
1

SPELL: An End-to-End Tool Flow for LLM-Guided
Secure SoC Design for Embedded Systems

Sudipta Paria, Aritra Dasgupta, Student Member, IEEE, and Swarup Bhunia, Fellow, IEEE

Abstract—Modern embedded systems and Internet of Things
(IoT) devices contain System-on-Chips (SoCs) as their hardware
backbone, which increasingly contain many critical assets (secure
communication keys, configuration bits, firmware, sensitive data,
etc.). These critical assets must be protected against wide array
of potential vulnerabilities to uphold the system’s confidentiality,
integrity, and availability. Today’s SoC designs contain diverse in-
tellectual property (IP) blocks, often acquired from multiple 3rd-
party IP vendors. Secure hardware design using them inevitably
relies on the accrued domain knowledge of well-trained security
experts. In this work, we introduce SPELL, a novel end-to-end
framework for the automated development of secure SoC designs.
It leverages conversational Large Language Models (LLMs) to
automatically identify security vulnerabilities in a target SoC
and map them to the evolving database of Common Weakness
Enumerations (CWEs); SPELL then filters the relevant CWEs,
subsequently converting them to SystemVerilog Assertions (SVAs)
for verification; and finally, addresses the vulnerabilities via
centralized security policy enforcement. We have implemented
the SPELL framework using popular LLMs, such as ChatGPT
and GEMINI, to analyze their efficacy in generating appropriate
CWEs from user-defined SoC specifications and implement cor-
responding security policies for an open-source SoC benchmark.
We have also explored the limitations of existing pre-trained
conversational LLMs in this context.

Index Terms—SoC Security, Security Policies, Assertion Based
Verification, CWEs, LLMs.

I. INTRODUCTION

The complexity of modern System-on-Chips (SoCs) in the
Internet of Things (IoT) regime makes it highly challenging
for designers to address the vast and diverse array of security
vulnerabilities effectively. The increasing number of on-chip
assets that an SoC designer needs to protect against unau-
thorized access accentuates these challenges. Consequently,
automation of security design and verification is becoming
imperative to mitigate manual efforts, strengthen the security
of a target SoC design, and minimize the SoC manufacturing
cost. The collaborative efforts of the semiconductor industry
have introduced hardware-related concerns to MITRE’s list of
Common Weakness Enumerations (CWEs)1. Identifying po-
tential vulnerabilities necessitates varying degrees of expertise
about the design, assets, threat model, security requirements,
etc. [1], [2]. Existing methods involve manual assessment of
the Hardware Description Language (HDL) code, relying on
human expertise to discover vulnerabilities. Conversational
Large Language Models (LLMs) such as Open AI’s ChatGPT
and Google’s GEMINI (formerly BARD) have displayed a
remarkable ability to comprehend natural language prompts.

1https://cwe.mitre.org/data/definitions/1194.html

The works presented in [3]–[5] are limited to LLM-based
Verilog code generation and evaluation without bug detection
or fixes. Latest works on using LLMs for verification include
generating security properties [6], SystemVerilog Assertions
(SVAs) [7], [8] for formal verification, while bug fixing [9],
[10] involves static analysis and security-related feedback
[11]. Authors in [12] presented the effectiveness of LLMs
in applications such as an engineering assistant chatbot, tool
script generation, and bug summarization with domain-specific
adaption. However, the current methodologies are limited to
simpler hardware designs, mainly covering specific vulnera-
bilities but not explicitly addressing security requirements for
generic bus-based SoC designs. This paper presents SPELL,
an end-to-end framework for SoC security analysis and policy-
based protection. SPELL leverages the ability of LLMs to
identify the CWEs for a given SoC specification, employs a
novel LLM-based filtering technique to determine the relevant
CWEs and convert them into SVAs for verification. The
proposed framework generates the equivalent security policies
in a 3-tuple format for each SVA activated during verification,
followed by security policy enforcement to address poten-
tial vulnerabilities. Table I provides a comparative analysis
between the existing solutions and SPELL. The proposed
SPELL framework is illustrated in Fig. 1. This paper makes
the following major contributions:

• For the first time to our knowledge, a comprehensive end-
to-end automated tool flow for generating secure SoC
designs starting from security specifications and ending
with security policy enforcement.

