
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 1

EASTER: Learning to Split Transformers
at the Edge Robustly

Xiaotian Guo , Quan Jiang , Yixian Shen , Andy D. Pimentel , Senior Member, IEEE,
and Todor Stefanov , Member, IEEE

Abstract—Prevalent large transformer models present signif-1

icant computational challenges for resource-constrained devices2

at the Edge. While distributing the workload of deep learning3

models across multiple edge devices has been extensively studied,4

these works typically overlook the impact of failures of edge5

devices. Unpredictable failures, due to, e.g., connectivity issues or6

discharged batteries, can compromise the reliability of inference7

serving at the Edge. In this article, we introduce a novel8

methodology, called EASTER, designed to learn robust distri-9

bution strategies for transformer models against device failures10

that consider the tradeoff between robustness (i.e., maintaining11

model functionality against failures) and resource utilization12

(considering memory usage and computations). We evaluate13

EASTER with three representative transformers—ViT, GPT-2,14

and Vicuna—under device failures. Our results demonstrate15

EASTER’s efficiency in memory usage, and possible end-to-end16

latency improvement for inference across multiple edge devices17

while preserving model accuracy as much as possible under18

device failures.19

Index Terms—Deep learning (DL), design space exploration20

(DSE), distributed inference, embedded system, robustness.21

I. INTRODUCTION22

AS ARTIFICIAL intelligence (AI) continues to evolve23

rapidly, transformer models are increasingly prevalent in24

various applications [1]. Advanced pretrained models, such as25

BERT and GPT-4 [2], have spurred a range of novel tools,26

including Copilot and ChatGPT. Typically, these models are27

executed on high-performance clusters with hundreds of GPUs,28

available as cloud services. However, the rise of Internet29

of Things (IoT) devices has driven a demand for deploying30

transformer-based tools at the Edge. Deploying these tools on31

edge or IoT devices offers significant advantages in terms of32

efficiency, security, and privacy. For example, a network of33

IoT devices in smart healthcare systems [3] within a hospital34

or a home setting, such as wearable health monitors, bedside35

Manuscript received 31 July 2024; accepted 1 August 2024. This article was
presented at the International Conference on Compilers, Architectures, and
Synthesis for Embedded Systems (CASES) 2024 and appeared as part of the
ESWEEK-TCAD Special Issue. This article was recommended by Associate
Editor S. Dailey. (Corresponding author: Xiaotian Guo.)

Xiaotian Guo is with the Informatics Institute, University of Amsterdam,
1098 XH Amsterdam, The Netherlands, and also with the Leiden Institute
of Advanced Computer Science, Leiden University, 2333 CA Leiden,
The Netherlands (e-mail: x.guo3@uva.nl).

Quan Jiang is with the Computer Science and Technology Department,
Nanjing Agricultural University, Nanjing 210095, China.

Yixian Shen and Andy D. Pimentel are with the Informatics Institute,
University of Amsterdam, 1098 XH Amsterdam, The Netherlands.

Todor Stefanov is with the Leiden Institute of Advanced Computer Science,
Leiden University, 2333 CA Leiden, The Netherlands.

Digital Object Identifier 10.1109/TCAD.2024.3438995

monitors, and portable diagnostic devices, are equipped with 36

sensors to collect vital signs and patient data in real time. 37

By deploying deep neural networks, like transformer models, 38

directly onto these devices, the system can locally analyze 39

data, make immediate health assessments, or predict medical 40

events without the need to send or store sensitive patient 41

data in centralized cloud servers, thus enhancing user privacy 42

and data security. This also allows for faster, potentially life- 43

saving decisions by reducing the latency associated with data 44

being sent to the cloud and the cloud processing of the data. 45

However, deploying transformer-based tools at the Edge presents 46

a significant challenge for edge or IoT devices due to the intensive 47

computational and memory requirements of transformer models. 48

For instance, the Vicuna-13B chatbot [4] requires 26 GB of 49

memory for the model parameters and substantial computational 50

resources for inference. 51

While constructing lightweight transformer models from 52

larger counterparts using methods like model compression [5] 53

or neural architecture search [6] is one approach, it often leads 54

to a reduced performance/accuracy score and resource-intensive 55

retraining of the newly derived models. In response, research 56

has focused on fully distributing transformer inference across 57

multiple edge devices without resorting to model compression 58

or cloud servers. Methods like model partitioning [7] and data 59

partitioning [8] have been explored to bridge the gap between 60

limited edge device resources and the demands of large trans- 61

former models. Furthermore, by distributing the computational 62

workload of a transformer across multiple edge devices, the 63

system can operate more energy-efficiently, making it both cost- 64

effective and sustainable for long-term deployment. However, 65

these methods generally assume continuous availability of all 66

participating devices, which is often unrealistic due to potential 67

device unavailability or failures. 68

Addressing this issue, our study emphasizes the need for 69

robust partitioning methods for distributed transformer infer- 70

ence. Distributed inference across multiple devices offers a 71

promising solution for handling large transformer models (e.g., 72

Llama [9]) that exceed the memory capacities of individual 73

devices, such as IoT devices, smart surveillance cameras, 74

user laptops, etc. Existing frameworks, like Alpa [10] and 75

DeepSpeed [11], effectively support distributed large language 76

model (LLM) training, but do not address at all robust 77

distributed inference on edge devices and do not cater for 78

resource heterogeneity in edge systems or IoT settings. 79

Therefore, this article introduces a novel methodology, 80

called EASTER, designed to learn robust distribution strate- 81

gies for transformers that ensure functional inference and 82

1937-4151 c© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

https://orcid.org/0000-0003-4540-9013
https://orcid.org/0009-0000-2197-7791
https://orcid.org/0000-0001-8447-872X
https://orcid.org/0000-0002-2043-4469
https://orcid.org/0000-0001-6006-9366

