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Abstract—Due to the significance and broad utilization of
adders in computing systems, the design of low-power approxi-
mate adders has received a significant amount of attention from
the system design community. However, the selection and deploy-
ment of appropriate approximate modules require a thorough
design space exploration, which is (in general) an extremely
time-consuming process. Towards reducing the exploration time,
different error estimation techniques have been proposed in
the literature for evaluating the quality metrics of approximate
adders. However, most of them are based on certain assumptions
that limit the usability of such techniques for real-world settings.
In this work, we highlight the impact of those assumptions on
the quality of error estimates provided by the state-of-the-art
techniques and how they limit the use of such techniques for
real-world settings. Moreover, we highlight the significance of
considering input data characteristics to improve the quality of
error estimation. Based on our analysis, we propose a system-
atic data-driven error estimation methodology, DREAMx, for
adders composed of cascaded approximate units, which covers
a predominant set of low-power approximate adders. DREAMx
in principle factors in the dependence between input bits based
on the given input distribution to compute the Probability Mass
Function (PMF) of error value at the output of an approximate
adder. It achieves improved results compared to the state-of-the-
art techniques while offering a substantial decrease in the overall
execution(/exploration) time compared to exhaustive simulations.
Our results further show that there exists a delicate trade-off
between the achievable quality of error estimates and the overall
execution time.

Index Terms—Approximate Computing, Approximate Adders,
Error Prediction, Error Estimation, Error PMF.

I. INTRODUCTION AND RELATED WORK

Approximate Computing (AC) has emerged as a promising
computing paradigm for pushing the boundaries of energy
and performance efficiency of computing systems to new
horizons. Functional approximation of arithmetic modules at
the hardware level has surfaced as a highly effective tech-
nique for achieving desirable quality-efficiency trade-offs [1]
[2]. Adders, being the fundamental operators in computing
systems, have received a significant amount of attention from
the AC community, where a number of low-power and low-
latency approximate adders have been proposed for different
application domains and systems [3]. However, to enable
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Fig. 1. A generic design space exploration flow, highlighting the dependence
of the process on fast-yet-accurate error estimation for identifying suitable
approximate configurations for a given application/scenario.

time- and resource-efficient selection of approximate modules
for deployment in real-world systems, automated tools are
required that can explore the vast design space of approximate
modules and output suitable configurations based on the given
user requirements/constraints (see Fig. 1). The efficiency, as
well as quality, of these tools mainly depends on the error
estimation block (highlighted with orange color in Fig. 1).
Thus, efficient-yet-accurate error estimation is crucial for
effective design space exploration of approximate modules.

State-of-the-art and their limitations: Exhaustive/Monte-
Carlo simulations is a possible approach for computing accu-
rate error metrics of approximate configurations. However, it
is highly time consuming and, thus, cannot be used for ex-
tensive design space exploration of approximate modules [6].
To overcome this issue, numerous studies have been carried
out towards developing efficient methods for estimating error
metrics of approximate adders [4]–[13]. Mazahir et al. [6] pro-
posed a general technique for computing the Probability Mass
Function (PMF) of error value of Low-Latency Approximate
Adders (LLAAs). The technique first identifies the conditions
on input that lead to error and then transforms them to simpler,
independent events to compute the PMF. However, to simplify
the analysis they consider the input bits/groups of bits to be
independent of one another. Along similar lines, Yu et al. [7]
proposed a technique based on Binary Decision Diagrams
(BDDs) to compute the Error Rate (ER) of Variable Latency
Speculative Adder (VLSA) [14] and Accuracy-Configurable
Adder (ACA) [15] adders. Other techniques for error estima-
tion of LLAAs include [8] and [9]. As a key focus of approx-
imate computing is towards trading quality for power/energy
efficiency and the above-mentioned techniques cannot be used
for Low-Power Approximate Adders (LPAAs) such as adders
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and considering bits to be independent of one another
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Fig. 2. (a) Error estimates of six different 8-bit LPAA configurations computed using exhaustive simulations, AxMAP [4], and PEMACx [5] considering
four different input distributions. The first three configurations are randomly selected and are Config. 1 = [1, 7, 2, 6, 7, 2, 0, 0], Config. 2 =
[6, 6, 2, 1, 3, 7, 1, 7], and Config. 3 = [7, 3, 1, 4, 2, 5, 4, 2]. The last three configurations are homogeneous configurations and are Config. 4 =
[1, 1, 1, 1, 1, 1, 1, 1], Config. 5 = [2, 2, 2, 2, 2, 2, 2, 2], and Config. 6 = [3, 3, 3, 3, 3, 3, 3, 3]. Note that here each element in the configuration
vector corresponds to the type of approximate full-adder used at that location. The left most element corresponds to the type of the least significant full-adder
and the right most element corresponds to the type of the most significant full-adder in the adder. The types of full-adders (i.e., 0-7) are presented in Table I.
The four different input distributions considered for these experiments are presented in (b)-(e), where (b) is uniform distribution, (c) is Gaussian with µ = 128
and σ = 10, (d) is Gaussian with µ = 128 and σ = 25, and (e) is Gaussian with µ = 64 and σ = 10. (f)-(i) represent the reconstructed version of the
distributions when the reconstruction is performed using bit-level sampling while assuming all the bits to be independent of one another, i.e., the assumption
used in state-of-the-art error estimation techniques. The complete procedure for distribution reconstruction for the above-mentioned scenario is presented in
Appendix A.

