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Abstract—Deep Learning (DL) for intelligent video analytics
is increasingly pervasive in various application domains, ranging
from Healthcare to Industry 5.0. A significant trend involves
deploying DL models on edge devices with limited resources.
Techniques such as pruning, quantization, and early-exit have
demonstrated the feasibility of real-time inference at the edge
by compressing and optimizing Deep Neural Networks (DNNs).
However, adapting pre-trained models to new and dynamic
scenarios remains a significant challenge. While solutions like
domain adaptation, active learning, and teacher-student knowl-
edge distillation contribute to addressing this challenge, they
often rely on cloud or well-equipped computing platforms for
fine tuning. In this study, we propose a framework for domain-
adaptive online active learning of DNN models tailored for
intelligent video analytics on resource-constrained devices. Our
framework employs a knowledge distillation approach where
both teacher and student models are deployed on the edge device.
To determine when to retrain the student DNN model without
ground-truth or cloud-based teacher inference, our model utilizes
singular value decomposition of input data. It implements the
identification of key data frames and efficient retraining of the
student through the teacher execution at the edge, aiming to
prevent model overfitting. We evaluate the framework through
two case studies: human pose estimation and car object detection,
both implemented on an NVIDIA Jetson NX device.

Index Terms—Edge AI, Online Distillation, Edge Training,
Human Pose Estimation, Real-time Training, Active Learning

I. INTRODUCTION

Video stream analysis has emerged as a prominent use

case for deep learning (DL), with notable applications from

clinical gait analysis [1] to human-robot interaction in indus-

trial environments [2]. Deep Neural Networks (DNNs) are

particularly adapt at extracting spatial patterns from singular

video frames. When applied to a sequence of streaming video,

DNNs generate spatio-temporal patterns that are essential for

tasks such as motion analysis, quality enhancement, object

detection, and action recognition [3].

Deploying such models in real-world application scenar-

ios poses significant challenges, particularly regarding their
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Fig. 1. Comparison between state-of-the-art approaches (a) and our proposed
framework on domain-adaptive online active learning (b). In typical scenarios,
the student and the teacher models are distributed in an edge-cloud cluster.
Our approach leverages an auto quality assessment and active learning for full
edge online fine-tuning.

adaptability to specific contexts and addressing constraints

related to real-time execution and data privacy. Two key issues

arise when utilizing spatio-temporal models for video stream

analysis. First, real-world conditions often differ substantially

from the controlled environments in which pre-trained models

were originally developed. These differences include variations

of camera position, changes in lighting conditions, and quality

of input data. Consequently, spatio-temporal models applied to

streaming data necessitate fine-tuning to accommodate specific

scenarios and environmental dynamics. Second, industrial and

healthcare application environments often require real-time

computing on edge devices to deal with latency, network

bandwidth, and privacy constraints. The deployment of CNN-

based deep learning models directly on resource-constrained

edge devices [4] has gained considerable attention and various

solutions have been proposed to achieve lightweight, efficient

and accurate inference at the edge. Examples are model

compression techniques such as neural network pruning [5],

quantization [6], compact network design [7], as well as

strategies like early-exit [8].

However, integrating temporal space models deployment at

the edge coupled with adaptation to new contexts presents

additional challenges. This entails executing a training process

to refine the model on a device with limited computational and

memory resources. Since the training process is computation-

ally heavy and resource-intensive, researchers have employed

techniques to improve training efficiency [9], including the use

of active learning (AL). The goal of AL is to train a neural

network only on the most significant samples to achieve high

accuracy while minimizing training time. Nevertheless, as the

environment undergoes continuous changes over time, contin-
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uous refinement of the model becomes essential. A potential

solution is the online domain adaptation (ODA) paradigm

[10], which aims at implementing continuous adaptation of

the model to the application domain. One of the major issue

of ODA is the unavailability of ground truth data and labels to

fine-tune the model. A promising approach is the knowledge

distillation (KD) [11], which relies on predictions made by a

heavier and more accurate model (referred to as the teacher)

to transfer knowledge to a light-weight model (referred to as

the student).

However, deploying a KD architecture at the edge is compu-

tationally demanding due to the teacher overhead, particularly

in scenarios with real-time constraints and limited resources.

Figure 1a illustrates the typical application of Online Do-

main Adaptation solutions in the current state of the art.

Specifically, it involves the execution of the student model

at the edge and the deployment of the teacher model in the

cloud. When an error-based metric determines the necessity

for training, images are transmitted to the cloud for label

acquisition and subsequent training [12].

Additionally, employing offloading mechanisms to other

edge or cloud devices is often unfeasible due to privacy

constraints.

Efficiently scheduling the teacher model and training pro-

cess to enable real-time student inference while also achieving

domain adaptation remains an open challenge. One potential

approach involves focusing training efforts on scenes where

the model consistently makes errors. However, quantifying

error is challenging, particularly when running the teacher

model continuously is not feasible due to its impact on real-

time system performance. To address these challenges, we

present a framework that implements domain-adaptive online

active learning of DNN models tailored for intelligent video

analytics on resource-constrained devices (see Fig. 1b). The

goal is to select optimal input sequences at run-time to train

a lighter model with suboptimal accuracy, leveraging the

predictions of a heavier, well-trained model as labels. Our

framework implements an efficient auto quality assessment

based on Singular Value Decomposition (SVD), by which it

quantifies the accuracy of a student model in a sequence of

predicted samples without relying on external references such

as soft labels from a teacher or ground truth. By leveraging

properties taken from the low-rank approximation theory, it

enables efficient and automatic scheduling of the student

model re-training.

It then employs the identification of pivotal data frames

to implement efficient re-training of such a model through

teacher execution at the edge, with the goal of mitigating

model overfitting.