2 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS

maintain close-to-original results under potential device fail-83

ures. Learning such optimal strategies to distribute millions84

of neurons is challenging because a vast and complex design85

space needs to be explored. Typical transformer-based models86

consist of several stacked encoder and decoder blocks. The87

embedding dimension within each block, which represents88

the size of vectors used to encode images, words, or tokens,89

usually exceeds 100. For example, if the embedded dimension90

of an encoder block is 768 [12], and we consider each91

dimension-related connection as a neuron, then the encoder92

block has 768 neurons. If we want to distribute these 76893

neurons over four devices evenly, the exact number of possible94

distributions is
(768

192

) × (576
192

) × (384
192

)
. The vast number of95

potential possibilities to distribute just one encoder block96

across multiple devices is almost unimaginable, let alone97

when considering the distribution of multiple blocks in large98

transformer models. There is a critical need to explore this99

extensive design space efficiently to identify a neuron distri-100

bution strategy that maintains performance against potential101

device failures to ensure the robustness and reliability of the102

distributed system.103

For different distribution strategies (design points) of trans-104

formers in the vast space, our algorithm is designed to105

efficiently and quickly explore and identify optimal design106

points, enabling robust and memory-efficient splitting of107

transformer models across multiple devices. We first narrow108

down the design space by considering the neuron impor-109

tance in the transformer layers, as this assessment allows us110

to group neurons within each layer, significantly reducing111

their distribution complexity. Further, we achieve this by112

adaptively and recursively splitting the design space into113

several subspaces and learning the expected rewards associated114

with different subspaces. To this end, we have developed a115

variant of the upper confidence bounds applied to trees (UCT)116

algorithm [13], aiming to enhance splitting and prioritizing117

subspaces with the highest potential for robustness. By nav-118

igating and sampling both the most and potential promising119

subspaces rather than the entire vast space, our approach120

enhances search efficiency, while balancing exploration and121

exploitation to avoid the pitfalls of local optima. The final122

Pareto points/solutions offer an optimal blend of robustness123

against device failures and operational efficiency regarding124

computation and memory.125

We also automate the process of dividing transformer126

models for distributed computing by converting them into127

a unified neural network intermediate representation (IR).128

This step is followed by automated code generation and the129

subsequent deployment of the models across multiple edge130

devices. Our experimental results demonstrate that the system131

configurations identified as Pareto-optimal points through the132

aforementioned design space exploration (DSE) method not133

only maintain system robustness but also achieve a notable134

reduction in memory usage. Furthermore, these configura-135

tions reduce the end-to-end inference latency for very large136

transformer models, demonstrating the effectiveness of our137

approach in optimizing both the performance and efficiency138

of distributed deep learning (DL) systems.139

Our main novel contributions are summarized as140

follows.141

1) A novel UCT-based DSE algorithm is proposed that 142

efficiently narrows down the vast design space, facil- 143

itating the discovery of effective model partitioning 144

strategies for robust transformer distribution that balance 145

performance and resource usage. 146

2) By empirical validation, we demonstrate the efficacy 147

of our EASTER methodology using typical transformers 148

like ViT-16 [12], GPT2-Large [14], and Vicuna-7B [4], 149

showcasing resilient model performance in image and 150

common reasoning tasks. 151

3) We provide the first implementation of an end-to-end 152

tool for splitting transformer models and also validate 153

the advantages of distributed inference in terms of 154

end-to-end inference latency and memory utilization 155

compared to single-device inference. 156

II. RELATED WORK 157

The proliferation of transformer models in various appli- 158

cations has necessitated their adaptation beyond the confines 159

of powerful cloud computing resources, directing sig- 160

nificant research interest toward edge deployments. This 161

section reviews pertinent literature across three main themes 162

relevant to our work on EASTER: 1) adaptation of large 163

transformer models for resource-constrained edge devices; 164

2) resilience against device failures; and 3) efficiency in DSE. 165

A. Adaptation of Transformer Models for Edge Constraints 166

The push toward deploying AI capabilities at the 167

edge, driven by privacy concerns, latency reduction, and 168

energy efficiency, has seen approaches like model compres- 169

sion [15], [16], [17] and neural architecture search [18], [19], 170

[20], [21] gain prominence. Such approaches can compress 171

original transformer models to smaller models for resource- 172

constrained devices. However, they typically require iterative 173

retraining and may result in accuracy loss. Another approach is 174

to deploy the original models onto distributed edge computing 175

platforms, such as health care systems [22], smart home 176

systems [23], etc., in order to leverage all available resources 177

collaboratively. Traditional layer and data partitioning methods 178

like [7] and [24] are applied to fully distribute the workload 179

of a large convolution neural network or a transformer- 180

based model among multiple edge devices, thereby reducing 181

the required computation resources of edge devices [25]. It 182

involves breaking down a model’s computational graph into 183

smaller, manageable parts that can be processed in parallel 184

across multiple devices. This is particularly challenging in 185

edge computing due to the heterogeneous nature of devices 186

and their limited computational capabilities. Model parallelism 187

techniques like AlpaServe [10] developed for homogeneous 188

data center clusters are targets for multibatch inference which 189

would perform poorly for single batches in heterogeneous 190

edge environments. PipeEdge [24] partitions a neural network 191

model into multiple pipeline stages and applies a dynamic pro- 192

gramming (DP) algorithm to determine the optimal partition 193

scheduling strategy for heterogeneous computation and com- 194

munication. However, all of the aforementioned approaches 195

and methods assume that the involved edge computing devices 196

and communication links between them are always available 197

GUO et al.: EASTER: LEARNING TO SPLIT TRANSFORMERS AT THE EDGE ROBUSTLY 3

and work properly. In contrast, our partitioning approach198

not only aims at maintaining computational efficiency but199

also considers the resilience of the system against possible200

temporary or permanent failures of devices, an aspect often201

overlooked in conventional partitioning strategies.202

B. Resilience Against Edge Failures203

Resilience against device failures at the Edge concerns the204

property of a model being resilient in terms of inference205

accuracy to the failure of physical computing devices due206

to power outages, unstable interdevice connections, other207

hardware/software failures, etc. In distributed inference set-208

tings, the missing neurons mapped on those failed devices209

may result in a significant accuracy drop of CNN or trans-210

former models [Fig. 1(b)]. Existing approaches and methods211

to mitigate this risk introduce various strategies. The code212

distributed computing (CDC) method proposed in [26] exem-213

plifies an early attempt to enhance the resilience by utilizing214

an additional device to backup the computations of distributed215

devices. This method effectively mitigates the impact of single216

device failures but does not scale well to scenarios involving217

multiple simultaneous device failures without introducing218

excessive redundancy and associated computational overheads.219

ElasticDL, introduced by Zhou et al. [27], represents a220

significant advancement by integrating fault tolerance and221

elastic scheduling within a Kubernetes-native DL framework.222

While ElasticDL enhances system resilience and adaptabil-223

ity, its practical deployment on edge devices is hampered224

by Kubernetes’ complexity and the limited computational225

resources of edge environments.226

In contrast to the aforementioned approaches, our method-227

ology EASTER introduces a comprehensive solution designed228

to enhance the resilience of transformer models in the face229

of the unpredictable and dynamic nature of edge computing230

environments. Unlike previous methods that often rely on231

additional hardware resources, complex orchestration, or prior232

knowledge of potential failure types, EASTER employs a novel233

partitioning strategy that inherently accommodates multiple234

device failures without necessitating extra devices or computa-235

tional redundancy. Our approach leverages advanced machine236

learning techniques to adaptively distribute model computa-237

tions across edge devices, optimizing for both resilience and238

resource efficiency. By intelligently partitioning the model in239

a manner that anticipates and mitigates the impact of device240

failures, EASTER ensures robust inference accuracy under241

a wide range of failure conditions without the limitations242

imposed by specific assumptions or the need for supplemen-243

tary computational overhead.244

C. Efficiency in Design Space Exploration245

In the context of DSE, the original UCT algorithm [13],246

known for its efficacy in balancing the exploration–247

exploitation tradeoff in single-objective optimization248

problems, is ingeniously adapted to the multiobjective249

optimization landscape in our work. This adaptation involves250

selecting promising parts of the search space by not251

only leveraging the UCT’s inherent strengths but also252

enhancing it with traditional machine learning techniques253

(a) (b)

Fig. 1. Comparative analysis of layer partitioning and its impact on memory
reduction and for accuracy. (a) Layer partitioning method [7] with failures.
(b) Top-1 accuracy versus memory reduction ratio.