• Automated query generation from security requirements
to identify CWEs by leveraging the LLM knowledge base
for any generic bus-based SoC.

• Filtering to identify relevant CWEs for the given SoC
context and vulnerabilities, as well as analysis & correc-
tion of SVAs generated by LLMs for a given SoC.

• Automatic mapping of SVAs into judicious security poli-
cies and centralized security policy enforcement.

The remainder of this paper is organized as follows: Sec-
tion II describes the background and motivation. Section
III outlines the methodology, and Section IV contains the
experimental results. We conclude the paper in Section V.

II. BACKGROUND & MOTIVATION

Bus-based SoCs typically include multiple IP cores sourced
from vendors with varying trust levels, necessitating a pro-
cess to identify common security issues in SoCs. CWEs
act as a universal database for categorizing known hard-
ware vulnerabilities and enforcing safeguards. Examples of



2

Fig. 1: SPELL: Overview of the proposed end-to-end secure SoC design and verification framework.

TABLE I: Comparison of SPELL with existing solutions.

Proposed Solutions F1 F2 F3 F4 F5 F6 F7

Don’t CWEAT It [11] ✗ ✗ ✓ ✗ ✗ ✗ ✓
Chip-Chat [5] ✗ ✓ ✗ ✗ ✗ ✗ ✗

Ahmad et al. [9] ✓ ✓ ✓ ✗ ✗ ✗ ✓
Kande et al. [7] ✓ ✓ ✓ ✗ ✗ ✓ ✗

Pearce et al. [10] ✗ ✓ ✓ ✗ ✗ ✗ ✓
SPELL (This work) ✓ ✓ ✓ ✓ ✓ ✓ ✓

Features → F1: Applicable to SoCs?, F2: Uses LLMs?, F3: Mapping to
CWEs?, F4: Filtering CWEs?, F5: Support Generic SoCs?, F6: Generate
Assertions?, F7: Perform Bug Fix?

CWEs corresponding to security vulnerabilities for bus-based
SoCs include: CWE-284 (Improper Access Control), CWE-522
(Insufficiently Protected Credentials), CWE-1231 (Improper
Prevention of Lock Bit Modification), etc. Assertion-Based
Validation (ABV) aims to uncover SoC security flaws that
can potentially lead to attacks. Current ABV practices rely on
manual efforts by security experts to test hardware designs
against common CWEs. This method is slow, requires human
creativity, and lacks broad applicability. Overcoming these
issues requires automation that can identify vulnerabilities
and apply necessary corrective measures for any given SoC
specifications. Incorporating security policies is essential to
systematically represent and enforce security requirements.
Recent advancements in AI have led to the rise of LLMs which
excel in generating context-specific answers from natural
language descriptions. The main goal is to identify or map
the user-given design specifications and security requirements
to the existing list of CWEs available on the web, leveraging
the knowledge base of LLMs. In this work, we analyze the
performance of popular conversational LLMs like ChatGPT
and GEMINI (formerly BARD) under various attack models
prevalent in the SoC security literature.

III. METHODOLOGY

In this section, we describe the major stages of the
SPELL framework, as illustrated in Fig. 2.

A. Design Specification & Query Generation

SPELL tokenizes the SoC design specifications detailing
IPs, bus-level, and overall configuration to generate corre-
sponding queries for LLMs like ChatGPT or GEMINI, includ-
ing user-provided security assumptions. A user-friendly JSON
template is provided for SoC specifications, accommodating
those unfamiliar with specific security concerns.

B. CWE Mapping using LLMs & Filtering

SPELL leverages the context-sensitive factual answering
capabilities of LLMs to identify relevant CWEs for the SoC.
The performance of LLMs heavily relies on the query context.
Table II displays CWEs generated by ChatGPT and GEMINI
under various attack models for SoC configurations. Due to an
LLM’s unpredictable performance arising from its limited do-
main knowledge, a filtering step is essential to identify relevant
CWEs. An extensive database (Λ), comprising approximately
180 CWEs and respective classifications, is constructed for
filtering after a comprehensive analysis of various hardware
vulnerabilities listed on the MITRE website1. Table III shows
a partial snapshot of Extensive DB with different CWEs. The
filtering method utilizes Cosine Similarity scores for semantic
context matching for CWE bug description.