In summary, the novel contributions of this work are the

following:

• An SVD-based auto quality assessment that determines the

need for student model fine-tuning without any ground truth

or teacher’s labels;

• An online active learning (OAL) framework that implements

an online domain adaptation at the edge through student-

teacher knowledge distillation retraining in real-time;

• An analysis of different algorithms to select the appropriate

video frames aimed at facilitating model adaptation while

mitigating the risk of overfitting;

We present an evaluation of the proposed framework

through two case studies: human pose estimation and automo-

tive object detection, implemented using standard and widely

used platforms (TRTPose [13], OpenPose [14], YOLO [15],

SSD [16]) employing DNN architectures such as ResNet [17],

DenseNet [18], and Darknet [19] on an NVIDIA Jetson NX

edge device.

Our evaluation encompasses both standard datasets (COCO

[20], H3.6M [21], VOC [22], LaSOT [23]) and a real-

world scenario (i.e., an HPE dataset collected on a smart

manufacturing line) for quantitative assessment. Furthermore,

we compare our approach with state-of-the-art methodologies

to underscore its effectiveness, particularly in minimizing

unnecessary training in static scenarios, resulting in up to a

90.9% reduction in domain adaptation efforts.

II. BACKGROUND AND RELATED WORK

Active learning (AL) has been proposed as a dynamic

training strategy that involves the active selection of a reduced

set of data samples [24]. Lu et al. [25] proposed a performance

benchmark of AL strategies for binary classification. Liu

et al. [26] proposed an Active Learning (AL) framework

to reduce the amount of annotations required in a large

unlabelled dataset. They employed a sampling strategy based

on uncertainty, training the network only on frames where

the Human Pose Estimation (HPE) model is not confident.

Yoo et al. [27] developed a loss prediction model that learns

how to limit the loss defined in the target model. Zhang et

al. [28] proposed a query strategy that selects frames balancing

between information representativeness and uncertainty.

Out-of-distribution (OOD) detection in machine learning

involves identifying instances in test data that significantly

differ from the training data. In [29] the authors propose

a unified framework that uses energy as a cost function to

determine if a sample is out-of-distribution. Additionally, they

propose a trainable cost function to enhance the classification

model. This approach in active learning can enhance model

robustness by preventing confident predictions on unfamiliar

data and facilitate dataset expansion by flagging novel samples.

OOD detection can also improve uncertainty estimation and

optimize resource allocation for labelling efforts. In [30], the

authors present a methodology in which the human pose is

modelled using a Bayesian network trained through maximum

likelihood estimation. Poses with low likelihood are identified

as out-of-distribution, making them excellent candidates for

annotation.

Online Active Learning (OAL) is an extension of traditional

Active Learning, designed for data that becomes available

incrementally. This approach efficiently utilizes resources by

selecting a subset of the data while maintaining accuracy even

when the data distribution changes, making it valuable in

scenarios that require rapid and timely responses. Cacciarelli et

al. [31] presented an overview of recent methods for selecting

informative observations from streaming data. Manjah et al.

[32] introduced a real-time OAL framework aimed at fine-

tuning a lightweight model for object detection in videos.

Nevertheless, none of these methods evaluate the effectiveness

and necessity of training, they focus only on selecting the most

informative input samples.
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Mullapudi et al. [12] presented ”Just-in-Time”, an OAL

framework that employs model distillation to create efficient,

low-cost semantic segmentation models for specific video

streams. They achieve significant runtime cost reductions

without offline pre-training. In particular, the algorithm de-

cides when to train the student model using an accuracy-

based metric with respect to the teacher. Khani et al. [33]

proposed Adaptive Model Streaming, an edge-cloud method

to boost lightweight model performance for real-time video

inference. It adapts compact models through online knowledge

distillation in video semantic segmentation, minimising the

bandwidth usage. They execute both teacher and training on

a cloud server. To ensure that the transmission network load

is manageable, they limit the sent samples by selecting only

a subset of the collected frames. Training is initiated after

accumulating a predefined number of samples, and the frame

sampling rate varies according to the vehicle speed in an

automotive context. Their approach is claimed to outperform

the one presented in [12] reducing also the model overfitting.

Traditional CNN training methods frequently have limita-

tions in the context of edge computing, where computational

resources are limited. In addition, these approaches depend on

the continuous execution of the teacher model to regularly as-

sess the accuracy of the student model. In resource-constrained

platforms, it is not always feasible to rely on the execution

of the teacher. Our platform executes an OAL framework at

the edge, thus avoiding the teacher inference. The platform

is equipped with a smart SVD-based auto quality assessment

specifically designed for spatio-temporal neural network.

Spatio-temporal models [34] represent a distinct class of

models designed to process spatio-temporal data, such as those

used in human pose estimation and object detection. Spatio-

temporal data is a sequential structure that captures spatial

relationships over time. For example, in the analysis of human

motion from video streams, a human pose estimation system

generates a sequence of human poses over time. This sequence

exhibits temporal coherence, allowing the evaluation of spatial

correlations between poses at consecutive time points. Simi-

larly, these principles are applicable to object detection tasks.

Spatio-temporal models exhibit two fundamental properties:

(A), the output signal is related to the input space, as a

coordinate in a 2D or 3D reference system; (B), the signal

shows temporal correlation, meaning that the input and output

at time t are closely related to the signal at time t− 1.

Singular Value Decomposition (SVD) is a fundamental

concept in linear algebra that decomposes a matrix into

three simpler matrices. SVD is widely used in various fields,

including video processing, due to its ability to reveal un-

derlying patterns and structures in data [35]. One common

application in video processing is low-rank approximation for

image compression [36]. A video is represented as a series

of frames stacked together into a matrix. These frames often

exhibit redundancy and correlation, especially in the spatial

and temporal dimensions. Low-rank approximation using SVD

exploits this redundancy by approximating the original video

matrix with a lower-rank approximation, thus compressing the

video data while retaining essential information. Since SVD

captures both spatial and temporal correlations in input matrix,

it synergizes effectively with spatio-temporal models. SVD is

especially useful for tasks such as denoising, compression,

and feature extraction in video processing, where capturing

both spatial and temporal correlations is crucial for accurate

analysis and efficient data representation [3].

