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Abstract—Printed electronics technology offers a cost-effective
and fully-customizable solution to computational needs beyond
the capabilities of traditional silicon technologies, offering ad-
vantages such as on-demand manufacturing and conformal, low-
cost hardware. However, the low-resolution fabrication of printed
electronics, which results in large feature sizes, poses a challenge
for integrating complex designs like those of machine learn-
ing (ML) classification systems. Current literature optimizes only
the Multilayer Perceptron (MLP) circuit within the classification
system, while the cost of analog-to-digital converters (ADCs)
is overlooked. Printed applications frequently require on-sensor
processing, yet while the digital classifier has been extensively
optimized, the analog-to-digital interfacing, specifically the ADCs,
dominates the total area and energy consumption. In this work,
we target digital printed MLP classifiers and we propose the
design of customized ADCs per MLP’s input which involves
minimizing the distinct represented numbers for each input,
simplifying thus the ADC’s circuitry. Incorporating this ADC
optimization in the MLP training, enables eliminating ADC levels
and the respective comparators, while still maintaining high
classification accuracy. Our approach achieves 11.2x lower ADC
area for less than 5% accuracy drop across varying MLPs.

Index Terms—Analog-to-Digital Converter, Multilayer Percep-
tron, Printed Electronics

I. INTRODUCTION

Recently, there has been a growing trend fueled by the
fourth industrial revolution and the Internet of Things to
integrate intelligence into everyday items. Applications like
wearables, fast-moving consumer goods, basic healthcare de-
vices, and disposable sensors for pharmaceuticals have not yet,
fully incorporate computing capabilities [1]. These products
need computing technology that is ultra-low cost, thin, and
conformal. Traditional lithography-based CMOS technologies
can’t meet these requirements, limiting computing’s reach [2].

Printed electronics (PE) offer a promising solution with on-
demand, ultra-low cost fabrication, ideal for short-lifetime,
disposable products. PE uses various printing methods like
jet, screen, or gravure printing [2]. These techniques are mask-
less, portable, and additive, reducing manufacturing costs and
production times [2]. The simplicity of additive manufacturing
allow ultra low-cost, at sub-cent levels, electronic circuits.
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Fig. 1. Area and Power Evaluation of the printed classification system in [3].
However, this low precision fabrication, results in higher
device latency and lower integration density compared to
silicon VLSI systems [2], making the design of more complex
circuits a challenge in PE. Nevertheless, the target applications
are viable in printed electronics due to their relaxed frequency
and precision requirements [2]. We focus on Electrolyte-Gated
FET (EGFET) technology, which has low supply voltage (≤
1V), making it suitable for battery-powered applications [1].

PE’s target applications require smart sensor processing,
which starts with analog frontend to digitize analog sensor data
using ADCs, followed by machine learning classifiers, such as
Multilayer Perceptrons (MLPs) [2]. However the complexity
of these classification system oppose a challenge to their
realization in PE due to their large gate count. To mitigate
this limitation, exploiting the high customization capabilities
of the PE technology by bespoke implementations in which
the hardware is tailored to a specific dataset and model were
proposed [4]. In [3], [5]–[7], the authors combined the bespoke
architecture alongside the well established Approximation
Computing paradigm where a small, accuracy loss resulted
in significant area and power gains of the MLP classifier.
Nevertheless, all the previous works focused only on the
reduction of the MLP classifier inside the overall classification
system, neglecting the area and power consumption of the
Analog-to-Digital Converts (ADCs). In Fig. 1, an area and
power analysis within the classification system is presented,
by using the MLP in [3]. As shown in Fig.1, since the MLP
classifier is optimized using approximate bespoke mapping,
the ADC ratio in the classification system consuming on
average 58% area and 74% power of the entire classification
system, making the ADCs the dominant source of area and
power overhead in the classification system. Inspired by the
fact that different sensor data have different distributions in a
given range (e.g., 4bits), not all the representations are required
and thus high accuracy can be achieved albeit discard them.
Leveraging the above, in this work, we propose the design
of bespoke pruned ADCs for each input with the minimum
possible representations required saving thus hardware by
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removing the circuitry of the unused input representation. In
more details, we use a Genetic Algorithm (GA) to explore
which representations of the ADC can be pruned alongside
a quantization-aware training (QAT) of the MLP. Further,
our ADC-optimization is orthogonal to any other training
approach. In the literature some ADC optimization have
been proposed in other technologies rather than in printed
electronics. In [8], a spike-based scheme avoids ADCs by a
comparator-register architecture but both of these components
are hardware expensive in printed electronics [4]. In [9], prune
crossbars to eliminate ADCs in ReRAM architectures, which
in our architectures is equivalent to feature reduction. Our
approach goes further by optimizing the remaining ADCs.

