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ViTSen: Bridging Vision Transformers and Edge Computing
with Advanced In/Near-Sensor Processing

Sepehr Tabrizchi, Brendan C. Reidy, Deniz Najafi, Shaahin Angizi, Ramtin Zand, and Arman Roohi

Abstract—This paper introduces ViTSen, optimizing Vision
Transformers (ViTs) for resource-constrained edge devices. It
features an in-sensor image compression technique to reduce
data conversion and transmission power costs effectively. Further,
ViTSen incorporates a ReRAM array, allowing efficient near-
sensor analog convolution. This integration, novel pixel reading,
and peripheral circuitry decrease the reliance on analog buffers
and converters, significantly lowering power consumption. To
make ViTSen compatible, several established ViT algorithms
have undergone quantization and channel reduction. Circuit-to-
application co-simulation results show that ViTSen maintains
accuracy comparable to a full-precision baseline across various
data precisions, achieving an efficiency of ∼3.1 TOp/s/W.

Index Terms—In-sensor processing, vision transformer, IoT.

I. INTRODUCTION

DESPITE the rise of the Internet of Things (IoT), it still
lacks inherent intelligence and heavily relies on cloud-

based decision-making. Due to challenging issues such as
high latency and security, IoT nodes should autonomously and
efficiently process the detected data [1]. Edge intelligence has
rapidly evolved into an integral part of modern technological
ecosystems, fundamentally reshaping how data is processed
and interacts with our digital environment. This evolution
towards more efficient and localized computing paradigms is
vividly exemplified in the workings of an image sensor. An
image sensor converts light into electrical signals, which are
then stored, processed, transmitted, and utilized. The proce-
dure requires turning every individual pixel into a digital value
with a fixed bit depth. It is remarkable that pixel conversion
and retention account for over 96% of the power consumption
in traditional vision sensors [2]. Moreover, note that one
bit’s communication energy (e.g., Bluetooth low energy (BLE)
needs 1 nJ/bit [3]) is usually orders of magnitude higher than
its computation energy (e.g., Multiply-Accumulate (MAC) <
2 pJ/6-bit [4]). In recent years, several studies have been
conducted regarding devising CMOS image sensors to accel-
erate compute-intensive artificial intelligence applications. The
smart CMOS imagers can be classified into two types (1) near-
sensor processing (NSP), which involves incorporating on-chip
processors next to the imager for accelerating digital outputs
of pixels [5]; and (2) in-Sensor Processing (ISP) platforms
that process pre-Analog-to-Digital Converter (pre-ADC) data
before transmitting it to the on/off-chip processor [6]. Due
to resource limitations, NSPs and ISPs cannot host all layers
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Fig. 1. High-level schematic of ViTSen.

of neural networks, yet they significantly contribute to the
paradigm shift in low-power IoT image processing. By reduc-
ing power requirements, accelerating data transmission, and
alleviating memory bottlenecks, they enable the deployment of
Vision Transformers (ViTs) in energy-efficient devices. ViTs,
while computationally intensive, excel in high-dimensional
image analysis due to their self-attention mechanisms and
ability to capture long-range dependencies. This extends their
applicability from consumer electronics to industrial monitors
for real-time, energy-efficient image analysis.

This paper proposes the ViTSen architecture, leveraging
advances in hardware and algorithms. The contributions in-
clude: (1) Introduce a novel in-sensor image compression
technique converting RGB to grayscale to reduce power costs.
(2) Develop a highly efficient parallel near-sensor analog
convolution that integrates resistive memory to mitigate the
overhead of the analog buffer and ADC converter. (3) Optimize
pixel read and peripheral circuitry for improved power and
delay reduction. (4) Adapt ViT algorithms with quantization
and color channel reduction to align with ViTSen archi-
tecture. (5) Evaluation of system accuracy across different
ViTs using various data precision and performance metrics.
These steps significantly decrease data movement and com-
putational demands while maintaining acceptable accuracy,
making ViTSen a promising solution for intelligent IoTs.

