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Abstract—Image processing algorithms continue to demand
higher performance from computers. However, computer
performance is not improving at the same rate as before.
In response to the current challenges in enhancing comput-
ing performance, a wave of new technologies and computing
paradigms is surfacing. Among these, memristors stand out as
one of the most promising components due to their technological
prospects and low power consumption. With efficient data
storage capabilities and their ability to directly perform logical
operations within the memory, they are well-suited for in-
memory computation (IMC). Approximate computing emerges
as another promising paradigm, offering improved performance
metrics, notably speed. The tradeoff for this gain is the reduction
of accuracy. In this article, we are using the stateful logic
material implication (IMPLY) in the semi-serial topology and
combine both the paradigms to further enhance the compu-
tational performance. We present three novel approximated
adders that drastically improve speed and energy consumption
with an normalized mean error distance (NMED) lower than
0.02 for most scenarios. We evaluated partially approximated
Ripple carry adder (RCA) at the circuit-level and compared
them to the State-of-the-Art (SoA). The proposed adders are
applied in different image processing applications and the quality
metrics are calculated. While maintaining acceptable quality, our
approach achieves significant energy savings of 6%–38% and
reduces the delay (number of computation cycles) by 5%–35%,
demonstrating notable efficiency compared to exact calculations.

Index Terms—Approximate, image processing, IMPLY, in-
memory computing, memristor.

I. INTRODUCTION

W ITH the rising demand for image processing appli-
cations in various fields, more processing power has

to be allocated to these tasks. Since, the required image
quality and time to process these applications is also increasing
drastically, current technology is facing serious challenges
in keeping up with the demand. In addition to this, the
enhancement of general-purpose computing performance is
stagnating with challenges, such as the slowdown of Moore’s
law [1] and the von Neumann bottleneck. Hence, nowadays
considerable attention is directed toward exploring novel
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technologies and computing paradigms in this domain. in-
memory computation (IMC) represents a methodology for
performing computations directly within memory, offering a
potential solution to circumvent the von Neumann bottleneck
that typically occurs between the logic and memory. Among
the notable emerging technologies, the memristor stands out
as a promising candidate. The compelling attributes of low
power consumption and a compact form factor, as highlighted
by Williams [2], position memristor technology as one of the
most likely candidates for future computing advances. With
the ability to store data nonvolatile through its resistive state
and the ability to perform logical operations, it is ideally
suited as a memory cell [3], [4]. In the realm of IMC, the
stateful logic material implication (IMPLY) proves to be a
favorable choice; its well-established and widely recognized
nature, coupled with compatibility with the crossbar array,
positions it as an ideal candidate for such applications [3], [5].
It is also the most reliable when compared to the other stateful
memristive logics [6]. The currently available structures to
perform IMPLY operations with, can be divided into serial,
parallel, and hybrid topologies [7], [8], [9], [10]. A hybrid
structure, such as the semi-serial topology combines the
advantages of the serial and parallel approach and so offers a
more efficient approach [8].

An upcoming computer paradigm that is a possible solution
to the power-wall problem is the approximation of com-
putational processes [1], [11]. The adoption of approximate
computing leads to improved performance metrics, such as
speed, area, and energy consumption, which all would ben-
efit image processing applications. The tradeoff for these
enhancements is the reduction of the accuracy of these com-
putations [1], [11], [12]. Since, image and video processing
applications are of error-resilient nature, the approximation of
some part of the process could lead to stark gains in computing
time and power consumption [1], [13]. Other important fields,
such as machine learning, pattern recognition, communication,
data mining, and robotics are often in someway connected to
imaging applications and would also benefit [1], [13], [14],
[15].

Addition operations are fundamental elements in digital
arithmetic, given that a substantial portion of basic instructions
relies on the addition and multiplication [12]. The efficiency
of the associated half and full adders significantly influences
the overall performance of the computational process. In this
work, we extend on the approximated adder from [16] and
present three novel adder algorithms in the semi-serial IMPLY-
based topology to complete this methodological approach.
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The algorithms use an approximated approach to create an
inexact truth table. The number of memristors, the hard-
ware complexity, and the power consumption were drastically
reduced if compared to the exact semi-serial algorithm [8].
The primary advancement compared to the State-of-the-Art
(SoA) lies in the notable reduction of steps required per
bit. To our knowledge, we present the fastest IMPLY-based
approximate adder algorithms. With our approach, we are able
to drastically reduce both time and energy requirements for
basic image processing applications with only a marginal loss
of quality that can be considered negligible for the human
visual system. With our memristor-based approach, scalability
and performance gains have a lot more potential for the
increasing demands of image processing applications than the
complementary metal-oxide semiconductor (CMOS) era.

This work is divided into seven sections. In Section II we
cover the necessary background and review key papers in
related areas. The methodology for designing the algorithms
and their exact operation is described in Section III. In
Section IV we simulated the adders at the circuit-level, verified
their functionality, and evaluated the error analysis using
the standard metrics. We compared to the other exact and
approximated algorithms in Section V. We simulated three
image processing applications and evaluated the quality of the
outcomes. The results of these can be seen in Section VI,
where we also discuss the gains on the application-level In
Section VII we conclude this article and discuss future work.

