
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 1

TPE-Det: A Tamper-Proof External Detector via
Hardware Traces Analysis Against IoT Malware

Ziming Zhao , Member, IEEE, Zhaoxuan Li , Member, IEEE, Tingting Li , and Fan Zhang , Member, IEEE

Abstract—With the widespread use of Internet of Things (IoT)1

devices, malware detection has become a hot spot for both2

academic and industrial communities. A series of solutions based3

on system calls, system logs, or hardware performance counters4

achieve promising results. However, such internal monitors are5

easily tampered with, especially against adaptive adversaries. In6

addition, existing system log records typically exhibit substantial7

volume, resulting in data explosion problems. In this article,8

we present TPE-Det, a side-channel-based external monitor to9

cope with these issues. Specifically, TPE-Det leverages the serial10

peripheral interface bus to extract the on-chip traces and designs11

a recovery pipeline for operating logs. The advantages of this12

external monitor are adversary-unperceived and tamper-proof.13

The restored logs mainly include file operation commands, which14

are lightweight compared to complete records. Meanwhile, we15

deploy a series of machine learning models with respect to16

statistical, sequence, and graph features to identify malware.17

Empirical evaluation shows that our proposal has tamper-proof18

capability, high-detection accuracy, and low-time/space overhead19

compared to state-of-the-art methods.20

Index Terms—Internet of Things (IoT) security, malware21

detection, serial peripheral interface (SPI) bus, tamper-proof22

external monitor.23

I. INTRODUCTION24

MALWARE continues to be prevalent in Internet infras-25

tructure nowadays and has caused profound attention26

from the security community [1]. Although malware is not27

a new threat, the boom of Internet of Things (IoT) [2], [3]28

broadens and amplifies its attack surface. In other words, the29

recent surge in embedded device adoption and the IoT revolu-30

tion is rapidly changing the malware landscape. Unfortunately,31

Manuscript received 12 August 2024; accepted 12 August 2024. This
work was supported in part by National Key Research and Development
Program of China under Grant 2023YFB3106800; in part by the National
Natural Science Foundation of China under Grant 62227805, Grant 62072398,
and Grant 62172405; in part by the Natural Science Foundation of
Jiangsu Province under Grant BK20220075; in part by the Fok Ying-
Tung Education Foundation for Young Teachers in the Higher Education
Institutions of China under Grant 20193218210004; and in part by the
Key Research and Development Program of Zhejiang Province under Grant
2023C01039. This article was presented at the International Conference on
Compilers, Architectures, and Synthesis for Embedded Systems (CASES)
2024 and appeared as part of the ESWEEK-TCAD Special Issue. This article
was recommended by Associate Editor S. Dailey. (Corresponding author:
Fan Zhang.)

Ziming Zhao, Tingting Li, and Fan Zhang are with the College
of Computer Science and Technology, Zhejiang University, Hangzhou
310027, China (e-mail: zhaoziming@zju.edu.cn; litt2020@zju.edu.cn;
fanzhang@zju.edu.cn).

Zhaoxuan Li is with the State Key Laboratory of Information Security,
Institute of Information Engineering, Chinese Academy of Sciences,
Beijing 100093, China, and also with the School of Cyber Security,
University of Chinese Academy of Sciences, Beijing 100049, China (e-mail:
lizhaoxuan@iie.ac.cn).

Digital Object Identifier 10.1109/TCAD.2024.3444712

these IoT devices are often highly vulnerable to attack and 32

might be used to create large, powerful botnets [4]. Most 33

famously, Mirai was used to launch vast volumetric DDoS [5], 34

[6], [7], [8], [9], e.g., Dyn, a DNS provider, suffered a 1.2 35

Tbps attack. 36

In recent years, researchers have proposed a series of meth- 37

ods to detect malware, but this arms race does not end there 38

as adversaries deploy some counter-reconnaissance strategies. 39

For example, some typical methods [10], [11] collect system 40

logs or system calls [12] for malware detection. However, 41

these solutions are adversary-perceived, i.e., attacker can be 42

aware of the existence of the detection program through 43

scanning processes or checking some dynamic fields [13]. 44

Then, the attacker could try to inject fake state data into 45

the system [14], tamper with system logs [15], or directly 46

kill the monitor process [16]. This ultimately leads to detec- 47

tion failure, also for some hardware performance counters 48

(HPCs) [17], [18]-based solutions. 49

In summary, existing solutions have the following 50

limitations. 51

1) Adversary-Perceived: Given that most detection pro- 52

grams are deployed inside the system, adversary 53

perception is possible through system state inspection 54

or process scanning [13]. As shown in Fig. 1, such 55

adversary perception capabilities may be the first step in 56

subsequent counter-reconnaissance activities. 57

2) Expose Risks for Tampering: After attackers perceive 58

the existence of an internal monitor, they may perform 59

a series of tampering operations to hide or delete their 60

attack traces. Since the log records used for detection 61

are retained on the victim device, they can easily be 62

maliciously tampered with [14] and [16]. In Fig. 1, on 63

the one hand, the attacker may directly kill the internal 64

monitoring program.On the other hand, they may also 65

tamper with the recorded logs. Either process killing or 66

wrong logs will directly cause the internal monitor to 67

fail [15]. 68

3) Huge Logging Records: Moreover, an additional 69

problem is that the existing logging methods are 70

redundant and bulky [19], [20]. Specifically, previous 71

solutions, such as using syscall or syslog, usually con- 72

sume >100-MB space overhead for recording behavior 73

of ∼10K malware. This is not practical in real-world 74

scenarios because one of the characteristics of IoT 75

devices is limited available resources [21]. 76

Considering the above problems of internal monitors [22], 77

we intend to develop an external monitor to advance this 78

1937-4151 c© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

https://orcid.org/0000-0003-1455-4330
https://orcid.org/0000-0002-2195-0799
https://orcid.org/0000-0002-6589-3706
https://orcid.org/0000-0001-6087-8243

2 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS

Fig. 1. Illustration of internal and external monitors.