II. BACKGROUND

A. Vision Transformer (ViT)

Vision Transformers (ViT) represent a shift in computer
vision from convolutional neural networks (CNNs) to architec-
tures using self-attention mechanisms akin to transformers in
natural language processing. Unlike CNNs, ViTs divide an im-
age into fixed-sized patches and process them via transformer
architectures. Given an image I of dimensions H×W ×C, it
is decomposed into N patches each of size p×p×C. For each
patch pi, a linear embedding is applied: Vi = E×reshape(pi),
where Vi denotes the embedded vector of patch pi and E is
the embedding matrix with dimensions D × (p2 × C). The
architecture comprises layers of multi-headed self-attention
and feed-forward neural networks, with positional embedding
preserving spatial structure. ViTs excel in learning long-range
dependencies and scaling across visual domains [7].
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Fig. 2. (a) Overview of ViTSen illustrating its key components. (b) The PERC structure, including the analog positional encoding and a flash-ADC.

B. In-Sensor Processing (ISP)

Integrating computing with sensor arrays reduces off-chip
data transmission and enhances power efficiency, achieved
through near-sensor processing (NSP) and in-sensor process-
ing (ISP) architectures. NSP processes data close to the
sensor, minimizing off-chip transfer, whereas ISP incorporates
processing within the sensor, enhancing efficiency by reduc-
ing data transmission and potential loss. Both architectures
diminish data transfer and processing overhead, enhancing
computing efficiency for diverse applications [8]–[12].

III. VITSEN ARCHITECTURE

Integrating NSP/ISP with ViT models, as proposed in our
ViTSen, marks a significant advancement in edge computing
for vision systems. ViTSen architecture enables the prepro-
cessing of raw image data at the sensor level, effectively
reducing data transfer overhead and lessening the computa-
tional burden on ViT models. Such synergy allows ViTSen
to adeptly handle initial image tasks like feature extrac-
tion, dimensionality reduction, and patch-based segmentation,
aligning perfectly with the input needs of ViT models. Figure
2(a) depicts the architecture of ViTSen, consisting of four
key components. ViTSen captures an image ( 1 ), performs
in-sensor compression by converting RGB to grayscale ( 2 )
and near-sensor non-overlapping convolution ( 3 ). Finally,
it applies positional embedding ( 4 ). This section details
the proposed components individually and then integrates
them into a unified system to form ViTSen. This innovative
collaboration fosters a new paradigm of intelligent vision
sensors capable of efficiently capturing and interpreting visual
data, thereby reducing operation latency, conserving power,
and ensuring high accuracy in vision tasks.
Pixel Array: The pixel array size is H×W indicating height
and width dimensions, respectively, where Pij , i ∈ {1, . . . ,H}
and j ∈ {1, . . . ,W}, shown in Fig. 2(a) ( 1 ). A pixel is
responsible for acquiring the light intensity of the environment
and converting it into an analog voltage. Each pixel comprises
four different sensors that absorb the intensities of red, green
(×2), and blue light. The pixel undergoes three phases: charge,
evaluate, and read. In the charge phase, the capacitor CPD
is charged to VDD through T1. During the evaluate phase,
the photodiode (PD) resistance varies with light intensity,
discharging CPD via T2 and PD. In the read phase, T3

generates a current based on the remaining voltage on CPD,
which is then connected to a compute add-on (CS) through
T4. Two common shutter techniques are global and rolling