In this work, we propose a methodology to identify in-

stances when the neural network makes errors in a spatiotem-

poral task, based on the aforementioned concepts. Our method

operates independently of the network’s confidence, which

solely considers the network’s probability output and does

not account for actual spatiotemporal errors such as jitter.

Instead, our framework focuses on the quality of the final

prediction. This methodology incorporates active learning to

reduce the number of samples required during training, making

our framework suitable for online fine-tuning at the edge.

III. METHODOLOGY

Figure 2 shows an overview of the OAL platform based on

SVD auto quality assessment. The platform implements OAL

through two distinct models: a lightweight model (i.e., the stu-

dent) and a more accurate yet computationally intensive model

(i.e. the teacher). Due to the inherent characteristics of the

SVD technique used, our framework targets spatio-temporal

models. Therefore, both the teacher and student models must

exhibit the space-time properties A and B described earlier. To

demonstrate the methodology’s generalizability, we evaluated

it on two spatio-temporal tasks: human pose estimation and

object detection. Since the platform is designed to be deployed

on edge devices, the aim is to minimise the computational load

by only activating re-training when necessary. Furthermore,

this approach allows the system to minimise latencies, thus

ensuring a higher quality of service.

The student processes a video stream taken from an RGB

sensor, generating a series of samples. A generated sample

Si is a set of J keypoints in the two-dimensional image

space representing the location of a target class predicted by

the student (e.g. a body joint for human pose estimation, a

vertex of a bounding box for object detection). The framework

maintains two fixed-length queues, one for the student samples

and the other for the input video frames. The SVD-based

auto quality assessment determines the quality of the student’s

samples and evaluates the need to activate the OAL platform.

When the SVD-based auto quality assessment requests a

student model’s fine-tuning, then the teacher generates the soft-

labels for retraining. To reduce computation time and overload

on teacher and student train executions, the OAL platform

applies a sampling query on the video queue and the sample

queues.

In changing and dynamic scenarios, the student’s samples

extrapolated by the inference phase are imprecise, as the initial

training dataset and the working environment may be different.

The only way to improve the accuracy of the predictions is

through fine-tuning. Since ground-truth labels are not available

in real-world scenarios, we use the knowledge distillation

paradigm, by which the teacher provides the soft labels. In

[12], the authors periodically employ the teacher model on

single frames, comparing its outcomes with those of the

student model. The training begins whenever the accuracy

exceeds a certain threshold, and it is suspended otherwise.

This requires the training images to be processed also by the

teacher, thus decreasing the performance of the edge device.
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Fig. 2. The proposed online active learning platform relying an auto quality assessment based on singular value decomposition for student video stream
processing and teacher-student model knowledge distillation with sampling query optimization.

Our platform, in contrast, relies only on information provided

by the student to determine when training should start. This

approach activates the teacher only when acquiring soft labels

is necessary, thereby preventing a slowdown in the system’s

throughput during the prediction quality assessment phase.

We define V as the space of video frames, where each frame

F ∈ V is a two-dimensional array of pixels.

We represent each frame F as a spatial grid of pixels pi,j ,

where F = [pi,j ] for i = 1, 2, . . . ,M and j = 1, 2, . . . , N ,

with M and N denoting the height and width of the frame,

respectively. The spatial representation captures the static

arrangement of objects within individual frames, encoding

information about color, texture, and spatial patterns. The

temporal dimension represents the sequence of video frames

over time.

As shown in Figure 2, we define the video queue V Q =
{F0, F1, F2, . . . , FW−1} as the queue of video frames, where

W represents the total number of frames in the video se-

quence. Each frame Ft is indexed by t, representing the

time index. Finally, we define the samples queue SQ =
{S0, S1, S2, . . . , SW−1} as the corresponding samples (i.e. the

student’s predictions) of the video frames.

A. SVD-based Auto Quality Assessment

To choose when to perform training, we apply principles

from the low-rank approximation theory to a samples queue

along with their corresponding video frames in the video

queue. The objective is to determine how many singular

vectors are required to accurately reconstruct the sample

sequence. We represent the sequence of samples as a matrix

M with n rows and 2J columns, where n denotes the number

of collected frames and J represents the number of 2D key

points for each sample. Given the inherent connectivity of

body segments through physical articulations and the exten-

sive use of motion synergies by the motor cortex in human

Fig. 3. Cumulative sum of the values of Σ from a clean and a noisy sequence.

motion [37]–[39], it is possible to efficiently represent sample

sequences in lower dimensions. Consequently, samples exhibit

high correlation and can be approximated effectively using

low-rank matrices [40]. The temporal correlation captures

repetitive movement patterns, while the spatial correlation

reflects the kinematic synergies of the human body. The matrix

M can be decomposed into three sub-matrices using the SVD

method [41], as expressed in Equation (1):

M = UΣV T (1)

where U and V are orthonormal matrices of dimensions

R
n×n and R

2J×2J , respectively, and they contain information

about the spatial and temporal properties among the samples.

The diagonal weight rectangular matrix Σ in R
n×2J contains

singular values sorted by importance, where σ1 ≥ σ2 ≥ · · · ≥
σ2J ∈ Σ. SVD offers a hierarchical representation of human

motion data based on dominant correlations. By truncating

the singular values and their corresponding singular vectors,

we can approximate the history matrix with a reduced rank.

Truncation acts on the diagonal weight matrix Σ and allows

the approximated matrix M̃ as defined in Equation (2):

Σ̃ = [σ1σ2 . . . σr 0 . . . 0] M̃ = U Σ̃V T r < 2J (2)
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where the threshold rank r splits the main motion trends and

noise to obtain the approximated matrix M̃ .