landscape. In this article, we present TPE-Det, a Tamper-79

Proof External monitor for malware Detection. We leverage80

the hardware design knowledge of bus-connected system-81

on-a-chip (SoC) and design TPE-Det based on the serial82

peripheral interface (SPI) bus to monitor and analyze the83

on-chip instructions. Then, we develop a suite of pipelines84

to recover system file operation logs to realize information85

collection in a side-channel manner (“orange box” in Fig. 1).86

Finally, typical machine learning (ML) models and tailor-87

made deep neural networks (DNNs) are deployed to identify88

malware.89

In a nutshell, we make the following contributions.90

1) We investigate the limitations of existing malware detec-91

tion schemes against adaptive adversaries. A series of92

issues are revealed, including that internal detectors,93

could be perceived by adversaries, monitoring processes94

being killed by attackers, and the exposed risk of logs95

being tampered with.96

2) We propose a novel external monitor, named TPE-Det,97

that leverages the SPI bus to capture on-chip traces98

and design the operating logs recovery pipeline in a99

side-channel manner. Since TPE-Det is external to the100

device, it is tamper-proof and the adversary cannot101

perceive the existence of TPE-Det. An extra benefit is102

that the recorded logging of TPE-Det is concise.103

3) We deploy a series of ML models and tailored DNNs104

with respect to statistical, sequence, and graph features105

to perform malware identification.106

4) Empirical evaluations on our physical testbed demon-107

strate that TPE-Det clearly outperforms state-of-the-art108

(SOTA) methods, especially when against adaptive109

adversaries. We also conduct a series of experiments for110

concept drift, overhead evaluation, and providing more111

deep insights.112

II. RELATED WORK113

Existing IoT malware detection approaches can be roughly114

categorized into hardware-based (host-based) and network-115

based ones, we outline the related work here.116

A. Hardware/Host-Based Methods117

Hardware/host-based methods [23] aim to extract the pro-118

cessor fingerprint from different programs running on the IoT119

devices. Some previous arts [17], [18], [24], [25] propose120

to detect malware based on HPCs runtime information. The121

hardware part design of TPE-Det is different from the HPC-122

based method in the following two aspects. For one thing, the123

previous methods use HPC to detect malware, which is the 124

classification problem. Our hardware-part design focuses on 125

recovering operation logs for forensic analysis. Log recovery 126

using HPC could be difficult because the available events 127

are very limited (e.g., cpu-cycles, cpu-clock, L1-dcache-loads, 128

etc.) and the count results are usually numeric variables. For 129

another, more importantly, the process (e.g., perf tool [19]) for 130

statistics HPC can be killed by adaptive adversaries like that 131

the attacker kills internal monitors (mentioned in Section I). 132

In addition, the number of available HPCs is limited on 133

today’s microprocessors. And HPCs rely on the operating 134

environment, especially existing work [26], [27] reveals that 135

measured HPC values collected for the same program running 136

inside a virtual machine (VM) substantially differ from those 137

collected on a bare-metal system. Costin et al. [28] con- 138

ducted a large-scale firmware analysis for embedded devices. 139

PREEMPT [26] repurposes the embedded trace buffer (ETB) 140

to collect signal values through the joint test action group 141

(JTAG) debug interface and connect the host machine via 142

universal asynchronous receiver-transmitter (UART). Different 143

from them, TPE-Det introduces a new direction that utilizes 144

side-channel SPI signals to recover logs. 145

Another typical scheme captures system calls, e.g., 146

HRAT [12] constructs function call graph to profile malware’s 147

behavior. Moreover, system logs are usually used to analyze 148

whether there is malicious activity, e.g., Deeplog [11] deploys 149

recurrent neural network (RNN) and FedTrans [29] leverages 150

Transformer to model log records. IoTGuard [30] implements 151

a code instrument to collect the app’s information at run- 152

time by adding extra logic. Meanwhile, some technologies, 153

such as data compaction [31] and alternative tag propagation 154

semantics [32], are presented to combat dependence explo- 155

sion in long-term monitoring. However, these methods could 156

be adversary-perceived and the logs can be tampered with. 157

Therefore, TPE-Det explores a new perspective and utilizes 158

SPI signal to restore operation commands in a side-channel 159

manner, realizing tamper-proof capability. 160

B. Network-Based Methods 161

Network-based methods tend to profile the special traffic 162

pattern when the IoT devices are remoted intrusion [33], [34]. 163

To profile the traffic pattern, some works [35], [36], [37] 164

design supervised learning methods based on statistical fea- 165

tures, e.g., random forests (RFs). And some other arts utilize 166

Markov [38] or RNNs [39], [40], [41] to portray the sequential 167

features (e.g., packet length sequence) of attacks. For the 168

IoT devices, Gu et al. [42] presented IoTGaze to discover 169

the threats by sniffing event interaction in wireless traffic. 170

Wang et al. [43] performed a cross-analysis for mobile 171

companion apps to evaluate IoT devices’ security. 172

Although traffic capture programs, such as tshark, can also 173

be killed or packets could be tampered with, monitoring 174

network traffic is a promising approach, that is orthogonal to 175

host-based detection and they also can be combined [4]. A rep- 176

resentative art, Hawkware [10] combines traffic analysis and 177

system calls to detect malware. Overall, we select four ETB- 178

based models (from PREEMPT), 12 HPC-based ML/ensemble 179

ZHAO et al.: TPE-Det: A TAMPER-PROOF EXTERNAL DETECTOR VIA HARDWARE TRACES ANALYSIS 3

models, HRAT, Deeplog, FedTrans, and Hawkware as the180

baselines in evaluations.181

III. MOTIVATION182

In this section, we clarify the motivation for the design of183

TPE-Det. First, we explain that even malware that infects184

random access memory (RAM) will perform a series of file185

operations on read only memory (ROM). Then, we introduce186

the benefits of external monitors in terms of adversary-187

unperceived and tamper-proof. Finally, we form the core idea188

of designing an external monitor to track file operations using189

SPI, and explain how it will be beneficial in some real-world190

scenarios.191

1) Why Malware Infections Involve File Operations? An192

observation is that the evolution of IoT malware tends193

to use many persistence methods, such as installing194

themselves as either a service, a startup script, a system195

module, or a backdoor [4]. This persistent malware196

usually implants malware viruses into the electrically197

erasable programmable ROM (EEPROM) to achieve198

persistence on IoT devices. In addition, even typical199

malware that infects RAM will perform a series of file200

operations on ROM. For example, Mirai can read the201

executable binary into RAM for malicious activities,202

while it also involves some operations on ROM, such as203

using cat, to analyze architecture (e.g., e_machine field);204

using wget, tftp, or echo to transfer the payload [44].205

More details can be found in Section VI-E. These file206

operations on ROM can be captured by SPI, so we intend207

to leverage SPI signals to analyze on-chip traces.208

2) What Are the Benefits of Using an External Monitor?209

Using internal monitor to obtain details of malware210

is a viable scheme, such as causality analysis for211

system logs [45], [46], [47] or adopt system hooking for212

investigation [30]. However, these proposed techniques213

have some limitations. On the one hand, the internal214

monitor could be adversary-perceived, e.g., the attacker215

may detect the existence of a running monitor by216

checking some dynamic fields [13]. On the other hand,217

internal monitors are prone to be subverted, e.g., the218

attacker could tamper with operation log files [14], [15]219

even directly kill the monitoring process [16], [48].220

Existing research [22], [49] suggests that if leveraging221

hardware design knowledge to develop an external222

monitor [50], such as a bus-connected SoC, it will tend223

to be tamper-proof. PREEMPT [26] is a representative224

external monitor, and we also compare it to illustrate225

the advantages of TPE-Det in detection performance (in226

Section VI).227

3) How Does TPE-Det Facilitate Real-World Security228

Scenarios? We elaborate here that TPE-Det could229

promote typical security scenarios involving inves-230

tigation forensics and honeypots. For investigation231

forensics [45], [46], [47], correct logs are necessary232

to support practitioners in building threat intelligence,233

correlation analysis, etc. The attacker could tamper234

with logs or kill processes to cause the failure of235

internal monitors [15], [16] (as stated above), which 236

will directly affect the forensic results (we develop the 237

adaptive adversary experiments in Section VI-D). For 238

IoT honeypots [51], [52], serve as critical tools in the 239

cybersecurity landscape, they are used to attract attack- 240

ers and capture/collect malicious behaviors. However, 241

an adaptive attacker [13], [53] will actively terminate 242

its attack behavior when it senses the presence of a 243

monitoring process, this will result in the honeypot 244

being unable to collect corresponding threat intelli- 245

gence and attack information. Given that TPE-Det is 246

adversary-unperceived and tamper-proof, it could facili- 247

tate investigation forensics and honeypot scenarios. 248

IV. ASSUMPTIONS AND THREAT MODEL 249

A. Adversary Model 250

We consider strong/adaptive adversaries that adopt various 251

attack strategies. They could exploit remote transmission to 252

implant malware/viruses or leave them into the IoT devices’ 253

built-in chips to achieve potential persistent attacks, including 254

malware, that infects RAM or residing in ROM, e.g., Mirai [5] 255

and Hajime [6]. These malicious activities/executions will 256

involve a series of file operations [5], [6], e.g., file creation, 257

writing, permission modification, and self-induced deletion. 258

More importantly, adaptive adversaries indicate that a series 259

of counter-reconnaissance technologies will be deployed. 260

Specifically, the attacker will scan the processes running on 261

the victim device, and once the presence of internal monitors 262

is discovered, they will directly kill the program or tamper 263

with the recorded logs. 264

B. Assumptions 265

We explain some assumptions here. Given that TPE-Det 266

needs to collect SPI signals for the protected device, so 267

physical access is required. We admit that physical access may 268

not be convenient sometimes, but such an external monitor 269

is promising, especially in facilitating real-world security 270

scenarios, e.g., investigation forensics and honeypots (stated 271

in Section III). We also perform more security discussions in 272

Section VII-A. Although our physical testbed has a specific 273

architecture, our approach is not limited to architecture and 274

the detector has cross-architecture capabilities (Section VI-E). 275

Furthermore, we intend to enable hardware trace monitoring 276

before infection to avoid missing some malicious behavior. 277

This assumption is similar to typical anti-virus software, in 278

which practitioners usually run anti-virus programs in advance 279

to detect potential malware [54]. 280

V. DESIGN OF TPE-DET 281

In Fig. 2, we depict the high-level architecture of TPE-Det. 282

Consider a running IoT device, which the SPI bus can be 283

used to dump content for Flash chips. We connect the SPI 284

bus in parallel with a logic analyzer that parses the digital 285

signals to the Flash traces. These traces will be recovered as 286

system operating logs, which could be fed to ML models for 287

classification. 288

4 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS

Fig. 2. Overview of TPE-Det.