shutters. Global shutters require #ADCs = H ×W , with each
pixel having its own ADC. Rolling shutters use one ADC per
column, resulting in #ADCs = W . Global shutters offer higher
frame rates, while rolling shutters are more power-efficient.
ViTSen strikes a balance by connecting p rows of the pixel
array to the CS components, where p× p is the transformer-
defined patch size, reducing the number of required ADCs.
Each column has p buses of different colors connecting pixels
to the CSs, as shown in Fig. 2(a) ( 2 ).
Compression Add-on (CS): The second component is the
CS array with p × W dimension, which is responsible for
converting an RGB image to grayscale in an ISP manner.
Figure 2(a) ( 2 ) shows the circuit of a CS and proper
connectivities among the pixels. The standard equation for
converting RGB images to grayscale is expressed by 0.299R+
0.587G + 0.114B.This conversion necessitates multiplying
each color value by a specific coefficient, in the digital domain.
Conversely, in our proposed CS, this operation is achieved by
utilizing different resistor values. According to the equation,
the resistors should have values of 3.34 × R, 1.70 × R, and
8.77×R for the red, green, and blue channels, respectively. All
sensors are connected through these resistors, followed by an
opamp that amplifies the result value. It may cause transistors
to turn off. The output of this step (Vout) will connect to the
ReRAM array, which is elaborated next.
Computation Add-on (CT): The Computation add-on (CT)
consists of a non-volatile resistive memory bank known as the
ReRAM crossbar (Fig. 2(a) ( 3 ). In contrast to ReRAM cross-
bar arrays that typically use both digital-to-analog converter
(DAC) and ADC, ViTSen utilizes integrated ADCs exclu-
sively. ReRAM’s resistance changes continuously based on the
width of the write voltage. Therefore, we divide the resistance
range of ReRAM into 16 (24) to 256 (28) points and find the
appropriate voltage width for each. This writing process only
needs to be carried out once. The ReRAM crossbar comprises
the recently fabricated and experimentally measured ReRAM
device that stores data in varying resistive states by creating
and rupturing a conductive filament within the metal oxide in-
sulator. In our previous study, we proposed a device-to-system
level co-design approach to explore the theoretical limits of
distinct weight levels through a large retention experiment.
To reduce HRS variability, we employed a read-write-verify
method to achieve resistance within a specific window. We
captured 256 resistance levels, maintaining each for 10,000
seconds with reads every 100 seconds. The variability of each
resistance level was analyzed, showing increased variability
in the read current with higher resistance. textttViTSen uses
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Fig. 3. (a) The required steps for a 6×6 RGB image. (b) Illustration of Cycle1, including parallel operations during 6 Clks. (c) The (2×2)×6 ReRAM cells
stores weights and connects to 3 MUXs that select columns properly for ADCs. (d) Performance results of different shutter schemes, where q = H/p = W/p.

256 high-confidence experimental resistance states as 8-bit
memory states. To increase parallelism, the weights are divided
into multiple memory banks, where each bank consists of an
ADC to measure the final voltage independently. The size of
our crossbar is p× p×K, i.e., p× p is 16× 16, and K is the
hidden size, shown in Fig. 2(a) ( 3 ). We limit the number of
ADCs to p, i.e., 16, while each p × p weights are stored in
one column of the memory bank. So, if K > 16, K

16 cycles
are required to calculate the final results for one hidden size.
Positional Encoding and Readout Circuitry (PERC): PERC
consists of two main elements: positional encoding and read-
out circuits, as depicted in Fig. 2(b) ( 4 ). The readout circuit
is configured with p×p+1 inputs and incorporates an analog
sense amplifier. Each input is interconnected via ReRAMs,
resulting in the summation of their voltages, which is then
amplified by the sense amplifier. Where p× p inputs are CT’s
outputs. The final input is designated for positional encoding
produced by a w

p × h
p ReRAM cells. Unlike CT, this storage is

the conventional ReRAM bank, allowing only one cell to be
activated at any time. The resistors’ varying values generate
distinct offset voltages, functioning as positional embedding.
To address the resistive issue affecting the path from the pixel
array’s VDD to the ADCs, we analyze the worst-case and
best-case scenarios. In the best-case scenario, pixel values are
at maximum voltage and ReRAM resistance is at minimum,
ensuring the highest input voltage for the ADC. Conversely,
the lowest pixel values and highest ReRAM resistance give
the ADC’s minimum voltage. Determining these extremities
allows us to establish optimal values for ±Vref, thereby cor-
rectly adjusting the ADC voltage.
Putting It All Together: To adapt ViTs for ViTSen, we
modified them to start with a non-overlapping convolutional
embedding layer, followed by positional encoding, exploring
quantization and grayscale conversion to reduce embedding
size. ViTSen operates sequentially through image capture, in-
sensor compression, near-sensor analog convolution, positional
encoding, and digital conversion. Figure 3 depicts an example
of a 6×6 RGB image, with an embedding layer (K=6) and a
patch (2×2). In step 1 , the image is converted to grayscale
using CS array, requiring H

p = 6
2=3 cycles, activating p rows per

cycle. Step 2 performs parallel analog convolution, requiring
K

#ADC×W
p = 6

3×
6
2=6 Clks per cycle. The convolution series for

the first set of rows and pixel connections to the weight array in
each patch are shown in Fig. 3(b) and (c), respectively. In step
3 , positional encoding values are applied, and ADCs produce