To the best of our knowledge, this is the first time that such a
framework1 is proposed for ADC-efficient printed MLP-based
classification systems. Our experiments across various datasets
showcase that our framework reduces both area and power of
the required ADCs on average 11.2× and 13.2× respectively.

II. PROPOSED ADC-AWARE METHODOLOGY

This section describes the proposed ADC-aware method-
ology, which is illustrated in Fig. 2. The target ADC in our
framework is a flash ADC, which traditionally generates 2N

quantization levels for an N-bit ADC. However, our area-
reduction strategy involves using partial ADCs that produce
only k quantization levels, where k < 2N . This approach
is grounded in the idea that not all quantization levels are
utilized in the output of the ADC. By integrating a training
algorithm that minimizes the number of levels while maximiz-
ing classification accuracy, we reduce ADC costs in terms of
both area and power. To implement this, we use a proxy area
model for the partial ADC, that considers the costs of com-
parators and encoders. This area model serves as a secondary
objective in our multi-objective learning framework, alongside
the primary accuracy loss, guiding the optimization process
to achieve efficient and effective classification systems. The
best area-efficient ADCs are searched and explored through a
genetic algorithm, which enables the identification of optimal
configurations that balance area and accuracy.

A. ADC Pruning

ADCs are a necessity in a classification system for digitizing
the analog sensor data to be processed by digital classifier
hardware. In this work, we focus on Flash ADCs for their
simple architecture, suitable for low-precision printed appli-
cations. Flash ADCs provide rapid data conversion, ensuring
timely data availability during short energy windows. Despite
high power use during conversion, their low-power operation
overall reduces average power and energy consumption, fitting
well with energy-harvesting systems.

Fig.3a depicts the architecture of a 3-bit flash ADC. In
general, for an N-bit ADC, the analog input voltage (Vin)
is compared among 2N −1 comparators with 2N −1 different
levels. The number of these different levels corresponds to the
resolution of the ADC. The different levels are generated by

1https://github.com/floAfentaki/Approximation-Techniques-Targeting-Printed-MLPs
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Fig. 2. A high-level overview of the proposed ADC-aware methodology.

using a reference voltage (Vref) which is connected to a resis-
tance ladder in order to divide the Vref into 2N equally levels
in the range [0, V ref ]. When an analog input voltage Vin is
applied to the ADC, each comparator compares Vin with its
corresponding Vref. If Vin is larger than Vref, the comparator
outputs a high signal (1); otherwise, it outputs a low signal
(0), creating a digital thermometer code representation. The
translation of this thermometer code to its binary counterpart
i.e., (00111111)TC → 1102 is delivered by a digital priority
encoder which is implemented by multiple OR.

Leveraging the low non-recurring costs of the PE tech-
nology, we are able to design bespoke ADCs for each of
the sensor inputs of our classifier. This means that each
ADC is specifically designed for the respective sensor values
allowing us to keep only the necessary representations for
each sensor input that represent best each sensor distribution.
Fig.3b depicts the an example of the architecture of a bespoke
pruned 3-bit flash ADC. In this example the levels 5 and
6 are pruned from the representations of the ADC. As can
been seen, pruning the some of the levels of the ADC, does
not only removes the equivalent comparators but also reduces
the complexity of priority encoder by simplifying the OR-
logic required (OR by zero is identity). When an analog input
Voltage Vin is applied to the bespoke pruned ADC, each of the
remaining comparators compares Vin with the corresponding
Vref . Due to the pruned Vref levels, the inference of the
analog Vin leads to a restrained subset of representations in
thermometer code and respectively to its binary counterpart.
For example, if the sensor data input by using the conven-
tional ADC presented into Fig.3a was denoted into the values
(00111111)TC → 1102, then by using the bespoke pruned
ADC in the Fig.3b the sensor data will be denoted into the
values (00001111)TC → 1002, since the corresponding level
6 is removed alongside the follow level 5 leading the sensor
input to be digitized as the right after smaller representation
i.e, 1102. It is important to note, that pruning the ADC is
different than simply selecting a lower bitwidth ADC e.g.,
3-bit ADC → 2-bit ADC, since our approach finds the subset
from all the levels in any given bitwidth. For example in Fig. 3
the bespoke pruned 3-bit ADC has k = 6 quantization levels
rather than the conventional 23 = 8 quantization levels.

