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Abstract—Hyperdimensional computing (HDC) has emerged as a
promising paradigm offering lightweight yet powerful computing capa-
bilities with inherent learning characteristics. By leveraging binary hyper-
dimensional vectors, HDC facilitates efficient and robust data processing,
surpassing traditional machine learning (ML) approaches in terms of both
speed and resilience. This paper addresses key challenges in HDC systems,
particularly the conversion of data into the hyperdimensional domain and
the integration of HDC with conventional ML frameworks. We propose
a novel solution, the Hyperdimensional Vector Quantized Variational
Auto Encoder (HDVQ-VAE), which seamlessly merges binary encodings
with codebook representations in ML systems. Our approach significantly
reduces memory overhead while enhancing training by replacing traditional
codebooks with binary (—1,+1) counterparts. Leveraging this architecture,
we demonstrate improved encoding-decoding procedures, producing high-
quality images within acceptable peak signal-to-noise ratio (PSNR) ranges.
Our work advances HDC technology by considering efficient ML system
deployment to embedded system environments.

Index Terms—Binary Encoding, Hyperdimensional Computing (HDC),
Machine Learning (ML) Integration, Vector Quantized Variational Auto
Encoder (VQ-VAE).

I. INTRODUCTION

Hyperdimensional Computing (HDC) has recently received signifi-
cant attention from researchers due to its ability to provide lightweight
yet efficient computing coupled with certain learning characteris-
tics [1]. HDC offers both speed and robustness compared to con-
ventional machine learning (ML), owing to its unconventional data
representation. Utilizing high-dimensional symbolic binary vectors,
known as hypervectors, HDC performs various ML tasks [2]. These
hypervectors possess the inherent property of holographic information
storage [3]. By employing binary (—1,+1) hyperdimensional vectors,
HDC achieves holographic information storage [4], encompassing
multiple incoming data within a single binary vector, with lower
resource consumption than conventional binary radix systems. The
dimensionality (D) of hypervectors typically ranges from 1K to 10K,
with vectors necessitating near orthogonality for unbiased symbol
representation. This unique orthogonality property facilitates bundling,
binding, and permuting operations for encoding purposes, enabling a
single vector to represent multiple inputs [5]. Bundling hypervectors
yields a hypervector most similar to all addends. The binding operation
results in a hypervector most dissimilar to the set of hypervectors
bound, akin to coordinate-wise multiplication. Permutation, a circular
shift, generates uncorrelated hypervectors, preserving orthogonality [6].

While HDC is a promising path toward lightweight ML applications,
much consideration must be given to how data is converted to its sym-
bolic representation. This paper focuses on helping streamline the en-
coding process using unsupervised learning. In contrast to conventional
ML methods, which often employ continuous, real-valued vectors such
as those in Word2Vec [7], the HDC approach utilizes a discrete,
symbolic representation. This enables robust, memory-efficient holo-
graphic information storage using hyperdimensional binary vectors,
reducing the overhead associated with floating-point representations. In
traditional ML approaches for symbol processing, vectors are processed
based on element-wise positions, where each element in the vector
has a specific meaning tied to its position. Similarly, HDC employs
positional encoding in binary vectors. However, HDC also uses binding
and bundling logic operations to combine information, preserving
relationships within the data in a compact form. While conventional
models utilize dimensionality reduction techniques to connect sub-
groups of vectors and measure similarity between words, HDC uses
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Fig. 1. From traditional ML to HDC: (a) Conventional multi-layered neural

network, (b) HDC specs over the conventional ML, (c) Training and testing
procedures in HDC; MNIST image dataset case study.

streamlined binary similarity measures, like cosine similarity, to infer
relationships between hypervectors. This work uses conventional ML
to help select symbols for representing abstract data. To the best of
our knowledge, for the first time in the literature, Vector Quantized
Variational Auto Encoder (VQ-VAE) architecture is decorated with an
HDC approach for an efficient latent space representation without the
loss of generality. The VQ-VAE codebook’s discrete aspect aligns with
standard encoding techniques for HDC, where a discrete symbol list or
codebook is used. In addition, the encoder, decoder, and quantization
process of the VQ-VAE aligns with our goal of learning to map abstract
data to a set of symbols in an unsupervised manner.