TABLE I
TOP1 IMAGENET-1K ACCURACY FOR DIFFERENT QUANTIZATION AND

COLOR SCHEMES.
RGB Grayscale

ViT Model FP W8 W6 W4 FP W8 W6 W4
ViT-B/16∗ 81.3 81.2 78.2 27.4 71.6 71.3 65.9 11.1
DeiT-T/16‡ 68.6 67.1 57.0 17.1 56.0 52.8 36.7 6.0
DeiT-S/16† 78.0 77.4 71.8 32.9 68.7 67.1 57.6 16.2
DeiT-B/16* 82.2 82.3 79.6 55.3 76.2 75.8 70.0 33.2
DINOv2-S/14† 81.0 44.9 1.27 0.14 77.6 25.8 0.52 0.11
DINOv2-B/14∗ 84.3 73.9 3.63 0.23 82.1 61.6 1.08 0.20

∗K = 768, ‡K = 192, †K = 384, where K is the hidden size.

digital results. Figure 3(d) compares the computational and
memory costs of conventional imagers using different shutter
schemes. ViTSen uses fewer ADCs than rolling image sen-
sors and only two on-chip storages for weights and positional
encoding, enabling parallel analog computations.

IV. EVALUATION RESULTS

A. Framework & Methodology

The proposed evaluation framework employs a bottom-
up methodology. At the device level, switching data and
resistance levels from our fabricated ReRAM device are ex-
perimentally extracted for a Verilog-A model. At the circuit
level, ViTSen’s array and computational peripheral circuitry
are implemented in NCSU 45nm technology using HSPICE.
The embedding layer’s trained weights are quantized, while
other transformer components are processed off-chip. A Py-
Torch model is used to train and extract the embedding-layer
weights. At the architecture level, a Python-based behavioral
model measures timing, energy, and area to offer flexibility in
array configuration and peripheral circuitry design. After the
embedding layer of the transformer, the results are captured,
positional encoding values are added, and then the results are
used in the Pytorch model to process the encoder-decoder
structure and to report accuracy.

B. Accuracy

We compare the Top1 accuracy of popular ViTs on the
ImageNet-1k validation dataset, including the original ViT [7],
Data-efficient image Transformers (DeiT) [13], and DINOv2
(Self-Distilation with No Labels) [14]. Most models share
the same base architecture with a resolution of 224 × 224,
differing in patch size (16 × 16 and 14 × 14) and hidden
size. The main difference lies in their training methods: ViT
models (e.g., ViT-B/16) were pre-trained on ImageNet-21k and
fine-tuned on ImageNet-1k; DeiT models were trained once
on ImageNet-1k; and DINOv2 used self-supervised learning
with a large teacher model (1 billion params) pre-trained on
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TABLE II
PERFORMANCE COMPARISON OF VARIOUS NSP/ISP UNITS AND THE PROPOSED VITSEN .

Designs Technology
(nm) Purpose Precision Comput. Scheme Memory NVM Pixel Size

(µm2) Array Size Power
(mW)

Efficiency
(TOp/s/W)

[9] 60/90 STP† NA row-wise Yes No 3.5×3.5 1296×976 230-363 0.386
[11] 180 1st-layer BNN 1-bit entire-array Yes No 110×110 32×32 0.0121 1.32
[5] 180 edge*/TMF‡ NA row-wise Yes No 32.6×32.6 256×256 1230 0.535
[10] 65 1st-layer BNN 1-bit entire-array Yes Yes 55×55 128×128 0.0088-0.025 1.745
[6] 180 1st-layer CNN 8-bit entire-array No No 10×10 128×128 0.45 - 1.83 1.41 - 3.37
[12] 45 1st-layer CNN 2-bit entire-array Yes Yes 38×38 32×32 0.00096 - 0.0028 1.37 - 4.12

ViTSen 45 Embedding +
Positional encoding 8-bit multiple rows*** Yes Yes 38×38 224×224 1370 3.1

†Spatial Temporal Processing. ‡Thresholding Median Filter. ** Region Of Interest. ***The number of rows is defined by the patch’s height.