II. BACKGROUND

A. Memristors

The memristor was originally discovered by Chua [17]
and physically realized by Strukov et al. [18]. The mem-
ristor complements the absent symmetry in representing the
four fundamental passive electronic components, alongside
the resistor, capacitor, and inductor [17]. With its resistive
states enabling nonvolatile data storage, it establishes itself
as the optimal component for a memory cell [3], [4]. Other
advantages of the memristor include low power consumption,
as well as low write time and small dimension of the
device [19], [20], [21]. The minimum (Ron) and maximum
(Roff) resistance values of the memristor are set by the applied
voltage and the direction of current flow, forming a hysteresis
curve. Conventionally, we can assume the minimum resistance
value is equivalent to a logical “1” and the maximum resis-
tance value equal to a logical “0” [7], [22], [23].

B. In-Memristor Logic - IMPLY

Memristor-based IMPLY is a stateful logic with memristors
that has the advantage that no reads and writes are required
to perform logical operations [20]. IMPLY was introduced
by Hewlett Packard (HP), which established itself as the first
stateful logic [3], [9], [24]. There exist other stateful logic
forms for memristors, such as FELIX [25], SIXOR [20],
MAGIC [26], and TSML [27] as well as nonstateful logic
as MRL [28]. However, in this work we focus on IMPLY,
as it is the most reliable stateful logic [6] and the only one
where approximations have been presented [16], [29], [30].

(a) (b)

Fig. 1. IMPLY operation [3]. (a) Gate structure. (b) Truth table.

The basic structure to perform IMPLY operations is shown in
Fig. 1(a). Two memristors are used, to which different voltages
VCOND and VSET can be applied. The two memristors are
connected to a resistor which needs to fulfill the requirement
Ron << RG << Roff. The two applied voltages must also
satisfy the condition in VCOND < VC < VSET for the IMPLY
logic to be possible, where VC is the threshold voltage of the
memristor [3], [9], [19], [24], [31]. An IMPLY operation is
represented by a → b, where the logic inputs correspond to
the resistive state of the memristors. To perform a → b, a
short pulse of VCOND and VSET is applied [3], [24]. In this
process, the b-memristor loses its previous state and the result
of this operation is stored in it instead. The truth table of this
operation can be found in Fig. 1(b).

C. IMPLY-Based Full Adders

Adders based on the IMPLY logic can be divided into three
categories: 1) serial; 2) parallel; and 3) hybrid forms, such as
semi-serial or semi-parallel. In the serial structure, memristors
are placed in the same row or column of a crossbar array as
in [3], [4], and [7]. The best serial algorithm needs 22n steps
and 2n+3 memristors for an n-bit calculation [7]. The parallel
structure consists of individual rows that are not contiguous,
so calculations can be performed in parallel [7], [9], [19].
Since, the individual bits are dependent on the calculation of
their predecessor, not all steps can be parallelized and must
therefore be processed sequentially. The full adder algorithm
from [19] requires 5n + 16 steps and 4n + 1 memristors and n
external switches for the n-bits. In the semi-parallel full adder,
the serial structure is divided into two rows with one input
and a work memristor per row [10]. If two operations can
be performed in parallel, it is possible in this structure which
leads to it only requiring 17n steps and 2n + 3 memristors as
well as three switches for the n-bit. The semi-serial structure
shown in Fig. 2 is a hybrid structure that achieves a better
balance between the space consumption and speed compared
to the serial and parallel [22]. This topology consists of two
parallel rows with the inputs, which can connect to four
work memristors, cin, and c-memristor. This totals to 2n + 6
memristors and 12 switches. The exact algorithm from [22]
requires 10n + 2 steps for the n-bit.

D. Approximate Computing

The fundamental approach to approximate computing
involves redefining logic by eliminating gates or individual
transistors and formulating a new truth table. With this approx-
imation, performance metrics, such as energy consumption,
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Fig. 2. IMPLY-based semi-serial n-bit adder structure [22].

area usage, and processing time are significantly reduced. The
accuracy of the calculation is reduced as a tradeoff. To evaluate
the degree of inaccuracy, error metrics were used in SoA
publications, such as [14], [32], [33], [34], [35], and [36]. The
most important and used metrics in this work are error distance
(ED), error rate (ER), relative error distance (RED), mean error
distance (MED), normalized mean error distance (NMED),
and mean relative error distance (MRED). One application of
approximated computing is image processing, since it has a
high error resistance [11], [32]. A common quality metric is
the peak signal-to-noise ratio (PSNR) which indicates how
strong the noise is compared to the actual signal. A value
of more than 30 dB is considered acceptable [37], [38].
Especially for images, the structural context is relevant for
the human visual system [39]. Therefore, two more quality
metrics, structural similarity index measure (SSIM) and mean
structural similarity index measure (MSSIM) are often used in
image processing [39], [40]. Many variants of approximated
CMOS-based full adder have been published, all of which have
used different approximation methods, such as [11], [12], [32],
and [34]. Other technologies have also been used to achieve
a better approximation [35], [41].

E. Approximate In-Memristor Computing

Approximated full adders based on the memristors have
recently been proposed. In [42] and [43], they utilized the
memristor ratioed logic (MRL) from [28] and changed the
truth table of the full adder to save memristors. The main
disadvantage of MRL is that the additional CMOS-inverter
and amplifier are required. Their approximate design reduced
the number of required memristors from 33 to 10 and some
CMOS inverters and evaluated the adders with image addition.
Approximated full adders that utilized IMPLY have also
been presented in [23], [29], and [30], where new approxi-
mate algorithms for the serial structure were proposed. They
simplified the truth table and utilized specific input vectors to
minimize the number of required steps. Thereby they reduced
energy consumption by up to 68% and the number of required
steps by up to 42% and evaluated their adders in different
image processing applications. Seiler and TaheriNejad [16]
presented an approximated adder in the semi-serial topology
that utilizes the similarity Sum ≈ Cout. Here, we propose
three new algorithms for the semi-serial adders with a more
advanced design methodology that advances the approach

from [16] and results in better performances in different
aspects. We compare our results with the SoA and present the
results in Section V.