Once the codebook is obtained, the classification task becomes
the second component of the overall learning architecture. Traditional
systems typically rely on conventional floating-point memory repre-
sentation involving complex operations such as multiply-accumulate-
activate. However, in HDC-based classifiers, a single-pass learning
strategy is employed, diverging from traditional ML systems. This
study integrates a binary codebook trained using HDVQ-VAE with
the learning strategy of the HDC paradigm. The latent space elements
undergo further processing through binding and bundling to create a
classifier system. Results indicate that this proposed framework offers
an easily deployable architecture with reduced memory usage while
maintaining accuracy levels comparable to conventional approaches.
This paper presents the following contributions:

@ Integration of HD mechanics into VQ-VAE architecture via code-
book replacement.

 Enable the use of downstream HDC applications that take advantage
of HD latent space.

® Reduction of latent space by 32x from the transition of float32
codebook to the binary codebook.

® Reduction of overall model size due to codebook replacement.

The structure of this paper is as follows: Section II presents the
background, and the methodology of the HDVQ-VAE is given in
Section III. Section IV reviews the results and compares them to
conventional VQ-VAE, and Section V concludes the paper.

II. BACKGROUND
A. Hyperdimensional Computing (HDC)

HDC is an emerging computing paradigm gaining attention, partic-
ularly in developing ultra-lightweight learning systems [8]. In com-
parison to conventional ML approaches depicted in Fig 1 (a), HDC,
outlined in Fig 1 (b), offers direct data processing without the need for
additional feature engineering, supports single-pass learning, eliminates
the requirement for error optimizations and backpropagation, and
achieves a lightweight model thanks to unary processing capabilities.
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Fig. 2. Vector Quantized Variational Auto Encoder: (a) Conventional architecture fine-tuned for this work, (b) HDVQ-VAE: Proposed architecture using HDC

for latent spaces; the new classifier part is in HDC learning approach.

Encoding data into hypervectors and applying several logic operations
results in the learned class of the training sample, unlike the learning
steps (forward pass - backward pass) in traditional neural network
systems, which require several optimization steps.

HDC excels in representing symbols, such as letters, image pixel
positions, and 1-D signal timestamps, by leveraging orthogonal binary
vectors. Each vector comprises D dimensions and consists of randomly
occurring +1 and —1 values (interpreted as logic-1 and logic-0 in a
hardware environment).

For symbol representation, since it is not a numerical value, a vector
evaluation follows the unbiased probability point between O and 1.
Assuming the middle point of the overall probability is 0.5 for each
symbol vector representation, no bias exists between generated vectors.
The probability presents having a logic value of 1 over the total vector
size, thus having equal probability for each symbol.

On the other hand, scalar values, including 1-D signal amplitude and
image pixel intensity, are also effectively encoded within HDC systems.
The minimum and maximum scalar values within the space are mapped
to —1—-1—-1—1...—1 (minimum hypervector) and +1+4+1+4141...41
(maximum hypervector), respectively. For example, when encoding
grayscale image pixel intensities, which range from 0 to 255 for 8-bit
representation, a pixel intensity of 0 is represented as —1—1—1—1...—1
in hypervector space, while a pixel intensity of 255 is represented
as +14+1+4+1+41...41. Any value within a range is represented by
randomly flipping bits from —1 to +1 (or vice versa) based on
the magnitude of the value. Larger values correspond to patterns
resembling the maximum hypervector, while smaller values resemble
the minimum hypervector [9].

Once vector generation is complete, the data undergoes subsequent
encoding steps, such as binding, shifting, permutation, and bundling
tailored to the specific application. Applications primarily use two types
of encoding: mn-gram-based and record-based encoding. In symbol-
based applications like language processing, n-gram operation involves
handling n symbols (letters) alongside their corresponding hyper-
vectors. Any n group of symbols are combined using shifting and
permutation of their corresponding hypervectors [10]. For instance,
n=3-gram operations on text processing take three sub-sets of letter
hypervectors in a sentence, shift and permute each 3-group vector,
and multiply them through the binding operation. Multiplications of
+1 and —1 binary values are implemented using XOR operations in
hardware, and the final result is another hypervector. The resultant
hypervectors (n-gram vectors) from each m-gram sub-set are then
cumulatively aggregated (achieved through population count operations
in hardware) to produce a single vector from multiple n-gram inputs.
This accumulation is a bundling operation and facilitates the holistic
learning property of HDC. The final step involves binarization of the
accumulated values back to binary form. This process, customized for
each dataset class, generates a unified 1-D vector representing the
respective class. Each new sample contributes to this resultant class
hypervector by undergoing the same encoding steps [11]. Inference