composed of approximate Full Adders (FAs) proposed in [16]
[17], specialized techniques have been proposed for analyzing
the error characteristics of LPAAs. Ayub et al. [12] proposed
an error occurrence estimation technique for LPAAs. However,
it is capable of computing only the probability of error (i.e.,
ER) at the output of an LPAA configuration and cannot be used
to estimate the error magnitude, such as Mean Squared Error
(MSE) and Mean Error Distance (MED), as highlighted in [5].
To address this limitation, PEMACx [5] proposed a technique
to compute the PMF of error value of LPAAs composed of
smaller approximate units. Although the technique can be used
for arbitrary probability distribution of input bits, it assumes
all the input bits to be independent of one another. Similarly,
AxMAP [4] and [10] are also designed for computing the error
metrics of LPAAs. However, these techniques also consider the
input bits to be independent of one another or are valid only
for uniformly distributed inputs, respectively. Other solutions
such as [11] and [13] that have been proposed for evaluating
the error characteristics of approximate circuits are also based
on similar assumptions.

In summary, the state-of-the-art techniques for error estima-

tion of LPAAs either assume the input bits to be independent
of one another or focus only on computing the error probabil-
ity, which does not provide any insight about the error mag-
nitude. Our motivational case study in the following section
illustrates that considering input bits to be independent of one
another can have a significant impact on the accuracy of the
generated estimates, depending on the given scenario, mainly
input distribution. In this work, we leverage this motivational
analysis for designing an improved error estimation technique
that can offer better estimates (close to the results generated
through exhaustive simulations) for a wide range of LPAAs
and input distributions.

A. Motivational Case Study: Highlighting the Significance of
Considering Important Input Data Characteristics for Error
Analysis

In this section, we compare the error estimates computed
using exhaustive simulations with the estimates computed
using state-of-the-art error estimation techniques, AxMAP [4]
and PEMACx [5], for different 8-bit LPAA configurations.
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Fig. 3. Execution time comparison between exhaustive simulations and state-
of-the-art error estimation techniques AxMAP and PEMACx

To highlight the impact of input data distribution on the
accuracy of estimates generated using different techniques,
we consider three different input distributions: (1) uniform
distribution, (2) Gaussian distribution with µ = 128 and
σ = 10, and (3) Gaussian distribution with µ = 128 and
σ = 25. Fig. 2(a) shows that AxMAP [4] and PEMACx [5]
both generate accurate results (same as exhaustive simulations)
for uniformly distributed inputs case, but result in significant
deviation from the ground truth when inputs follow a Gaussian
distribution (i.e., non-uniform distribution). The key reason
behind this deviation can be associated with the assumptions
considered in both state-of-the-art works, i.e., all the input bits
are independent of one another. To validate this, we computed
the bit-level probabilities for all the considered distributions,
and then for each case, reconstructed the distribution through
sampling while considering all the input bits to be indepen-
dent. As can be seen in Fig. 2, only the reconstruction of
the uniform distribution (Fig. 2(f)) is close to its original
distribution (Fig. 2(b)). However, in all other cases where the
given distribution is not uniform, the reconstructed distribution
is significantly different from the original distribution, which
can be observed by comparing Fig. 2(g) with Fig. 2(c),
Fig. 2(h) with Fig. 2(d), and Fig. 2(i) with Fig. 2(e). In
summary, the analysis clearly shows that considering inputs
bits to be independent is not a valid assumption for all types
of input distributions.