for more efficient splitting and exploration of the design 254

space. Such an integration significantly augments the UCT 255

framework, enabling it to navigate complex, multidimensional 256

optimization problems with greater precision and efficiency. 257

Existing DSE methods, such as the multiobjective 258

tree-structured Parzen estimator (MOTPE) [28] and the non- 259

dominated sorting genetic algorithm II (NSGA-II) [29], are 260

well known for their efficiency in multiobjective optimization. 261

MOTPE is renowned for its sample efficiency and capability 262

to handle high-dimensional spaces through its Bayesian 263

optimization framework, which is particularly beneficial in 264

scenarios with limited evaluation budgets. NSGA-II, on the other 265

hand, excels in finding a diverse set of solutions across the Pareto 266

front through its evolutionary algorithm, effectively managing 267

the tradeoffs between conflicting objectives. However, existing 268

methods fall short in adapting to our specific scenario, which 269

requires robust splitting of the transformer model block by block 270

while simultaneously optimizing memory usage and inference 271

latency. These methods lack customization for navigating the 272

vast design space of our scenario. 273

To address this gap, we enhance the UCT algorithm with 274

machine learning techniques to combine the UCT’s dynamic 275

exploration–exploitation mechanism with the predictive and 276

generalization capabilities of machine learning. This not only 277

provides an efficient method to identify and explore promising 278

spaces but also enhances the algorithm’s ability to adaptively 279

refine its search strategy based on learned insights. Our enhanced 280

UCT approach, when compared to methods like MOTPE and 281

NSGA-II, offers a complementary strategy ideally suited for 282

scenarios where understanding and leveraging the structure of 283

the search space is crucial. This tailored approach significantly 284

boosts our search efficiency and the quality of outcomes, making 285

it a particularly effective solution for our specific robustness 286

needs for splitting transformer models. 287

III. ROBUST MODEL SPLITTING 288

In this section, we provide an example to illustrate why 289

splitting a transformer model robustly is needed and why 290

DSE matters in this context. Moreover, we describe how 291

transformers can be splitted in a robust fashion. 292

A. Motivational Example 293

The process of splitting a transformer model for distributed 294

inference across edge devices is crucial for running large mod- 295

els in environments with limited resources. Although some 296

4 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS

frameworks like PipeEdge [24] could distribute transformer297

models across multiple IoT devices with orchestration, the298

crux of the problem lies in the robustness of the pipeline299

paradigm they utilize: a single failure within the pipeline can300

compromise the entire computation process. Thus, our discus-301

sion focuses on an alternative paradigm, namely, partitioning302

the layers themselves within a DL model across multiple303

devices [7]. A transformer model, composed of N encoder304

or decoder blocks, is designed for various tasks, such as305

classification or text generation. As illustrated in Fig. 1(a), by306

dividing blocks in the transformer model into two parts evenly,307

specifically on a block-by-block basis, we can distribute its308

workload across two devices. Each device then processes its309

allocated half blocks, necessitating periodic synchronization of310

their intermediate results to maintain consistency throughout311

the computation process. However, such a distribution strategy312

still introduces a vulnerability: should one of the two devices313

fail, it results in the loss of half the blocks’ processing314

capability, thereby significantly impacting the model’s overall315

performance and reliability. This scenario underlines the need316

for a robust distribution strategy that can minimize the risk317

and impact of device failures.318

Taking the ViT-16 transformer model [12] as an example, it319

contains 12 encoder blocks stacked one by one. The significant320

impact of a device failure on the model performance is321

highlighted in Fig. 1(b). When splitting and distributing the322

model’s blocks across two devices, a device failure leads323

to a substantial drop in Top-1 accuracy, as critical block324

information is lost. This scenario is graphically represented325

with Top-1 accuracy (red line) and memory reduction ratio326

(blue line) against the number of distributed blocks (x-axis),327

demonstrating that as more blocks are distributed instead of328

fully replicated, the memory efficiency on the operational329

device improves, but at the cost of reduced accuracy due to330

the potential loss of computational resources during a device331

failure. For instance, when distributing all 12 encoder blocks332

of the ViT model across two devices, should one device fail333

due to a power outage or disconnection, half of the weights334

and intermediate results would be lost. In such a scenario, the335

top-1 accuracy could drop to 20.95%, significantly impairing336

the model performance of distributed inference.337

This tradeoff between memory reduction and model accu-338

racy underlines the challenge: finding a method to split339

encoder/decoder blocks that maximizes model accuracy reten-340

tion while achieving optimal memory efficiency. The goal341

is to develop a strategy that ensures even if one or more342

devices fail, the distributed model can maintain as much343

of its original performance as possible. As mentioned in344

Section I, given the vast design space for distributing neurons345

in each encoder/decoder block, it is crucial to employ DSE346

to identify the most efficient distribution pattern, aiming to347

minimize accuracy loss while maximizing resource utilization348

for optimal model deployment in distributed environments.349

B. Robust Model Splitting350

In the context of a transformer model containing N encoder351

or decoder blocks, we introduce an innovative uneven splitting352

method, called Partial Split, for distributing these blocks353

Fig. 2. Partial split. (a) Even split. (b) Partial split.

across multiple devices with robustness in mind. This method 354

particularly aims at enhancing the model’s resilience to device 355

failures while reducing the memory usage on each device. 356

As illustrated in Fig. 2(a) for example, evenly distributing a 357

transformer block among four edge devices poses a significant 358

risk, namely, the model functionality is severely compromised, 359

for example, when three out of these four devices fail or lose 360

connection, as only a minimal fraction of attention connections 361

remains operational for inference. To address this vulnerability, 362

our method diverges from this conventional even splitting 363

approach. 364

Instead, our method illustrated in Fig. 2(b) employs a strategic 365

replication of a certain fraction r of critical connections (the 366

yellow box) across multiple devices, based on their weight 367

importance. The remaining, less critical connections (the large 368

green box), constituting a (1 − r) fraction, are then evenly 369

distributed. This selective replication ensures that even in the 370

event of multiple device failures, the most vital connections 371

within each transformer block are retained, thereby preserving 372

the model functionality and inference capabilities to a large 373

extent. During runtime, the device initiating an inference request 374

for image classification or text generation tasks loads both the 375

replicated part (the yellow box) and its split part (the small 376

green box) of the model. The other devices in the network load 377

only their respective split parts. Notably, the replicated part 378

remains unloaded on these devices (the dotted yellow boxes). 379

This runtime loading strategy ensures that extra replicas are 380

not redundantly loaded on other devices, thereby optimizing 381

resource utilization and enhancing overall system efficiency. 382

IV. PROBLEM FORMULATION 383

The aforementioned uneven splitting method facilitates 384

robust distribution of the computational workload of a trans- 385

former model across edge devices. However, the limited 386

memory capacities of edge devices introduce challenges in 387

determining the optimal fraction r for each transformer block 388

that could preserve the model functionality and inference capa- 389

bilities to a large extent. A large fraction r would require high 390

memory usage per device, potentially exceeding the memory 391

capacity of resource-limited edge devices. Conversely, a very 392

small fraction r might compromise the proper model function- 393

ality in case multiple devices fail. Thus, an important tradeoff 394

emerges between the memory usage per device and the model 395

functionality that is dependent on the fraction r of critical 396

connections that are replicated for each block. 397

For a transformer model with N blocks, we define a 398

parameter set R = {r1, r2, . . . , rN}, where ri ∈ [0..1] represents 399

the fraction of replicated connections for block i. Each set 400

of parameter values R corresponds to different memory usage 401

mj per device Dj ∈ D and different model functionality in 402

GUO et al.: EASTER: LEARNING TO SPLIT TRANSFORMERS AT THE EDGE ROBUSTLY 5

Fig. 3. Transformer partitioning.

