
IEEE EMBEDDED SYSTEMS LETTERS 1

Novel Toolset for Efficient Hardwired Micro-Op
Translation in Embedded Microarchitectures

Kevin J. Phillipson, Michael G. Rywalt, Baibhab Chatterjee, Eric M. Schwartz, Greg Stitt
Department of Electrical & Computer Engineering, University of Florida, Gainesville, Florida, USA

team@turbo9.org – www.turbo9.org

Abstract—Modern SoCs require increasingly complex embed-
ded control deep within their numerous sub-blocks without
adding significant die area. This motivated the creation of µRTL,
a novel toolset for systematically designing efficient pipelined
implementations of embedded instruction sets originally intended
for multi-cycle execution. µRTL utilizes hardwired micro-op
translation, a technique commonly used in the instruction de-
coders of large super-scalar microprocessors, however this tech-
nique has been overlooked for designing smaller, more efficient
embedded microprocessors. Furthermore, the tools to develop
instruction decoders with micro-op translation are proprietary
and the techniques are trade secrets. The µRTL toolset is open-
source and this paper clearly presents the methodology. The
methodology emphasizes direct opcode decoding from multiple
synthesized Verilog blocks vs traditional microprogramming
which uses sequential decoding from a ROM. Our results show
that a pipelined µRTL microarchitecture achieves a 21.8% reduc-
tion in size compared to a hardwired multi-cycle implementation
of the same instruction set. Additionally, the performance of 0.75
DMIPS/MHz surpasses the RISC-V PicoRV32 by 44.2% and
the AVR RISC by 82.9%. These improvements in performance,
power, and area are of interest to embedded system architects.

Index Terms—micro-op, pipelining, instruction decode, micro-
assembler, microcode, embedded microarchitecture

I. INTRODUCTION

Efficient micro-op translation is a well-established technique
used in the decode stage of large high-end pipelined proces-
sors. In this paper, we demonstrate the significant advantages
of applying this technique to an embedded instruction set
architecture (ISA) originally intended for multi-cycle execu-
tion, enabling a pipelined implementation that is powerful yet
area efficient. However, designing such translation logic is
challenging and the tools and methodology are not publicly
available. To assist with these challenges, we introduce the
open-source µRTL toolset for designing embedded instruction
decoders utilizing micro-op translation.

The pipelined µRTL microarchitecture achieves a 21.8% re-
duction in size compared to the multi-cycle microarchitecture
implementing the same ISA. Additionally, the performance of
the µRTL microarchitecture at 0.75 DMIPS/MHz surpasses
the RISC-V PicoRV32 by 44.2%, the AVR RISC by 82.9%.

II. BACKGROUND

Research into area-optimized architectures often creates
innovative new ISAs [1]. However, they are often impractical,
lack software tools or an established code base. Our approach
is to select an existing, well-supported, accumulator-based
ISA and create a pipelined implementation utilizing micro-op
translation. Intel first created a pipelined micro-op translation

architecture to compete with the performance of RISC archi-
tectures [2]. Since then, similar techniques have been applied
to many large high-end processors but overlooked for embed-
ded architectures [3], [4]. The following provides the necessary
background before presenting our µRTL methodology.

A. Instruction Decoder Design

Fundamentally, a microprocessor integrates a data path and
a control unit to execute instructions. The former includes
internal registers and the ALU to handle data, while the latter
decodes instructions into control signals that guide the data
path through the necessary micro-states. The control unit is
implemented as a single state machine in a multi-cycle design,
or as overlapping stages in a pipelined design [5]. This section
focuses on three methods for decoding control signals from the
instruction opcode and micro-state, as shown in Figure 1.

Fig. 1. Instruction Decoders: Hardwired, Microprogram, Micro-op Translation

1) Hardwired Logic Instruction Decoder: Shown in Fig-
ure 1A is a hardwired control implementation. In this case,
the control signals are derived directly through optimized
combinational logic. This design typically results in faster
clock speeds and potentially lower latencies for instruction
execution. The architecture is fixed, making it efficient for
its intended set of instructions, but not easily updated or
extended without re-synthesis. Hardwired control is commonly
implemented using a hardware description language such as
Verilog. However, the large task of decoding an ISA in such a
language presents a challenge in achieving a balance between
optimal decoding, design clarity, and ease of maintenance.