Fig. 2: SPELL: Flow diagram showing the major steps.

C. Security Assertion Creation & Verification

After filtering for relevant CWEs, SPELL employs ABV to
identify the vulnerabilities of the current SoC. The automated
flow utilizes LLMs to generate initial SVAs and then adapts
them to match the design specifications for syntactical correct-
ness. SPELL employs the template with a property block to
define and assert verification conditions. SVAs are appended
to the respective module and verified via simulation.



3

TABLE II: CWEs generated by ChatGPT-4 and GEMINI under various threat models for different SoC Configurations; Only
the valid and relevant CWEs are marked in maroon.

Config# Bus-Based Attacks Side-Channel Attacks DoS Attacks Confidentiality Access Control
ChatGPT GEMINI ChatGPT GEMINI ChatGPT GEMINI ChatGPT GEMINI ChatGPT GEMINI

Config 1

CWE-693
CWE-203
CWE-749
CWE-200
CWE-284

CWE-200
CWE-900
CWE-894
CWE-201
CWE-682

CWE-203
CWE-200
CWE-310
CWE-385
CWE-691

CWE-400
CWE-201
CWE-326
CWE-116
CWE-203

CWE-400
CWE-770
CWE-404
CWE-406
CWE-421

CWE-400
CWE-399
CWE-250
CWE-690
CWE-476

CWE-200
CWE-312
CWE-310
CWE-522
CWE-359

CWE-357
CWE-201
CWE-113
CWE-380
CWE-894

CWE-284
CWE-285
CWE-287
CWE-724
CWE-22

CWE-285
CWE-642
CWE-521
CWE-306
CWE-284

Config 2

CWE-352
CWE-20
CWE-200
CWE-345
CWE-284

CWE-264
CWE-399
CWE-400
CWE-416
CWE-200

CWE-203
CWE-200
CWE-310
CWE-384
CWE-385

CWE-273
CWE-392
CWE-201
CWE-326
CWE-611

CWE-400
CWE-404
CWE-770
CWE-406
CWE-768

CWE-399
CWE-400
CWE-422
CWE-477
CWE-779

CWE-200
CWE-312
CWE-319
CWE-522
CWE-310

CWE-264
CWE-200
CWE-392
CWE-400
CWE-476

CWE-284
CWE-285
CWE-287
CWE-264
CWE-22

CWE-272
CWE-400
CWE-284
CWE-119
CWE-611

Config 1: #Masters: 1, #Slaves: 11 (AES, DES, SHA, GPS, etc.), Bus: AXI4. Config 2: #Masters: 2, #Slaves: 9 (DES, SHA, FFT, UART, etc.), Bus: Wishbone.

TABLE III: A snapshot of the Extensive DB of CWEs used for filtering in SPELL.

CWE-ID Bug Description Classification Timing Requirements Type of Violation
CWE-284 Improper Access Control Bus + IP Level Synchronous Access Control
CWE-120 Buffer Copy without Checking Size of Input N/A N/A Inadequate Error Handling
CWE-1391 Use of Weak Credentials IP Level Synchronous Access Control
CWE-330 Use of Insufficiently Random Values IP Level Asynchronous Information Flow
CWE-362 Concurrent Execution using Shared Resource

with Improper Synchronization
Bus Level Synchronous Liveness

CWE-367 TOCTOU Race Condition Bus + IP Level Synchronous TOCTOU

D. Assertion to Security Policy & Policy Enforcement

SPELL employs an automated translation for each assertion
activated during simulation to an equivalent security policy
represented in a 3-tuple <predicate, timing, action> format.
SPELL is equipped to handle both sequential events or
static conditions in SVAs when generating the ‘predicate’.
SPELL includes specific clock or reset value requirements
in the ‘timing’ tuple, including the operating mode, denoted
by an integer value (e.g., user mode: 0, debug: 1, etc.). The
‘action’ can be customized based on security requirements
and defined by the user. SPELL interprets and appends the
corresponding action by assigning the required values to
observable signals. SPELL integrates DiSPEL framework [13]
for the enforcement of security policies. A centralized security
module is used to enforce bus-level policies, and IP-level
policies are appended to their respective bus-level wrappers.