B. ADC-Area Model

In order to capture the ADC area reduction during the explo-
ration process we developed a Python script which calculates
a proxy area model of the pruned bespoke ADC based on the
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Fig. 3. Schematic of: a) conventional 3-bit Flash ADC and b) an example of
an equivalent bespoke pruned ADC

remaining representation level after the ADC pruning. Using
a Python script for a proxy area model allows the parallel
evaluation, be independently of EDA license constraints.
Specifically, the flash ADC can be divided into the three
distinct parts; the resistance ladder, the comparators and the
encoder. Out of the three of them the resistance ladder is not
affected by pruning the levels of representation since we keep
the uniform relation between them. However as can be seen
in Fig. 3 our pruning procedure reduces the number of the
comparators. The number of comparators in the final pruned
ADC is equal to the number of the remaining levels. As for the
encoder reduction we use a simple procedure to calculate the
number of OR gates required based on the pruned subset of
the representations. Specifically, inside a generic N -bit ADC,
each output of the generic encoder ai, where i ∈ [0, N − 1],
is a bitwise OR between 2N/2 pre-determined levels. When
a representation is pruned, the corresponding representation is
removed from these levels for each output ai. Thus, our script
tracks the levels that are used in each of the output bit ai of the
encoder and can easily calculate the number of required ORs
and subsequently the area of the bespoke pruned ADC. The
correctness of our area model is verified by the almost perfect
correlation score 0.95 between all the possible 215 samples
between our model and real synthesis area values.

C. ADC-driven Training Flow

As depicted in Fig. 2, our ADC-driven training flow utilize
a framework implements an ADC-aware exploration targeting
to find the best bespoke pruned ADCs in terms of the classifier
accuracy and ADC area. Thus a multi-objective minimization
optimization problem is formed with constraints the accuracy
loss of the classifier and the overall ADC area. Due to simplic-
ity, low computational complexity, and enhanced convergence,
we employ the Non-dominated Sorting Genetic Algorithm II
(NSGA-II [10]) to address this multi-objective problem.

It’s important to note that pruning the ADC and removing
representation naturally leads to diminished accuracy from
the classifier perspective, especially if the remaining levels
do not capture the sensor-based input’s distribution. Our
approach searches for the ideal bespoke ADCs that follows
each of the sensor inputs’ distribution. That means that the
accuracy degradation is minimal while the ADC area gains
are optimal. In the case of a 4-bit ADC, our ADC-pruning
procedure explores the minimum number of levels k from

the complete set of 16-uniform levels of the conventional
ADC, for each input sensor data. In order to encode the
ADC-pruning procedure we adopt a set masking parameters
mi = 0, 1 one for each of 16-uniform different levels for
each sensor data, which for mi = 0 and mi = 1 removes
or keep the quantization level respectively. Additionally, in
order to further enhance the balance between the area and
accuracy, the quantization precision of the coefficients, the
activation function and the tuning parameter i.e., batch size
and number of epochs, of the QAT are explored alongside the
ADC-pruning within the GA. Thus, the chromosome is a set
of the aforementioned parameters i.e., the masks mi for each
of the 2N levels for each input sensor, the quantization and
tuning parameters of the QAT. Fig. 2 illustrates the ADC-aware
flow, that uses two sensor inputs with two bespoke pruned
ADCs which are further connected as the inputs of the MLP
QAT. As shown, in each generation, the GA by using mutation
and crossover, searches the optimal parameters which prune
each of the bespoke pruned ADC for each sensor input while
configure the best the QAT training of the MLP classifier. The
evaluation of each chromosome is conducted by the fast-non-
dominated-sort algorithm using as objective the accuracy miss
of the QAT and the overall area of the partial ADCs.

III. RESULTS AND EVALUATION

A. Experimental Setup
We examine six datasets, namely Balance (Ba), Breast

Cancer (BC), Cardiotocography (Ca), Mammographic (Ma),
Seeds (Se), and Vertebral Column 3 (V3), from [11]. These
datasets could form realistic printed applications as they utilize
sensor inputs suitable for printed applications and have low
precision, duty cycle, and sample rate requirements [1]. Both
the MLP architecture and the datasets used in this work follow
the [3]–[7] ensuring a fair comparison for our analysis. The
inputs are normalized to [0, 1] as in [3]–[7] and are randomly
stratified split into 70% for the train and 30% for the test set.
It is important to note that in this work we do not consider any
approximation for our MLP classifier beside precision approx-
imation i.e., power-of-2 quantization, such as accumulation
approximation like other literature consider in [3], [5], [6].
Thus, our baseline are the bespoke power-of-2 printed MLPs
circuits, designed following the approach outlined in [7], using
8-bit power-of-2 fixed point weights and 4-bit inputs. Clock
period of 200ms are applied to all MLPs. Such delay values
align with typical PE performance [5]. Mutation and crossover
operators of the GA are set to 0.2% and 0.7% respectively.
For the quantization-aware training the QKeras framework
was used, an extension of Keras by Google [12]. All circuits
are synthesized using Synopsys Design Compiler S-2021.06
and mapped to the printed EGFET library [1], while VCS T-
2022.06 and PrimeTime T-2022.03 are used for simulation and
power analysis. The accuracy is reported on the test dataset,
and all designs are synthesized at a relaxed clock period to
improve area efficiency.