2) Microprogrammed Instruction Decoder: Micropro-
grammed control, often associated with the term “control
store”, decouples the instruction decoding from the hardware
logic [6]. In this case, the control signals are mapped into a
ROM or RAM driven by an address sequencer. The primary
disadvantage is the separation of control signals from the
optimized instruction encoding, using the sequential ROM

mailto:team@turbo9.org
https://www.turbo9.org


IEEE EMBEDDED SYSTEMS LETTERS 2

address to derive them instead. An opcode mapper (see Figure
1B) is used to map an instruction to the starting address of a
sequence of micro-instructions and often introduces an extra
cycle of latency. The structured nature of this implementation
is the main advantage, and micro-assembler tools force the
designer to methodically break down the control sequences
needed to implement a large instruction set.

3) Micro-op Translation Decoder: Many modern instruc-
tion decoders include both the higher latency micropro-
grammed decoder and a highly optimized hardwired decoder
feeding control signals into a combined stream of micro-
instructions (Figure 1C). This new micro-op translation path
leverages the low latency and optimal hardwired logic to
decode micro-ops efficiently for commonly used instructions.
Significant emphasis is placed on direct decode logic, aiming
to extract control signals directly from the opcode’s bit fields in
order to minimize redundant sequential states. This specialized
hardwired decoder must conform to the same structured micro-
instruction format as the microprogrammed decoder and derive
its micro-ops from the same control signal definitions and
opcode bit fields. Therefore, it is desirable to use a sim-
ilar toolset as the microprogrammed methodology with the
same description of the target architecture and similar micro-
op mnemonics. This specialized micro-assembler should be
capable of deriving the micro-op mnemonic’s operands from
either direct decoded or sequential decoded control signals.

III. METHOD: µRTL BASED MICRO-OP TRANSLATION

Fig. 2. µRTL Tools and Design Flow with Example Microarchitecture

The µRTL micro-assembler is written in C and can be
built and run in a Linux environment. The design flow is
shown at the top of Figure 2. In this example, 15 Verilog
files are output by µRTL and synthesized into the gates of the
hardwired pipelined decode stage. A macro definition input file
provides the widths and selectable values of all control signals
used to build the micro-op word. It also defines the high-level
macros with operand fields that the designer can use to create

the mnemonics of the micro-op. The µRTL microcode input
file uses these mnemonics with operands pointing to control
signals in either the sequential or direct decode logic. Finally,
the control signal statistics output is an advanced feature and
offers the designer valuable insight to optimize the control
signal encoding or the datapath to improve area and timing
path delays. This design feedback is critical since we are
targeting synthesized logic gates rather than a ROM.

A. Example Embedded µRTL Microarchitecture

The bottom of Figure 2 shows the microarchitecture of the
example embedded microprocessor, the Turbo9 [7]. The target
applications are area constrained, deeply embedded SoC sub-
blocks and mixed-signal ASICs that require high performance
[8]. There is also development of an innovative real time
operating system, TurbOS, to support these applications [9].

Traditional 32-bit RISC architectures with large register
files have excessive area requirements, given that many deeply
embedded applications only need 16-bit precision. Therefore,
we targeted an 8/16-bit accumulator-based ISA with few
internal registers. The Motorola 6809 instruction set was
selected for its powerful and efficient features, which align
well with the requirements of a C compiler [10]. The second
design choice was to implement a pipelined microarchitecture
for increased performance. Although the 6809 ISA is much
simpler than many RISC ISAs, it violates the RISC load/store
principle by using memory as an operand. This creates a
challenge in breaking down the instruction addressing mode
and data operation to be efficiently pipelined. This motivated
the creation of the µRTL micro-op translation methodology,
which enabled the development of Turbo9’s efficient pipelined
microarchitecture. This innovative design approach presents a
compelling solution for compact embedded microprocessors.