(a)

(b)

(c) (d)

Fig. 3. Log recovery pipeline of external monitor. (a) SPI signal digitization
(instruction). (b) Flash trace. (c) Structure file system. (d) Operation log
recovery.

A. External Monitor and Log Recovery289

We clarify here the proposed design pipeline to externally290

recover the operation log in the file system, as shown in Fig. 3.291

The so-called “externally recover logs” refers to the external292

monitor (e.g., leveraging SPI signals), not the internal monitor,293

so as to make the adversary imperceptible and tamper-proof.294

Collect the Digital Signals: To acquire digital signals295

emanating from the Flash chip integrated within an IoT device,296

a logic analyzer is interfaced in parallel with the SPI bus’s297

pins. This logic analyzer, serving the role of a physical probe,298

is affixed to the SPI pins and executes periodic sampling299

with the frequency Fl. Note that Fl > 2 × Fmax
o should be300

satisfied according to the Nyquist–Shannon sampling theorem,301

where Fmax
o denotes the maximum frequency of the original302

signals. The specific sampling frequency setting is explained303

in Section VI-A. Upon collection, the resultant sampling data304

are archived within an upper computer system.305

Extract the Flash Traces: The collected digital signals306

mainly consist of the chip instructions1 and the content written307

into Flash (i.e., the nonvolatile data). The chip instructions are308

related to the chip type and the physical state, so the specific309

instruction hex can be confirmed according to the correspond-310

ing chip manual. For instance, the W25Q128BV [55] chip2
311

has some instructions, and their hexadecimal as follows.312

1) 0x01: Write Status Register Instruction.313

1They refer to the SPI instruction set and are fully controlled through the
SPI bus, e.g., the W25Q128FV contains 45 basic instructions [55].

2Particularly, our design does not depend on a specific chip and only
needs to satisfy the above-mentioned Nyquist–Shannon sampling theorem.
According to product reports of the chip manufacturer, the maximum
frequency of common SPI Flash chips is 80–133 MHz [56]. Modern logic
analyzers support a sampling rate of 500 MS/s [57].

2) 0x02: Page Program Instruction. 314

3) 0x03: Read Data Instruction. 315

4) 0x04: Write Disable Instruction. 316

5) 0x05: Read Status Register Instruction. 317

6) 0x06: Write Enable Instruction. 318

These chip instructions are instrumental in analyzing the 319

SPI trace, enabling us to discern the executed operations, such 320

as “Read” and “Write.” Furthermore, they allow us to ascertain 321

the specific nonvolatile data content and its corresponding 322

address. As illustrated in Fig. 3(b), we can extract the Flash 323

traces, e.g., < a1, a2, a3 > represents the 24-bit address and 324

< f11, f12, . . . , f1M > refers to content segments written. 325

Structure the File System: In this step, TPE-Det will 326

meticulously structure the file system to assemble segments. 327

The primary objective of this process is to enhance the 328

comprehension of the nonvolatile data’s content and its precise 329

storage location within the device. This insight is invaluable 330

for practitioners, as it provides a deeper understanding of the 331

attack mechanisms, which is essential for forensic investiga- 332

tions. Note that this process does not influence the malware 333

detection phase, given the subsequent models rely solely on 334

the features derived from operation commands, as elaborated 335

in Section V-B. 336

In reality, the structuring process is inherently related to the 337

file system architecture. When employing various file systems, 338

the necessary adaptation is confined to modifying the mapping 339

procedure that correlates storage addresses with file direc- 340

tories, as well as the decompression algorithm (customarily 341

deployed to economize on space overhead) for the nonvolatile 342

data. We implement a prototype for the journaling flash 343

file system (JFFS2) [58] log structure3 used in our testbed. 344

Specifically, within the JFFS2 framework, there are two data 345

entities that are intimately associated with file operations, i.e., 346

jffs2_raw_dirent and jffs2_raw_inode. 347

We can discern these two data entities by examining the 348

parameter magic + nodetype, and ascertain the entity length 349

utilizing the parameter totlen. The entity jffs2_raw_dirent 350

is responsible for delineating the file’s location, specifically 351

within its parent directory, while jffs2_raw_inode is tasked 352

with retaining the file’s management information. Notably, 353

the latter contains the actual written content within the 354

Flash memory in its data parameter and leverages the mode 355

parameter to document file types and modes. For example, 356

{S_IXOTH: 01} denotes the execute or search permission 357

bit for other users, and {S_IWOTH: 02} denotes the write 358

permission bit for other users [60]. Based on these two entities, 359

we mount corresponding nodes to structure the tree-shaped 360

file system. Considering that the content may be compressed 361

to conserve space, we apply the corresponding decompression 362

algorithm (stored in the compr of jffs2_raw_inode) to retrieve 363

the complete data. For example, the compression algorithms 364

of JFFS2 and their hexadecimal are {ZERO: 0x01, RTIME: 365

0x02, RUBINMIPS: 0x03, COPY: 0x04, DYNRUBIN: 0x05, 366

ZLIB: 0x06, LZO: 0x07}. By employing the above process, 367

3JFFS2 is widely used in IoT devices due to its power-disconnected
reliability and space-efficient properties [58], such as [59] mentioned that 333
firmware was collected from Axis Communications (a network camera device
manufacturer), and about 85% of them use the JFFS2 file system.

ZHAO et al.: TPE-Det: A TAMPER-PROOF EXTERNAL DETECTOR VIA HARDWARE TRACES ANALYSIS 5

Fig. 4. Models regarding three types of features. (a) Statistical feature.
(b) Sequence feature. (d) Graph feature.

we are able to accurately map file addresses and meticulously368

parse the contents of nonvolatile data.369

Recover the Operating System Logs: Upon structuring the370

file system, we can glean a wealth of information, including371

file types, names, permissions, contents, access timestamps,372

and so on. This available comprehensive information on nodes373

can subsequently be harnessed to reconstruct the behavior logs374

of the operating system. For example, emerging instances of375

entities → file creation; changing the entities’ contents → file376

writing; and mounting the entities to the garbage collection377

node → file deletion. The logs that are recovered encompass378

a range of file operations, such as creation, deletion, reading,379

writing (including content), permission modifications, times-380

tamps of the last modification, soft links, and more. Readers381

might be concerned about the potential impact on the log382

recovery process if adversaries were to tamper with system383

logs or eliminate binary scripts (as mentioned in Section IV).384

However, as long as the SPI signal collection is conducted385

proactively, TPE-Det can recover the operation log even if the386

malicious script is deleted, attacker’s tampering will also be387

recorded. This robust capability stems from the design of TPE-388

Det as an external monitoring tool. All file operations, such389

as reading, permission modifications, deletions, and so forth,390

are meticulously recorded and archived on an upper computer391

for log recovery purposes.392

B. ML Models for Detection393

As shown in Fig. 2, the system operation logs will be394

fed into ML models4 for malware identification. In Fig. 4,395

we deploy TPE-Det with a series of models that regard the396

statistical feature, sequence feature, and graph feature.397

1) The statistical feature refers to counting commands in398

a fixed order to form a vector. For example, given399

a statistical feature vector {C1:i1, C2:i2, . . . , Cn:in, }, it400

means that i1 C1 commands, i2 C2 commands, · · · , in Cn401

commands are involved. We use a series of ML models402

to analyze the statistical feature, including decision tree403

(DT), RF, support vector machine (SVM), XGBoost404

(XGB), and Naive Bayes (NB). All these models are set405

with default parameters of Python scikit-learn library.406

4System operation logs can also be combined with lightweight rule-
matching methods for detection and analysis. Given the wide application of
ML technology in IoT security [61], [62], [63], we tend to use a series of
ML models for analysis here so that we can perform a fair comparison with
existing works that use ML to analyze logs from HPC, Syslog, Syscall, etc.