case some devices fail at runtime when a transformer model403

is distributed over a set of edge devices D. Therefore, our404

objective is to find an optimal set of parameter values Ropt405

which maximizes the model accuracy or performance score in406

case of failing devices with possible minimum memory usage407

(m1, m2, . . . , m|D|). Given the typically large value of N for408

prevalent transformer models and the continuous range of r ∈409

[0..1], a vast and complex design space needs to be explored410

in order to find an optimal solution.411

V. EASTER METHODOLOGY412

In this section, we present our novel methodology designed413

to learn robust distribution strategies for transformer models414

against device failures that consider the tradeoff between415

robustness (i.e., maintaining model functionality against fail-416

ures) and resource utilization (including memory usage and417

computations). First, we provide more details about our robust418

partial split method introduced in Section III. Next, we present419

our DSE approach to solve the optimization problem, formu-420

lated in Section IV, that is required to achieve an efficient and421

robust partial split and distribution of transformer models on422

multiple edge devices. Finally, we introduce the end-to-end423

tool we have developed to automate our robust partial split424

method and distributed deployment of transformer models.425

A. Partial Split Method for Transformers426

In this section, we explain how the transformer model is427

split according to a parameter set R. Consider the example428

shown in Fig. 3 where Block N in a transformer model is429

distributed across two devices and the obtained fraction rN ∈ R430

for this example is 0.25.431

The vital part of connections in the attention and feedfor-432

ward blocks is represented by the two yellow boxes that are433

both replicated across the two devices. The remaining, less-434

vital part of connections for each block is split in two (the435

green boxes) and distributed evenly across the two devices.436

To determine the vital part of connections, we calculate and437

use an importance score for each connection. For example, tak-438

ing a general linear transformation in the feedforward block,439

we first calculate the importance of connections corresponding440

to this linear transformation using the Taylor score [30] as441

follows:442

IWk = |�L| = ∣∣LWk − LWk=0

∣∣ ≈
∣∣∣∣

∂L
∂Wk

Wk
∣∣∣∣ (1)443

where IWk represents the importance score of the kth444

connection/weights associated with the linear transformation,445

and |�L| represents the loss changes when we remove this 446

connection from the layer. After we calculate the importance 447

score of every connection in a layer, we sort the connections 448

based on the importance score in descending order, thereby 449

creating a separate sorted list for every layer. If the target 450

fraction of replicated connections for a layer is r then we 451

start from the beginning of the sorted list and take the first 452

r% of the connections, thereby classifying them as vital. The 453

rest are classified as less vital. Furthermore, it is crucial to 454

understand that when we find that nearly all connections in 455

a layer have similarly high importance scores (i.e., nearly all 456

are vital), the DSE process (see Section V-B) is designed to 457

adjust the fraction value r of this layer close to 1.0, instead 458

of maintaining the initial value. This adjustment is crucial 459

to preserve and replicate the layer as much as possible to 460

avoid significant performance degradation. During the (design- 461

time) DSE process, the sets of small r values for important 462

layers or blocks, leading to a considerable drop in model 463

performance, are automatically categorized into less promising 464

subspaces. This mechanism ensures that our DSE process 465

systematically avoids configurations that would negatively 466

impact the model’s effectiveness significantly. This adaptive 467

approach ensures that our method retains crucial connectivity 468

to effectively retain model performance. Below, we provide 469

details on how our partial split method is further tailored for 470

the attention and feedforward blocks within the transformer 471

architecture to efficiently reduce computational workload and 472

memory usage when the transformer is distributed across 473

different edge devices. 474

1) Attention Block: As depicted in Fig. 3, the hidden states 475

Hi−1 coming from the previous transformer block are trans- 476

formed into queries (Q), keys (K), and values (V) using the 477

weight matrices Wq, Wk, and Wv. Our method splits these 478

matrices along their column dimensions (denoted by Wc
q , Wc

k , 479

and Wc
v) and distributes them across devices. Consequently, 480

each device generates the corresponding segments of Q, K, and 481

V (denoted by the yellow and green boxes), necessitating an 482

all-gather communication operation to concatenate the corre- 483

sponding segments into complete Q, K, and V tensors. Taking 484

the linear transformation with Wq weights (Fig. 3) in the 485

attention block as an example, the query matrix Q is generated 486

by Wq. If the embedded dimension of the input tensor Hi is D, 487

we compute the D importance scores for query Q using (1). 488

Once the replication factor ri is determined, we rank and 489

split the Wq weights along its column dimensions based on 490

the rank indices derived from the D scores. We choose to 491

replicate the top r% of weight Wq and allocate the remaining 492

(1 − r)% to multiple devices. For the small portion of Wq 493

on each device, we replace the original matrix multiplication 494

(matmul) operation with a small matmul operation containing 495

its corresponding different part of weight Wq. To maintain 496

output accuracy, a communication operation for gathering the 497

partial Q output is added after the small matmul. After the 498

attention block multiplies the attention scores with values 499

(V), the linear transformation with weight matrix Wo maps 500

the multiplication result to match the dimension size of the 501

intermediate output. In our method, we also split Wo into 502

segments along the column dimension. Each segment of Wc
o 503

produces a partial part of the intermediate output. Similarly, an 504

6 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS

extra all-gather communication operation is added to collect505

the segments and ensure the correctness.506

Apart from these layers, the embedding layer follows a507

similar strategy for its matmul operation. However, we abstain508

from applying our partial split method to layernorm layers due509

to their relatively minimal weight and computational demand.510

Importantly, the full replication of layernorm weights on each511

device is prioritized to ensure model stability, given their512

significant role [31].513

2) Feedforward Block: This block within a transformer514

block involves two linear transformations with weight matrices515

W1 and W2 to process the intermediate output and generate the516

hidden states Hi going to the subsequent transformer block.517

The first weight matrix is split along the column dimension518

(denoted as Wc
1 in Fig. 3). The second weight matrix is519

split along the row dimension (denoted as Wr
2). The partial520

output tensors (the yellow and green boxes) produced by Wc
1521

can directly go through the nonlinear activation and serve522

as the input for the second linear transformation which is523

also split and denoted as Wr
2. This design eliminates the524

need for an all-gather operation to concatenate the partial525

outputs produced by the first linear transformation, thereby526

reducing both the computational workload per device and the527

interdevice communication overhead. Finally, a collective all-528

reduce operation is applied to sum the partial output from all529

devices to form the correct hidden states output Hi.530

B. Design Space Exploration531

To solve the optimization problem formulated in Section IV,532

we have devised a DSE approach that effectively navigates in533

the vast and complex design space mentioned in Section IV.534

Our DSE approach leverages supervised learning techniques535

to progressively concentrate the search for an optimal solu-536

tion within increasingly smaller and more promising spaces,537

thereby enhancing search efficiency. As depicted in Fig. 4,538

the approach starts by randomly generating several design539

points R = {R1, R2, . . . , Rp} (yellow points), and evaluate540

the objectives F(R) using the fitness function F for each541

design point Ri ∈ R to form an initial learnable space542

D = (R,F(R)). Here, Ri = {ri
1, ri

2, . . . , ri
N} is a set of543

fractions corresponding to a specific partial split strategy for544

all N blocks in a transformer model. The fitness function545

F concerns the evaluation of various conflicting objectives,546

such as memory usage, energy consumption, performance,547

etc. It can be implemented using analytical models, real548

measurements, etc. In this article, our fitness function is based549

on real measurements to ensure an accurate and practical550

evaluation of the objective values. Taking the ViT-16 model as551

an example, we directly measure the peak memory usage on552

real devices during run-time, and we take the Top-1 accuracy553

of the ImageNet-1K validation dataset as the performance554

metric. Then, our DSE approach recursively splits the design555

space D and obtains a set of split boundaries. Subsequently, we556

apply these learned boundaries to generate new design points557

within specific promising design spaces to improve the search558

efficiency. We apply the calculation equation in line 24 of559

Algorithm 1 to identify which area within R is most likely to560

contain optimal design points and then concentrate our search561

Fig. 4. Our DSE approach.

on this smaller, promising area, denoted as D∗P and shown 562

in the middle of Fig. 4. However, an early decision about 563

the promising area might inadvertently overlook other areas 564

that could contain optimal points as well. To mitigate this, 565

while the majority of our design points are generated within 566

the currently perceived promising area D∗P, we also allocate a 567

smaller portion of design points to generate from other spaces, 568

represented by D∗S. This approach iteratively learns the entire 569

space R and allows us to more accurately identify the most 570

promising regions for optimal points. 571

Algorithm 1 describes, in more detail, the aforementioned 572

DSE approach illustrated in Fig. 4. The algorithm consists of 573

two main steps and takes as an input the maximum search 574

trials T , the number of new random design points np for 575

updating the search space D, a lower bound (lb) to determine 576

the maximum number of design points in an unsplittable area, 577

and the exploration factor α which determines the degree of 578

exploration. A higher value for α encourages more exploration 579

in the search space. The output of Algorithm 1 is space 580

DP = {(R1, FR1), . . . , (R|P|, FR|P|)} of Pareto-optimal solutions 581

where every solution Ri = {ri
1, ri

2, . . . , ri
N} is a set of fractions 582

corresponding to a Pareto-optimal partial split strategy for 583

all N blocks in a transformer model. In line 1, we first 584

randomly initialize a number of design points and evaluate 585

their objectives using the fitness function, yielding an initial 586

learnable search space D. 587

In step 1 (lines 3–8), the algorithm narrows down the space 588

via support vector machine (SVM) classifiers and generates 589

a series of SVM boundaries. In lines 3–6, we select the 590

nondominated points from D to create a new primary space 591

marked as DP, and the rest of the points are put into a 592

new secondary space marked as DS. In lines 7 and 8, the 593

NarrowDown function is applied to recursively split DP and 594

DS into smaller spaces D∗P and D∗S. Concurrently, all involved 595

splitting SVM boundaries are aggregated into the boundary 596

sets CLP and CLS. 597

In step 2 (lines 9–12), we generate new design points 598

and evaluate these new design points using the fitness 599

function FITNESS. To balance the exploration–exploitation 600

tradeoff, 80% of these new points (RP) are derived from D∗P 601

in line 9, while the remaining 20% (i.e., for α = 0.2) of the 602

new design points (RS) are derived from D∗S in line 10. This 603

ratio, while adjustable, typically requires experimental trials 604

for better search efficiency. Then, we apply the fitness function 605

to evaluate the objective values for these new points and add 606

them to the search space D in line 12. This iterative process is 607

repeated until the maximum number of trials T is reached (see 608

line 2). Ultimately, the Pareto-optimal points comprising space 609

DP found by this DSE process represent the optimal solutions 610

that balance the memory usage and the model functionality. 611

GUO et al.: EASTER: LEARNING TO SPLIT TRANSFORMERS AT THE EDGE ROBUSTLY 7

Algorithm 1: DSE
Input : Maximum trials T; Population size np; lb,

exploration factor α;
Output: Space DP with Pareto points;

1 Initialize randomly D with points (R, FR):
D← {(R1, FITNESS(R1)), · · · , (Rnp , FITNESS(Rnp))}

2 while |D| ≤ T do
// Step 1: Narrow Down Search Space

3 foreach (Ri, FRi) ∈ D do
4 if FRi is nondominated then
5 DP ← DP ∪ (Ri, FRi)

6 DS ← D \ DP; CLP ← ∅; CLS ← ∅
7 D∗P, CLP = NarrowDown(DP,CLP)
8 D∗S, CLS = NarrowDown(DS,CLS)

// Step 2: Add New Random Points,
// Evaluate and Update D

9 RP = NewPoints((1− α) ∗ np,CLP)
10 RS = NewPoints(α ∗ np,CLS)
11 foreach Ri ∈ (RP ∪ RS) do
12 D← D ∪ (Ri, FITNESS(Ri))

13 return DP

14

15 Function NarrowDown(D,CL):
16 foreach (Ri, FRi) ∈ D do
17 RD ← RD ∪ Ri

18 (RD1 ,RD2) = KMeansTwoClustersOn(RD)