follows the same encoding steps outlined above; classification entails
a similarity assessment between the test sample vector and the class
hypervectors. A higher similarity score (measured through metrics such
as cosine similarity, Hamming distance, dot product, etc.) indicates
a closer match between the class and the test hypervector, yielding
classification results. Fig 1 (c) illustrates the training and inference flow
within the context of image processing using HDC. Each image class
in MNIST dataset contributes to the corresponding class hypervector
in associative memory. During testing, following the same encoding
steps, all class hypervectors are sequentially compared via similarity
scores with the query hypervector from item memory.

B. Vector Quantized Variational Auto Encoder (VQ-VAE)

Variational Auto Encoders (VAE) are used in many applications,
such as generative image diffusion models, to produce a compressed
latent space that is computationally less expensive to perform op-
erations. While conventional VAEs produce continuous compressed
representations, the VQ-VAE architecture learns compressed discrete
representations. The VQ-VAE architecture introduces a quantization
process that replaces the reparametrization trick of conventional VAEs.
[12]. The VQ-VAE’s quantization process transforms the continuous
representations into discrete ones. This quantization is performed by
calculating the distance between features and a codebook, where
a codebook is defined as a finite symbol list. Once distances are
calculated, each feature is replaced with the nearest symbol. This design
choice provides an opportunity to utilize the codebook to represent
discrete outputs in a vector space. The VQ-VAE compresses and
reconstructs abstract data through the structured interplay between the
encoder and decoder, in which data is encoded into a symbolic repre-
sentation and then decoded back into its original representation [12].
This paper is motivated by the shared goal of encoding for HDC and
the VQ-VAE encoding process, mapping data to a discrete symbolic
representation. Fig. 2 (a) illustrates conventional VQ-VAE architecture.

Conventional VQ-VAE uses three main loss metrics to guide its
training: Mean Square Error (MSE), Codebook Loss, and Commitment
Loss. The MSE is calculated between the reconstructed and original
data. Codebook loss and commitment loss are nearly identical. The only
difference between them is which set of vectors is detached to force the
other to be considered during backpropagation. Both are represented
as the MSE of the encoder output vectors and the nearest codebook
vectors (quantized vector). The codebook loss detaches the gradients
of the raw encoder output. This detachment of the gradients forces
the codebook or symbol list to move toward the raw output of the
encoder. The commitment loss works the other way around, detaching
the quantized or symbol representation. This forces the encoder to
minimize the distance between its output and the codebook. These
detachments are used to train the codebook and encoder at separate
rates. The codebook should be restrained from adjusting drastically to
stabilize training. This is enforced by scaling down the codebook loss.
The commitment loss forces the encoder to ‘commit’ to the symbols in



the codebook. In what follows, the losses in the conventional VQ-VAE
are given:

MSE Loss = % Zivzl(xrecon,i —z;)?
Codebook Loss = MSE(quantized, Zgetach)
Commitment Loss = MSE(quantized g, ~

III. HDVQ-VAE FRAMEWORK

The proposed architecture builds upon a well-known conventional
ML module: the VQ-VAE, with an update of binary data representation
to incorporate orthogonal vectors, resulting in the HDVQ-VAE. This
adaptation offers a lightweight, easily deployable, and more efficient
classifier utilizing the encoding dynamics of the HDC paradigm.
Our architecture comprises down blocks, up blocks, and quantization
modules. The down blocks consist of dual sequential modules, each
comprising two convolution layers through which the input passes
before undergoing addition and being fed through the tanh activa-
tion function. The first of these dual sequential modules features a
pre-activation tanh function situated between the convolution layers.
Fig. 2 (a) illustrates the conventional, and Fig. 2 (b) shows the proposed
HDVQ-VAE architecture.

By replacing the convolution layers in the down block with convo-
lutional transpose layers, we created our up block that aims to reverse
the operation performed by the down block. The quantization module
holds the codebook and is responsible for mapping latent vectors to
this codebook. In our proposal, we replace the conventional codebook
with a binary (—1, 41) representation for our architecture. This allows
us to utilize hypervectors or sections of hypervectors as our codebook.
We initialize these codebook vectors using pseudo-random sequences.
In HDC, where orthogonality is essential for symbol representation,
random sources provide this orthogonality.

