFS’s advantage in batch-fetching metadata687

becomes more significant.688

For performance under different file sizes, we fix the number689

of files at 100 and gradually increase the file sizes as shown690

in Fig. 9. LightFS also presents performance improvements691

in all the cases with the performance improvement being692

more significant as the file size decreases. This is because693

when the file size is smaller, the time taken for data retrieval694

and computation is shorter. As a result, the PAO that can695

be avoided by LightFS becomes higher, leading to more696

significant performance gains. It is worth noting that in697

Grep-ACC, the performance improvements for 16 and 4 KB698

are nearly the same. This is because both the Grep-ACC’s699

hardware accelerator and flash read granularity are 16 KB,700

resulting in the same latency for them.701

Even in scenarios with fewer or larger files, LightFS702

consistently outperforms other methods. As the number of703

files decreases or file size increases, the speedup approaches704

but does not drop below 1, as shown in Figs. 8 and 9. This705

is because LightFS’s advantage in batch reading metadata706

diminishes with fewer files, and larger file sizes increase707

the proportion of necessary operations, reducing overhead. 708

Nonetheless, LightFS still performs as well as traditional 709

methods in less favorable workloads. Performance improve- 710

ments are most significant with shorter computation times, 711

such as in KNN, where LightFS achieves gains of up to 712

6.48×, 1.74×, and 8.22× over frag-s, frag-m, and FSR. 713

In longer computation tasks like Grep-ARM, improvements 714

stabilize at 1.59×, 1.13×, and 1.87×. LightFS excels when 715

files are smaller and more numerous, and computation times 716

are shorter. 717

C. Latency Breakdown 718

To reveal the source of LightFS’s performance improve- 719

ment, we conducted a breakdown of latency, measuring the 720

latency of each stage separately. We perform NDP operations 721

on 100 files of 16 KB each, and the experimental results are 722

shown in Figs. 10 and 11. 723

1) “Retrieve file layout” in frag-s and frag-m refers to the 724

time taken for the host to retrieve layout through filefrag, 725

while in FSR and LightFS, it refers to the time taken to 726

read the file layout in storage. 727

2) “DMA” refers to the time taken by CSD to receive the 728

file layouts or paths from the host. Due to the limited 729

command length of NVMe [37], the host cannot just 730

use reserved fields to transmit request parameters. Thus, 731

DMA is needed for CSD to read the path or file layout 732

from the host memory. 733

3) “Read file” time refers to the average time taken to read 734

the data for each file, indicating the average interval of 735

a file is read. Although the read latency of the flash 736

page is long, concurrent reads can significantly reduce 737

the average latency. 738

4) “Others” include task scheduling time, NVMe requests 739

sending time, etc. The number on each bar represents 740

10 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS

104 110 112 113 115

1 10 100 200 300102

103

104

La
te
nc
y
(u
s)

File Count

frag-s frag-m
FSR LightFS

409 423 408 445 437

1 10 100 200 300102

103

104

La
te
nc
y
(u
s)

File Count

frag-s frag-m
FSR LightFS

(a) (b)

Fig. 12. Task offloading overhead under different file count (file size 16 KB).
(a) With warmup. (b) Without warmup.