According to the Eckart-Young Theorem [42], the best

possible low-rank approximation of matrix M obtained by

minimizing the Frobenius norm of the difference between

M and the approximated matrix M̃ is achieved through the

truncated SVD of M .

In cases where the data is well-structured and with strong

inter-dependencies, a significant portion of the information is

concentrated in the first singular vectors. In the presence of

noise, the absence of coherent patterns and the presence of

random fluctuations lead to reduced correlations among data

points. Consequently, the information becomes more evenly

distributed across the singular values spectrum. Figure 3a

illustrates the correlation between the Mean Per Joint Position

Error (MPJPE) and the number of eigenvectors required to

reconstruct 98% of the original information. Specifically, it

analyzes three modalities: a highly accurate teacher, a less

accurate student, and the same student after retraining. When

only one eigenvector is needed to achieve 98% of the informa-

tion, the MPJPE is very low (approximately 10 pixels). As the

number of eigenvectors increases, the MPJPE correspondingly

increases. It is also noteworthy that both the teacher and

the student, after fine-tuning, always require fewer than 14

eigenvectors to reconstruct 98% of the information, even in the

noisiest tracks. Figure 3b shows two normalized cumulative

sums of the diagonal matrices Σ extracted from the sample

sequence. These are derived from two scenarios: with and

without noise. The first 6 singular vectors capture over 90%
of the information in the clean sequence, whereas it takes 26
singular vectors from the noisy sequence to retain the same

level of information.

It is important to note that this methodology identifies

noisy data independently of the underlying cause. Errors due

to changes in lighting, background, and Out of Distribution

(OOD) data are detected. The latter is particularly inter-

esting as OOD for human pose estimation may arise from

”difficult” poses that the student model has not encountered

during training. These challenging poses are detected by the

reduced accuracy of the student model, which is subsequently

identified using our SVD-based methodology. However, these

poses may not be OOD for the teacher model, which then

predicts soft labels to train the student model. According to

this principle, we developed a methodology to extrapolate

these values through a microbenchmarking phase. Algorithm

2 outlines the computational flow, given a dataset D, a teacher

model Tm, a student model Sm and a predefined time window

W . To improve the real-world applicability of the proposed

methodology, D can be a sequence of images collected by

the end user in various application scenarios, as there is no

requirement for ground truth data. In this phase, we assume

the teacher model is sufficiently accurate to predict a clean

sequence. In detail, the framework first utilizes the procedure

outlined in 1 to extrapolate the average information percentage

of each eigenvector for both the clean (teacher) and noisy

(student) sequences. This procedure performs an inference on

all D, extracting the predictions for the considered Model.
Subsequently, the algorithm computes a normalized cumu-

lative sum c for each eigenvector to obtain the information

percentage within a predefined sample window W through

an iterative process. Once these values are obtained for each

time window and stored in C (a matrix with N
W

rows and

2J columns), the algorithm calculates the mean information

percentage for each eigenvector across the windows (rows).

The number of eigenvectors τ is determined by identifying

the eigenvector that, on average, shows the greatest percentage

difference in energy between the clean and noisy sequences.

The percentage of information threshold value θ is set based

on the average energy of the noisy sequence in the selected

eigenvector.

Algorithm 1 Reconstruction percentage for each eigenvector

Inputs: D, Model, W
Output: τ, θ
Initialize: N ← |D|, C ← ∅

1: predictions← Predict(Model,D)
2: for start = 0 to N −W + 1 step W do

3: end← start+W
4: W ← predictions[start : end]
5: U,Σ, V ← SV D(W )

6: c←

{ τ∑

i=0

σi

2J∑

i=0

σi

, ∀τ ∈ [0, 2J ]

}

7: C ← C ∪ {c}
8: end for

9: E ← Mean of C for each eigenvector (along rows)

Algorithm 2 Analysis of Model Predictions

Inputs: D, Tm, Sm, W
Output: τ, θ

1: E T ← Algorithm 1(D,T m,W )
2: E S ← Algorithm 1(D,S m,W )
3: E ← E T − E S
4: τ ← argmax(E)
5: θ ← E S[τ ]

The reconstruction percentage is a normalized cumulative

sum of the eigen values on Σ̃ diagonal weights in [0, τ ] range.

When the value of the percentage doesn’t reach a threshold

of reconstruction θ, then the sequence is considered noisy, as

expressed in Equation (3):

τ
∑

i=0

σi

2J
∑

i=0

σi

< θ (3)

The cumulative sum of the Σ̃ matrix is normalized by the

term in the denominator. The training process starts if the

normalized cumulative sum of eigen values doesn’t exceed

a defined reconstruction percentage (i.e., the sequence is

considered noisy).

Algorithm 3 provides an overview of the proposed OAL

procedure. It relies on two user-defined input variables: τ
and θ, where τ represents the maximum number of singular

vectors used in the SVD approximation to achieve the target

information percentage θ. The algorithm uses three memory
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buffers: batch to store the images selected for training with a

sampling strategy Sp, labels to store the soft labels generated

by the teacher, and kpss as the sequence of samples predicted

by the student. At time i, the student processes the image Ii
with the model weight configuration Ωi, yielding the predicted

sample kpssi , which is added to the sequence kpss. Lines 6-8

highlight the training scheduler role in performing the SVD

and determining whether fine-tuning of the student model is

necessary. After training (line 10), the procedure optimizes

the new weights, through pruning and quantization, before

deploying to the student.