ImageNet-22k, followed by fine-tuning the student models on
ImageNet-1k. To reduce the size of the embedding layer, we
investigate the effects of quantization as well as the effects of
collapsing the color channel, i.e., making the images grayscale.
For our experiments, we use post-training quantization with
100 calibration images. Since the inputs will be analog, we
leave the input of the model in full precision; we quantize the
output to 8 bits and the weights to 8 bits, 6 bits, and 4 bits.
We report our findings in Table I. The table shows a small
accuracy drop from the baseline full-precision model to the
8-bit quantized model for all cases except DINOv2, which
becomes unusable below 8 bits. For 6-bit quantized models,
tiny models have the sharpest accuracy decrease, while base
models drop ∼3%. Extreme quantization (4-bit) causes signif-
icant accuracy degradation for all models. Quantization-aware
training could mitigate accuracy loss in these cases. Grayscale
images follow a similar trend, with accuracy decreasing more
quickly. Comparing grayscale to RGB images, supervised
learning models show a 7%-12% accuracy drop in grayscale,
while DINOv2 experiences a 3.5%-2.2% drop. This is likely
due to DINOv2’s semi-supervised pre-training for feature
extraction, resulting in a more generalized model compared
to those trained in a supervised manner for a specific task.

C. Performance Evaluation

Table II presents a comprehensive comparison of the struc-
tural and performance features of recent in-sensor/near-sensor
designs. Each design has a distinct target application, as
indicated in the table. To evaluate ViTSen’s performance,
we chose the DeiT-T16 model, which has an input size of
224 × 224, K = 192, and a patch size of 16 × 16, resulting
5M parameters in total. Due to the ViTSen features and
capability, roughly 19.5M operations are performed close to
the sensor, where data resides in the analog domain. However,
to ensure a fair comparison, we estimated the power consump-
tion and performance of computing units when performing
the same task. Our observations are summarized below: (i)
The only designs that support a fully parallel and entire-
array computation scheme are the accelerators mentioned in
[10]–[12]; (ii) Except the design in [6], ViTSen and all the
others incorporate integrated memory components. Among
these designs, our design and [10], [12] are the only ones
that utilize NVMs, realizing intermittent and instant com-
puting paradigms. Moreover, thanks to the proposed multi-
level ReRAM, ViTSen supports up to 8-bit (4, 6, and 8 -
bit) weight precision; (iii) In terms of power consumption,
ViTSen shows the worst results due to the large number of
hidden sizes required by the DeiT-T16 model yet still meeting
the IoT power budget; (iv) Regarding efficiency, the CNN

accelerator with 8-bit support mentioned in [6] achieves a
rate of 3.37 TOp/s/W. On the other hand, AppCiP [12] with
2-bit weight precision achieves a higher efficiency of 4.12
TOp/s/W. Although our design consumes a relatively large
amount of power, it achieves a comparable computation effi-
ciency (∼3.1 TOp/s/W); (v) In almost all of the examined ViT
models, ViTSen compressed the ADCs’ outputs, reducing the
required bandwidth and storage.

V. CONCLUSION

The paper presented an efficient integrated sensing and
computing engine called ViTSen, incorporating a novel soft-
ware/hardware co-design approach. ViTSen enables in-sensor
compression and near-sensor highly parallel analog process-
ing, facilitating a low-precision quantized weight embedding
layer while optimizing the need for ADCs. By integrating these
steps for enhanced computation parallelism to decrease data
movement and computational demands, the system achieves
comparable accuracy to a full-precision baseline for object
classification tasks with an efficiency of 3.1 TOp/s/W.
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