B. Scientific Challenges Targeted in this Paper

As highlighted in Section I-A, ignoring dependence be-
tween input bits can result in significant deviation from
the actual error estimates, and the state-of-the-art techniques
that consider input bits to be independent regardless of the
input distribution cannot provide accurate error estimation
in all cases. Therefore, the key challenge targeted in this
research is that considering the execution time of state-of-
the-art techniques is orders of magnitude less than that of
exhaustive simulations (see Fig. 3), how can we incorporate
the information of dependence between input bits in the error
estimation methodologies while maintaining their execution
time benefits. In other words, how to design a method that
produces error estimates closer to exhaustive simulations
while having execution time in the range of the execution time
of the state-of-the-art error estimation techniques.

C. Our Novel Contributions

To address the above research challenge, in this paper, we
make the following key contributions.

1) We analyze the impact of the assumptions used in the
state-of-the-art error estimation techniques on the quality
of their results for LPAAs.

2) We highlight the significance of considering input data
characteristics, specifically dependence between input
bits, for improving the quality of error estimation tech-
niques.

3) We propose a systematic data-driven error estimation
methodology, DREAMx, for adders composed of cas-
caded approximate units, which covers a predominant
set of low-power approximate adders. Our methodology
factors in the dependence between input bits to get a
more representative view of the input characteristics
and generate improved results compared to state-of-the-
art techniques while offering a significant reduction in
execution time compared to exhaustive simulations.

4) We present extensive results to show the effectiveness of
DREAMx over state-of-the-art techniques designed for
LPAAs. We demonstrate the efficacy of the proposed
technique for efficient and accurate design space explo-
ration. Our results show that there exists a delicate trade-
off between the achievable quality of error estimates and
the overall execution time.

II. BACKGROUND AND PRELIMINARIES

Fig. 4 shows a generic structure of an N -bit LPAA com-
posed of N full adders. The adder takes in two N -bit operands
A and B and a carry-in (Cin) as inputs to generate an N -bit
sum (S) and a carry-out (Cout). Each full adder can be an
accurate or an approximate full adder. The truth tables of some
of the existing approximate full-adder designs are presented in
Table I. Ax. Type 1 to Ax. Type 5 represent the five low-power
approximate full-adders proposed in [16] while Ax. Type 6
and Ax. Type 7 correspond to the variants proposed in [17].
The generic structure shown in Fig. 4 is also valid for other
low-power approximate adder designs such as Lower-Part-OR
Adder (LOA) [18], Equally Segmented Adder (ESA) [3], and
Quality-Area optimal low-latency Adder (QuAd) [19].

FA0

𝐴0 𝐵0

FA1

𝐴1 𝐵1

FAN-1

𝐴𝑁−1 𝐵𝑁−1

𝐶𝑜𝑢𝑡 𝐶in

𝑆0𝑆1𝑆𝑁−1

…

Fig. 4. A generic structure of a multi-bit adder composed of cascaded full-
adder units. Each full adder can be an accurate or an approximate full adder.

III. METHODOLOGY

A. Concept

As highlighted in Fig. 2, the bits of real-world input data can
be significantly dependent on one another. Ignoring this key
characteristic can result in inequivalence between the actual
and the considered probability distribution of input data, as
highlighted in Fig. 2 for three different Gaussian distributions.
In this section, we argue that considering dependence between
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TABLE I
TRUTH TABLES OF STATE-OF-THE-ART APPROXIMATE FULL ADDER

DESIGNS COVERED IN [16] AND [17].THE ERROR CASES ARE
HIGHLIGHTED IN RED.