2) The sequence feature refers to the command calling 407

sequence of malware. Fig. 4(b) displays the partial 408

command execution sequence of malware whose MD5 409

is 7044865a1cfd07535400d7e041786940. It performs a 410

series of operations, including rm, mkdir, rm, wget, etc. 411

We use long short-term memory (LSTM) [64], a typical 412

RNN model, to identify these sequence features to dis- 413

cover behavioral patterns commonly used by attackers. 414

In the tth time step operation of the LSTM unit, the 415

forget gate ft can be calculated as 416

ft = σ
(
Wf · [ht−1, Xt

]+ bf
)

(1) 417

where ht−1 is the current hidden state and Xt denotes 418

the tth input, i.e., the one-hot encoded vector of tth 419

operation. The memory gate vt can be computed as 420

follows: 421

vt = σ
(
Wv · [ht−1, Xt

]+ bv
)
. (2) 422

And the temporary memory cell C̃t is computed by 423

C̃t = tanh
(
Wc · [ht−1, Xt

]+ bc
)
. (3) 424

Then, the next cell state can be updated as follows: 425

Ct = ft · Ct−1 + vt · C̃t. (4) 426

Finally, the output gate ot can be obtained as 427

ot = σ
(
Wo · [ht−1, Xt

]+ bo
)
. (5) 428

And the next hidden state can be calculated as follows: 429

ht = ot · tanh(Ct). (6) 430

Finally, the hidden state of the last step is used to obtain 431

the final classification results Ŷ with a fully connected 432

layer fc (Wc) and a Softmax function. Notably, the above 433

parameter matrices W and b are all learnable parameters 434

Ŷ = arg max(Softmax(Wc · ht)). (7) 435

3) The graph feature is formed in a similar way to the 436

sequence feature, the difference is that the same com- 437

mands correspond to one node in the graph structure. 438

As Fig. 4(c) shows, it uses a directed graph record, 439

i.e., (N1 → N2) �= (N2 → N1) since their order is 440

different. Intuitively, graph-structure records focus on 441

call dependencies and are relatively robust even in the 442

presence of obfuscation operations. Then, we analyze 443

the operation command graph based on the traditional 444

graph neural network (GNN) model [65], whose node 445

features iteratively with 446

h(k)
v = φ

(
h(k−1)

v , f
({

h(k−1)
u : u ∈ N (v)

}))
(8) 447

where N (v) represents a set of nodes adjacent and 448

reachable to the node v. Meanwhile, the function φ is 449

injective and f operates on the set of neighbor nodes’ 450

feature vectors, which are called multisets. Also, the 451

initial features h(0)
v of the graph node refer to its one-hot 452

encoded vector. 453

In practice, we use multilayer perceptrons (MLPs) to model 454

and learn the composition of two functions f (k+1) ◦ ϕ(k), 455

6 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS

thanks to the universal approximation theorem [66]. In the first456

iteration, we do not need MLPs before summation if input457

features are one-hot encodings as their summation alone is458

injective. Then, the graph model updates node representations459

as460

h(k)
v = MLP(k)

⎛

⎝(1 + ε(k)) · h(k−1)
v +

∑

u∈N (v)

h(k−1)
u

⎞

⎠ (9)461

where ε is a learnable parameter or a fixed scalar.462

Furthermore, the graph-level readout is performed based463

on information from all depths/iterations of the model, due464

to a sufficient number of iterations is the key to achieving465

good discriminative power. To this end, we achieve this by466

an architecture similar to Jumping Knowledge Networks [67],467

where we make graph representations concatenated across all468

iterations/layers of the model as follows:469

hG = CONCAT

(
∑

v∈G

h(k)
v |k = 0, 1, . . . , K

)

(10)470

Ŷ = arg max(Softmax(Wc · hG)). (11)471

Finally, similar to the sequence model, the final classification472

results Ŷ can also be obtained with a fully connected layer473

and a Softmax function, as described in (11). In this way, this474

model possesses the superior discriminative/representational475

power based on the neighbor aggregation and graph readout476

functions, so as to identify the malicious operations better.477

VI. EVALUATION478

In this section, we comprehensively evaluate TPE-Det in479

terms of detection performance and overhead. Moreover, we480

perform a series of experiments, including time/space concept481

drift, deep insights, and adaptive adversary evaluation. Our482

code is available online.5483

A. Experiment Setup484

Testbed: Our testbed is established with wireless router485

(installed the W25Q128BV Flash [55], SPI bus, and MT7620486

SoC chip), a logic analyzer (the Saleae Logic Pro 8 [57],487

supports a maximum sampling rate of 500 MS/s), an upper488

computer (installed an i7-9700 CPU, and 64 GB memory).489

Among them, the router is the victim IoT device, and the490

upper computer runs TPE-Det. The wireless router runs491

OpenWrt [68] which the file system is JFFS2. For the logic492

analyzer, we set the sampling rate is 500 MS/s, which means493

that it could achieve 3–6 times oversampling for common494

SPI Flash chips [56] (i.e., satisfies Nyquist–Shannon sampling495

theorem). One end of the logic analyzer is probed on pins 1,496

2, 4, 5, and 6 of the Flash chip (Fig. 5), while the other end497

is connected to the upper computer.498

Parameter Settings: All ML classifiers use the default499

parameters of the Python scikit-learn library. For the LSTM,500

we set the time step as 128, the hidden layer as 400, the501

number of layers as 2, and the learning rate as 1e-3. For the502

GIN, we set the number of hidden units as 64, the dropout503

5Online repository: https://github.com/Secbrain/TPE-Det/.

Fig. 5. Physical IoT device of TPE-Det testbed. (a) Connect pins to extract
SPI signals. (b) Flash chip.

Fig. 6. Malware details of the dataset.

as 0.5, the GNN layers as 5, they are all consistent with the 504

original paper [65]. 505

Datasets: The dataset used for evaluation is 506

ScriptDataset [16], including 3439 malicious Linux shell 507

scripts and 9337 benign firmware scripts. We depict the 508

distribution of malware over time in Fig. 6, spanning 2012 509

to 2020. Among them, most malware samples are mainly 510

concentrated in 2017 and 2018. For the dataset split, we 511

default to adapt {train:test = 8:2}. We also divide malware 512

as {train:test = 5:5} and {train:test = 2:8} to develop space 513

bias experiments and as two split points (red dotted lines) in 514

Fig. 6 to conduct time bias experiments [69]. Each group of 515

experiments will be performed 5 times with different random 516

seeds. 517

B. Detection Effect Evaluation 518

We first evaluate the malware detection effect of TPE-Det 519

and SOTA methods, including four ETB-based models, 12 520

HPC-based models, and four syscall/log-based schemes. For 521

four metrics (i.e., accuracy, precision, recall, and F1 score), 522

the average detection results and standard deviation are sum- 523

marized in Table I. We observe that our detectors based 524

on recovery command achieve dominant results, especially 525

GNN, XGB, RF, and LSTM (realize 95.87%–98.05% F1), 526

which clearly outperforms 20 baselines. For the baseline, the 527

syscall/syslog-based methods are generally better than ETB- 528

based and HPC-based schemes. Nonetheless, TPE-Det still 529

outperforms syscall/syslog-based methods by 3.91%–13.82% 530

F1 score. For ETB-based baselines (belonging to external 531

monitor), TPE-Det realizes >10.12% F1 score higher than 532

PREEMPT [26]. Regarding HPC-based baselines, we can 533

see that model ensembles indeed bring improvement, e.g., 534

7.99%–30.99% F1 improvement. However, MLP-Boost (the 535

best in HPC-based) achieves 85.84% F1 (12.21% lower than 536

our GNN), this can be attributed to the amount of HPC 537

information is limited. 538

ZHAO et al.: TPE-Det: A TAMPER-PROOF EXTERNAL DETECTOR VIA HARDWARE TRACES ANALYSIS 7

Fig. 7. Concept drift experiments in terms of space and time biases. (a) Space bias. (b) Time bias.