Algorithm 3 Online Active Learning Framework

Inputs: τ , θ, Sp
Output: kpssi
Initialize: batch← ∅, labels← ∅, kpss ← ∅

1: for i← 0 to n do

2: kpssi = student(Ωs
i , Ii)

3: kpss ← kpss ∪ {kpssi}
4: batch← Sp(kpss)
5: if i mod ∆ ≡ 0 then

6: U,Σ, V = SVD(kpss)
7: if Equation3(Σ) then

8: labels = teacher(ΩT , batch)
9: Ωs

i+1 = training(Ωs
i , batch, labels)

10: Ωs
i+1 = optimization(Ωs

i+1)
11: else

12: batch← ∅
13: kpss ← ∅
14: end if

15: end if

16: end for

It is important to note that the system aims to guarantee the

inference process in real-time, ensuring quality of service and

continuous prediction of human poses. The approach detects

the optimal times to conduct the training, which does not need

to be real-time, as for example time windows when there are

no people in the scene.

B. Sampling Query

To iteratively select the most informative data samples for

teacher annotation and training, we explore four sampling

metrics used for fine-tuning: uniform, random, confidence

and error sampling. To define a sampling query strategy, we

need the indexes of the video queue V Q and the samples

queue SQ. Let I be the set of common indexes (e.g. I =
{t, t+1, . . . , t+W − 1}), and W is the length of the queues.

A sampling strategy is a function that selects a subset I ′ ⊆ I
based on a specific criterion or rule. Formally, a sampling

function is S : I → B, where I is the set of common indexes

and B is the boolean domain such that B = {true, false}.
The sampling function S allows to extract a mask from the

original domain I to obtain the sampled subset I ′ ⊆ I as

follow: I ′ = {i ∈ I : S(i)}. From the definition of a sampling

function on single indices (I), we expand the definition to a

set of indices (Set[I]), since in general a sampling strategy

applies a sorting on the entire set of input samples based

on a specific criterion. We define a sampling strategy as

strategy sampling : Set[I] → Mask[B], where Set[I] is

the input set of indexes in I and Mask[B] is the output

boolean mask.

The sampling metrics employed in this study are imple-

mented as fixed-rate strategies, where they operate by selecting

a specific percentage of frames within a defined window of

samples. Given a window of indexes w ∈ Set[I] and a

percentage p ∈ P , a fixed-rate sampling metric is defined as

fixed sampling : (Set[I], P ) → Mask[B], where I is the

set of queue indexes as previously defined and P = R[0,1].

Given b = fixed sampling(w, p) a boolean mask from

a fixed sampling of window indexes w and percentage p,

the following are the properties of a fixed-rate sampling: (1)

{i ∈ w : b[i]} ⊆ w; (2) |{i ∈ w : b[i]}| = |w| ∗ p;

(3) fixed sampling(w, 1) ≡ [true, true, . . . , true]B and

fixed sampling(w, 0) ≡ [false, false, . . . , false]B. The

properties 1 and 2 establish that fixed-sampling involves

extracting a subset of the original input set of samples, where

the size of the resulting set is determined by a percentage

that corresponds to the specified proportion of the initial set’s

cardinality. Finally, property 3 emphasises that if you apply

sampling at percentage 1, then you get no-sampling, with

percentage 0 instead you get empty set.

The implemented sampling metrics in this study all utilize

fixed-rate sampling. The following will provide definitions

for each of the sampling metrics: uniform sampling, random

sampling, confidence sampling, and error sampling.

Uniform sampling is a straightforward approach where

data samples are selected uniformly from the window with

a specific rate that is inferred from the input percentage:

rate = 1/p. It does not take into account any specific

criteria or model information and treats all unlabeled sam-

ples equally. Similarly to the fixed sampling(w, p) func-

tion, the uniform sampling is defined as a function that

takes in input a set of samples w and the percentage p to

extrapolate and gives uniform sampling(w, p) = [i mod
1/p = 0 : i ∈ w]. Similar to uniform sampling, random

sampling selects data samples randomly from the dataset.

While uniform sampling may utilize a deterministic technique,

random sampling can use more sophisticated randomization

methods, such as stratified random sampling, to ensure a

more representative selection of samples. As previously, the

random sampling is defined as a function that takes in in-

put the window indexes w and the percentage p and gives

random sampling(w, p) = [random() > p, ∀i ∈ w], where

random(n) is a function, defined as random : · → R[0,1],

that randomly return a number from 0 to 1. Confidence

sampling aims to select data samples based on the model’s

confidence in its predictions. For DNN models, this metric

calculates the uncertainty or confidence score associated with

each sample. Samples with high uncertainty or low con-

fidence are more informative and have higher priority for

annotation, as they are likely to be challenging or ambiguous

cases for the model. The confidence sampling is defined as

a function that takes in input the window indexes w and

the percentage p and gives confidence sampling(w, p) =
{ci > ⌊W ∗ p⌋ : ci ∈ argsort(confidence(SQ[w]))}, where

confidence(samples) is a function, defined as confidence :
Set[SQ] → Set[R[0,1]], that gives the confidence of

each samples in input of the samples queue SQ, and
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argsort(confidences) is a function, defined as argsort :
Set[R] → Set[I] that sorts the input set of confidences in

ascending order, returning each sort index. The confidence

sampling provides the first ⌊W ∗p⌋ samples with lower confi-

dence from the input samples in SQ[w]. Error-based sampling

is a sampling metric that selects frames with the highest error

in comparison to a ground truth. It exploits the ground truth

annotations to identify the frames where the model’s predic-

tions deviate the most from the true pose. By selecting these

challenging frames, error-based sampling aims to provide the

model with the most erroneous predictions for improving

its performance. The error-based sampling is defined as a

function that takes in input the window indexes w and the

percentage p and gives error sampling(w, p) = {ei >
⌊W ∗ p⌋ : ei ∈ argsort descend(error(SQ[w], GT [w]))}.
The error(samples, ground truth) is a function, defined

as error : (Set[SQ], Set[GT ]) → Set[R+, that cal-

culates the distance from a set of ground-truth GT of

each corresponding sample of the samples queue SQ,

and argsort descend(errors) is a function, defined as

argsort descend : Set[R] → Set[I] that sorts the input set

of confidences in descending order, returning each sort index.