the PAO (i.e., the PAO in Section II-C), the lower the741

better.742

First, LightFS almost only spends time on reading and743

computation, with PAO significantly lower than the other744

methods. This is because LightFS first can batch retrieve file745

layouts, thus the average time taken for retrieving the file746

layouts is very short. Second, because the CSD only needs747

one DMA to obtain the requested directory, the average DMA748

time for each file is very short. Additionally, LightFS does749

not require much host involvement, avoiding redundant data750

transfers and host task scheduling, resulting in others’ time751

being short as well. When the system is not warmed up,752

compared to the warmed-up result, PAO for each method is753

increased. The main reason for the increment is primarily754

because the time to retrieve the file layout increases as it755

requires reading metadata from the flash.756

LightFS improves performance by both reducing over-757

head and enhancing flash read speeds. Unlike frag-m, which758

improves read performance by using multiple processes but759

still faces delays before sending read requests, LightFS quickly760

sends many requests after batch retrieving layouts, making full761

use of flash bandwidth. As a result, LightFS reads a file in an762

average of 17us compared to frag-m’s 22us. Applications with763

shorter computation times generally experience higher PAO, as764

fixed non-preemptive computation leaves more time wasted on765

unnecessary operations. For example, frag-m’s PAO for KNN766

reaches 52.5%, while LightFS achieves a 1.75× acceleration767

by reducing this overhead.768

D. Effect on Task Offloading769

We evaluated LightFS performance improvements for the770

NDP task offloading. NDP task offloading refers to the latency771

of CSD in obtaining the layout of all the requested files. Hence,772

for the filefrag method, offloading overhead refers to the time773

taken for the host to retrieve the layout then send to CSD,774

and CSD to receive the data layout via DMA. For LightFS775

and FSR, offloading overhead refers to the time taken for the776

host to send the file path, and for CSD to directly read the file777

layout inside CSD.778

Fig. 12 demonstrates the impact of file count on NDP task779

offloading overhead, showing that while LightFS’s overhead780

remains nearly constant as it batch-fetches file layouts, the781

overhead for other methods grows linearly due to fetching782

and sending layouts individually; this is because LightFS only783

(a) (b)

102 112 118 127 125
4KB 16KB 64KB 256KB 1MB

0k

2k

4k

6k

8k

10k

12k

La
te
nc
y
(u
s)

File Size

frag-s frag-m
FSR LightFS

388 408 441 429 440

4KB 16KB 64KB 256KB 1MB
0k

2k

4k

6k

8k

10k

12k

La
te
nc
y
(u
s)

File Size

frag-s frag-m
FSR LightFS

Fig. 13. Task offloading overhead under different file size (100 files). (a) With
warmup. (b) Without warmup.

10
.1
3

5.
95

11
.6
7

3.
29

16.61

25
.3
2

14
.5
6

10
.7
1

38
.8
8

14
0.
7

4.
36

2.
28

2.
55

2.
64

3.84

0.
14

0.
17

0.
2

0.
27

0.
19

ST32 ST64 KNN ACC ARM
0

500

1000

1500

2000

La
te
nc
y
(u
s)

frag-s frag-m
FSR LightFS

11
.7

9.
5 10
.2
7

13
.3
4

16
.6
6

0.
75

0.
72

0.
7

3.
42 2.
05

3.
1

1.
43 1.
61

6.
67

1.
9

0.
08

0.
09

0.
11

0.
05 0.
14

ST32 ST64 KNN ACC ARM
0

250

500

750

1000

La
te
nc
y
(u
s)

frag-s frag-m
FSR LightFS

4.
39

1.
23

3.
52

4.
38

0.
99

6.
93

4.
33

4.
07

33
.4

70
.1
3

3.
36

6.
19

3.
9

2.
37

2.
16

0.
46

0.
23

0.
2

0.
19

0.
2

ST32 ST64 KNN ACC ARM
0

500

1000

1500
La
te
nc
y
(u
s)

frag-s frag-m
FSR LightFS

8.
41

1.
56 12
.0
5

9.
67

12
.8
7

0.
6

0.
47

0.
67

1.
29

0.
92

2.
01

2.
34 3.
65

1.
73

3.
08

0.
05

0.
04

0.
08

0.
02

0.
06

ST32 ST64 KNN ACC ARM
0

200

400

600

800

La
te
nc
y
(u
s)

frag-s frag-m
FSR LightFS

(a) (b)

(c) (d)

Fig. 14. Average latency comparisons on real datasets. (a) Hadoop.
(b) Doppler. (c) Weather. (d) CIFAR-10.