B. µRTL Micro-op translation example: ADD instructions

Fig. 3. µRTL Micro-op Translation Example: ADD Instructions

We encourage the reader to closely study Figure 3, which
presents the µRTL microcode implementation of all ADD in-
struction variations, a state diagram, and an illustration of how



IEEE EMBEDDED SYSTEMS LETTERS 3

this microcode is partitioned within the micro-op translation
logic. Note two assembler directives: micro op end marks the
end of a micro-op, and decode decodes any control vector
directly from the opcode and is unique to µRTL microcode.

The first direct decode examples are the jump tables
(pg1 JTA and pg1 JTB), which are used to link together dif-
ferent sequences of micro-ops depending on the opcode. This
allows us to implement different addressing modes by jumping
to the LD DIR EXT: or LD INDEXED: / LD INDIRECT:
micro-ops first. However, in the case of immediate addressing,
we jump directly to the ADD: micro-op since the data is al-
ready available as part of the instruction, resulting in single cy-
cle execution. Note that the other addressing modes reach the
ADD: micro-op via jump table B, having already used jump
table A for the addressing mode. If this were a multi-cycle
processor, we would jump to the fetch state after completing
this execute state. However, since this is a pipelined design,
the next instruction has already been fetched and decoded.
Therefore, the JUMP TABLE A NEXT PC mnemonic directs
the microsequencer to use the jump table A address decoded
from the next instruction.

Direct decode logic is also used to consolidate micro-ops by
identifying similar micro-ops that differ by only a few control
vectors. An example is the ADD: micro-op which uses the
R1 and R2 register pointers to implement all the different
addressing mode and target register variations of the ADD
instructions. The pg1 R1 and pg1 R2 decode tables define
which registers R1 and R2 point to depending on the opcode.
For example, the ADDA immediate instruction sets the R1
pointer to the A register and the R2 pointer is set to IDATA
which is the instruction’s immediate data. For the direct,
indexed, indirect or extended addressing modes, R2 points
to the DMEM RD register which is loaded by the previous
micro-ops that implement the desired addressing mode.

Fig. 4. R1 Decode Table vs Opcode Encoding (1 of 15 µRTL Decode Tables)

Finally, Figure 4 visually highlights how the direct decode
logic efficiently utilizes the existing opcode encoding of the
Turbo9 / 6809 ISA, resulting in optimized logic synthesis.

IV. ANALYSIS: µRTL VS HARDWIRED DECODER

This section will analyze the performance gain and effi-
ciency advantage of µRTL micro-op translation over a hard-

wired decoder. The previous section described the implemen-
tation of the ADD instructions using the µRTL methodology.
For direct comparison, we analyzed a different implementation
of the same 6809 ADD instructions. The MC6809 IP core pro-
vides an excellent example of a hardwired instruction decoder
[11]. This core is cycle-accurate with the original Motorola
6809 and is well-designed using Verilog, taking advantage of
directly decoding control signals from the opcode.

TABLE I
µRTL MICRO-OP STATES VS HARDWIRED STATES

Instruction Addressing Turbo9 MC6809
Mode Micro-op Hardwired

States States

ADD(AorB) Immediate 1 2
ADD(AorB) Direct 2 4
ADD(AorB) Index/Indirect 2 to 3 4 to 12
ADD(AorB) Extended 2 5

ADDD Immediate 1 4
ADDD Direct 2 6
ADDD Index/Indirect 2 to 3 6 to 14
ADDD Extended 2 7

States used per ADD instruction: 1 to 3 2 to 14

States required for all ADD instructions: 4 27

States required for entire instruction set: 66 93

The two implementations of the ADD instructions are com-
pared in Table I. The MC6809 uses sequences of 2 to 14 hard-
wired states to process all variations of the ADD instructions,
requiring a total of 27 different states. In contrast, the Turbo9
requires only 4 micro-op states to implement all variations of
the ADD instructions and executes them in just 1 to 3 micro-
ops. The µRTL microarchitecture also implements the entire
6809 ISA in 29% fewer states, even with the Turbo9’s multiply
and divide instruction set extensions. In conclusion, the µRTL
methodology’s pipelined implementation and reduced number
of micro-op states are the main reasons for the impressive
performance and area results presented in the next section.