Inputs Accu. FA

𝐴 𝐵 𝐶𝑖𝑛 𝑆𝑢𝑚 𝐶𝑜𝑢𝑡 𝑆𝑢𝑚 𝐶𝑜𝑢𝑡 𝑆𝑢𝑚 𝐶𝑜𝑢𝑡 𝑆𝑢𝑚 𝐶𝑜𝑢𝑡 𝑆𝑢𝑚 𝐶𝑜𝑢𝑡 𝑆𝑢𝑚 𝐶𝑜𝑢𝑡 𝑆𝑢𝑚 𝐶𝑜𝑢𝑡 𝑆𝑢𝑚 𝐶𝑜𝑢𝑡

0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0

0 0 1 1 0 1 0 1 0 1 0 1 0 0 0 1 1 1 0

0 1 0 1 0 0 1 1 0 0 1 0 0 1 0 1 0 1 0

0 1 1 0 1 0 1 0 1 0 1 1 0 1 0 0 1 1 1

1 0 0 1 0 0 0 1 0 1 0 0 1 0 1 1 0 1 0

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 1

1 1 0 0 1 0 1 0 1 0 1 0 1 1 1 0 0 0 1

1 1 1 1 1 1 1 0 1 0 1 1 1 1 1 1 1 1 1

Ax. Type 1 Ax. Type 2 Ax. Type 3 Ax. Type 4 Ax. Type 5 Ax. Type 6 Ax. Type 7

only the highly dependent bits may be sufficient to generate
error estimates closer to the values generated using exhaustive
simulations (i.e., the ground truth). To study this, we consider
the same three Gaussian distributions illustrated in Fig. 2(c-
e) and reconstruct the distribution through bit-level sam-
pling while considering all the input bits to be independent,
considering dependence between two most dependent bits,
considering dependence between three most dependent bits,
and considering dependence between four most dependent
bits. To reconstruct a distribution considering input bits to be
independent, we follow the following procedure:

• Step 1: Using the user-provided input distribution, com-
pute the probability distribution of each bit. For exam-
ple, if an operand A is composed of 8 bits, i.e., A
= a0, ..., a6, a7, where A can take any integer value
between 0 and 255, and the PMF of A is given as
pA(a), the probability of each bit location ai being 1
(i.e., pai

(ai = 1)) can be computed by summing the
probabilities of all cases that lead to ai = 1 (for all i in
0,...,7).

• Step 2: Using sampling, the bit-level distributions (pai
s)

computed in Step 1, and considering the input bits to be
independent of one another, we build a sample set of 1
million samples. For computing each sample, we sample
one bit from each bit distribution and then combine them
using A =

∑7
i=0 ai∗2i, where ai is the bit sampled from

the distribution of the ith bit location.
• Step 3: Build a distribution (or histogram) using the

sample set from Step 2.
To reconstruct a distribution considering some of the input
bits to be dependent on one another, in Step 2 of the above-
mentioned procedure, we take into account the conditional
probabilities of the dependent bits during sampling while
keeping rest of the procedure the same.

Fig. 5 presents the reconstructed distributions. By compar-
ing Fig. 5(c), Fig. 5(d) and Fig. 5(e) with Fig. 5(a), it can
be observed that as more number of highly dependent bits
are considered dependent on one another, the reconstructed
distribution starts becoming more correlated with the original
distribution. The same trend can be observed for the other two
distributions presented in Fig. 5(f) and Fig. 5(k). Therefore,
considering the highly dependent bits as dependent during er-
ror analysis can lead to better error estimates for approximate
modules.

B. Methodology Overview

An overview of the proposed methodology is presented in
Fig. 6. The methodology takes in probability distribution of
input operands, bit width of inputs, elementary approximate
adders (which can be single-bit as well as multi-bit modules),
and user-defined constraints as inputs. Using the probability
distribution of input operands, it computes conditional proba-
bility matrices (CPMs), which contain conditional probability
information for all the bits, and for all possible cases (see a in
Fig. 6). These matrices along with the probability of bits (see
b in Fig. 6) are then used to identify dependence between

bits using user-defined constraints (see c in Fig. 6). Based on
the dependence information, a Link Vector (LV ) is generated,
which specifies the bit locations that should be considered
together (see d in Fig. 6). The methodology then uses the
unique set of number of bit locations that should be considered
together to identify the different sizes of required modules.
In the next step, the methodology generates all possible
configurations for each module size and builds an extended
library of elementary approximate modules (see 2 in Fig. 6).
The library and the link vector LV are then used to compute
the PMF of error of all the possible (or required) configurations
considering partial independence between modules (see 3 in
Fig. 6). The details of all steps are presented in the following
subsections.