incurs additional time for reading layouts from the metadata 784

cache after initially reading metadata from flash, with minimal 785

impact on initialization time as the file count grows. Fig. 13 786

further shows that file size has little effect on the offloading 787

overhead for LightFS, as its batch retrieval process minimizes 788

the impact, leading to greater performance improvements over 789

other methods, particularly with smaller files where layout 790

retrieval overhead becomes more pronounced. 791

E. Effect on Real-World Dataset 792

With the development of AI and IoT, the data is typically 793

gathered and processed in the form of numerous small files. 794

We deploy several real-world datasets in CSD, including 795

images, system logs, and sensor data to show LightFS’s 796

performance in real-world scenarios. Information about these 797

datasets is provided in Table IV. We perform the real-world 798

operations outlined in Table III on these datasets, the results 799

are shown in Fig. 14. The height of each column represents 800

the average latency in processing each file, and the error bars 801

indicate the standard deviation of multiple measurements. For 802

clarity, we have labeled the standard deviations at the top of 803

the bars. 804

LI et al.: LightFS: A LIGHTWEIGHT HOST-CSD COORDINATED FILE SYSTEM OPTIMIZING 11

frag LightFS FSR frag LightFS FSR
0

100

200

300

400

L
at
en
cy
(u
s)

File System

Ext3 Ext4 F2FS XFS

w/ warmup w/o warmup

(a) (b)

Fig. 15. (a) IOPS comparison between file locking and LightFS. (b) Performance comparison under different backend file systems.