III. PROPOSED APPROXIMATE FULL ADDERS

A. Methodology

In our work, the method to design approximated circuits is
to take the correct logic as a reference and derive approximated
logic from it. Typically, this is done by either changing or
omitting components or using a modified truth table so that
the speed and/or the number of components required can be
reduced [14], [32], [33]. As we are working on the IMPLY-
based semi-serial structure, we use only IMPLY and false
operations. Together they form a complete logic set with which
we can emulate the Boolean logic [7], [44]. It turns out that an
inversion needs only one IMPLY operation and only OR and
NAND need two IMPLY operations. Therefore, the approxi-
mations focus on using these operations and false to reduce
the required steps [16]. We developed the approximations in
this work by introducing an intentional error in the truth table
of an exact full adder at one place of Cout. For each case,
we determined the conjunctive and disjunctive normal forms
using the Karnough-Veigh-diagramm (KVD) and verified them
to be representable in as few steps as possible in IMPLY
logic. Operating within the semi-serial structure detailed in [8],
we capitalize on its built-in parallelization capability. This
empowers us to concurrently compute numerous essential
steps, resulting in significant time savings in computational
processes. We exclusively employed logical approximations
that align seamlessly with the efficient representation enabled
by this parallelization approach. In each of the presented
algorithms, we represented the sum of the full adder as Sum ≈
Cout. We are using this approach because it exploits the
similarities and requires only one additional computational
step (inversion) to calculate the Sum, based on the approach
from [16]. To ensure that the algorithm of the approximated
full adder is compatible with the algorithm of the exact full
adder from [8], we took care in this work that the calculated
Sum is always stored in the respective a-memristor and the
carry bit is stored in the c-memristor. We have chosen to
include a shortened description of the algorithm from [16]
in Section III-D to give the reader the complete picture of
the entire space of this methodological approach which this
algorithm is a part of. We labeled the approximated algorithms
in the following sections based on the placement of the error
in the truth table.

B. Approximated Algorithm 1

In this algorithm, we introduce an error in the truth table in
the case [a, b, c] = “001” which results in Cout having an
ER of (1/8). Since, the sum is equal to the inverted carry-out,
it has an ER of (3/8) since in the cases [a, b, c] = “000”
and [a, b, c] = “111,” and Sum is not equal to the inverse
of Cout

Cout = ab + c = (
a → b

) → c (1)

Sum = ab + c = (
a → b

) → c. (2)
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TABLE I
APPROXIMATED ALGORITHM 1

TABLE II
APPROXIMATED ALGORITHM 2

In (1) and (2) the logical functions of Cout and Sum can be
seen in the Boolean and IMPLY logic form. We took advantage
of the fact that for an OR operation in IMPLY logic, one of the
inputs must be inverted. Therefore, the NAND operation can be
used directly and thus calculation steps can be omitted. Since,
Cout can be stored directly in the c-memristor, we only need
three steps for its calculation and another one for the storage of
Sum in the a-memristor. Before starting the calculation, a false
operation is required once on the work memristor, which can
be executed in parallel during the repetitions of the algorithm
in the fourth step. The exact process of the algorithm can
be seen in Table I. It requires only 4n + 1 steps and 2n + 2
memristors for the n-bits addition.

C. Approximated Algorithm 2

In the second algorithm, we introduced an error in the third
row of the truth table due to the approximation, which leads to
a Cout of 1 for the case [a, b, c] = “010.” Cout has an ER of
(1/8). Since, in this approximation Sum = Cout it follows that
the Sum has an ER of (3/8) since again the least-significant
bit (LSB) and most significant bit (MSB) are incorrect:

Cout = ac + b = b → (a → c) (3)

Sum = ac + b = b → (a → c). (4)

We used the logical functions in (3) and (4). We saved steps
given that first NAND and then OR are executed. With this
procedure, steps can be combined in IMPLY form. Since,
proper storage of Cout in the c-memristor is necessary, c is first
stored in a work memristor, and False(c) was applied so that
the c-memristor is available to store the inversion of a → c. To
comply with the default memory location two more inversions
are necessary, resulting in this algorithm requiring 5n+1 steps
and 2n + 3 memristors at the n-bits. The exact flow of the
algorithm can be seen in Table II.

D. Approximated Algorithm 3 [16]

This algorithm was already explained in more detail in [16].
The shortened version is included here since it is also part of

TABLE III
APPROXIMATED ALGORITHM 3 [16]

TABLE IV
APPROXIMATED ALGORITHM 4

the design approach we implemented in this work and to show
the symmetry of the algorithm presented in [16] with respect
to the second algorithm in this article. The error placement of
Cout for this algorithm lies at [a, b, c] = “100.” This reduces
the truth table to a form where the first three rows are 0 and
after that, all the entries are logical 1. This leads to Cout having
an ER of (1/8) and Sum having an ER of (3/8)

Cout = bc + a = a → (b → c) (5)

Sum = bc + a = a → (b → c). (6)

In (5) and (6), the logical function corresponding to the
approximation can be seen [16]. This approximation is a
symmetrical approach to the second algorithm we proposed
in Section III-C, with only the inputs a and b swapped. The
exact procedure can be seen in Table III, where we can see
that it also requires 5n + 1 steps and 2n + 3 memristors for an
n-bit calculation.