C. Dependence Identification

This section presents our method for identifying dependence
between input bits and computing the Link/connectivity Vector
(LV ). The LV vector defines the bit locations that are depen-
dent on each other. The steps are explained in detail below.

1) Conditional Probability Estimation: : Algo. 1 presents
our method for computing Conditional Probability Matrices
(CPMs). We mainly compute four CPMs, i.e., CPM{0,0},
CPM{0,1}, CPM{1,0}, and CPM{1,1}. CPM{0,0} is for
storing P (ai = 0|aj = 0)∀i ∈ 2, 3, ..., N , where j ∈
i− CL, ..., i− 1. CL represents coverage length, which is
used to limit the number of bit locations that should be consid-
ered for dependency checking. For example, CL = 2 means
that for each bit location, dependence should be checked
with only the neighboring lower significance two bits. An
illustration of CPM is presented in a in Fig. 6.

2) Dependence Identification based on User-defined Con-
straint: : For identifying dependence between two bits ai and
aj , we compare the conditional probability P (ai|aj) with the
probability P (ai) using the following equation.

abs(P (ai|aj)− P (ai)) ≥ α (1)

Here, α is a strictness parameter, as we know from the
probability theory that P (X|Y ) = P (X) when X and Y are
independent of each other. The range of α is between 0 and
1, where α = 0 corresponds to the most strict scenario and
α = 1 corresponds to least strict scenario. In other words,
α defines the level of softness in deciding whether two bit
locations should be considered dependent or independent. We
use all four conditional matrices for identifying dependence
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Fig. 6. Overview of our DREAMx methodology. In the first step, the methodology identifies the dependence between input bits by analyzing their conditional
probabilities. Once the dependence is identified, the information is used to generate larger approximate blocks, and then, existing methodologies are adapted
to offer efficient-yet-accurate error estimates.

between bit locations. Our complete procedure for dependence
identification is presented in Algo. 2 Lines 1-16.

3) Connectivity Checking and Link Vector Generation: :
Once dependence between different bit locations has been
identified, the methodology finds the sets of locations that
should be considered together during analysis. The locations
within each set defines the locations that are dependent on
one another. The methodology achieves this by comparing
each pair of dependent locations identified by Section III-C2.
The complete procedure for computing the LV is presented
in Algo. 2 from Line 17 to Line 42.

D. Building Larger Approximate Modules

LV defines the bit locations that should be considered
together, and thus, it also defines the sizes of the modules
required. For constructing larger approximate modules by
merging multiple smaller approximate modules, we propose
Alog. 3. It takes in the truth tables of two approximate adder
blocks (i.e., T1 and T2), to construct the truth table (T ) of the
merged module, considering T1 to be at the lower significance
location. The format of the truth table matrices is defined
according to the format shown in Table I. For example, the
matrix T1 in the case of an approximate full adder would be
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Algorithm 1 Pseudo-code for conditional probability estima-
tion

Input:
Dist: Input distribution array defining probabilities for all input values
BW : Bitwidth of inputs
CL: Coverage length to define the set of bits for each bit location that
should be considered for dependence checking
Initialize:
Conditional Matrix=[]; %Matrix for storing conditional probabilities
of all the bits with others (defined based on CL)
Bit Probabilities=[]; %Array for storing probability of each bit being
1

1: Dec V alues = [0:2BW − 1]
2: for i = {1, 2, ..., BW} do
3: Bit Probabilities(i) = sum(Dist(mod(Dec V alues, 2i) ≥

2i−1));
4: end for
5: for i = {BW,BW − 1, ..., 2} do
6: for j = {i− 1, i− 2, ...,max(1, i− CL)} do
7: for bit i val = {i− 1, i− 2, ...,max(1, i− CL)} do
8: for bit j val = {i− 1, i− 2, ...,max(1, i− CL)} do
9: inds for i = xor(mod(Dec V alues,2i) ≥ 2i−1,

bit i val)
10: inds for j = xor(mod(Dec V alues,2j ≥ 2j−1,

bit j val)
11: Conditional Matrix{bit i+1, bitj +1}(i− 1, i− j)

= sum(Dist(inds for i & inds for j))/sum(Dist(inds for j))
12: end for
13: end for
14: end for
15: end for
16: Return Conditional Matrix, Bit Probabilities

composed of two vectors, i.e., [Sum,Cout], considering each
vector to be a column vector defined in the same sequence
as shown in Table I. The format of the output is also the
same; for example, when merging two approximate full adders,
the output would be in the format [Sum0, Sum1, Cout]. The
algorithm is used to construct an extended design space of
single-bit and multi-bit approximate modules.