IV. EXPERIMENTAL RESULTS

Our experimental setup uses the open-source framework
from MIT-LL2. Synopsys DC and VCS was used for synthesis
and simulation, respectively. We use a JSON-based template
to represent SoC design specifications, as shown in Listing 1.

Using context-specific questions from SoC design specifi-
cations, we evaluated LLM’s capability to generate relevant
CWEs. We noted variations in LLM responses for the same
SoC configurations under different assumptions.
Limitations of LLMs while identifying CWEs

i. Inconsistent ranking of CWEs.
ii. Incorrect mapping between CWE-ID & bug description.

iii. Generating out-of-context/irrelevant CWEs.
iv. Ambiguity on descriptive text for the same CWE-ID.
v. Mapping multiple issues to the same CWE-ID.

vi. Incomplete list of CWEs under different assumptions.

2https://github.com/mit-ll/CEP.git

"SoC_General":
{

"NAME":"MIT-CEP", "BUS":"AXI4",
"NO_OF_MASTERS":"1", "NO_OF_SLAVES":"11"

},
"BUS_INTERFACE":
{

"INTERFACE_NAME":"Master/Slave", "#PORTS":"17",
"SIGNAL_NAMES":"AWVALID,AWADDR,WDATA,,..."

},
"IP_1":
{

"NAME":"AES", "TYPE":"Slave", "ADDRESS_RANGE":"0
x9300:0x93FF", "PROTECTED_RANGE":"0x9314:0x932C"

}

Listing 1: SoC Design Specifications in JSON format

These limitations necessitate filtering to identify the relevant
context-specific CWEs. Fig. 3 shows an example of how
CWE generation varies under different assumptions along with
relevant CWEs (marked in green) and non-relevant CWEs
(marked in red).

Fig. 3: Generating CWEs under different assumptions and
identifying relevant/non-relevant CWEs using filtering.

We quantify the performance of an LLM for a given SoC



4

configuration by determining the number of valid CWEs
(#CWEvalid) and relevant CWEs (#CWErelevant) out of all
the CWEs (#CWEtotal) in the generated response. A CWE
is marked as valid if the CWE-ID and description generated
by LLMs align with the Extensive DB, while a relevant CWE
denotes that it is valid and related to the SoC context. The
performance analysis of LLMs is presented in Fig. 4.

Fig. 4: Performance analysis of Conversational LLMs in gen-
erating valid and relevant CWEs for a given SoC configuration.

We have thoroughly tested LLM performance in generating
SVAs for relevant CWEs. We note that the LLMs are proficient
in generating context-relevant Verilog and SystemVerilog code
but lack syntactic correctness and periodically deviate from
actual requirements. SPELL automates the correction of SVAs
based on design specifications, ensuring they are syntactically
correct and pass verification. SPELL converts each activated
SVA to the flexible 3-tuple security policy representation for
addressing security requirements. Bus-level security policies
are enforced through a centralized policy module, while IP-
level policies are implemented via the bus-level wrappers at
the respective IPs. Fig. 5 shows the conversion of an SVA to
the 3-tuple policy followed by its enforcement.

The IPs were synthesized using 130nm SkyWater PDK after
incorporating necessary code fixes using [13], as shown in
Table IV with CWE ID# column representing the identified
CWE-IDs by SPELL. The results show that overheads are
generally minimal under default synthesis settings without any
constraints. In some cases, overheads decrease due to heuristic-
based optimizations, making them negligible.

Fig. 5: Conversion of SystemVerilog Assertion to Security
Policy followed by Policy Enforcement.

Discussion: Identifying relevant CWEs for a given SoC is
challenging due to inaccuracies and lack of contextual listing
in conversational LLMs. The updated ChatGPT models (v4.x)

showed considerable improvement in generating and listing
CWEs, although accuracy remained a primary concern. Google
GEMINI’s real-time web search also performs inadequately in
generating relevant CWEs. Hence, a robust filtering step is es-
sential. Further, incorporating domain-specific LLMs by fine-
tuning general-purpose LLMs with a comprehensive dataset is
expected to improve the performance significantly.