E. Approximated Algorithm 4

We changed the truth table of this algorithm at
[a, b, c] = “110,” so that in this case Cout is equal to 0. The
truth table can be seen in Table V, where the red marked bits
represent the errors introduced by us. It can be seen that Cout
again has an ER of (1/8) and Sum has an ER of (3/8)

Cout = (a + b)c = (a → b) → c (7)

Sum = (a + b)c = (a → b) → c. (8)

In this algorithm, we first perform an OR operation and then
an NAND operation, which is not possible otherwise due to
the selected memory locations. Equations (7) and (8) show
this algorithm’s logical functions we created and the reason
for the necessity to perform a double inversion. The exact
procedure can be found in Table IV. It should be noted that
False(a) could also be performed in steps 2 or 3. We selected
and implemented the chosen variant due to its superior energy
efficiency observed during the circuit simulations with an
equal number of steps. This algorithm requires 5n + 1 steps
and 2n + 3 memristors for a calculation of the n-bits.
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TABLE V
TRUTH TABLE OF THE PRESENTED ALGORITHMS WITH ERRONEOUS

PLACES MARKED IN RED

TABLE VI
VTEAM SETUP PARAMETER

TABLE VII
IMPLY LOGIC PARAMETER

IV. CIRCUIT-LEVEL SIMULATION AND ERROR METRICS

A. Simulation Setup

To simulate the proposed approximated full adders we used
a model based on the voltage-controlled threshold adaptive
memristor (VTEAM) model [31], which is implemented in
SPICE and fitted to measurement data [8], [45]. We used
LT-SPICE to perform these simulations to confirm the correct
functionality and verify it for every input combination. The
parameters we selected are listed in Table VI. It is important
to highlight that the specified parameters are outcomes derived
from tailoring the model to the real devices, in this case dis-
crete known memristors [46]. Like with the difference between
the discrete and integrated CMOS devices, this leads to slower
operations and increased power consumption. It is important
to recognize that while these outcomes reflect the adaptation
of the model to discrete memristors, integrated memristors
offer significant improvements in operational speed and power
efficiency. However, since we do not have access to integrated
memristors, to ensure relevant and realistic implementability
of our proposed circuits, we use measurement fitted models
mentioned above. We note that IMPLY has been experimen-
tally validated in [3]. The specific parameters of the IMPLY
logic that we used in this simulation are listed in Table VII.
The parameters were chosen following the same setup already
used in [7], [16], [19], [29], and [30]. This allows for a good
comparison to existing approximated and exact full adder.

Real memristors show nonideal behaviors, one of the most
important of which is their resistance variation, where a
deviation of Ron and Roff has to be expected. To encompass
this in our experiments, we repeated our simulations where
the low and high resistive states of the memristors deviate. We
evaluated the resulting state for Sum and Cout at the end of
each algorithm for each possible input combination. The range
that the resulting states can assume is illustrated in Fig. 3.
The results are correct and within the 33% threshold for up to

Fig. 3. Resulting states (Sum and Cout) deviation with varying Ron and
Roff. Orange lines mark the 33% thresholds.

±30% deviation range. Even with a deviation range of 50%,
only three bit flips occur (the fourth algorithm), underlining the
reliability of the proposed solutions. We presented this state
deviation as shaded areas in the following waveform figures.

B. Simulation Results

To verify that each algorithm operates correctly with
the mentioned SoA parameters, we simulated them using
LT-SPICE. We took the semi-serial structure from [8] and
tested all the possible input combinations that can occur for
functionality. The input states of the a, b, and c-memristor
were set before the algorithm was executed. To accommodate
the presented algorithms we included the step that resets all
the work memristors in every algorithm. This step will be
parallelized after the first iteration as explained in more detail
in Section III. The function is considered correct if, after the
conclusion of the algorithm, both the Sum and Cout align with
the solutions specified in the corresponding truth table. As
specified in Table VII, we let each step of the algorithms last
30 µs. In the second, third, and fourth algorithms, the Cout
is calculated at the fourth step which corresponds to the time
between 120 µs − 150 µs. Since, the first algorithm’s logic
function allows for a better representation with IMPLY logic,
the calculation of the carry-out is done in the third step. This
corresponds to the period between 90 µs − 120 µs. For all
the algorithms the Cout is stored in the c-memristor to allow
for a flawless continuation with iterations. The calculation of
Sum ≈ Cout is done in the period between 120 µs − 150 µs
for the first algorithm which is the fourth step. For the other
algorithms, this calculation is done in the fifth step in the
period of 150 µs−180 µs. We used the convention of always
saving the Sum result in the a-memristor of the corresponding
bit for all the presented algorithms. This saving scheme was
also applied at the third algorithm in [16]. We examined
the simulation of each algorithm for all the eight input
possibilities, and the expected exact and erroneous outputs
agreed with the corresponding truth tables from Section III.

The output waveform of each memristor of Algorithm 1
was plotted at cases “AinBinCin” = 100 and 001 to show
a correct calculation of Sum and Cout in the first case and
a calculation showing the intentional error produced by our
chosen approximation. We present the first case with the
correct outputs in Fig. 4(a) and the case with the error in
Fig. 4(b).