The error sampling provides the first ⌊W ∗ p⌋ samples with

higher distance (i.e. error) between the input samples SQ[w]
and the ground truth GT [w].

IV. EXPERIMENTS

We evaluated the proposed framework on two types of

spatio-temporal models: Human Pose Estimation (HPE) and

Car Object Detection (OD). HPE is a computer vision task

which consists of extrapolating 3D human body keypoints

from images or videos. It employs convolutional neural net-

works (CNNs) and platforms such as TRTPose [13] and

OpenPose [14]. Recent advancements have significantly im-

proved the accuracy of HPE systems to deal with limitations

like occlusions, varying lighting conditions, and complex or

unusual body poses. We first adopted a standard dataset to

quantitatively assess the accuracy of the proposed platform

with an infra-red marker-based system as ground truth. We

also adopted a real-world dataset, which consists of videos

of collaborative human-robot interaction in a Industry 4.0

scenario. Furthermore, we evaluated different query strategies

and training samples’ percentage for active learning in offline

and online HPE scenario.

OD is a computer vision process that identifies and localizes

multiple objects within an image or video frame. It involves

detecting the presence, location, and often the class of objects

within the visual data. We adopted state of the art models for

OD, such as YOLO [15] and SSD [16], which provide high

speed and accuracy for real-time detection tasks.

The Algorithm 3 input parameters, τ , θ and p, defined

in Section III, were fine-tuned with a preliminary study.

The resulting values are determined by running through mi-

crobenchmarking. Although we kept those values constant

throughout the experiments, other datasets may need specific

parameters. We evaluated both platforms on an NVIDIA Jetson

NX equipped with a 384 CUDA cores GPU accelerator, 8 GB

of unified memory and a 6-core processor.

A. Results on Human Pose Estimation

The student model consists of the TRTPose HPE platform

[13], which employs a Densenet CNN pre-trained on the

COCO-Pose dataset [20]. Because of the substantial differ-

ences between this dataset and those used for our quantitative

and qualitative analyses, the performance of this model is

suboptimal. The teacher model is OpenPose [14], utilizing

a BODY25 CNN pre-trained on the MPII and COCO-Pose

datasets. This model demonstrates excellent generalization

capability, performing effectively in most scenarios. For the

HPE case study, using Algorithm 2, we extrapolated the

following input parameters for Algorithm 3: r = 14, θ =
99%, sampling = 5%.

1) Auto quality assessment: For the quantitative analysis,

we tested our framework on Human3.6M [21], a widespread

standard dataset for HPE. It consists of several sets of human

actions and movements recorded in controlled indoor environ-

ments. It includes actions such as walking, running, sitting,

standing, greetings, eating, smoking, waiting, discussions, and

posing. The ground truth is a 3D motion capture data syn-

chronised with the corresponding 2D video frames. To test the

framework in the OAL context, we concatenated the actions

of a subject (S1) to obtain a single long video sequence. We

created three scenarios:

• Dynamic: in this scenario, we evaluate the framework per-

formance handling diverse and unpredictable scenes. To do

this, we concatenated all scenes in lexicographic order.

• Semi-repetitive: it represents a structured environment, in

which a static and a dynamic scene follow each other in a

repeated pattern.

• Repetitive: it recreates a typical scene in an industrial envi-

ronment (e.g., in production line), where a person remains

in similar positions frequently. We concatenated all similar

scenes, such as the act of having a discussion and making

gestures.

We present the comparison of our methodology for on-

demand training with two other schedulers. The first (train

always) performs training every t seconds. This methodology,

from the perspective of model adaptability, should be consid-

ered the best reference model. Training the student model on

the entire sequence incrementally is expected to yield the best

results. However, this approach is not feasible at runtime, as

the student model would be continuously trained, introducing

significant latencies. The second (accuracy-based) represents

the current state-of-the-art approach [12], which triggers the

training phase when the average error of previous instances

exceeds a certain threshold.

Table I shows the accuracy and performance results of the

different training schedulers. The evaluation metrics include

Mean Per Joint Position Error (MPJPE), the update percentage

(i.e., the amount of student training), and the percentage of

teacher executions to obtain soft labels and reference results.

The dynamic scenario is the most challenging due to its high

variability, requiring continuous domain adaptation. The pro-

posed solution performs well in this dynamic setting, achieving

performance similar to the accuracy-based approaches. On

the other hand, the semi-repetitive and repetitive scenarios

demands less domain adaptation. In this context, our solution

achieves up to 90.6% reduction in the number of training
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TABLE I
ACCURACY OF THE OAL PLATFORM IN HUMAN POSE ESTIMATION TASK (HPE) VARYING THE TRAINING SCHEDULES.

Sequence Dynamic scenario Semi-repetitive scenario Repetitive scenario

Metric MPJPE %update
%teacher
execution

MPJPE %update
%teacher
execution

MPJPE %update
%teacher
execution

Teacher 7.9 - - 7.2 - - 7.6 - -
No train 13.2 0.0 0.0 10.7 0.0 0.0 13.2 0.0 0.0
Train always 11.7 100.0 100.0 8.4 100.0 100.0 9.5 100.0 100.0
Accuracy-based 12.1 69.7 100.0 9.0 12.1 100.0 9.5 3.0 100.0
Our 12.2 74.2 74.2 8.5 60.6 60.6 9.4 9.1 9.1

TABLE II
ENERGY CONSUMPTION AND LATENCIES OF THE OAL PLATFORM VARYING THE TRAINING SCHEDULES IN HPE TASK ON EDGE DEVICE AND SERVER.