19 DL = (RD1 , 1) ∪ (RD2 ,−1)

20 CL, D1, D2 = SVMTrainedOn(DL)

21 if (|D| < lb) ∨ (CL(D1) = CL(D2) then
22 return D, CL

23 else

24 UCB(RDi) = F(RDi)+ α
√

log |RD|
|RDi | :i = 1, 2

25 RD∗ = argmax
RDi

UCB(RDi); D∗ = (RD∗ ,F(RD∗))

26 CL← CL ∪ CL
27 return NarrowDown(D∗, CL)

28 Function NewPoints(N,CL):
29 R← ∅
30 while |R| < N do
31 R = RandomPoint;
32 R← R ∪ R
33 foreach CLi ∈ CL do
34 if CLi(R) = −1 then
35 R← R \ R
36 break

37 return R

In lines 15–27, the NarrowDown function recursively splits612

the search space D and obtains a series of learned split613

boundaries CL. In line 18, we initially employ the K-means614

clustering method to categorize/divide the design points615

within RD into two distinct clusters RD1 ,RD2 . Following616

Fig. 5. Multinode IR conversion tool.

this clustering, we calculate the average objective values for 617

each cluster. The cluster with the higher average objective 618

values is considered to be situated in a more favorable space. 619

Consequently, in line 19, we assign a label of 1 to the design 620

points in this more promising cluster, while design points in 621

the less favorable cluster are labeled as −1, and we put all 622

labeled points in a new set DL. In line 20, we train the SVM 623

classifier CL with the new set of labeled points DL and split 624

DL into two spaces D1 and D2. In lines 21 and 22, if the 625

number of design points in D is below the lower bound lb or 626

if the SVM classifier CL predicts only a single category, both 627

indicating that space D is nondivisible, the recursive function 628

NarrowDown terminates and returns the set of classifiers CL. 629

Otherwise, in lines 24–26, we mark the space with the larger 630

UCB value [13], calculated in line 24, as the more promising 631

design space D∗, and add the SVM classifier CL into the 632

recursive splitting set CL. 633

In lines 28–37, the NewPoints function randomly generates 634

N new design points using the input set of SVM classifiers CL. 635

In lines 31 and 32, a random design point R is generated and 636

added to the set of new points R. Then, point R is classified 637

using the set of trained SVM classifiers CL in lines 33–36. 638

That is, if all SVMs in CL classify point R to belong to the 639

class with label 1 then point R remains in the set; otherwise, it 640

is removed (line 35). Finally, in line 37, the new set of random 641

points R is returned. 642

C. Multinode Intermediate Representation 643

We have developed an end-to-end tool that facilitates auto- 644

mated model partitioning and its distributed deployment, in 645

line with one of the Pareto-optimal partial split strategies Ri ∈ 646

DP found by our DSE Algorithm 1 presented in Section V-B. 647

In general, traditional frameworks for DL model deployment 648

on edge devices, such as TVM [32], IREE [33], and others, 649

do not sufficiently support distributed inference. Therefore, 650

our end-to-end tool is implemented to transform CNNs or 651

transformer models from Huggingface [34] into optimized 652

multinode computation graphs, thereby making them suitable 653

for efficient deployment across multiple devices. Our tool 654

is versatile enough to support both CNNs and transformer 655

models but in this article we focus on its application to 656

transformer models. 657

As illustrated in Fig. 5, our tool begins by utilizing the 658

existing “torch.compile” [35] method to convert an initial 659

PyTorch transformer model into the low-level ATen IR for a 660

single node. Subsequently, an automated conversion process 661

is employed to replace the single-node ATen IR into a multin- 662

ode variant. For instance, in handling linear transformations, 663

the tool splits the associated coefficients and redefines new 664

8 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS

Linear transformations that are adapted to the altered shapes665

of coefficients or inputs as illustrated by the red boxes666

in Fig. 5. Modifications to these operations are facilitated667

using “torch.fx” [36], accommodating the new coefficient668

dimensions. Our own customized multinode communica-669

tion operations, such as GatherByIndex, AllReduceByIndex,670

AllConcatByIndex, etc., are integrated after the modified671

operation (see red box “Linear” in Fig. 5) to ensure the672

calculation correctness. To enhance the tool’s versatility, we673

implement these communication operations in C++ such674

that they can be integrated into other inference engines. We675

have also developed a compatible interface that enables the676

conversion of this multinode IR into formats supported by677

various other inference engines (e.g., NCNN [37], IREE,678

etc.). Its compatibility and ease of integration with these679

existing edge frameworks enhances both usability and scal-680

ability. Additionally, a robust fault handler is incorporated681

to ensure reliable execution during distributed inference, pro-682

viding resilience against potential device failures or network683

disruptions. An inner timeout mechanism governed by peri-684

odic heartbeats [38] can prevent the distributed system from685

deadlocks that might arise due to device failures or other686

operational anomalies.687

VI. EVALUATION OF OUR EASTER METHODOLOGY688

In this section, we evaluate our EASTER methodology to689

demonstrate its efficacy on typical transformer models and690

showcase resilient models’ performance. We describe our691

experimental setup followed by presenting and discussing692

some experimental results obtained during automated DSE693

experiments, we have performed using Algorithm 1 and the694

end-to-end tool introduced in Section V-C.695

A. Experimental Setup696

To evaluate EASTER, we perform experiments with three typ-697

ical transformer models, namely, ViT-16 [12], GPT2-Large [14],698

and Vicuna-7B [4] representing three different kinds of699

transformer architectures, taken from the Huggingface open-700

source community [34]. Given their widespread use in image701

and text tasks, and their diversity in transformer blocks,702

operation counts, and memory requirements, we consider these703

transformers to be representative targets to demonstrate the704

merits of our methodology. We compare the searching efficiency705

of our Algorithm 1 on these models with two state-of-the-art706

multiobjective optimization algorithms, namely, the NSGA-II707

Genetic Algorithm [29] and MOTPE [28]. The task of our708

DSE experiments is to simultaneously minimize the maximum709

memory usage per device and the model performance score710

(loss) under severe device failures. To ensure a fair comparison711

with NSGA-II and MOTPE, we set the maximum number712

of search iterations to 2500 for each DSE experiment. The713

searching time for the three methods are quite similar, with the714

majority of time being consumed by the objective evaluations.715

For the first objective (maximum memory usage per device), we716

normalize its value range to [0, 1] by dividing the memory usage717

mj(Ri) by the total memory usage on a single device Dj. Lower718

values indicate reduced replication and more balanced model719

distribution. To evaluate the second objective (performance720

score S) of the models, we employ distinct techniques tailored 721

to each model’s specific domain. For the ViT-16 model, we 722

measure the Top-1 error score on the ImageNet-1k dataset for 723

image tasks. A lower error represents higher image classification 724

capabilities, and the lower the error the better. For the two LLMs 725

(GPT2-Large and Vicuna-7B), we utilize zero-shot perplexity 726

(PPL) analysis on the WikiText2 and PTB datasets to assess the 727

models’ language understanding and generalization capabilities. 728

A lower PPL score, especially in a zero-shot context, means a 729

better ability to handle unseen data. 730

To validate the performance of Pareto-optimal points from 731

the DSE process using Algorithm 1, we apply the split 732

fractions Ri, found by the algorithm, to the two LLMs by 733

distributing each LLM across four devices, i.e., four GPU 734

units in our experiments. We disable three GPU units to 735

simulate severe device failure scenarios in order to assess the 736

models’ robustness. We apply a separate and more diverse 737

collection of reasoning and generative datasets [39] to test the 738

models’ performance (robustness) against severe failures in 739

practical reasoning tasks, namely, ARC-easy, ARC-challenge, 740

WinoGrande, HellaSwag, BoolQ, PIQA, and OpenbookQA. 741

These diverse datasets provide a comprehensive platform for 742

testing the models’ reasoning and generative capabilities. 743

To evaluate the resilience of our methods under varying failure 744

conditions, we deployed three models across four edge devices 745