To ensure correct functionality of the full adder at the
circuit-level with multiple bits, we tested all the algorithms as
4-bit Ripple carry adder (RCA). For this, we let the lowest two
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Fig. 4. Two example simulations of Algorithm 1, illustrating the resistive
deviation of ±20% as shaded areas. (a) AinBinCin = 100 with correct output.
(b) AinBinCin = 001 with approximated (erroneous by design) output.

bits use the proposed algorithm and the higher two bits use the
exact full adder algorithm for a semi-serial topology from [8].
We simulated this procedure for all the presented algorithms.
For each algorithm presented in this work, five random pairs
of numbers were added by our LT-SPICE simulation and the
results agree with our theoretical calculations.

C. Error Analysis

1) Error Metrics for 8-Bit RCA: To compare the erroneous
behavior of the approximated full adders presented in this
work, we use the error metrics introduced in Section II. The
exact definition of MED, NMED, and MRED can be found in

MED = 1

22n
·

22n∑

i=1

|SUMExact − SUMAx|i (9)

NMED = MED

2n+1 − 1
(10)

MRED = 1

22n
·

22n∑

i=1

|SUMExact − SUMAx|i
SUMExact,i

. (11)

More detailed information about these metrics can be found
in [32], [33], [34], [35], and [36]. We performed the following
simulations in MATLAB with Cin = 0. Therefore, we created
a behavioral-level model of the RCA, which is variable
for the respective approximation degree and the number of
maximum bits. For the 8-bit case, we applied all 65 536
input combinations to the RCAs with different approximation
degrees. With this setup the MED, NMED, and MRED were
determined. We used the approximated full adders as the LSBs
of a RCA structure. The cases with one to five approximated
full adders were recorded in Table VIII. We observed that the
MED and thus also the NMED roughly double per included
approximated full adder. It is noticeable that the second and
third [16] algorithms have the same results for the error metrics
at 8-bit. This result is expected since the truth tables of the two
algorithms are identical when the inputs a and b are swapped.
The second and third [16] algorithms give the best results for
MED, NMED, and MRED compared to the other two. The
fourth algorithm gives the worst results, which are up to 16%
worse than those of the other algorithms.

Full Adder
2) Error Metrics for 16-Bit and 32-Bit RCA: In the analysis

of 16- and 32-bit RCA, we used one million randomly
generated numbers as input variables. We did this because for a
complete evaluation 22n input combinations would be needed,
which is computationally intensive. We again performed a
behavioral-level simulation in MATLAB and calculated MED,
NMED, and MRED. Therefore, we used a RCA structure and
increased the number of approximated adders. The approx-
imated adders are again calculating the lower bits and the
approximation degrees indicate the number of approximated
full adders from the total number of full adders. The 16- and
32-bit simulations yield drastically lower NMED and MRED
for the lower approximation degrees in comparison to the
8-bit simulation. When only approximated adders are used
the quality metrics of the different bit simulations are almost
equal. This indicates that an approximated full adder generates
a substantially higher quality output with a higher number of
bits. The second and third [16] algorithms would again give the
same results if all the input possibilities were fully simulated.
Since, only one million input combinations were validated,
the results are subject to stochastic deviations. Nevertheless,
the present figures should be a reliable representation, given
that the one million input combinations were chosen randomly.
The same is true for all the error metrics of the 16- and 32-bit
cases. It is noticeable that the second and third [16] algorithms
perform better than the other two we presented. The first and
fourth algorithms produce similar results for the 16- and 32-bit
error metrics. We displayed the results in Table VIII.

V. CIRCUIT-LEVEL COMPARISON

We compared the algorithms presented in this article and
algorithm 3 from [16] with the exact full adders from [7],
[8], [9], [10], and [19] and the approximated full adders
from [20] and [30] in various circuit-level metrics.

A. Comparison With Exact Full Adders

1) Energy Consumption: We calculated the energy con-
sumption with the LT-SPICE energy consumption tool for all
the algorithms. Simulation encompassed all the feasible input
combinations for a full adder. The result is defined as the
mean value across all the simulations. Since, the first step of
the algorithms is performed only before the first iteration, it
is not considered in the results because it is negligible with
respect to several bits. The energy consumption of the first
algorithm is 28.8 pJ because only one work memristor was
used. The energy consumption for the first step of the other
three algorithms is 55.5 pJ. The formulas for all the presented
adders in an RCA structure that embeds k approximated adders
and n total adders are shown in

E1(n, k) = 1.4509k + 3.8435(n − k) + 0.834 (12)

E2(n, k) = 1.6694k + 3.8435(n − k) + 0.865 (13)

E3(n, k) = 1.6678k + 3.8435(n − k) + 0.865 (14)

E4(n, k) = 1.8697k + 3.8435(n − k) + 0.865. (15)

The energy consumption of the semi-serial topology [8]
with the IMPLY specific values from Table VII was recreated
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TABLE VIII
ERROR METRICS OF THE PRESENTED ALGORITHMS FOR THE 8/16/32-BIT RCA WITH VARYING APPROXIMATION DEGREES

TABLE IX
CIRCUIT-LEVEL COMPARISON TO EXACT SOA FULL ADDER

in [16]. The resulting energy consumption per bit was 3.8435
nJ with an additional 0.8053 nJ for the extra steps. We
recreated the serial [7], [19], and semi-parallel [10] adders for
a fair comparison. The results can be seen in Table IX. The
improvements of the parameter P if the presented algorithms
to the others were determined via (16) and all the results were
inserted into Table IX

Improvement = Pworse − Pbetter

Pworse
× 100%. (16)

It can be seen that the first algorithm since it only requires
one work memristor, has a significantly lower energy con-
sumption than the other algorithms. The second and third [16]

algorithms have almost the same energy consumption, differ-
ing only by 1 pJ. The fourth algorithm performs significantly
worse than the others due to the place of its approximation.
Compared to the exact full adder in the semi-serial struc-
ture [8], a significant improvement of 6% − 38% can be seen
for all the algorithms.