Device NVIDIA Jetson Xavier NX NVIDIA GeForce RTX 2070 SUPER

Sequence Dynamic Semi-repetitive Repetitive Dynamic Semi-repetitive Repetitive

Performance
Energy

mWh
Time Energy

mWh
Time Energy

mWh
Time Energy

mWh
Time Energy

mWh
Time Energy

mWh
Time

ms Hz ms Hz ms Hz ms Hz ms Hz ms Hz

Teacher 31.2 168.1 5.9 31.2 168.1 5.9 31.2 168.1 5.9 175.1 72.2 13.8 175.1 72.2 13.8 175.1 72.2 13.8
Student 18.2 30.8 32.4 18.2 30.8 32.4 18.2 30.8 32.4 100.3 7.2 139.7 100.3 7.2 139.7 100.3 7.2 139.7
Student while teacher 33.5 49.4 20.2 33.5 49.4 20.2 33.5 49.4 20.2 186.6 8.7 114.7 186.6 8.7 114.7 186.6 8.7 114.7
Student while training 27.9 56.0 17.9 27.9 56.0 17.9 27.9 56.0 17.9 168.2 10.6 94.6 168.2 10.6 94.6 168.2 10.6 94.6
Accuracy-based 31.7 51.41 19.4 28.6 55.2 18.1 28.1 55.8 18.0 173.5 9.9 100.0 170.2 10.4 96.7 168.5 10.5 95.2
Our 27.5 47.1 21.3 25.8 44.1 22.7 19.3 32.8 30.5 157.1 8.9 111.2 109.3 7.5 134.2 107.1 7.4 135.6

iterations compared to accuracy-based approach, maintaining

similar accuracy.

Table II shows a detailed performance analysis of the

teacher, student, and training tasks, alongside different OAL

solutions. The performance metrics include the GPU’s aver-

age energy consumption (represented in milliWatt-hour) and

the per-frame execution time (measured in milliseconds and

Hertz). To assess the efficiency of edge in comparison with

server devices, we conducted the performance analysis on

two platforms: an NVIDIA Jetson Xavier NX and an Intel

i7 desktop equipped with an NVIDIA GeForce RTX 2070

SUPER. Specifically, we evaluated the performance of the

teacher model, the student model, the student model with the

teacher model running in the background, and the student

model with the training process running in the background.

This evaluation compares the performance of standalone mod-

els with a combination of the student model with the teacher

or the training task, that occur in the OAL framework. Parallel

processing of student, teacher and training tasks is unfeasible

as they exceed the available resources of the Jetson Xavier

NX device, then we discarded this option. Additionally, we

compared our SVD-based approach with the state-of-the-art

approach that differ in the execution rate of the first four

configurations.

It is important to note that, in our approach, the repetition

of updates matches that of the teacher, as they are executed

simultaneously. This is due to the fact that our SVD-based

method relies only on the predicted outputs, with the SVD

operating at run-time and the teacher executing at training

time. Fig. 4 shows the error evolution over time, calculated

on marker-based data considered as ground truth.

Fig. 4a shows the accuracy results in the most challenging

scenario, characterized by complete dynamism with unrelated

actions.

Fig. 4b and Fig. 4c depict respectively the semi-repetitive

and the repetitive scenario, which result in similar considera-

tions.

From a performance point of view, our method outper-

forms the others, avoiding 25.8% of teacher inferences while

maintaining an error level comparable to accuracy-based. This

result is particularly evident in the last two rows of Table

II, where the energy consumption and operating frequency

of our OAL approach overcome those of the accuracy-based

approach. Our OAL approach outperforms the accuracy-based

approach across all scenarios, with the most significant im-

provement observed in the repetitive scenario, which requires

less retraining and, on average, saves a lot of teacher model’s

execution. Additionally, the operating frequency of our OAL

approach is substantially better than that of the teacher model

and closely matches the running frequencies of the student

model, while maintaining accuracy levels comparable to those

of the teacher model.

In the comparison between edge and server performance, the

differences in energy consumption and execution time are ev-

ident. Our SVD-based training scheduler significantly reduces

energy consumption at the edge while maintaining acceptable

execution rates. On average, the trade-off between execution

frequency and average energy consumption (Hz/mWh) on the

NVIDIA Jetson is 1.58, compared to 1.27 on desktop server.

This demonstrates the effectiveness of deploying an OAL

system entirely at the edge.

The initial model, denoted as “no train”, exhibits repeated

errors over time. However, the proposed system effectively

identifies and mitigates this noise through retraining, resulting

in a significant reduction in error. Our training scheduler sig-

nificantly outperforms the train always approach, demonstrat-

ing higher efficiency in handling repetitive scenarios. In highly

repetitive sequences, continuous training is not only ineffective

but also negative, as it reduces the overall accuracy of the

network due to overfitting. Our approach succeeds in identi-

fying the optimal number of updates for achieving the best

accuracy-updates tradeoff. It conducts less updates compared

to “train always” approach but allows more updates compared

to accuracy-based methods. While significantly reducing the

need for teacher executions, it still obtains acceptable accuracy

results.

To assess the robustness of our OAL framework, we also

conducted experiments in a real-world setting. It represents
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(a) Dynamic scenario.
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(b) Semi-repetitive scenario.

0 50 100 150 200 250 300

time (s)

6

8

10

12

14

16

M
P

J
P

E
 (

p
ix

e
l)

Teacher No train Train always Accuracy-based Our

(c) Repetitive scenario.

Fig. 4. Effect of different quality assessment approach on the accuracy of the online active learning framework for human pose estimation task.
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Fig. 5. Real-world case study: the Industry 4.0 scenario.

a typical production line, in which an operator held a semi-

static position at his/her workstation, in front of a collaborative

robot. The operator behavior corresponds to standard working

movements, such as relocating objects from the conveyor

belt to carts and viceversa. We captures the videos with a

StereoLabs ZED 2 RGB camera (15 FPS, 2K resolution).