TABLE IV
INFORMATION OF REAL-WORLD DATASETS

LightFS significantly outperforms other methods, achieving805

up to 11.07× faster performance with an average boost of806

3.66×. The largest gains are in STATS64 and KNN (5.35×807

and 5.13×), while Grep-ACC and Grep-ARM show smaller808

improvements (1.73× and 1.81×). This is because Grep’s809

longer data processing time reduces the impact of NDP810

offloading, whereas shorter tasks benefit more from LightFS.811

Since CSDs are often used for simple data tasks, LightFS812

typically shows strong performance gains, especially with813

smaller files. For example, in the cifar-10 dataset, LightFS is814

6.14×, 1.72×, and 7.33× faster than frag-s, frag-m, and FSR,815

respectively. In the weather dataset, with larger files, the gains816

are 2.73×, 1.17×, and 3.09×. LightFS performs better with817

smaller files because it eliminates more redundancy overhead.818

LightFS is also more consistent, with the lowest stan-819

dard deviation of 0.15us, compared to 8.41us, 18.03us, and820

3.06us for frag-s, frag-m, and FSR. This stability comes821

from running LightFS-Host in user space and LightFS-CSD822

in the CSD’s embedded environment, avoiding disruptions823

from kernel file systems and scheduling. Frag-m is less stable824

due to multi-threading, which causes kernel preemption and825

PCIe contention. LightFS avoids these issues by handling826

concurrency without multi-threading and reduces overhead by827

not sending NDP requests for each file.828

F. Effect on Hybrid Request829

We evaluated the impact of file lock on the performance830

of CSD. We use three processes to read, write, and send831

STATS32 NDP requests to a 16 KB file at the same time,832

and statistics the I/O per second (IOPS) of each operation.833

We lock the file by flock function during the file operation,834

TABLE V
LATENCY OF FILEFRAG UNDER DIFFERENT BACKEND FILE SYSTEM

to achieve the multithreading situations in the other methods 835

[10], [11]. We also show the performance of each process 836

executing independently to demonstrate the performance upper 837

bounds. 838

The experimental results in Fig. 15 show IOPS improve- 839

ments for read (452.5×), write (4×), and NDP (1.03×) 840

requests. LightFS achieves high read IOPS by avoiding 841

request blocking, thus nearly approaching performance limits. 842

Although write requests incur some performance loss due to 843

the metadata locker notifications, they still surpass the file 844

locking methods. NDP request performance is similar across 845

methods, as NDP requests take much longer time to execute, 846

and holding the lock longer leads to minimal impact on the 847

overall I/O performance. Thus, the main performance loss with 848

file locking is for the I/O requests, with minimal impact on 849

the NDP requests. 850

G. Effect on Different Backend File Systems 851

To demonstrate LightFS’s adaptability to various backend 852

file systems, we evaluate the performance of task offloading 853

methods on widely used kernel file systems, including Ext3, 854

Ext4, F2FS, and XFS [10], [11], [12], [38]. Given FSR’s 855

exclusive compatibility with F2FS, we report its results only 856

for that file system. We measure the average latency for 857

STATS64 tasks performed on 100 16KB files under each 858

system, as shown in Fig. 15(b). 859

The performance disparities across file systems are due to 860

different overheads in retrieving file layouts. Ext4 exhibits the 861

lowest overhead, as shown in Table V, leading to the best 862

performance. If FSR supported Ext4, its performance could 863

improve, though it remains inferior to LightFS due to its 864

traditional architecture. Once metadata is cached, LightFS’s 865

12 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS

performance stabilizes across file systems, unaffected by866

backend differences during task offloading. However, filefrag-867

based methods reveal variations, with XFS increasing latency868

by 5% compared to Ext4. Performance disparities arise during869

initialization when LightFS retrieves the layout of .ndpmeta.870

V. CONCLUSION871

This article reveals the task offloading overhead and incon-872

sistency problems in CSDs. To solve these problems, we873

propose LightFS, a lightweight user-space file system for874