2) Number of Steps: The second important metric at the
circuit-level is the number of steps (or the clock cycles)
that are necessary per bit, since it represents the delay of
the calculation. The first algorithm we presented requires
four steps per bit and an additional step at the beginning
of the calculation, which ensures that the work memristors
are properly initialized, i.e., set to logical 0. Our other two



8 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS

algorithms and the approach from [16] need five steps for
one bit and again an extra step to reset (initialize) the work
memristors beforehand.

The exact algorithm in the semi-serial structure from [8]
requires ten steps per bit and two extra steps which are applied
only once per computation cycle. With a higher bit-width,
the extra step of the presented algorithms loses strongly in
importance. In comparison to an RCA with only exact adders,
5% − 35% fewer steps are required. Even compared to the
parallel structure [9] which also requires five steps per bit,
every algorithm presented in this article and [16] is faster
since the parallel structure requires 16 extra steps. This is a
noticeable difference for the RCA with few bits. A comparison
of the required steps can be found in Table IX. We used an
RCA with approximation degrees of 1/8 and 5/8. As the same
trend applies to the approximation degrees in between, they
were not shown in the table. The exact full adders that we
used for the higher bits are taken from [8].

For n-bit adders, we calculated the number of steps for the
first algorithm using (17), where the approximation degree is
determined by the factor k, which represents the number of
approximated full adders. The other three algorithms follow:

Steps(n, k) = 4k + 10(n − k) + 3 (17)

Steps(n, k) = 5k + 10(n − k) + 3. (18)

The improvement of all the algorithms was related to the
semi-serial algorithm from [8] as the baseline, since it is the
exact version of the proposed algorithms, and evaluated at 8-
bit. For this the formula, (16) was used. The results of this
can be seen in Table IX.

3) Area Usage: Another important comparison point at the
circuit-level is the area usage, which represents the cost of the
circuit. This is assessed by the number of required memristors
and switches. The number of memristors required by the
exact full adder in an RCA is always considered here. The
exact and approximated full adder from [7], [19], and [30] all
require 2n + 3 memristors and no additional switches. The
exact algorithm in the semi-serial topology from [8] and the
algorithms Seiler and TaheriNejad [16] presented use 2n + 6
memristors and 12 switches. As both the serial and semi-serial
topologies scale with 2n they are approximately equal when
many bits are used. As the parallel structure from [9] uses
4n+1 memristors and n switches for the n-bit, the algorithms
we presented are much more efficient area wise and require
up to 50% less memristors. The comparison of the different
algorithms’ area usage can be found in Table IX.

B. Comparison to Approximate Full Adders

To give a comparison to the other approximated full adders
that utilize IMPLY we compared the results of the evaluation
for the algorithms from [29] and [30] with the algorithms
presented in this work. We did not compare to the MRL-
based approximated full adder from [42] and [43] and other
approximated adders because the disparity to IMPLY-based
structures is too significant to make a meaningful comparison.
The overview of all relevant comparison points at circuit-level
is presented in Table X, where we related our algorithms and

the algorithm from [16] to the SIAFA 1, 3. We did not directly
compare to [16] since the results are very similar to the second
algorithm (due to their symmetry as explained in Section III-D)
and as we wanted to compare the methodological approach as
a whole with other adders. All comparisons were made for all
algorithms with an approximation degree of 5/8.

1) Energy Consumption: In comparison to [29] and [30],
the adders presented in this work are more energy efficient than
any SIAFA or SAFAN adder. When compared to SIAFAs 1
and 3, the adders require 5% − 17% less energy, which
increases to up to 29% when we compare our first algorithm
to SIAFA 4. This is due to the better energy efficiency of the
semi-serial topology.

2) Number of Steps: With the ability to perform some
steps in parallel as explained in Section III, our algorithms
require 43% − 50% fewer steps for an 8-bit calculation,
which is a significant improvement, considering that both are
approximated algorithms.

3) Area Usage: All the approaches have a similar area
usage since they are in the order of 2n memristors for the
n-bit adders. The adder in the semi-serial topology requires
three more memristors and 12 additional CMOS switches.

4) Error Metrics: Since, the approximated adders
from [30] and the adders presented by us and [16] share
similar truth tables we expected resembling error metrics.
Our fourth algorithm and SIAFA4 should produce the same
results for MED, NMED, and MRED since they share the
same truth table. This is true for the 8-bit simulation but not
for the 16- and 32-bit cases. This deviation happens because
we simulated these cases with only one million random input
combinations. We explained this in more detail in Section IV.
In the 8-bit case, our second and the third [16] algorithms
differ less than 1% in NMED from SIAFAs 1 and 2 and
exhibit a noticeably improved MRED of 2% percent. The first
algorithm we presented performed worse than the algorithms
above in both NMED and MRED but is more accurate than
SIAFA 2 by 27% and 28% in NMED and MRED, which
overall performs worst in terms of accuracy. In the simulations
with more bits the relation of the algorithms in terms of
precision stays about even. The most significant advantage
of the algorithms presented in this work is that they excel
in speed and energy efficiency while the area usage is only
slightly higher than the algorithms from [29] and [30] for few
bits and negligible for higher bits since both scale equally.