E. PMF of Error Computation

LV defines the sections of an LPAA that can be considered
independent. Therefore, we use this information to leverage
the concepts proposed in state-of-the-art error estimation tech-
niques. We propose to consider the bit locations that are
highly dependent on each other as a part of a single multi-
bit block and use larger approximate modules to consider the
locations together. This enables us to compute the probability
of each input combination of the larger block and, thereby,
take into account the dependence between bit locations by
computing the probability vector for each group of bits defined
by LV . For implementation, we compute module-level error
distributions / PMFs of error conditioned on Cin and Cout

values to overcome the bias introduced due to probabilities
of Cin and Cout signals. Then, we compute the adder-level
PMF of error by using the Partial PMFs, similar to the method
proposed in PEMACx [5].

IV. RESULTS

We implemented DREAMx using MATLAB 2023b and
performed experiments on an Intel Core i5 system with
16 GB RAM. Our primary investigation involved a comparison
between DREAMx and exhaustive simulations. To introduce

Algorithm 2 Pseudo-code for dependence & LV computation
Input:
Conditional Matrix, Bit Probabilities
α: Threshold value for defining two bits dependent/independent
Initialize:
LV =[]; %Link vector that defines which bits should be considered
together

1: Compare Mat = repmat(Bit Probabilities(2:end)’, 1,
size(Conditional Matrix{1, 1},2));

2: for i = {1, ..., size(Conditional Matrix,1)} do
3: for j = {1, ..., size(Conditional Matrix,2)} do
4: Dependence Matrix{i, j} =

abs(Conditional Matrix{i, j} - (not(i-1) - Compare Mat ×
−1i−1)) ≥ α;

5: for k = {1, ..., size(Dependence Matrix{i, j},1)} do
6: for l = {k+1, ..., size(Dependence Matrix{i, j},2)} do
7: Dependence Matrix{i, j}(k,l) = 0 %Invalid entries =

0
8: end for
9: end for

10: if i == 1andj == 1 then
11: Dependence = Dependence Matrix{i, j}
12: else
13: Dependence = Dependence — Dependence Matrix{i, j}
14: end if
15: end for
16: end for
17: ranges max = (sum(Dependence,2)!=0).*[2:size(Dependence,1)+1]’
18: ranges min = min(Dependence.*repmat([-1:-1:(-

1)*size(Dependence,2)],size(Dependence,1),1),[],2)+ranges max
19: for i = 1:length(ranges max) do
20: merge check = 0;
21: for j = i+1:length(ranges max) do
22: if ranges max(i) ≥ ranges min(j) then
23: ranges min(j) = min([ranges min(i),ranges min(j)]);
24: merge check = 1;
25: end if
26: end for
27: if merge check == 1 then
28: ranges min(i) = 0;
29: ranges max(i) = 0;
30: end if
31: end for
32: ranges min = ranges min(ranges min != 0)
33: ranges max = ranges max(ranges max != 0)
34: LV = ones(1,ranges min(1)-1)
35: for i = 1:length(ranges min) do
36: LV = [LV , ranges max(i)-ranges min(i)+1];
37: if i != length(ranges min) then
38: if ranges min(i+1)>ranges max(i)+1 then
39: LV = [LV , ones(1,ranges min(i+1)-range max(i)-1)]
40: end if
41: end if
42: end for
43: Return LV

dependencies among the input bits, we conducted our exper-
iments using various Gaussian distributions. Furthermore, we
conducted a comparative analysis between DREAMx and a
state-of-the-art technique, PEMACx [5]. The comparison is
based on the assessment of relative errors in a dependency-
driven scenario using exhaustive simulations method as ref-
erence. The relative error for MSE is calculated using the
following equation:

RelativeError =
|MSEPEMACx −MSEExhaustive|

MSEExhaustive
∗ 100

(2)
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Algorithm 3 Pseudo-code for merging truth tables of appx.
blocks

Input:
T1: Truth table of the first approximate block
T2: Truth table of the second approximate block
Initialize:
[T1 rows, T1 cols] = size(T1)
[T2 rows, T2 cols] = size(T2)
T = zeros(T1 rows × T2 rows / 2, T1 cols + T2 cols - 1)