and examined model performance in scenarios where 1 (1D- 746

Fail), 2 (2D-Fail), or 3 devices (3D-Fail) experience failures. We 747

take the state-of-art layer partitioning method (LP) [7] from the 748

domain of distributed CNN inference as inspiration to implement 749

a similar method for linear operations within encoder/decoder 750

blocks of transformer models. Subsequently, we benchmark 751

this LP-inspired partitioning method, which does not utilize 752

the notion of neuron importance, against our approach in terms 753

of robustness. For the three transformer models, we assess the 754

robustness of our method using different sets of R values for the 755

partial split strategy, allowing for a comprehensive comparison 756

of how well each method retains model performance against 757

device failures. 758

To actually test distributed inference for transformers across 759

multiple edge devices, our experimental edge test-bed consists 760

of eight NVIDIA Jetson Xavier NX devices connected over 761

a 1000-Mb/s network router. Each device has an embed- 762

ded MPSoC featuring a 6-core Carmel ARMv8.2 CPU, an 763

NVIDIA Volta GPU with 384 CUDA cores, 48 Tensor cores, 764

and 8 GB of LPDDR4x memory. We demonstrate the func- 765

tionality of our multinode implementation, generated by our 766

end-to-end tool introduced in Section V-C, and the advantages 767

of distributing large transformer models over multiple edge 768

devices/boards by conducting a series of benchmarks on 769

the aforementioned edge test-bed using the three representa- 770

tive transformer models ViT-16, GPT2-Large, and Vicuna-7B 771

under four different distributed system configurations: single 772

device, two devices, four devices, and eight devices. In all 773

experiments, transformer blocks were evenly distributed across 774

the devices. We mainly evaluate two metrics: 1) overall end-to- 775

end inference latency and 2) memory reduction with different 776

distribution configurations. 777

The end-to-end latency (T) of a model is measured from the 778

time a user input is received until the time the complete output 779

GUO et al.: EASTER: LEARNING TO SPLIT TRANSFORMERS AT THE EDGE ROBUSTLY 9

TABLE I
EXECUTION TIME OF MAIN STEPS IN EASTER

is generated. For the ViT-16 model, user inputs are images780

with dimensions (3×224×224), whereas for the two LLMs781

(GPT2-Large and Vicuna-7B), user inputs are sequences of782

128 tokens. The reported latency is computed by averaging783

time T for 100 user inputs. To measure T and break it down to784

computation time (Tcal) and communication/synchronization785

overhead (Tcomm) in our distributed inference execution, we786

employ a specific adjustment of the timeout parameter values787

in our multinode communication operations introduced in788

Section V-C. More specifically, setting the timeout values789

to zero permits each device to function independently, i.e.,790

without interdevice data communication and synchroniza-791

tion delays, thereby enabling the measurement of the pure792

computation time Tcal. Altering the timeout values to one sec-793

ond activates interdevice communication and synchronization794

actions besides the pure computations, thereby facilitating the795

measurement of the total end-to-end inference latency T . We796

then determine the communication/synchronizaton overhead797

Tcomm by calculating the difference T−Tcal, thereby effectively798

quantifying the additional time needed for interdevice data799

communication and synchronization.800

To determine the aforementioned memory reduction, we801

continuously monitor the peak memory usage of each device in802

our edge test-bed during runtime for every distributed system803

configuration.804

B. Execution Time Evaluation of the EASTER Method805

We evaluate the execution time of the main steps of our806

EASTER method on two different hardware platforms, namely, a807

platform based on an Intel Core i9-13900K CPU and a platform808

based on an NVIDIA H100 SXM5 GPU. For each transformer809

model, we measure the time required to calculate the importance810

scores of connections within the model as well as the time to811

evaluate a single design point during the DSE process.812

The importance score calculation is performed only once.813

Illustrating this calculation for the ViT-16 model, we randomly814

take 50 samples from the ImageNet-1K training dataset where815

each sample is a batch of 128 random images. Using each816

sample and the ViT-16 model, we apply (1) to calculate817

an importance value for every connection within the model,818

i.e., we calculate 50 values per connection in total. Then, we819

compute the average of these 50 values for each connection820

and use this average value as the importance score of the821

connection in our DSE process. For the GPT2-Large and822

Vicuna-7B transformer models, the importance scores are823

calculated similarly through 50 random samples from the824

language datasets. The time required to execute the importance825

score calculation for the three transformer models is shown826

in Columns 2 and 3 of Table I. For example, on the GPU-827

based platform, the complete set of importance scores of all828

connections in the ViT-16 model is computed in just 4.15 s. 829

Computing the same set of scores on the CPU-based platform 830

takes 200.9 s. In Columns 4 and 5 of Table I, we provide the 831

evaluation time for a single design point in our DSE process. 832

For example, on the CPU-based platform, evaluating the Top-1 833

accuracy of the ViT-16 model takes approximately one hour 834

to complete. Conversely, the powerful GPU platform validates 835

the Top-1 accuracy for a specific design point in under 3 min. 836

837

C. DSE Results and Comparison 838

We have performed three distinct DSE experiments for the 839

ViT-16, GPT2-Large, and Vicuna-7B models by employing 840

our EASTER methodology and Algorithm 1 along with the 841

NSGA-II and MOTPE algorithms for comparison purposes. 842

The Pareto-optimal points found by each of these three algo- 843

rithms are separately plotted in Fig. 6. The yellow triangles 844

represent the points found by MOTPE, the blue crosses 845

represent NSGA-II points, and the red dots correspond to 846

points found by our Algorithm 1 within EASTER. The x-axis 847

in Fig. 6(a)–(c) represents the normalized maximum memory 848

usage per device explained in Section VI-A. The y-axis 849

represents the Top-1 error for ViT-16 and the PPL for GPT2- 850

Large and Vicuna-7B. The rationale behind using the Top-1 851

error and PPL is explained in Section VI-A. 852

To quantitatively assess the effectiveness of EASTER, 853

NSGA-II, and MOTPE, as well as to compare them, we 854

calculate the well known and widely used hypervolume metric 855

(hv), based on the Pareto-optimal points plotted in Fig. 6, 856

that serves as an indicator of the search space coverage 857

in DSE. As shown in Fig. 6, our EASTER methodology 858

and algorithm demonstrate superior performance because of 859

the higher hypervolume value hv, indicating more effective 860

search space coverage of EASTER compared to NSGA-II 861

and MOTPE. For example, the Pareto-optimal points found 862

by EASTER for Vicuna-7B and shown in Fig. 6(c) dominate 863

those found by NSGA-II and MOTPE, resulting in higher 864

hypervolume value of 3.24 and highlighting the EASTER 865

effectiveness in identifying optimal solutions. 866

As explained in Section VI-A, we apply the split fractions 867

Ri, found by Algorithm 1, to the models by distributing each 868

model across four devices. Moreover, we disable three of 869

the four devices in order to simulate severe device failure 870

scenarios to assess the models’ robustness. The results for the 871

LLMs (GPT2-Large and Vicuna-7B) are shown in Table II. 872

The first column specifies three different Ri settings for 873

each of the two LLMs together with the baseline setting, 874

named R = 1. The baseline setting R = 1 for each LLM 875

is the original model fully replicated over the four devices 876

with no loss of model weights/connections due to failures. 877

Note that the evaluation metrics associated with settings A– 878

C are also shown in Fig. 6(b) and (c)—see the red dots 879

marked with A–C. The second column in Table II shows 880

the maximum memory usage per device under the aforemen- 881

tioned settings. The remaining columns show the evaluation 882

accuracy (in %) of the operational part of the model, 883

i.e., the part still running on the nonfailing device, across 884

several zero-shot open-ended tasks on widely recognized 885

10 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS

(a) (b) (c)

Fig. 6. Comparison of DSE results delivered by EASTER, NSGA-II, and MOTPE for (a) ViT-16, (b) GPT2-Large, and (c) Vicuna-7B.