TABLE IV: Overhead analysis of different IPs after incorpo-
rating code fix for identified CWEs using SPELL.

Involved IP(s) CWE ID# Synthesis Overheads (%)
Area Power Delay

µP, AES 319,327,330,787,798 0.16 ↑ −1.21 ↓ 10.63 ↑
µP, DES3 125,319,327,522 1.16 ↑ 0.29 ↑ 0.21 ↑

µP, SHA256 200,319,522 1.33 ↑ 1.49 ↑ 0.45 ↑
µP, MD5 203,522 1.32 ↑ −2.17 ↓ −2.58 ↓
µP, RSA 200,787 0.05 ↑ 0.11 ↑ 0.8 ↑

V. CONCLUSION

We have presented a novel LLM-guided end-to-end secure
SoC design framework, SPELL, which can automatically in-
corporate security measures in a target SoC design. SPELL in-
corporates filtering to identify relevant CWEs effectively for
bus-based SoC configurations. It integrates SVA-based verifi-
cation and automated translation from assertions to respective
security policies followed by policy enforcement. Experiments
show robust security against diverse CWEs is achieved with
minimal hardware overhead. The fully automated process,
from vulnerability identification to mitigation, can be inte-
grated into commercial SoC design flow, reducing the manual
work of security experts and increasing flexibility. While we
focus on bus-based SoCs in this study, the approach can be
extended to other fabrics, e.g., Network-on-Chip (NoC).

REFERENCES

[1] G. Dessouky et al., “HardFails: Insights into Software-Exploitable Hard-
ware Bugs,” in 28th USENIX Security Symposium (USENIX Security 19),
Santa Clara, CA, 2019, pp. 213–230.

[2] M. M. Bidmeshki, Y. Zhang, M. Zaman, L. Zhou, and Y. Makris,
“Hunting Security Bugs in SoC Designs: Lessons Learned,” IEEE
Design & Test, vol. 38, no. 1, pp. 22–29, 2021.

[3] S. Thakur et al., “VeriGen: A Large Language Model for Verilog Code
Generation,” 2023.

[4] M. Liu, N. Pinckney, B. Khailany, and H. Ren, “VerilogEval: Evaluating
Large Language Models for Verilog Code Generation,” 2023.

[5] J. Blocklove, S. Garg, R. Karri, and H. Pearce, “Chip-Chat: Challenges
and Opportunities in Conversational Hardware Design,” in MLCAD,
2023, pp. 1–6.

[6] X. Meng et al., “Unlocking Hardware Security Assurance: The Potential
of LLMs,” 2023.

[7] R. Kande et al., “LLM-assisted Generation of Hardware Assertions,”
2023.

[8] M. Orenes-Vera, M. Martonosi, and D. Wentzlaff, “Using LLMs to
Facilitate Formal Verification of RTL,” 2023.

[9] B. Ahmad, S. Thakur, B. Tan, R. Karri, and H. Pearce, “Fixing Hardware
Security Bugs with Large Language Models,” 2023.

[10] H. Pearce, B. Tan, B. Ahmad, R. Karri, and B. Dolan-Gavitt, “Examining
zero-shot vulnerability repair with large language models,” in 2023 IEEE
Symposium on Security and Privacy (SP), 2023, pp. 2339–2356.

[11] B. Ahmad et al., “Don’t CWEAT It: Toward CWE Analysis Techniques
in Early Stages of Hardware Design,” in ICCAD, ser. ICCAD, 2022.

[12] M. Liu et al., “ChipNeMo: Domain-Adapted LLMs for Chip Design,”
2024.

[13] S. Paria, A. Dasgupta, and S. Bhunia, “DiSPEL: A Framework for SoC
Security Policy Synthesis and Distributed Enforcement,” in 2024 IEEE
International Symposium on Hardware Oriented Security and Trust
(HOST), 2024, pp. 271–281.