V. RESULTS: µRTL VS RISC MICROARCHITECTURES

We compared our µRTL microarchitecture to RISC microar-
chitectures, which are the common choice for deeply embed-
ded microprocessors. These embedded IP cores matched the
same criteria as the Turbo9: they must be optimized for area,
have C compiler support, and be open-source. This allowed
us to synthesize them into the same standard cell library
and compare area and power consumption. Additionally, we
compiled the popular C benchmark, Dhrystone version 2.1, to
quantify integer performance.

The Atmel AVR is arguably the equivalent RISC 8/16-bit
instruction set. The AVR Core has the same cycle timing
as the popular ATmega series [12]. The core implements a
combinational multiplier, and the compiler used was avr-gcc.

The RISC-V architecture is a common 32-bit embedded
solution today, and the PicoRV32 core is a very popular area-
optimized implementation [13]. We used the riscv32im-gcc
compiler and the recommended Dhrystone setup for the core
(fast mul, div, and barrel shifter enabled).



IEEE EMBEDDED SYSTEMS LETTERS 4

We employed two external memory bus configurations of
the Turbo9: the Turbo9GTR, with separate 16-bit program and
data memory buses, and the Turbo9S, with a simpler shared
16-bit memory bus. The vbcc compiler was used for both the
Turbo9 and MC6809 [14].

Each compiler’s optimal native integer precision (16-bit or
32-bit) is acceptable for deeply embedded applications, and
we used the -O3 optimization settings.

A. Synthesis Results

Since the µRTL toolset and the Turbo9 are open-source, we
chose the open-source OpenLANE ASIC design flow using the
open-source Skywater Technology 130nm standard cell library
to synthesize all IP cores [15]. All synthesis strategies were
explored to optimize for area and delay. The area results were
then normalized to 2-input NAND gate equivalence (kGE) and
are shown in Table II.

TABLE II
OPENLANE & SKY130 SYNTHESIS RESULTS

Processor Area Delay Internal Switch Leakage Total
Core (kGE) (ns) Power Power Power Power

(mW) (mW) (nW) (mW)

PicoRV32 22.8 5.0 23.8 10.9 68.1 34.7
AVR Core 5.7 5.4 5.4 2.7 16.3 8.1
Turbo9GTR 5.3 3.6 4.9 2.5 16.9 7.4
Turbo9S 5.4 3.7 5.7 2.7 17.2 8.4
MC6809 6.9 3.5 5.3 4.0 17.6 9.3

Remarkably, the Turbo9’s advanced pipelined microarchi-
tecture is 21.8% smaller than the multi-cycle MC6809 core.
This demonstrates that the µRTL methodology can produce
efficient microarchitectures that are not only better in cycle
by cycle performance, but also have smaller area and lower
power. The Turbo9 is also smaller than both the PicoRV32
RISC-V and the AVR core by 76.3% and 5.3% respectively.

B. Performance Results

The Dhrystone performance is shown in Figure 5. The
Turbo9GTR at 0.75 DMIPS/MHz is 44.2% faster than the
PicoRV32 RISC-V, 82.9% faster than the AVR RISC, and
316.6% faster than the MC6809. The Turbo9S with its limited
16-bit memory bus bandwidth delivers impressive results with
0.68 DMIPS/MHz and still far outperforms the AVR with its
24-bits of memory bandwidth, and the PicoRV32 with its 32-
bits of memory bandwidth.

Fig. 5. Performance Per Clock (DMIPS / MHz, higher is better)

Performance relative to die area is more important for
embedded microarchitectures than absolute performance. The
performance vs area efficiency is shown in Figure 6 given a
clock rate of 100MHz. Both RISC architectures with numerous

internal registers fall further behind the Turbo9’s efficient
combination of an accumulator ISA with µRTL micro-op
translation making it preferred for embedded applications.

Fig. 6. Performance at 100MHz vs Area (DMIPS / kGE, higher is better)

VI. CONCLUSION

By looking beyond the accepted embedded RISC solutions
for more compact architectures targeting area-constrained SoC
sub-blocks, we developed the µRTL toolset. With this new
tool, we utilized the high-performance micro-op translation
techniques common in large super-scalar processors, allowing
us to create a pipelined implementation of an accumulator-
based instruction set. The resulting innovative microarchitec-
ture delivers high performance in a small footprint, address-
ing the demand for space-efficient yet powerful embedded
solutions. Given our encouraging initial results, we are op-
timistic about several future opportunities to further explore
the potential of the µRTL methodology and Turbo9 IP for
compact, high-performance embedded applications where size
and efficiency matter.