CSDs. To reduce offloading overhead, LightFS retrieves the875

file layouts in storage to avoid redundant I/Os. To ensure876

consistency, LightFS employs a metadata locker and an update877

synchronizer to prevent the partial file updates. By evaluating878

LightFS on a real-world testbed, LightFS shows significant879

performance improvements in real-world applications.880

ACKNOWLEDGMENT881

The authors would like to thank the anonymous reviewers882

for their valuable comments and improvements to this article.883

REFERENCES884

[1] D. R.-J. G.-J. Rydning, The Digitization of the World from Edge to Core,885

Int. Data Corp., Framingham, MA, USA, 2018, p. 16.886

[2] C. Zou and A. A. Chien, “ASSASIN: Architecture support for887

stream computing to accelerate computational storage,” in Proc. 55th888

IEEE/ACM Int. Symp. Microarchitecture (MICRO), 2022, pp. 354–368.889

[3] A. Barbalace and J. Do, “Computational storage: Where are we890

today?” in Proc. CIDR, 2021, pp. 1–7.891

[4] W. Cao et al., “POLARDB meets computational storage: Efficiently892

support analytical workloads in cloud-native relational database,” in893

Proc. 18th USENIX conf. FAST, 2020, pp. 29–41.894

[5] J. Do, Y. Kee, J. M. Patel, C. Park, K. Park, and D. J. DeWitt, “Query895

processing on smart SSDs: Opportunities and challenges,” in Proc. ACM896

SIGMOD Int. Conf. Manag. Data, 2013, pp. 1221–1230.897

[6] K. Huang, Z. Shen, Z. Shao, T. Zhang, and F. Chen, “Breathing new898

life into an old tree: Resolving logging dilemma of B+-tree on modern899

computational storage drives,” Proc. VLDB Endowm., vol. 17, no. 2,900

pp. 134–147, 2023.901

[7] M. Wilkening et al., “RecSSD: Near data processing for solid state902

drive based recommendation inference,” in Proc. 26th ACM Int. Conf.903

ASPLOS, 2021, pp. 717–729.904

[8] C. Li, Y. Wang, C. Liu, S. Liang, H. Li, and X. Li, “GLIST: Towards905

in-storage graph learning,” in Proc. USENIX ATC, 2021, pp. 225–238.906

[9] A. HeydariGorji, M. Torabzadehkashi, S. Rezaei, H. Bobarshad,907

V. Alves, and P. H. Chou, “Stannis: Low-power acceleration of DNN908

training using computational storage devices,” in Proc. 57th ACM/IEEE909

DAC, 2020, pp. 1–6.910

[10] Z. Yang et al., “lambda-IO: A unified IO stack for computational911

storage,” in Proc. 21st USENIX Conf. FAST, 2023, pp. 347–362.912

[11] Z. Ruan, T. He, and J. Cong, “INSIDER: Designing in-storage com-913

puting system for emerging high-performance drive,” in Proc. USENIX914

ATC, 2019, pp. 379–394.915

[12] L. Li et al., “Optimizing the performance of NDP operations by916

retrieving file semantics in storage,” in Proc. ACM/IEEE DAC, 2023,917

pp. 1–6.918

[13] J. Zhang, Y. Ren, and S. Kannan, “FusionFS: Fusing I/O operations919

using CISCOps in firmware file systems,” in Proc. 20th USENIX Conf.920

FAST, 2022, pp. 297–312.921

[14] Z. Shen, F. Chen, G. Yadgar, Z. Jia, and Z. Shao, “Prism-SSD: A flexible922

storage interface for SSDs,” IEEE Trans. Comput.-Aided Design Integr.923

Circuits Syst., vol. 41, no. 4, pp. 882–896, Apr. 2022.924

[15] I. F. Adams, J. Keys, and M. P. Mesnier, “Respecting the block 925

interface–computational storage using virtual objects,” in Proc. 11th 926

USENIX Workshop Hot Topics Storage File Syst. (HotStorage), 2019, 927

pp. 1–7. 928

[16] A. Barbalace, M. Decky, J. Picorel, and P. Bhatotia, “BlockNDP: Block- 929

storage near data processing,” in Proc. 21st Int. Middleware Conf. Ind. 930

Track (Middleware), 2020, pp. 8–15. 931

[17] J. Zhang, Y. Ren, M. Nguyen, C. Min, and S. Kannan, “OmniCache: 932

Collaborative caching for near-storage accelerators,” in Proc. 22nd 933

USENIX Conf. FAST, 2024, pp. 35–50. 934

[18] S. Kannan, A. C. Arpaci-Dusseau, R. H. Arpaci-Dusseau, Y. Wang, 935

J. Xu, and G. Palani, “Designing a true direct-access file system with 936

DevFS,” in Proc. 16th USENIX Conf. FAST, 2018, pp. 241–256. 937

[19] Z. J. Wang, E. Montoya, D. Munechika, H. Yang, B. Hoover, and 938

D. H. Chau, “DiffusionDB: A large-scale prompt gallery dataset for 939

text-to-image generative models,” 2023, arXiv:2210.14896. 940

[20] I. Roldan et al., “DopplerNet: A convolutional neural network for 941

recognising targets in real scenarios using a persistent range–doppler 942

radar,” IET Radar, Sonar Navig., vol. 14, no. 4, pp. 593–600, 2020. 943

[21] J. Zhu, S. He, P. He, J. Liu, and M. R. Lyu, “Loghub: A large collection 944