B. Evaluation against the State-Of-The-Art
First, we assess the effectiveness of our framework in the

ADC reduction. Fig. 4, illustrates the bespoke ADC area over
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Fig. 4. Accuracy vs normalized area Pareto space of the ADCs.

accuracy reduction after the proposed pruning methodology is
applied. The area values are obtained by our area model while
the accuracy is referring to the classification accuracy of the
classifier of the specific ADCs. The area value is normalized
w.r.t. the area of the corresponding conventional ADCs as
all works before the proposed one used. Compared to the
conventional ADCs, our ADCs pruning achieves 11.2× area
and 13.2× power reduction on average for less than 5% lower
accuracy. For up to 5% accuracy degradation, the area gains
range from 3.3× for Cardio and go up to 15× for Seeds.

In Table III-B, we evaluate the impact of our work at
classification level. To that end, we compare against the area-
efficient state-of-the-art MLP design in [7], which uses only
pow2 for weights (i.e., no costly multipliers). From all the
designs of the Fig.4, we select the ones with up to 1% accuracy
loss compare to the baseline [7]. As shown in Table III-B,
our methodology results in a smart sensor-based system that
significantly outperforms the state-of-the-art [7]. Specifically,
compared to [7] and account for the costs of ADCs, our
classification achieve on average 2× area reduction and 6.9×
power reduction, while the gains range from 1.3× up to 2.4×
in area and from 3.3× up to 9.7× power respectively.

Our ADC-aware training method, executed on an AMD
EPYC 7552 with 256GB RAM, averages only 120 minutes.
Even with the increased parameter count due to ADC pruning
for each input sensor, the runtime impact is minimal, compa-
rable to hardware-unaware conventional training. Finally, the
proposed ADC pruning methodology can be implemented on
top of any MLP approximations since it only affects the ADCs
i.e., the inputs of the MLP, thus can leverage any other digital
optimizations e.g., addition approximation [3], [5].

TABLE I
EVALUATION OF OUR PRINTED CLASSIFICATION SYSTEM USING MLPS

FOR UP TO 1%.

Data
[7] Ours

Area
Gains

Power
Gains

ADCs MLP Total ADCs MLP Total
A1 P2 A1 P2 A1 P2 A1 P2 A1 P2 A1 P2

Ba 0.7 5.2 0.5 1.2 1.2 6.4 0.1 0.9 0.4 0.1 0.5 1 2.4× 6.4×
BC 1.5 12 5 17 5.7 29 0.1 2.5 3.3 1.2 3.4 3.7 1.7× 7.8×
Ca 3.6 27 9 34 12.6 61 1.9 16 7.5 2.5 9.4 18.5 1.3× 3.3×
Ma 0.9 6.5 0.5 1.8 1.4 8.3 0.1 1.3 0.7 0.3 0.8 1.6 1.8× 5.2×
Se 1.2 9 4.5 20 5.7 29 0.2 1.9 2.3 1.1 2.5 3 2.3× 9.7×
V3 1.0 7.8 5.2 17 6.2 25 0.1 1.7 2.6 1 2.7 2.7 2.3× 9.2×

1Area in cm2. 2Power in mW.

IV. CONCLUSION

Printed electronics is a promising complementary solution
to silicon counterparts for on-sensor processing in cheap
wearables, disposables, medical devices and consumer market.
While the main research focus is on reducing the cost of digital
classifiers using approximate bespoke hardware mapping, the
Analog Digital Converters (ADCs) at the analog sensory inputs
dominate the total system costs in terms of area and power.
In this work, we propose an ADC pruning methodology
that efficiently integrates the training of the MLP classifier
with eliminating quantization levels of ADC, successfully
balancing the classification accuracy of the MLP and ADC
costs. Overall, our approach is seamlessly applied and achieves
higher ADC-cost savings, demonstrating superior hardware
efficiency and high accuracy compared to the state of the art.
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