1: T(:, 1:T1 cols-1) = repmat(T1(:, 1:end-1), T2 rows / 2, 1)
2: indexes = repmat(T1(:,end), T2 rows / 2, 1) +

repelem([0: T2 rows / 2 - 1]’, T1 rows) × 2
3: T(:, T1 cols:end) = T2(indexes+1, :)
4: Return T

A. Results on Synthetic Data

To demonstrate the applicability of our approach, we com-
pared our results to those generated using open-source code
of PEMACx [5] and exhaustive simulations for different
LPAA configurations. The results are generated for both 8-
bit and 12-bit LPAA configurations (see Fig. 7). For this
comparison, we considered normal distribution with µ = 128
and σ = 25, i.e., N(128, 25), as the input distribution for
the 8-bit configurations and normal distribution with µ = 512
and σ = 25, i.e., N(512, 25), for the 12-bit configurations.
We evaluated the performance of both PEMACx and our own
method within this context of high dependence between input
bits. As can be seen in Fig. 7, our proposed method exhibit
a significant accuracy advantage over PEMACx. Furthermore,
DREAMx significantly reduces the execution time compared
to exhaustive simulations (see Fig. 8b). For instance, the
proposed DREAMx methodology requires only 0.008 sec
to generate the output with 98.06% accuracy for the 8-bit
adder configuration {1, 2, 3, 6, 5, 7, 4, 5} on the normal input
distribution N(128, 25) while the exhaustive simulations take
3.75 sec. Thus, DREAMx leads to a speedup of 468x com-
pared to exhaustive for 8-bit. Note that, for this comparison,
we considered different number of merged bits for DREAMx.
Towards this, Fig. 8b also highlights that as the number
of merged bits increases, the execution time progressively
approaches that of the exhaustive simulations. This is primarily
due to the increased time required to process larger truth
table and error vectors of merged units placed at merged bit
locations. Therefore, as the size of the merged unit increases,
the sizes of the vectors and the overall execution time also
increase, which results in reduction in the overall speedup
achieved.

B. Impact of hyperparameter: alpha, sigma and no. of merged
bits on accuracy vs exec. time

We attempted to comprehend the effects of merged bits on
execution time and relative error in order to better analyze our
methodology. Figure 8 (b) shows clearly that the execution
time increased with the number of merged bits while the
relative error decrease (see figure 8 (a)).

We extended our experiments using synthetic data, system-
atically altering alpha while keeping sigma constant at 25 as
shown in Figure 10 (1), and likewise, adjusting sigma while
holding alpha constant (see Figure 10 (2)). These variations
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were designed to provide deeper insights into how both sigma
and threshold alpha influence the accuracy and execution time
of DREAMx.

Notably, when alpha is increased, the number of merged
bits decreases, which reduces DREAMx’s accuracy while
simultaneously reducing execution time. A similar trend is
observed for sigma, where larger sigma values result in fewer
merged bits, causing an increase in relative error but a decrease
in execution time.

C. Design space exploration for 8-bit adder

We conducted a comprehensive Design Space Exploration
(DSE) for an 8-bit LPAA considering Type 1-3 approximate
full adder designs from Table I. We used the power values
of the configurations and the power estimation model from
PEMACx [5]. In this exploration, we used exhaustive analysis
as a baseline to obtain actual error values for all configurations.
Additionally, we employed DREAMx and PEMACx for evalu-
ation and comparison, respectively. The actual Pareto frontiers
are established through exhaustive simulation results, serving
as the reference frontiers for evaluating the performance of
DREAMx and PEMACx. In our methodology, we introduced
multiple different scenario by varying numbers of merged
(dependent) bits.

To illustrate the effectiveness of our methodology,
DREAMx, with its dynamic bit merging feature, enabled us to
explore a total of 6561 configurations, producing reasonable
results in significantly less time compared to exhaustive anal-
ysis. For instance, as shown in Fig. 9(a), DREAMx yielded
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a Pareto frontier that closely approximated the actual Pareto
frontier in just 1224.24 seconds, while the exhaustive method
required 99250.86 seconds, resulting in a 81x speedup.