TABLE II
ZERO-SHOT PERFORMANCE (MAX. PER-DEVICE MEMORY USAGE AND ACCURACY-%) WITH THREE OUT OF FOUR EDGE DEVICES FAILING

common sense reasoning datasets [39]: ARC-e(asy), ARC-886

c(hallenge), WinoGrande, HellaSwag, BoolQ, PIQA, and887

OpenBookQA.888

Analyzing the results in the second column of Table II, we889

observe that the memory reduction for setting C with R ≈ 0.75890

compared to the baseline clearly shows that the accuracy loss891

is relatively small. The memory reduction for settings A and B892

in this worst-case scenario (3D-Fail) confirms the efficacy of893

our EASTER methodology. For example, the Vicuna-7B model894

experiences a significant memory reduction of up to 65.80%895

(from 27.00 to 9.24 GB), but still retains competitive accuracy896

compared to the original GPT2-Large model across several897

evaluated tasks like WinoGrande and BoolQ. Although the898

memory reduction comes with a certain accuracy tradeoff,899

especially for tasks like ARC-c, ARC-e, etc., this remains900

within an acceptable range given the significant benefits901

of reduced memory demands and improved computational902

efficiency across multiple constrained devices. The GPT2-903

Large model in setting B with a memory reduction of 66.20%904

shows a relatively minor performance decline in terms of905

accuracy for datasets like ARC-c, WinoGrande, and BoolQ.906

Here, ARC-e task shows the highest accuracy sensitivity to907

memory reduction, i.e., a decrease of 23.28% in accuracy.908

However, it is important to note that our DSE methodology and909

algorithm prioritize the optimization for general PPL scores,910

rather than tailoring the search to enhance specific task scores.911

To further improve the accuracy of different datasets, our912

DSE method can be applied to search for optimal design913

points targeting the accuracy separately for each dataset.914

This approach allows for maintaining robust performance915

while ensuring minimal accuracy drop for individual datasets.916

However, it is important to recognize that this will result in917

different optimal design points (different sets of R values) for918

each dataset.919

Overall, both models demonstrate a notable degree of 920

performance resilience under extreme failure scenarios, indi- 921

cating their potential for effective deployment in environments 922

with memory constraints, such as edge devices. 923

D. Robustness Verification Against Varying Failures 924

To deepen our understanding of EASTER’s robustness, we 925

compare our robustness-aware method against the LP-inspired 926

method which does not utilize the notion of the importance of 927

neurons. To maintain a fair comparison, we select the settings 928

marked as A–C in Fig. 6 to split the transformer models across 929

four devices according to the R values associated with the 930

three marked settings by utilizing the two methods. 931

As depicted in Fig. 7, the x-axis categorizes the failure 932

scenarios (1D-Fail, 2-D-Fail, or 3D-Fail), whereas the y-axis 933

quantifies model performance, measured by the Top-1 accu- 934

racy on the ImageNet-1k validation dataset or perplexity (PPL) 935

value. Please note the logarithmic scale for the PPL scores. 936

The graphical representation uses blue bars to indicate the 937

performance of the traditional layer-wise partitioning (LP- 938

inspired) method in the face of device failures, while orange 939

bars illustrate the performance of our EASTER method. 940

Consider Fig. 7(a) and the 2D-Fail scenario. When the 941

ViT-16 model is split with R = 0.33, the Top-1 error of 942

the LP-inspired method is as high as 94.742%, in contrast 943

to our method, which significantly lowers the Top-1 error to 944

54.626%. By increasing the R value from 0.33 to 0.53, we 945

observe a further reduction of the Top-1 error to 31.238%. 946

Increasing the R value further to 0.77 results in the Top-1 error 947

dropping to 20.614%, which is very close to the baseline Top- 948

1 error of 18.572%. Note that our method can achieve this 949

baseline error if we set R to 1.0 (as shown in Fig. 7) because 950

this setting “forces” our method to perform full replication of 951

neurons, i.e., no accuracy loss is encountered due to device 952

GUO et al.: EASTER: LEARNING TO SPLIT TRANSFORMERS AT THE EDGE ROBUSTLY 11

(a) (b) (c)

Fig. 7. Robustness comparison of EASTER with layer-wise partitioning [7] across four devices. (a) ViT-16. (b) GPT2-Large. (c) Vicuna-7B.

(a) (b) (c)

Fig. 8. Inference latency, communication time, and memory usage for different models across device configurations. (a) ViT-16. (b) GPT2-Large.
(c) Vicuna-7B.

failures. Similarly, with the Vicuna7B model, the logarithmic953

value of perplexity (PPL) observed using the LP-inspired954

method under a 2D-Fail condition is 8.29. In contrast, our955

method achieves a log(PPL) of 5.50 with an R value of 0.34.956

Further increasing the R value to 0.76 results in an even lower957

log(PPL) which is very close to the baseline (R = 1.0).958

These results clearly demonstrate that our EASTER method959

significantly outperforms the LP-inspired method in main-960

taining model performance against device failures. Moreover,961

increasing the R value, which dictates the degree of neuron962

replication, can further improve model robustness.963

E. Distributed Inference964

In this section, we evaluate our end-to-end tool that facil-965

itates automated model partitioning and its deployment on966

distributed edge devices. Our tool is specifically implemented967

to convert standard PyTorch transformer models into optimized968

multinode implementations following our EASTER method-969

ology, making the models suitable for efficient distributed970

deployment on edge devices. We present empirical results,971

obtained by using our edge test-bed described in Section VI-A,972

in order to demonstrate the advantages of EASTER in terms973

of overall end-to-end inference latency and maximum memory974

usage per device in a distributed system running transformer975

models. Here, in all experiments, transformer blocks are976

evenly distributed across the devices. In Fig. 8, the light blue977

bars represent the computation time Tcal of the distributed978

inference process, the gray blue bars indicate the communica-979

tion/synchronization overhead Tcomm, whereas the orange bars980

in Fig. 8 denote the maximum memory usage per device. The981

data is presented for different numbers of collaborating edge 982

devices across the three models. 983

As shown in Fig. 8, in most cases, the overall end-to- 984

end inference latency improves when increasing the number 985

of edge devices. As the number of devices increases, in 986

all cases, computation time Tcal (light blue bars) reduces 987

correspondingly. Only in the case of ViT-16 [Fig. 8(a)], this 988

advantage is counterbalanced by a rise in the communica- 989

tion overhead (gray bars), which, in an eight-device setup, 990

surpasses the computational savings, leading to an overall 991

increase in the inference latency. Conversely, for GPT2-Large, 992

the communication overhead, while increasing with more 993

devices, still remains a smaller fraction compared to the 994

computation time. This results in a near-linear acceleration, 995

with an overall inference latency decrease from 58.00 s using 996

one device to 7.62 s using eight devices. The increase in 997

communication overhead therefore seems more pronounced in 998

smaller transformer models like ViT-16, that represents a fun- 999

damental tradeoff between computation and communication. 1000

The results shown in Fig. 8 clearly indicate that with an 1001

increasing number of devices (from 1 to 8 devices), there 1002

also is a noticeable decrease in memory usage per device. For 1003

instance, the maximum on-device memory usage for ViT-16 1004

decreases from 193.8 MB in a single-device configuration to 1005

48.1 MB in an eight-device configuration. Similarly, GPT2- 1006

Large exhibits a significant memory reduction from 3.6 GB on 1007

a single device to 556.3 MB across eight devices. A significant 1008

reduction in memory usage per device from 27.6 GB on 1009

a single-device configuration to 4.6 GB on an eight-device 1010

configuration is observed for Vicuna-7B as shown in Fig. 8(c). 1011

Such reduction enables the models to run the complete float32 1012

12 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS

version at the edge without the need for extra swap space1013

or model quantization, highlighting EASTER’s effectiveness in1014

memory savings.1015

Finally, if the reduction in computation time due to1016

distributed inference is outweighed by the increase in com-1017

munication time, the overall end-to-end latency increases. We1018

can adjust timeout thresholds in the system to manage the1019

tradeoff between computation and communication times. By1020

implementing such a timeout mechanism, we ensure that if1021

synchronization among distributed devices does not conclude1022

within the set time period, the system proceeds without further1023

delay, thus maintaining timely execution. This approach not1024

only mitigates potential increases in communication time but1025

also safeguards against the detrimental effects of prolonged1026

synchronization wait times.1027

The above findings validate the efficiency of EASTER in1028

optimizing memory usage per device in distributed transformer1029

inference, particularly in edge computing environments where1030

resource constraints are a critical factor.1031

VII. CONCLUSION1032

This article introduces EASTER, a novel method designed1033

to robustly partition transformer models across edge devices,1034

effectively addressing the challenge of potential device failures1035

at the Edge. The EASTER method navigates the vast design1036

space of splitting strategies by learning the expectation of1037

different design subspaces. It also outperforms traditional1038

state-of-the-art DSE methods in searching efficiency for1039

our distribution problem. Through extensive experimentation,1040

EASTER has been proven to identify Pareto solutions within1041

a limited number of experimental trials efficiently.1042

Utilizing our developed end-to-end tool, we have the capa-1043

bility to evaluate the distributed implementation on actual1044

hardware boards, which allows us to confirm the advantages in1045

memory usage and inference latency that distributed inference1046

brings. Moreover, our findings substantiate that partial splitting1047

significantly enhances model robustness in the face of device1048

failures. This approach not only minimizes memory consump-1049

tion on each device but also has the potential to reduce1050

overall end-to-end latency, presenting a valuable opportunity1051

for deploying large-scale transformer models within edge1052

computing environments.1053

REFERENCES1054

[1] Y. Cao et al., “A comprehensive survey of AI-generated content1055

(AIGC): A history of generative AI from GAN to ChatGPT,” 2023,1056

arXiv:2303.04226.1057

[2] OpenAI, “GPT-4 technical report,” 2023, arXiv:2303.08774.1058

[3] M. N. Birje and S. S. Hanji, “Internet of things based distributed health-1059