TABLE II
DETECTION EFFECT (%) OF CONCEPT DRIFT EXPERIMENTS IN TERMS OF SPACE BIAS AND TIME BIAS

C. Concept Drift Experiments539

Moreover, we conduct concept drift experiments in terms540

of space bias and time bias [69]. 1) Space bias refers to541

unrealistic assumptions about the ratio of benign/malware, we542

divide the malware as {train:test = 5:5} and {train:test = 2:8}543

in Fig. 7(a) and the left part of Table II and 2) Time bias refers544

to malware could behave differently over time, we set two545

split points (Fig. 6) of malware samples. As shown in Fig. 7,546

against spatial/temporal biases, TPE-Det still maintains good547

performance compared to baselines. Particularly, both ETB-548

based and HPC-based schemes are not robust enough when549

against concept drift. Specifically, for accuracy results in 550

space bias experiments in Fig. 7(a), we observe that only 551

four models (RF, XGB, LSTM, and GNN) are superior to 552

the best baseline (i.e., FedTrans) when {train:test = 5:5}, 553

while all seven models perform better than the baselines when 554

{train:test = 2:8}. Similar results can also be observed in 555

Fig. 7(b), our seven SPI-based models all realize better recall 556

than the baselines when the setting refers to ≤April 2017 	→ 557

≥May 2017. 558

We report more detailed results in Table II in terms of 559

the accuracy, precision, recall, and F1 score. From the left 560

8 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS

TABLE I
DETECTION EFFECT OF EACH MODEL AND BASELINES

part of Table II, we find that all SPI-based models achieve561

better performance (involving four metrics) than baselines562

when {train:test = 2:8}. This presents that our scheme can563

indeed extract effective and stable features via leveraging564

SPI to recover execution behaviors, even if only a small565

number of samples are used for training. From the right566

part of Table II, we see some different phenomena. Except567

for the recall, for the other three indicators, not all seven568

SPI-based models are higher than the baseline. This may be569

attributed to the fact that the attack behavior of malware has570

a more certain pattern (so TPE-Det can achieve a higher-571

detection rate even if under the time bias setting), while the572

execution activities of benign programs are more diverse.573

We then analyze some malware instances to obtain more574

insights.575

As shown in Fig. 8, we visualize command graph patterns576

for some malware. It is clear that there are 2,155 mal-577

ware that have the structure of wget → chmod → echo → rm,578

while none benign present this pattern. In addition, Fig. 8579

also displays that the other three command graph patterns580

are shared by 800, 63, and 13 malware, respectively. This581

can echo back the results in Table II, i.e., GNN performs582

the best performance, because many malware have iso-583

morphic command graph structures. Overall, our SPI-based584

recovered operation commands are representative features585

for malware detection, even against space/time concept586

drift.587

D. Adaptive Adversary Evaluation588

We develop the adaptive adversary evaluation next.6 For one589

thing, we consider adaptive adversaries who could perform590

6Although PREEMPT is an external monitor, it is not clear how to recover
file operations based on ETB trace [26], so PREEMPT does not support

Fig. 8. Deep insights into TPE-Det.

Fig. 9. Evaluation with obfuscation and tampering.

operation obfuscation. For another, strong attackers could 591

directly kill the monitor process or tamper with recorded logs. 592

1) Operation Obfuscation: The attacker may add 593

additional operations into the malicious script for obfusca- 594

tion [70], [71]. We set the ratio as {5%, 10%, 15%, 20%, 25%} 595

to obfuscation randomly, the accruacy results are summarized 596

in the left part of Fig. 9. We observe that HRAT is less affected 597

by confusion since it takes feature interferences/modifications 598

into account during model training [12]. The results of 599

FedTrans and Deeplog are comparable. As the confusion 600

ratio increases, the accuracy of most models tends to 601

decrease slowly. When the obfuscation ratio is 25%, the top-5 602

performance models, in order, are GNN (ours) > XBG (ours) 603

> HRAT > LSTM (ours) > Deeplog. 604

2) Log Tampering: To evaluate the tamper-proof capa- 605

bilities, we consider the attackers could directly kill the 606

internal monitor process or tamper with operation log 607

files [14], [15], [16]. Specifically, we only save the first 50 608

operation log recovery and cannot be evaluated the tamper-proof capability
against the adaptive adversary.

ZHAO et al.: TPE-Det: A TAMPER-PROOF EXTERNAL DETECTOR VIA HARDWARE TRACES ANALYSIS 9

TABLE III
COMMAND RECOVERY AGAINST ADAPTIVE ADVERSARIES

(or 100) lines of generated logs after each malware exe-609

cution to simulate adversary tampering, e.g., cat /dev/null610

> /var/log/syslog, execute the malware script, and cat611

/var/log/syslog | head -n 50 > save.txt. The log recovery612

results of TPE-Det and Syslog against the kill processes and613

tampering with logs are summarized in Table III. We find that614

Syslog is greatly affected by tampering and fails directly when615

killed (corresponding to 0% command recovery in Syslog).616

However, TPE-Det is almost unaffected whether by tampering617

or killing the process, i.e., achieve 97.25%–99.75% command618

recovery. Compare the results between “Kill” and “Del-to-50,”619

we find that the command recovery results of TPE-Det for620

chmod, ln, mkdir, mv, rm, rmdir, and touch are consistent.621

The recovery ratio of other commands changes because the622

log deletion operation may involve those commands. For the623

right part of Fig. 9, it is clear that all methods based on624

HPC (perf), Syscall, and Syslog are severely affected when625

tampered with and will fail when killed. In comparison, TPE-626

Det always maintains superior detection, which echoes our627

original intention of such a tamper-proof design.628

E. Deep Insights Into TPE-Det629

In this section, we provide here more deep insights into630

TPE-Det with respect to cross-architecture analysis, operation631

recovery case, and unknown detection.632

1) Cross-Architecture Analysis: A variety of architectures633

is typically used on IoT devices, such as x86, ARM, MIPS,634

etc., thus cross-architecture analysis is practical in the real635

world [72]. We analyze all malware instances in the dataset636

and find that their command structures are completely isomor-637

phic when different architectures are involved, as the top part638

of Fig. 10 shows. Specifically, Fig. 10(a) corresponds to the639

malware with MD5 is f6ff16d9b855beae3fcfb7d272c34582.640

There are a series of executable files for different architectures641

involve MIPS, SH4, x86, ARM, and so on. Nonetheless, their642

command patterns are the same, refer to wget → chmod643

→ program execution → rm. This means that our proposal644

Fig. 10. Cross-architecture malware analysis. a) Arch-homogeneous malware.
(b) Cross-arch heatmap.