REFERENCES

[1] K. Saso and Y. Hara-Azumi, “Revisiting Simple and Energy Efficient
Embedded Processor Designs Toward the Edge Computing,” IEEE
Embedded Systems Letters, Jun. 2020.

[2] B. Fu, A. Saini, and P. Gelsinger, “Performance and microarchitecture of
the i486 processor,” in Proceedings 1989 IEEE International Conference
on Computer Design: VLSI in Computers and Processors, Oct. 1989.

[3] J. P. Shen and M. H. Lipasti, Modern Processor Design: Fundamentals
of Superscalar Processors. McGraw-Hill, 2005.

[4] G. G. Henry, “The VIA Isaiah Architecture,” Centaur Technology, 2008.
[5] Patterson and Hennessy, Computer Organization and Design RISC-V

Edition: The Hardware Software Interface. Morgan Kaufmann, 2017.
[6] M. A. Lynch, Microprogrammed State Machine Design. Boca Raton,

FL: CRC Press, Jan. 1993.
[7] K. Phillipson and M. Rywalt, “Turbo9 - A Compact & Efficient

Pipelined 6809 Microprocessor IP,” May 2024. [Online]. Available:
https://www.turbo9.org

[8] K. Phillipson, “A Compact and Efficient Microprocessor IP for SoC
Sub-Blocks and Mixed-Signal ASICs,” Master’s thesis, University of
Florida, 2022. [Online]. Available: https://ufdcimages.uflib.ufl.edu/UF/
E0/05/87/40/00001/Phillipson K.pdf

[9] B. Pitre and M. Margala, “A Novel Approach to Managing System-on-
Chip Sub-Blocks Using a 16-Bit Real-Time Operating System,” MDPI,
Jan. 2024. [Online]. Available: https://www.mdpi.com/2079-9292/13/
10/1978

[10] T. Ritter and J. Booney, “A Microprocessor for the Revolution: The
6809,” BYTE Magazine, Jan. 1979.

[11] G. Miller, “Cycle Accurate MC6809 Core,” Sep. 2023. [Online].
Available: https://github.com/cavnex/mc6809

[12] R. Lepetenok, “Overview :: AVR Core :: OpenCores,” Feb. 2017.
[Online]. Available: https://opencores.org/projects/avr core

[13] C. Wolf, “PicoRV32 - A Size-Optimized RISC-V CPU,” Aug. 2023.
[Online]. Available: https://github.com/YosysHQ/picorv32

[14] V. Barthelmann, “Advanced compiling techniques to reduce RAM usage
of static operating systems,” Ph.D. dissertation, Friedrich-Alexander-
Universität Erlangen-Nürnberg (FAU), 2004.

[15] M. Shalan and T. Edwards, “Building OpenLANE: A 130nm
OpenROAD-based Tapeout- Proven Flow : Invited Paper,” in 2020
IEEE/ACM International Conference On Computer Aided Design (IC-
CAD), Nov. 2020.

https://www.turbo9.org
https://ufdcimages.uflib.ufl.edu/UF/E0/05/87/40/00001/Phillipson_K.pdf
https://ufdcimages.uflib.ufl.edu/UF/E0/05/87/40/00001/Phillipson_K.pdf
https://www.mdpi.com/2079-9292/13/10/1978
https://www.mdpi.com/2079-9292/13/10/1978
https://github.com/cavnex/mc6809
https://opencores.org/projects/avr_core
https://github.com/YosysHQ/picorv32

	Introduction
	Background
	Instruction Decoder Design
	Hardwired Logic Instruction Decoder
	Microprogrammed Instruction Decoder
	Micro-op Translation Decoder


	Method: RTL Based Micro-op Translation
	Example Embedded RTL Microarchitecture
	RTL Micro-op translation example: ADD instructions

	Analysis: RTL vs Hardwired Decoder
	Results: RTL vs RISC Microarchitectures
	Synthesis Results
	Performance Results

	Conclusion
	References