of system log datasets for ai-driven log analytics,” in Proc. IEEE 34th 945

ISSRE, 2023, pp. 355–366. 946

[22] X. Liao, Y. Lu, E. Xu, and J. Shu, “Write dependency disentanglement 947

with HORAE,” in Proc. 14th USENIX Symp. OSDI, 2020, pp. 549–565. 948

[23] C. Whitaker, S. Sundar, B. Harris, and N. Altiparmak, “Do we still need 949

IO schedulers for low-latency disks?” in Proc. 15th ACM Workshop Hot 950

Topics Storage File Syst. (HotStorage), 2023, pp. 44–50. 951

[24] J. Kwak, S. Lee, K. Park, J. Jeong, and Y. H. Song, “Cosmos+ 952

OpenSSD: Rapid prototype for flash storage systems,” ACM Trans. 953

Storage, vol. 16, no. 3, pp. 1–35, 2020. 954

[25] J. Li et al., “Horae: A hybrid I/O request scheduling technique 955

for near-data processing-based SSD,” IEEE Trans. Comput.-Aided 956

Design Integrated Circuits Syst., vol. 41, no. 11, pp. 3803–3813, 957

Nov. 2022. 958

[26] S. Liang, Y. Wang, Y. Lu, Z. Yang, H. Li, and X. Li, “Cognitive SSD: 959

A deep learning engine for in-storage data retrieval,” in Proc. USENIX 960

ATC, 2019, pp. 395–410. 961

[27] C. Ma et al., “Rebirth-FTL: Lifetime optimization via approxi- 962

mate storage for NAND flash memory,” IEEE Trans. Comput.-Aided 963

Design Integr. Circuits Syst., vol. 41, no. 10, pp. 3276–3289, 964

Oct. 2022. 965

[28] J. Sun, S. Li, Y. Sun, C. Sun, D. Vucinic, and J. Huang, “LeaFTL: 966

A learning-based flash translation layer for solid-state drives,” in Proc. 967

28th ACM ASPLOS, 2023, pp. 442–456. 968

[29] V. Gupta, “Weather classification,” Dataset. Accessed: Mar. 28, 969

2024. [Online]. Available: https://www.kaggle.com/datasets/vijaygiitk/ 970

multiclass-weather-dataset 971

[30] A. Krizhevsky, Learning Multiple Layers of Features From Tiny Images, 972

Univ. Toronto, Toronto, ON, Canada, 2009. 973

[31] L. Li. “Repo of FSR.” 2023. [Online]. Available: https://github.com/ 974

ll26571/FSR 975

[32] C. Lee, D. Sim, J. Hwang, and S. Cho, “F2FS: A new file system for 976

flash storage,” in Proc. 13th USENIX Conf. FAST, 2015, pp. 273–286. 977

[33] Z. Ruan, T. He, and J. Cong, “Analyzing and modeling in-storage com- 978

puting workloads on EISC—An FPGA-based system-level emulation 979

platform,” in Proc. IEEE/ACM ICCAD, 2019, pp. 1–8. 980

[34] “Cosmos-plus-openssd.” GitHub. Accessed: Aug. 23, 2024. [Online]. 981

Available: https://github.com/Cosmos-OpenSSD/Cosmos-plus- 982

OpenSSD 983

[35] “UNVMe—A user space NVMe driver project.” unvme. 2016. [Online]. 984

Available: https://github.com/zenglg/unvme 985

[36] S. Pei, J. Yang, and Q. Yang, “REGISTOR: A platform for unstructured 986

data processing inside SSD storage,” ACM Trans. Storage, vol. 15, no. 1, 987

pp. 1–24, 2019. 988

[37] (NVM Express Inc., Beaverton, OR, USA). NVM Express Specifications. 989

Accessed: Mar. 24, 2024. [Online]. Available: https://nvmexpress.org/ 990

specifications/ 991

[38] M. Kwon, D. Gouk, S. Lee, and M. Jung, “Hardware/software co- 992

programmable framework for computational SSDs to accelerate deep 993

learning service on large-scale graphs,” in Proc. 20th USENIX Conf. 994

FAST, 2022, pp. 147–164. 995

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Helvetica-Condensed-Bold
 /Helvetica-LightOblique
 /HelveticaNeue-Bold
 /HelveticaNeue-BoldItalic
 /HelveticaNeue-Condensed
 /HelveticaNeue-CondensedObl
 /HelveticaNeue-Italic
 /HelveticaNeueLightcon-LightCond
 /HelveticaNeue-MediumCond
 /HelveticaNeue-MediumCondObl
 /HelveticaNeue-Roman
 /HelveticaNeue-ThinCond
 /Helvetica-Oblique
 /HelvetisADF-Bold
 /HelvetisADF-BoldItalic
 /HelvetisADFCd-Bold
 /HelvetisADFCd-BoldItalic
 /HelvetisADFCd-Italic
 /HelvetisADFCd-Regular
 /HelvetisADFEx-Bold
 /HelvetisADFEx-BoldItalic
 /HelvetisADFEx-Italic
 /HelvetisADFEx-Regular
 /HelvetisADF-Italic
 /HelvetisADF-Regular
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