Fig. 11. Visualization and unknown detection evaluation. (a) t-SNE
visualization. (b) TPR results. (c) FPR results.

supports cross-architecture malware detection. Furthermore, 645

we count the frequency of various architectures appearing 646

simultaneously to draw the heatmap in Fig. 10(b). We observe 647

that x86, mips, sh4, and ppc are the most common. 648

2) Recovery Case: We describe the log recovery case for 649

Hajime [6] and Mirai [5], more details are stored in the online 650

repository.. 651

3) Unknown Detection: We also explore unknown detec- 652

tion effects, statistical features are modeled with autoencoder 653

(AE), both LSTM and GNN are also reconstructed into 654

encoder + decoder architectures. Then, training with benign 655

only and performing anomaly detection based on reconstruc- 656

tion loss. Fig. 11 shows the feasibility of unknown detection, 657

and the t-SNE visualization indicates that benign and malware 658

are distinguishable under our feature space. 659

F. Overhead Evaluations 660

We measure the time and space overhead here. In Fig. 12, 661

our ML classifiers introduce minimal time overhead, our 662

DNN models are the same level as the HPC-based model 663

10 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS

Fig. 12. Time overhead of TPE-Det and baselines.

ensemble. The most time-consuming is FedTrans because664

it is based on the Transformer model. For the space over-665

head, our models only induce 70.31–327.17 KB, the most666

space-consuming is still FedTrans since it contains mas-667

sive parameters. Noteworthy, among various log records in668

Table IV, ours is the smallest, only needing 4.31 MB for all669

benign/malware samples combined, while Perf , Syscall, and670

Syslog all require more than 100 MB. For log recovery time, it671

takes ∼0.02 s to analyze 5 MB SPI signals, which is acceptable672

due to usually there are not so many traces generated.673

G. Extended Experiments674

We also perform extended experiments with different chips675

and datasets. Specifically, we use another chip that installs676

the W25X64 Flash [73] and SPI bus. Meanwhile, we consider677

the BadThings [74] dataset, which contains binary malware678

executables. The evaluation results of the GNN model in TPE-679

Det are reported in Fig. 14. We observe that for different680

chips, there is almost no impact on the performance of TPE-681

Det, and the slight differences in classification metrics may682

be due to factors, such as the changed frequency, during683

the signal acquisition process. For the BadThings dataset,684

the performance of TPE-Det decreases slightly (e.g., ∼1.2%685

accuracy drop), probably because the BadThings corpora [74]686

contains more malware samples. Overall, TPE-Det can detect687

malware accurately and has good scalability, such as applying688

to different chips and datasets.689

VII. DISCUSSION, LIMITATIONS, AND FUTURE WORK690

A. Security Discussion691

As mentioned in the introduction, TPE-Det is dedicated692

to performing the analysis of the side-channel information693

external to the system, which can address the challenges694

of tampering risks and huge logging records. In this way,695

attackers are difficult to perceive the monitoring process or696

manipulate the logs, so that the detection results of TPE-Det697

can be guaranteed. Actually, physical access does increase the698

possible attack surface [75]. While we would like to clarify699

that considering security scenarios involving investigation700

forensics and honeypots (as stated in Section III), such physi-701

cal access is acceptable in the real world [26], [76]. In view of702

scenarios, such as forensics and honeypots, practitioners are703

allowed to have many permissions on the equipment, including704

physical access support [45], [46], [52], to obtain as much705

attack intelligence and information as possible [47], [51].706

TABLE IV
SPACE OVERHEAD OF LOGS AND MODELS

Fig. 13. Log recovery time of the hardware trace.

Fig. 14. Evaluate TPE-Det (GNN) on different chips and datasets.