care systems: A review,” J. Data, Inf. Manage., vol. 2, pp. 149–165,1060

2020.1061

[4] L. Zheng et al., “Judging LLM-as-a-judge with MT-bench and Chatbot1062

arena,” in Proc. 37th Conf. Neural Inf. Process. Syst., 2023, pp. 1–39.1063

[5] J. Lin et al., “AWQ: Activation-aware weight Quantization for LLM1064

compression and acceleration,” 2023, arXiv:2306.00978.1065

[6] X. Zhu, J. Li, Y. Liu, C. Ma, and W. Wang, “A survey on model1066

compression for large language models,” 2023, arXiv:2308.07633.1067

[7] R. Stahl, A. Hoffman, D. Mueller-Gritschneder, A. Gerstlauer, and1068

U. Schlichtmann, “DeeperThings: Fully distributed CNN inference on1069

resource-constrained edge devices,” Int. J. Parallel Program., vol. 49,1070

no. 4, pp. 600–624, 2021.1071

[8] L. Zhou, M. H. Samavatian, A. Bacha, S. Majumdar, and R. Teodorescu,1072

“Adaptive parallel execution of deep neural networks on heterogeneous1073

edge devices,” in Proc. 4th ACM/IEEE Symp. Edge Comput., 2019,1074

pp. 195–208.1075

[9] H. Touvron et al., “Llama 2: Open foundation and fine-tuned chat 1076

models,” arXiv preprint arXiv:2307.09288, 2023. 1077

[10] Z. Li et al., “AlpaServe: Statistical multiplexing with model 1078

parallelism for deep learning serving,” in Proc. OSDI, 2023, 1079

pp. 663–679. 1080

[11] J. Rasley, S. Rajbhandari, O. Ruwase, and Y. He, “Deepspeed: 1081

System optimizations enable training deep learning models with 1082

over 100 billion parameters,” in Proc. ACM SIGKDD’26, 2020, 1083

pp. 3505–3506. 1084

[12] A. Dosovitskiy et al., “An image is worth 16x16 words: Transformers 1085

for image recognition at scale,” in Proc. ICLR, 2020, pp. 1–22. 1086

[13] L. Kocsis and C. Szepesvári, “Bandit based monte-carlo planning,” in 1087

Proc. ECML, 2006, pp. 282–293. 1088

[14] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever, 1089

“Language models are unsupervised multitask learners,” OpenAI Blog, 1090

vol. 1, no. 8, p. 9, 2019. 1091

[15] M. W. U. Rahman et al., “Quantized transformer language model 1092

implementations on edge devices,” 2023, arXiv:2310.03971. 1093

[16] Y. Bondarenko, M. Nagel, and T. Blankevoort, “Understanding and 1094

overcoming the challenges of efficient transformer quantization,” 2021, 1095

arXiv:2109.12948. 1096

[17] Z. Li and Q. Gu, “I-ViT: Integer-only quantization for efficient vision 1097

transformer inference,” in Proc. ICCV, 2023, pp. 17065–17075. 1098

[18] C. Gong et al., “Nasvit: Neural architecture search for efficient vision 1099

transformers with gradient conflict aware supernet training,” in Proc. 1100

ICLR, 2021, pp. 1–18. 1101

[19] K. T. Chitty-Venkata, M. Emani, V. Vishwanath, and A. K. Somani, 1102

“Neural architecture search for transformers: A survey,” IEEE Access, 1103

vol. 10, pp. 108374–108412, 2022. 1104

[20] Y. Guo et al., “Nat: Neural architecture transformer for accurate and 1105

compact architectures,” in Proc. NeurIPS, 2019, pp. 1–12. 1106

[21] S. Li et al., “Hyperscale hardware Optimized neural architecture search,” 1107

in Proc. ASPLOS, 2023, pp. 343–358. 1108

[22] S. Rani, M. Chauhan, A. Kataria, and A. Khang, “IoT equipped intel- 1109

ligent distributed framework for smart healthcare systems,” in Towards 1110

the Integration of IoT, Cloud and Big Data: Services, Applications and 1111

Standards. Singapore: Springer, 2023, pp. 97–114. 1112

[23] B. L. R. Stojkoska and K. V. Trivodaliev, “A review of Internet of Things 1113

for smart home: Challenges and solutions,” J. Cleaner Prod., vol. 140, 1114

pp. 1454–1464, Jan. 2017. 1115

[24] Y. Hu et al., “Pipeedge: Pipeline parallelism for large-scale model infer- 1116

ence on heterogeneous edge devices,” in Proc. DSD, 2022, pp. 298–307. 1117

[25] X. Guo, A. D. Pimentel, and T. Stefanov, “Automated exploration and 1118

implementation of distributed CNN inference at the edge,” IEEE Internet 1119

Things J., vol. 10, no. 7, pp. 5843–5858, Apr. 2023. 1120

[26] R. Hadidi, J. Cao, M. S. Ryoo, and H. Kim, “Robustly executing DNNs 1121

in IoT systems using coded distributed computing,” in Proc. DAC, 2019, 1122

pp. 1–2. 1123

[27] J. Zhou et al., “ElasticDL: A Kubernetes-native deep learning framework 1124

with fault-tolerance and elastic scheduling,” in Proc. WSDM’16, 2023, 1125

pp. 1148–1151. 1126

[28] Y. Ozaki, Y. Tanigaki, S. Watanabe, M. Nomura, and M. Onishi, 1127

“Multiobjective tree-structured Parzen estimator,” J. Artif. Intell. Res., 1128

vol. 73, pp. 1209–1250, Apr. 2022. 1129

[29] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist 1130

multiobjective genetic algorithm: NSGA-II,” IEEE Trans. Evol. Comput., 1131

vol. 6, no. 2, pp. 182–197, Apr. 2002. 1132

[30] X. Ma, G. Fang, and X. Wang, “LLM-pruner: On the struc- 1133

tural pruning of large language models,” in Proc. NIPS, 2023, 1134

pp. 1–19. 1135

[31] R. Xiong et al., “On layer normalization in the transformer architecture,” 1136

in Proc. Int. Conf. Mach. Learn., 2020, pp. 10524–10533. 1137

[32] T. Chen et al., “TVM: An automated end-to-end optimizing compiler 1138

for deep learning,” in Proc. OSDI 18, 2018, pp. 578–594. 1139

[33] V. Ben et al. “IREE: An MLIR-based compiler and runtime for ML 1140

models from multiple frameworks.” 2019. [Online]. Available: https:// 1141

iree.dev/ 1142

[34] T. Wolf et al., “Huggingface’s transformers: State-of-the-art natural 1143

language processing,” 2019, arXiv:1910.03771. 1144

[35] J. Ansel et al., “PyTorch 2: Faster machine learning through dynamic 1145

python bytecode transformation and graph compilation,” in Proc. 1146

ASPLOS, 2024, pp. 929–947. 1147

[36] J. Reed, Z. DeVito, H. He, A. Ussery, and J. Ansel, “Torch. FX: Practical 1148

program capture and transformation for deep learning in python,” in 1149

Proc. Mach. Learn. Syst., 2022, pp. 638–651. 1150

[37] L. Tencent. “NCNN.” 2017. [Online]. Available: https://github.com/ 1151

Tencent/ncnn 1152

[38] Z. Hou, Y. Huang, S. Zheng, X. Dong, and B. Wang, “Design and 1153

implementation of heartbeat in multi-machine environment,” in Proc. 1154

AINA’17, 2003, pp. 583–586. 1155

[39] L. Gao et al. (Zenodo, Genéve, Switzerland). A Framework for Few-Shot 1156

Language Model Evaluation. Dec. 2023. [Online]. Available: https:// 1157

zenodo.org/records/10256836 1158

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Helvetica-Condensed-Bold
 /Helvetica-LightOblique
 /HelveticaNeue-Bold
 /HelveticaNeue-BoldItalic
 /HelveticaNeue-Condensed
 /HelveticaNeue-CondensedObl
 /HelveticaNeue-Italic
 /HelveticaNeueLightcon-LightCond
 /HelveticaNeue-MediumCond
 /HelveticaNeue-MediumCondObl
 /HelveticaNeue-Roman
 /HelveticaNeue-ThinCond
 /Helvetica-Oblique
 /HelvetisADF-Bold
 /HelvetisADF-BoldItalic
 /HelvetisADFCd-Bold
 /HelvetisADFCd-BoldItalic
 /HelvetisADFCd-Italic
 /HelvetisADFCd-Regular
 /HelvetisADFEx-Bold
 /HelvetisADFEx-BoldItalic
 /HelvetisADFEx-Italic
 /HelvetisADFEx-Regular
 /HelvetisADF-Italic
 /HelvetisADF-Regular
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