Once the codebook is initialized, it remains fixed throughout the
overall architecture without further updates, unlike a conventional VQ-
VAE. This enables us to eliminate the codebook and commitment loss.
‘We maintain the straight-through estimator to propagate gradients from
one side of the quantization module to the other [12]. The codebook
can comprise either hypervectors or sections of hypervectors. If the
codebook consists of sections of hypervectors, then the latent space
must contain multiple vectors that, when flattened, form a hypervec-
tor. Alternatively, if the codebook directly employs hypervectors, the
quantized latent will encompass multiple hypervectors.

We have significantly streamlined the training process by eliminating
the codebook and commitment loss in our modified VQ-VAE model.
The static codebook does not require updates during training, making
the codebook loss unnecessary. Similarly, the binary nature of the
codebook diminished the benefits of a commitment loss. In addition to
the conventional loss function, we have opted to create loss functions
(z) from the well-known metrics to help guide the network: peak
signal-to-noise ratio (PSNR) [13], structural similarity (SSIM), learned
perceptual image patch similarity (LPIPS) [14], and perplexity (PPLX)
[15]:

PSNR;, = 1.0
LPIPS, = L N

M;) || SSIM,, = 1.0 — SSIM (24, Trecon)

V) LPIPS (27, Trecon,i) || PPLX [, = gt

In our experiment, the training procedure uses the loss of the
reconstructed images and their originals to guide the model toward
producing meaningful latent representations. The training procedure is
as in Algorithm 1.

In addition to utilizing HDC for binary latent space representation,
the classifier component is also retained within the HDC domain to
further leverage the latent space. Fig. 2 (b) further illustrates the
HDC classifier specifically designed for the codebook in the HDC
domain. The process involves multiplying (binding) and accumulating
flattened vectors with positional hypervectors for each corresponding
class. The positional vectors coincide with our latent block’s spatial
dimensionality of 24x24. Initializing our positional vectors involves
assigning each spatial position a distinct binary. The distinctness of
these vectors is ensured by the random assignment of bits to 0 or
1 with a 0.5 probability of either. Similarly to the quantized latent
block, we flatten the positional vectors into a single hypervector that is
then bound with the flattened quantized latent block. When evaluating
(inference phase) incoming query samples, they are similarly encoded
in the hypervector domain and compared to each previously generated
class hypervector. The highest score determines the classification result.
Consequently, this paper introduces two primary proposals to be

Algorithm 1 HDVQ-VAE Training Procedure

1: Initialize:
2:  Model parameters use default Pytorch initialization
3: *codebook is initialized as a stack of non-trainable binary vectors
4: for each epoch do
5: for each batch in training data do
6: Encode:
7: Input data is B X 3 X 96 X 96
8: Result is latent block of size B X 128 x 24 x 24
9: Quantize:
10: Compute distances to *codebook vectors
11: Assign each latent vector to the nearest * codebook vector
12: Decode: Generate reconstruction from quantized latent block
13: Calculate Losses
14: Compute Reconstruction loss as M SE(xmon, x)
15: Compute Perplexity loss as (=S P08 PY)
16: Compute PSNR loss as 1.0 — PONR(@ m‘“"")
17: Compute SSIM loss as 1. 0 SSIM(x Trecon)
18: Compute LPIPS loss as EZ: LPIPS (2, recon,i )
19: Add all losses to calculate the total loss for the batch
20: Backpropagate: Update model parameters based on total loss
21:  end for
22: end for

% The codebook consists of binary vectors, unlike conventional VQ-VAEs.
# Codebook loss is not used in HDVQ-VAE.
Binary vector size is taken as 128.

tested in the subsequent section: binary latent spaces and codebook
classification using HDC classifier.

IV. EXPERIMENTS AND RESULTS

In this section, we run two groups of experiments considering
our two main contributions: the performance of HD latent space
for reconstruction and latent space performance in the classification
problem. Using the architecture in Fig. 2 (b), we first consider the
performance of the binary HD latent space. The images are constructed
based on the STL10 dataset [16], and the construction performance of
the HDC-based approach is in the acceptable performance range.