Also, the Logic analyzer in TPE-Det prototype connects the 707

flash chip physically through pins so that the IoT device 708

system will not be directly affected. It can also be considered 709

for devising integrated customized solutions for production in 710

the future. 711

B. Practicality and Expandability 712

As experimented in Section VI-B, it is undeniable that 713

TPE-Det may yield some misclassifications, even if TPE-Det 714

proposes three designed models for the statistical, sequence, 715

and graph features. When customers have a low tolerance for 716

false negatives, we can improve the positive probability of 717

the classification or ensemble multiple models (e.g., voting 718

result is negative only if no positive). Meanwhile, TPE-Det 719

can leverage the traceability forensic analysis [21] to verify 720

and determine the detection reports based on the recovered 721

hardware-part operation. In addition, the high-level detection 722

ZHAO et al.: TPE-Det: A TAMPER-PROOF EXTERNAL DETECTOR VIA HARDWARE TRACES ANALYSIS 11

logic in TPE-Det can be extended according to specific723

business scenarios. For example, we could focus on choosing724

the appropriate model of graph features for security applica-725

tions that centered on continuous and various file operations.726

In addition to forensics and IoT honeypots, other scenarios727

that require recording correct device operation logs against728

adaptive adversaries can also benefit from TPE-Det.729

C. Limitations and Future Work730

Although the evaluations mainly use the ScriptDataset731

dataset, other datasets, such as BinaryString and732

OpenWrtLogs, are still applicable given that previous work733

has extensively confirmed that malware does exhibit certain734

command patterns. We admit that physical access may not735

be convenient sometimes, but as a novel external monitor,736

TPE-Det can bring new perspectives. Meanwhile, a feasible737

direction is to devise integrated customized solutions for738

industrial production to advance this side-channel-manner739

analysis.740

VIII. CONCLUSION741

In this article, we propose TPE-Det, a tamper-proof and742

lightweight external malware detector. In particular, TPE-Det743

leverages the SPI bus to monitor and extract the on-chip traces744

and we design a suite of operation log recovery pipeline in745

a side-channel manner. We implement TPE-Det and evaluate746

it extensively on our physical testbed. By comparing the747

SOTA methods involving HPC, ETB, Syscall, and Syslog,748

we demonstrate that TPE-Det can achieve remarkable detec-749

tion results even against adaptive adversaries. Meanwhile,750

TPE-Det introduces negligible CPU and memory utilization.751

Furthermore, we develop a series of experiments in terms752

of concept drift, deep insights, cross-architecture analysis,753

unknown detection, and overhead evaluation to present the754

effectiveness, stability, scalability, lightness, and practicality755

of TPE-Det.756

REFERENCES757

[1] E. Cozzi, M. Graziano, Y. Fratantonio, and D. Balzarotti,758

“Understanding Linux malware,” in Proc. IEEE Symp. Security Privacy,759

2018, pp. 161–175.760

[2] X. Zhang, M. Hu, J. Xia, T. Wei, M. Chen, and S. Hu, “Efficient feder-761

ated learning for cloud-based AIoT applications,” IEEE Trans. Comput.762

Aided Design Integr. Circuits Syst., vol. 40, no. 11, pp. 2211–2223,763

Nov. 2021.764

[3] M. Hu, E. Cao, H. Huang, M. Zhang, X. Chen, and M. Chen,765

“AIoTML: A unified modeling language for AIoT-based cyber-physical766

systems,” IEEE Trans. Comput. Aided Design Integr. Circuits Syst.,767

vol. 42, no. 11, pp. 3545–3558, Nov. 2023.768

[4] O. Alrawi, C. Lever, K. Valakuzhy, K. Snow, F. Monrose, and769

M. Antonakakis, “The circle of life: A large-scale study of the IoT mal-770

ware lifecycle,” in Proc. USENIX Security Symp., 2021, pp. 3505–3522.771

[5] M. Antonakakis et al., “Understanding the Mirai botnet,” in Proc. 26th772

USENIX Security Symp., 2017, pp. 1093–1110.773

[6] S. Herwig, K. Harvey, G. Hughey, R. Roberts, and D. Levin,774

“Measurement and analysis of Hajime, a peer-to-peer IoT botnet,” in775

Proc. NDSS, 2019, pp. 1–15.776

[7] X. Ling et al., “DDoSMiner: An automated framework for DDoS attack777

characterization and vulnerability mining,” in Proc. 22nd ACNS, 2024,778

pp. 283–309.779

[8] Z. Zhao, Z. Li, F. Zhang, T. Li, and J. Yin, “Poster: Combine780

topology and traffic to calibrate P2P botnet identification in large-scale781

network,” in Proc. ACM SIGCOMM Posters Demos, 2024, pp. 16–18.782

[9] Z. Zhao, Z. Liu, H. Chen, F. Zhang, Z. Song, and Z. Li, “Effective 783

DDoS mitigation via ML-driven in-network traffic shaping,” IEEE 784

Trans. Dependable Secure Comput., vol. 21, no. 4, pp. 4271–4289, 785

Jul./Aug. 2024. 786

[10] S. Ahn, H. Yi, Y. Lee, W. R. Ha, G. Kim, and Y. Paek, “Hawkware: 787

Network intrusion detection based on behavior analysis with ANNs on 788

an IoT device,” in Proc. 57th ACM/IEEE DAC, 2020, pp. 1–6. 789

[11] M. Du, F. Li, G. Zheng, and V. Srikumar, “DeepLog: Anomaly detection 790

and diagnosis from system logs through deep learning,” in Proc. ACM 791

SIGSAC CCS, 2017, pp. 1285–1298. 792

[12] K. Zhao et al., “Structural attack against graph based android malware 793

detection,” in Proc. ACM SIGSAC CCS, 2021, pp. 3218–3235. 794

[13] W. Cui, V. Paxson, N. Weaver, and R. H. Katz, “Protocol-independent 795

adaptive replay of application dialog,” in Proc. NDSS, 2006, pp. 1–15. 796

[14] L. Babun, A. K. Sikder, A. Acar, and A. S. Uluagac, “The truth 797

shall set thee free: Enabling practical forensic capabilities in smart 798

environments,” in Proc. NDSS, 2022, pp. 1–17. 799

[15] R. Paccagnella, K. Liao, D. Tian, and A. Bates, “Logging to the 800

danger zone: Race condition attacks and defenses on system audit 801

frameworks,” in Proc. ACM SIGSAC CCS, 2020, pp. 1551–1574. 802

[16] H. Li et al., “Understanding and detecting remote infection on Linux- 803

based IoT devices,” in Proc. ACM ASIA CCS, 2022, pp. 873–887. 804

[17] N. Patel, A. Sasan, and H. Homayoun, “Analyzing hardware based 805

malware detectors,” in Proc. ACM 54th DAC, 2017, pp. 1–6. 806

[18] H. Sayadi, N. Patel, P. D. S. Manoj, A. Sasan, S. Rafatirad, 807

and H. Homayoun, “Ensemble learning for effective run-time 808

hardware-based malware detection: A comprehensive analysis and clas- 809

sification,” in Proc. 55th ACM/ESDA/IEEE DAC, 2018, pp. 1–6. 810

[19] “Perf tutorial.” Perf. 2023. [Online]. Available: 811

https://perf.wiki.kernel.org/index.php/Tutorial 812

[20] E. Allman. “Syslog.” 2023. [Online]. Available: 813

https://en.wikipedia.org/wiki/Syslog 814

[21] Z. Zhao et al., “CMD: Co-analyzed IoT malware detection and forensics 815

via network and hardware domains,” IEEE Trans. Mobile Comput., 816

vol. 23, no. 5, pp. 5589–5603, May 2024. 817

[22] M. Botacin, P. L. D. Geus, and A. Grégio, “Who watches the watch- 818

men: A security-focused review on current state-of-the-art techniques, 819

tools, and methods for systems and binary analysis on modern plat- 820

forms,” ACM Comput. Surv., vol. 51, no. 4, pp. 1–34, 2018. 821

[23] Q. Wang et al., “You are what you do: Hunting stealthy malware via 822

data provenance analysis,” in Proc. NDSS, 2020, pp. 1–17. 823

[24] J. Demme et al., “On the feasibility of online malware detection with 824

performance counters,” in Proc. ACM ISCA, 2013, pp. 559–570. 825

[25] M. Botacin and A. Grégio, “Why we need a theory of maliciousness: 826

Hardware performance counters in security,” in Proc. 25th ISC, 2022, 827

pp. 381–389. 828

[26] K. Basu, R. Elnaggar, K. Chakrabarty, and R. Karri, “PREEMPT: 829

PReempting malware by examining embedded processor traces,” in 830

Proc. 56th ACM/IEEE DAC, 2019, pp. 1–6. 831

[27] B. Zhou, A. Gupta, R. Jahanshahi, M. Egele, and A. Joshi, “Hardware 832

performance counters can detect malware: Myth or fact?” in Proc. ASIA 833

CCS, 2018, pp. 457–468. 834

[28] A. Costin, J. Zaddach, A. Francillon, and D. Balzarotti, “A large-scale 835

analysis of the security of embedded firmwares,” in Proc. 23rd USENIX 836

Security Symp., 2014, pp. 95–110. 837

[29] G. De L. T. Parra, L. Selvera, J. Khoury, H. Irizarry, E. Bou-Harb, and 838

P. Rad, “Interpretable federated transformer log learning for cloud threat 839

forensics,” in Proc. NDSS, 2022, pp. 1–16. 840

[30] Z. B. Celik, G. Tan, and P. D. McDaniel, “IOTGUARD: Dynamic 841

enforcement of security and safety policy in commodity IoT,” in Proc. 842

NDSS, 2019, pp. 1–15. 843

[31] M. N. Hossain et al., “Dependence-preserving data compaction for 844

scalable forensic analysis,” in Proc. 27th USENIX Security Symp., 2018, 845

pp. 1723–1740. 846

[32] M. N. Hossain, S. Sheikhi, and R. Sekar, “Combating dependence explo- 847

sion in forensic analysis using alternative tag propagation semantics,” in 848

Proc. IEEE Symp. Security Privacy (SP), 2020, pp. 1139–1155. 849