Fig. 9(b) demonstrates the trade-off between accuracy and
execution time as influenced by the number of merged bits.
Notably, the minimal distance from the exhaustive Pareto
frontier decreases as more bits are merged, enhancing accuracy
but at the cost of increased execution time. Furthermore, the
substantial disparity in the minimal distance from the exhaus-
tive Pareto frontier for PEMACx underscores its inaccuracy in
scenarios with high data interdependencies.

D. Effectiveness of DREAMx for Image Processing

To demonstrate the real-world applicability of our proposed
methodology, we use image blending through addition as a
case study, similar to [6]. An overview of the image blending
pipeline considered for this case study is presented in Fig. 11.

Image A

Element-wise 
8-bit Addition 

Image B

+ =

Output

/ 2

Fig. 11. An illustration of the image blending pipeline used to demonstrate
the effectiveness of the proposed approach.

The images considered for this study are presented in Fig. 14,
where each image is presented with its corresponding distri-
bution.

We have implemented image blending application using
several adder configurations. The configurations used are listed
in the caption of Fig. 12. For each configuration, we generated
MSE and MED values using simulations, PEMACx, and
DREAMx. Fig. 12 presents different MED and MSE values
for various approaches utilizing different adder configurations
for both sample sets 1 and 2. We can observe from Fig. 12
that DREAMx produces MSE and MED values that are more
closer to the exhaustive simulation results than PEMACx.
Furthermore, Fig. 13 shows the results of image blending
for the first five approximate adder configurations used in
Fig. 12(a) on sample set 1, demonstrating the efficiency of
DREAMx in estimating error values that are relatively close
to exhaustive. Therefore, we conclude that DREAMx can be
utilized for error estimation of LPAAs composed of cascaded
approximate units for practical applications.
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Fig. 12. Comparison of MSE and MED values computed using different
approaches for image blending application using Sample set 1 and Sample
set 2 presented in Fig. ??. In (a) and (b), for both the sample sets, adder
configuration i corresponds to the 8-bit LPAA configuration [i i i i i i i i].
In (c) and (d), for both the sample sets, we considered randomly generated
configurations which are: Config. 1 = [1 2 1 5 4 2 6 7], Config. 2 = [1 3
1 4 4 2 4 2], Config. 3 = [3 2 3 4 4 2 4 5], Config. 4 = [2 2 1 1 6 2 43],
Config. 5 = [3 3 5 6 6 3 4 3] and Config. 6 = [5 4 5 4 7 1 1 3]
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V. CONCLUSION

In this work, we analyzed the impact of some of the
commonly used assumptions in the state-of-the-art error es-
timation techniques on the quality of their results for LPAAs.
Based on our analysis, we proposed a systematic data-driven
error estimation methodology, DREAMx, for adders composed
of cascaded approximate units, which covers a predominant
set of low-power adders. DREAMx takes into account the
dependence between input bits to compute the Probability
Mass Function (PMF) of error value at the output of an LPAA.
The results showed that considering dependence between input
bits can significantly improve the quality of results while
maintaining the fast execution time benefits of state of the
art.
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APPENDIX A: PROCEDURE TO RECONSTRUCT A
DISTRIBUTION

To reconstruct a distribution from bit-level probabilities
through bit-level sampling while considering input bits to be

independent, we follow the following steps:

• Step 1: Using the user-provided input distribution, we
first compute the probability distribution of each bit. For
example, if an operand A is composed of 8 bits, i.e.,
A = b7, b6, ..., b0, where A can take any integer value
between 0 and 255, and the PMF of A is given as PA(a),
the probability of each bit location bi being 1 (i.e., Pbi )
can be computed by summing the probabilities of all
combinations that lead to bi = 1. This step is performed
for all the bit locations separately (0, 1, ..., 7) to generate
Pb0 , Pb1 , ..., Pb7 .

• Step 2: Using sampling, the bit-level distributions
(Pb0 , Pb1 , ..., Pb7 ) computed in Step 1, and considering
the input bits to be independent of one another, we build
a sample set of 1 million samples. For each sample, we
draw one bit from each bit distribution and combine them
using A =

∑7
i=0 bi×2i, where bi is the bit sampled from

the distribution of the ith bit location.
• Step 3: Construct distribution (normalized histogram)

using the sample set from Step-2.

An example of the complete process for a 3-bit input is
presented in Figure 15.
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