The experiments were conducted using Intel 17-9750h CPU, 16GB
of RAM at 2400MHz, and an Nvidia Geforce GTX 1650. Pytorch and
Torchvision provided the functionality needed for the experiments. Our
experiments use the STL10 dataset [16]. We chose the STL10 dataset
for its larger 96x96x3 (W x HxC) size compared to MNIST and
CIFAR datasets. The larger size allowed us to test the reconstruction
of higher-quality images where the codebook vectors may need to
represent more details with a challenging problem. In the case of our
HDVQ-VAE, where the codebook does not need to be adjusted, encod-
ing high-quality vectors is crucial for passing vital detail information
to the decoder.

The additional losses focused on detail help guide the model in
the selection of codebook vector to best pass detail information from
the encoder to the decoder. The HDVQ-VAE can reconstruct images
acceptably, as can be seen in Fig. 3.

Once trained, we can produce binary latent vectors using the encoder
and binary codebook in Fig. 2 (b). We use the latent vectors to test the
classification abilities of the conventional method with respect to the
convolutional neural network (CNN). The CNN classifier’s architecture
consists of three convolution 2D layers, a flattened layer, and two
fully connected linear layers connected sequentially. Specifically, the
architecture includes convolutional layers with input-output channel
pairs (128, 64, 32, and 8), each followed by a fanh activation function.
Then, a single flattened layer is placed at the end of the convolutional
layers. The flattened output is passed through two fully connected
linear layers, transitioning from 72 to 32 features, followed by a ReLU
activation and then from 32 to 10 features. The CNN classifier was
trained using a ‘reduce on plateaw’ scheduler starting at a learning rate
of 0.003 with a scale factor of 0.5 and a threshold of 0.01 for our cross-
entropy loss. As seen in Fig.s 4 (a) and (b), the CNN classifier nearly
doubled in evaluation accuracy while more than tripling in training
accuracy. Fig.s 4 (c) and (d) report the testing phase confusion matrix
for conventional and HD approaches, respectively.

For our HDC classification test, we reshape the binary latent vectors
from our HDVQ-VAE, flattening them into a much higher-dimensional
vector, which forms our hypervector. The flatting operation brings our
latent representation from B x 128 x 24 x 24 to B x 73728 where
B is our batch dimension, and 128 is the binary vector size. Our new
hypervector is bound with a static positional hypervector initialized
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at the beginning of training. Once bound, we do a single pass to
accumulate vectors for their respective classes before signing. As we
begin training, we take similarity measurements between the bound
hypervector (latent X position) and our class vectors. We adjust the
class vectors based on incorrect predictions, pushing away from the
incorrectly predicted class and toward the correct one. At the end of
each epoch, we once again sign the class vectors.

While training an HDC classifier does not use backpropagation,
it outperformed conventional classifier models on loss and accuracy
scores, as seen in Fig. 5. VQ version of VAE is more compliant
with HDC than CNN due to the intricate learning of the quantization
process. Not only is HDC computationally less expensive, but it is also
lightweight, making it a suitable candidate for embedded systems.

The binarization of the codebook for our HDVQ-VAE brings mem-
ory savings and an overall reduction in the model size. Going from
float32 to a binary representation shrinks the codebook size by 32,
and the information passed to the decoder is 32x smaller than that of a
conventional VQ-VAE. Despite this 32X reduction in the information
flow, comparing downstream latent classification, both the conventional
and HDC classifiers perform better when using the latent of the HDVQ-
VAE over the conventional VQ-VAE.

V. CONCLUSIONS

This study introduces a novel approach to enhance vector quantized
variational autoencoders by incorporating hyperdimensional vector
representations, aiming for a more efficient and lightweight solution
in generative artificial intelligence (AI) and latent space classifications.
By leveraging a binary hypervector space for latent representations,
the codebook within the vector space can be utilized for image
reconstructions or classifications. This research marks the inception
of hyperdimensional computing (HDC) in machine learning (ML),
suggesting its potential as a valuable addition to the conventional ML
framework in future endeavors. While HDC alone may not suffice for

end-to-end generative Al tasks, its potential applications in compact and
efficient designs for embedded environments are promising. This study
demonstrates a memory-efficient model through binarization, with the
classifier component integrated via HDC learning dynamics, resulting
in a lightweight yet improved classifier compared to conventional
approaches such as convolutional neural networks.
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