[33] L. Li et al., “An automated alert cross-verification system with 850

graph neural networks for IDS events,” in Proc. 27th CSCWD, 2024, 851

pp. 2240–2245. 852

[34] Z. Li et al., “metaNet: Interpretable unknown mobile malware identi- 853

fication with a novel meta-features mining algorithm,” Comput. Netw., 854

vol. 250, Aug. 2024, Art. no. 110563. 855

[35] Z. Zhao, Z. Li, Z. Song, W. Li, and F. Zhang, “Trident: A universal 856

framework for fine-grained and class-incremental unknown traffic detec- 857

tion,” in Proc. ACM Web Conf., 2024, pp. 1608–1619. 858

12 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS

[36] A. Saha, N. Ganguly, S. Chakraborty, and A. De, “Learning network traf-859

fic dynamics using temporal point process,” in Proc. IEEE INFOCOM,860

2019, pp. 1927–1935.861

[37] Z. Zhao et al., “DDoS family: A novel perspective for massive types of862

DDoS attacks,” Comput. Security, vol. 138, Mar. 2024, Art. no. 103663.863

[38] M. Shen, M. Wei, L. Zhu, and M. Wang, “Classification of encrypted864

traffic with second-order Markov chains and application attribute865

bigrams,” IEEE Trans. Inf. Forensics Security, vol. 12, pp. 1830–1843,866

2017.867

[39] Z. Zhao et al., “ERNN: Error-resilient RNN for encrypted868

traffic detection towards network-induced phenomena,” IEEE869

Trans. Dependable Secure Comput., early access, Feb. 3, 2023,870

doi: 10.1109/TDSC.2023.3242134.871

[40] Z. Song et al., “I2RNN: An incremental and interpretable recur-872

rent neural network for encrypted traffic classification,” IEEE873

Trans. Dependable Secure Comput., early access, Feb. 28, 2023,874

doi: 10.1109/TDSC.2023.3245411.875

[41] Z. Zhao, Z. Li, Z. Song, and F. Zhang, “Work-in-876

progress: Towards real-time IDS via RNN and programmable877

switches co-designed approach,” in Proc. IEEE RTSS, 2023,878

pp. 431–434.879

[42] T. Gu, Z. Fang, A. Abhishek, H. Fu, P. Hu, and P. Mohapatra, “IoTGaze:880

IoT security enforcement via wireless context analysis,” in Proc. IEEE881

INFOCOM, 2020, pp. 884–893.882

[43] X. Wang, Y. Sun, S. Nanda, and X. F. Wang, “Looking from883

the mirror: Evaluating IoT device security through mobile com-884

panion apps,” in Proc. 28th USENIX Security Symp., 2019,885

pp. 1151–1167.886

[44] “Mirai-source-code.” Accessed: Oct. 2, 2023. [Online]. Available:887

https://github.com/jgamblin/Mirai-Source-Code888

[45] P. Fei, Z. Li, Z. Wang, X. Yu, D. Li, and K. Jee, “SEAL:889

Storage-efficient causality analysis on enterprise logs with query-890

friendly compression,” in Proc. 30th USENIX Security Symp., 2021,891

pp. 2987–3004.892

[46] L. Yu et al., “ALchemist: Fusing application and audit logs for precise893

attack provenance without instrumentation,” in Proc. NDSS, 2021,894

pp. 1–18.895

[47] Q. Wang, W. U. Hassan, A. Bates, and C. Gunter, “Fear and logging in896

the Internet of Things,” in Proc. NDSS, 2018, pp. 1–16.897

[48] J. Haseeb, M. Mansoori, and I. Welch, “A measurement study of898

IoT-based attacks using IoT kill chain,” in Proc. IEEE 19th Int.899

Conf. Trust, Security Privacy Comput. Commun. (TrustCom), 2020,900

pp. 557–567.901

[49] S. Ul Haq, Y. Singh, A. Sharma, R. Gupta, and D. Gupta, “A survey902

on IoT & embedded device firmware security: Architecture, extraction903

techniques, and vulnerability analysis frameworks,” Discov. Internet904

Things, vol. 3, no. 1, p. 17, 2023.905

[50] M. S. Awal and M. T. Rahman, “Disassembling software instruction906

types through impedance side-channel analysis,” in Proc. IEEE HOST,907

2023, pp. 227–237.908

[51] H. Griffioen and C. Doerr, “Examining Mirai’s battle over909

the Internet of Things,” in Proc. ACM SIGSAC CCS, 2020,910

pp. 743–756.911

[52] Z. Yin, Y. Xu, C. Zhou, and Y. Jiang, “Empirical study of system912

resources abused by IoT attackers,” in Proc. 37th IEEE/ACM ASE, 2023,913

pp. 1–13.914

[53] S. Valizadeh and M. Van Dijk, “MalPro: A learning-based malware915

propagation and containment modeling,” in Proc. ACM SIGSAC CCSW,916

2019, pp. 45–56.917

[54] D. Arp, M. Spreitzenbarth, M. Hubner, H. Gascon, K. Rieck, and918

C. Siemens, “DREBIN: Effective and explainable detection of android919

malware in your pocket,” in Proc. NDSS, 2014, pp. 1–15.920

[55] “W25Q128FV: Winbond.” 2013. [Online]. Available:921

https://www.pjrc.com/teensy/W25Q128FV.pdf922

[56] (Winbond Corp., Taichung, Taiwan). Code Storage Flash Memory. 923

(2023). [Online]. Available: https://www.winbond.com/hq/product/code- 924

storage-flash-memory/?__locale=en 925

[57] (Saleae, San Francisco, CA, USA). Saleae Logic Analyzer. (2023). 926

[Online]. Available: https://www.saleae.com/ 927

[58] D. Woodhouse, “JFFS: The journalling flash file system,” in Proc. 928

Ottawa Linux Symp., 2001, pp. 1–12. 929

[59] K. Liu et al., “On manually reverse engineering communication proto- 930

cols of Linux-based IoT systems,” IEEE Internet Things J., vol. 8, no. 8, 931

pp. 6815–6827, Apr. 2021. 932

[60] (Free Softw. Found. Inc., Boston, MA, USA). The GNU 933

C Library Reference Manual. (2023). [Online]. Available: 934

https://www.gnu.org/software/libc/manual/pdf/libc.pdf 935

[61] F. Alwahedi, A. Aldhaheri, M. A. Ferrag, A. Battah, and N. Tihanyi, 936

“Machine learning techniques for IoT security: Current research 937

and future vision with generative AI and large language mod- 938

els,” Internet Things Cyber-Phys. Syst., vol. 4, pp. 167–185, 939

Jan. 2024. 940

[62] H. El-Sofany, S. A. El-Seoud, O. H. Karam, and B. Bouallegue, “Using 941

machine learning algorithms to enhance IoT system security,” Sci. Rep., 942

vol. 14, no. 1, 2024, Art. no. 12077. 943

[63] L. Xiao, X. Wan, X. Lu, Y. Zhang, and D. Wu, “IoT security techniques 944

based on machine learning: How do IoT devices use AI to enhance 945

security?” IEEE Signal Process. Mag., vol. 35, no. 5, pp. 41–49, 946

Sep. 2018. 947

[64] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, “Empirical evaluation 948

of gated recurrent neural networks on sequence modeling,” 2014, 949

arXiv:1412.3555. 950

[65] K. Xu, W. Hu, J. Leskovec, and S. Jegelka, “How 951

powerful are graph neural networks?” in Proc. ICLR, 2019, 952

pp. 1–17. 953

[66] K. Hornik, “Approximation capabilities of multilayer feedforward 954

networks,” Neural Netw., vol. 4, no. 2, pp. 251–257, 955

1991. 956

[67] K. Xu, C. Li, Y. Tian, T. Sonobe, K. Kawarabayashi, and 957

S. Jegelka, “Representation learning on graphs with jumping knowledge 958

networks,” in Proc. 35th ICML, 2018, pp. 5449–5458. 959

[68] “OpenWrt Porject.” OpenWrt. 2021. [Online]. Available: 960

https://openwrt.org/ 961

[69] F. Pendlebury, F. Pierazzi, R. Jordaney, J. Kinder, and L. Cavallaro, 962

“TESSERACT: Eliminating experimental bias in malware classification 963

across space and time,” in Proc. 28th USENIX Security Symp., 2019, 964

pp. 729–746. 965

[70] M. I. Sharif, A. Lanzi, J. T. Giffin, and W. Lee, “Impeding malware 966

analysis using conditional code obfuscation,” in Proc. NDSS, 2008, 967

pp. 1–13. 968

[71] J. Garcia, M. Hammad, and S. Malek, “Lightweight, obfuscation- 969

resilient detection and family identification of android malware,” in Proc. 970

40th ICSE, 2018, p. 497. 971

[72] D. Vasan, M. Alazab, S. Venkatraman, J. Akram, and Z. Qin, 972

“MTHAEL: Cross-architecture IoT malware detection based on neural 973

network advanced ensemble learning,” IEEE Trans. Comput., vol. 69, 974

no. 11, pp. 1654–1667, Nov. 2020. 975

[73] “W25X64: Winbond.” 2013. [Online]. Available: https://www. 976

alldatasheet.com/datasheet-pdf/pdf/207472/WINBOND/W25X64.html 977

[74] “A labeled dataset with malicious and benign IoT network traffic.” 978

Accessed: Jan. 5, 2024. [Online]. Available: https://badthings.info/ 979

[75] S. Etigowni, D. Tian, G. Hernandez, S. Zonouz, and K. Butler, 980

“CPAC: Securing critical infrastructure with cyber-physical access 981

control,” in Proc. 32nd Annu. Conf. Comput. Security Appl., 2016, 982

pp. 139–152. 983

[76] A. Kumar and T. J. Lim, “EDIMA: Early detection of IoT malware 984

network activity using machine learning techniques,” in Proc. IEEE 5th 985

WF-IoT, 2019, pp. 289–294. 986

http://dx.doi.org/10.1109/TDSC.2023.3242134
http://dx.doi.org/10.1109/TDSC.2023.3245411

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Helvetica-Condensed-Bold
 /Helvetica-LightOblique
 /HelveticaNeue-Bold
 /HelveticaNeue-BoldItalic
 /HelveticaNeue-Condensed
 /HelveticaNeue-CondensedObl
 /HelveticaNeue-Italic
 /HelveticaNeueLightcon-LightCond
 /HelveticaNeue-MediumCond
 /HelveticaNeue-MediumCondObl
 /HelveticaNeue-Roman
 /HelveticaNeue-ThinCond
 /Helvetica-Oblique
 /HelvetisADF-Bold
 /HelvetisADF-BoldItalic
 /HelvetisADFCd-Bold
 /HelvetisADFCd-BoldItalic
 /HelvetisADFCd-Italic
 /HelvetisADFCd-Regular
 /HelvetisADFEx-Bold
 /HelvetisADFEx-BoldItalic
 /HelvetisADFEx-Italic
 /HelvetisADFEx-Regular
 /HelvetisADF-Italic
 /HelvetisADF-Regular
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