VI. APPLICATION IN IMAGE PROCESSING

Image processing is a widely employed technology
with diverse applications across various domains, including
medicine, industry, automation, robotics, and media [47].
Given the elevated computational complexity inherent in these
applications, adopting an approximate approach holds signifi-
cant potential for substantial gains in both the energy efficiency
and computational step reduction. Given the inherent error-
resistant nature of these applications, they represent ideal
candidates for identifying efficient tradeoffs.

We simulated the presented approximated adders in an RCA
structure via MATLAB for different approximation degrees.
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TABLE X
CIRCUIT-LEVEL COMPARISON TO APPROXIMATE FULL ADDER

We assessed the degradation in accuracy on the application
level using quality metrics, such as PSNR, SSIM, and MSSIM.
We evaluated and analyzed the RCA in several specific
applications, such as image addition, image subtraction, and
gray-scale filtering, and determined their quality metrics,
respectively. This analysis aimed to not only capture the
error metrics outlined in Section IV but also to delve into
the application-level behavior of each algorithm and find the
boundaries of applicability for the proposed algorithms. Every
algorithm presented by us was able to reach the 30 dB
threshold in PSNR for every application with up to five out
of eight adders being approximated.

A. Image Addition

Image addition stands as a fundamental application within
image processing, commonly employed for the tasks, such
as masking and enhancement through averaging [34]. Image
addition entails the summation of corresponding pixels from
the two images of identical dimensions, followed by halving
the resultant values. As an example, we simulated two well-
known 256 × 256 8-bit example images with all full adders
presented in this work. We chose exactly these images so that
we would have a direct comparison to the approximated adders
from [16], [29], and [30]. We varied the approximation degree
from one up to five approximated adders out of eight total
adders. We found that the PSNR value surpasses the required
threshold for all the algorithms with these approximation
degrees. For the scenario where the quantity of approximated
adders equals or exceeds 6, a PSNR value below 30 dB
is observed across all the algorithms. This falls below the
widely accepted threshold, indicating a discernible distortion
in image quality. The simulated images for all of our algo-
rithms and Algorithm 3 [16] with an approximation degree
of 5/8 are shown in Fig. 5 and the calculated quality metrics
for the image addition are presented in Table XI. With five
approximated full-adders, the second and third [16] algorithms
together with SIAFA 1 exhibit the best PSNR.

B. Image Subtraction

Image subtraction is often used for motion detection.
But it is also used in robotics, medicine, or surveillance
systems [48], [49]. The image subtraction procedure is very
similar to the image addition. In this case, we are representing
the pixels of two images of the same size as 2 s complement.
We then take the inversion for each pixel of the subtracted
image. After this every corresponding pixel, of the first and the

Fig. 5. Results of the RCA with of approximation degree of 5/8. (a) Rice.
(b) Cameraman. (c) Exact Image Addition. (d) Algorithm 1. (e) Algorithm 2.
(f) Algorithm 3 [16]. (g) Algorithm 4.

TABLE XI
QUALITY METRICS OF IMAGE PROCESSING

inverted second image, is added together in our RCA structure.
As an example, we took two 512 × 512 8-bit images from
the image database of [50] and simulated the subtraction in
MATLAB. We again choose these images to have an apple-to-
apple comparison with the adders from [16], [29], and [30].
The results of the different algorithms with an approximation
degree of 5/8 can be seen in Fig. 6. The simulated quality
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Fig. 6. Results of the RCA with an approximation degree of 5/8.
(a) First image [50]. (b) Second image [50]. (c) Exact image subtraction.
(d) Algorithm 1. (e) Algorithm 2. (f) Algorithm 3 [16]. (g) Algorithm 4.

metrics for the image subtraction can be found in Table XI.
Again the PSNR value of all the algorithms is over 30 dB for
an approximation degree of up to 5/8. With six or more adders
this threshold again could not be reached and the noise effects
would render motion detection applications unusable. For this
application Algorithm 4 and SIAFA 4 exhibit the best PSNR
and MSSIM, closely followed by Algorithm 1.

C. Gray-Scale Filter

The gray-scale filter converts a colored RGB image into
a gray-scale version. In an image, each pixel comprises
three colors: 1) red; 2) green; and 3) blue along with their
corresponding intensities. To produce a gray-scale image, the
algorithm sums up the individual color values for each pixel
and then divides the resulting sum by three. With this, the
resulting gray-scale intensity is the average of all the three
color values. We first added the red and the green color-space
together and after that added the red to the prior result. It is
noteworthy that in alternative gray-scale conversion methods,
the color components are not uniformly weighted, leading to
disparate outcomes in the generated gray-scale images. We
performed the mentioned process for all the pixels of the
684 × 912 8-bit example image, which was again chosen
so that a comparison to the SoA adders could be drawn
fairly. We simulated every proposed algorithm with different
approximation degrees up to five out of eight approximated
adders. An overview of the quality metrics we assessed is
located in Table XI. Each algorithm exhibits more than 30 dB
PSNR at approximation degrees of 1–5 and is visually almost
indistinguishable from the exact calculation. The simulation
result of all the algorithms with an approximation degree of
5/8 can be found in Fig. 7. The results of six or more approxi-
mated adders did not meet the required PSNR threshold of 30
dB. This time SIAFAs 1 and 3 exhibit the best PSNR, followed
by Algorithms 2 and 3. All the four approaches share roughly
the same MSSIM.

D. Application-Level Comparison

1) With Exact Semi-Serial Adder [8]: To effectively com-
pare our algorithm with the exact approach [8] in image
processing we looked at the difference per pixel for each
application. We compared the RCA structures with five out of

Fig. 7. Results of the RCA with an approximation degree of 5/8.
(a) Toysnoflash. (b) Exact gray-scale filter. (c) Algorithm 1. (d) Algorithm 2.
(e) Algorithm 3 [16]. (f) Algorithm 4.

Fig. 8. Application-level comparison with 1/8 to 5/8 approximated adders
for the gray-scale filter example.

eight approximated adders with the exact 8-bit RCA, which is
the highest sufficient approximation degree. In image addition
and subtraction only one addition is required per pixel, while
in the gray-scale filter, two additions are required. If we sum
up the required energy and steps per pixel, we get the total
energy consumption and number of steps per image processing
application. With the algorithms 1, 2, and 4 up to 38%, 34%,
and 31% less energy and 35%, 29%, and 29% fewer steps are
required for the image processing applications. Algorithm 3
from [16] has almost identical (< 0.1% difference) results as
Algorithm 2, which again can be explained by their symmetry
to each other. For these gains in speed and energy efficiency,
the accuracy of the calculations is reduced but still in an
acceptable range as shown in Table XI. As the gray-scale filter
requires two additions the improvement is correspondingly
higher than with the other image processing applications. With
the presented 684 × 912 8-bit image we were able to reduce
the number of steps (the clock cycles) by about 36 million
and the required energy by 14.9 mJ in comparison to the
exact calculations. We achieve higher gains than Algorithm 3
from [16] by six million steps and 1.4 mJ, a significant
improvement over an already efficient adder.

2) With Approximated Adder From [29] and [30]: Since,
the topology from [29] and [30] differs from the semi-serial
structure used here and in [16], stark differences in energy
consumption and number of steps are expected. In all the
image processing applications, the adders presented in this
work require 5% − 29% less energy and 43% − 50% fewer
steps. The results for our experiments with 5/8 approximated
adders can be seen in Table XII, where our approach saves up
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TABLE XII
APPLICATION LEVEL COMPARISON TO EXACT SEMI-SERIAL ADDER [8], AND APPROXIMATE SERIAL ADDERS [29], [30]

to 7.5 mJ and 71 million steps compared to the SoA approxi-
mations. We plotted the energy-speed (number of steps) of our
approaches and the SoA algorithms for the gray-scale filter
example with different approximation degrees in Fig. 8. We
can see the efficiency of our algorithms, while reaching equal
image quality in most cases and comparable quality in others.
The following comparisons were made with an approximation
degree of 5/8 since it is the highest approximation degree
with acceptable image quality. In the image addition, the
second and third [16] algorithms exhibit almost equal PSNR
and MSSIM as the best algorithms from [30]. The other two
algorithms from this work have about 0.9 dB less PSNR
but display similar MSSIM. The SAFAN adder from [29]
yields the worst results with a PSNR of only 30.59 dB. In
the image subtraction, all of the presented algorithms have
better PSNR in comparison to SIAFAs 1, 2, and 3 by at least
1 dB. The fourth algorithm, SIAFA4 and SAFAN perform
the best with over 35 dB PSNR. SIAFAs 2 and 4, and our
first and fourth algorithms exhibit the best MSSIM with over
0.9 in this application. At the gray-scale filter, SIAFAs 1
and 3 have better PSNR than our presented algorithms and
Algorithm 3 [16]. The second algorithm still shows very good
results with a PSNR over 34 dB. On average the second
and third [16] algorithms together with SIAFA 1 and 3
perform best in terms of PSNR, followed by our first and
fourth algorithms as well as SIAFA 4. SIAFAs 2 and 4 and
Algorithms 1 and 4 from this work show the best MSSIM on
average.

VII. CONCLUSION

In this work, we presented three novel approximated full
adders based on the memristive IMPLY logic in the semi-serial
topology for the in-memory image processing. The primary
emphasis was on reducing the necessary steps per computa-
tion while showcasing a commendable tradeoff between the
area consumption, speed, energy consumption, and accuracy.
By implementing the proposed methodology, we observed a
reduction in energy consumption of 6%−38% when compared
to the exact full adder in the semi-serial topology and 5% −
29% compared to the other approximated approaches. We were
able to reduce the required number of steps by 5% − 35%
compared to the exact adder and 43% − 50% to the other
approximated adders at the same approximation degree. We
demonstrated the fastest IMPLY-based adder algorithm, which
requires a mere 53 steps for an 8-bit computation and is even
faster than the algorithm in the parallel structure (requiring

56 steps). We integrated the approximated full adders as the
lower bits in an RCA, simulated their behavior, verified their
functionality, and assessed the error metrics. We applied the
presented algorithms in various image processing applications,
such as image addition, image subtraction, and gray-scale
filtering. We evaluated the performance of the proposed image
processing systems using varying approximation degrees and
determined the quality of the resulting image with quality met-
rics. Our results indicate that for up to 5 bits of approximated
adders in an 8-bit RCA, the image quality is deemed sufficient
since the PSNR was over 30 dB. We can also see that different
approximations excel in different applications, indicating that
the error placement is crucial and highly application specific.
We showed how this approach leads to drastic improvements
in speed and energy consumption at the application level.
An in-depth stochastic analysis of the proposed algorithms,
their application for the 16- and 32-bit systems, and a more
generalized theory about the effects of approximations on the
image processing are domains for the future research.
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