Fig. 5 presents the experimental results of the system

applied in the real-world scenario. In this case, since there is no

true ground truth available, the error is represented as MPJPE

from the teacher model. In this challenging scenario, the

proposed method demonstrates its effectiveness by minimizing

the number of training iterations and significantly reducing the

error.

In general, as for the results obtained with the standard

dataset, the results obtained with the real-case study confirm

the efficiency of the proposed framework. The significant

reduction in computational time enhances its applicability on

real scenarios. Our system minimizes training iterations while

concurrently mitigating errors, particularly in repetitive scenes.

This makes the solution well-suited for static scenarios such

as workplace environments.

2) Query Strategies: In this paragraph we analyze the query

strategy techniques in the case of offline fine-tuning. In addi-

tion by varying the types of frame considered, we also varied

the number of samples, namely taking the 1%, 5%, 10%, 20%

and 40% of the training dataset. Table III reports the accuracy

results, also comparing the frame selection techniques with the

model without fine-tuning (i.e. 0%) and the model fine-tuned

on 100% of the training set.

In the offline fine-tuning evaluation, as we decreased the

size of the training dataset, we successfully reduced the

computation time from 15 hours to 6 hours, 3 hours, 80

minutes, and 9 minutes namely for the 40%, 20%, 10%, 5%,

and 1% of the train dataset.
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Fig. 6. Comparison between sampling query strategies, all with a sampling rate of 1%.

TABLE III
ACCURACY IN MPJPE (PIXELS) OBTAINED WITH DIFFERENT SAMPLING

RATES AND QUERY STRATEGIES.

0% 1% 5% 10% 20% 40% 100%

uniform 16.33 11.92 10.49 10.56 9.92 11.52 10.14
random 16.33 11.87 10.73 10.48 10.35 9.81 10.14
error 16.33 12.48 11.91 10.99 10.58 10.53 10.14
uncertainty 16.33 11.82 10.87 10.57 11.13 10.09 10.14

Figure 6 depicts the online fine-tuning evaluation, in which

the training process is performed every 30 seconds, according

to train always apprach. Every training step performs sampling

on the last training queue using a sampling percentage of

1% and different sampling metrics. The lines represent the

progression of errors during training across different sampling

metrics over time. The green line represents Openpose, the

black dotted line represents the light model without fine-

tuning, and the other lines correspond to the sampling metrics.

Both the uniform and random sampling metrics show the

best outcomes, whereas the other metrics yield slightly worse

results than the baseline.

Active learning can lead to improved results compared to

training the model on the entire dataset. The most effective

active learning strategies for both offline and continual training

are random and uniform, which consistently yield similar

outcomes. Generally, these strategies ensure a balanced subset

dataset on average, while other approaches may select frames

with incorrect labels and false predictions.

B. Results on Object Detection

To test our method in another application domain, where

time series of positions are considered, we focused on Object

Detection, specifically targeting the detection of cars in time

series. This is a widely utilized task at the state-of-the-art. In

particular, we employed a YOLOv7 neural network [15] as

the teacher and a less accurate SSD (Single Shot MultiBox

Detector) [16] as the student. Both networks are designed to

perform multi-class, multi-instance detection in a single infer-

ence, making them suitable for edge scenarios. The teacher

network was pre-trained with the COCO dataset [20], which

consists of 80 classes. The student network was trained on

the VOC dataset [22], which comprises 20 classes. We aim

to specialize our student network for a single class (common

to both datasets), namely cars. To achieve this, we utilized

sequences containing cars from the LaSOT [23] dataset as the

test sequence for our online active learning.

Since both networks are multi-class and multi-instance,

we masked the labels related to other classes, thus focusing

solely on the multi-instance problem. The terminology ”multi-

instance” denotes the presence of multiple vehicles within a

single image, leading to the prediction of multiple bounding

boxes by both networks. Given that the proposed approach for

time series analysis relies on historical data, maintaining tem-

poral consistency for each bounding box is imperative. This

entails ensuring that the vehicle identified by box ID 1 at time

t aligns with the same vehicle identified by box ID 1 at time

t+1. To achieve this, we focused on one car at a time (the most

representative, i.e., the car with the highest confidence score

from the student network) and applied a tracking algorithm.

The tracking algorithm is based on the Jaccard index between

bounding boxes belonging to two consecutive frames. We

assume that the high working frequency of the camera (i.e., 30

frames per second) is sufficiently high to ensure that two boxes

from consecutive frames are in similar positions. The Jaccard

index 4, also known as the Jaccard similarity coefficient, is a

measure used to quantify the similarity between two sets. It

is defined as the size of the intersection of the sets divided by

the size of the union of the sets:

Jaccard(A,B) =
|A ∩B|

|A ∪B|
(4)

In our case, A is the bounding box of the car at the instant

t and B is the bounding box of the car at the instant t − 1
The concept is that the Jaccard index of two bounding boxes

corresponding to the same vehicle at two consecutive time

instances will be higher compared to the boxes of two different

vehicles at two consecutive time instances. Thanks to this,

we can associate the bounding boxes corresponding to the

same car over time. Each bounding box is represented by

two 2D points (in pixels), meaning four coordinates. In this

manner, we executed our framework by tuning the parameters

through an initial analysis phase. Specifically, r was set to

2 singular values, and the percentage θ to 96. The sampling

percentage was set to 50%, maintaining uniform sampling.

Once our framework determines it is time to conduct training,

the teacher model is invoked, which predicts one bounding box

for each vehicle present in the image. Subsequently, training

proceeds in a manner analogous to that employed for the task

of human pose estimation.
In this experiment, we performed an empirical search of

training hyper-parameters, in particular the results are per-

formed with 2 epochs, learning rate of 10−5 and the Adam

optimizer.
The models were evaluated using Mean Absolute Error

(MAE), which represents the average absolute error between

the vertices of the bounding box of the model under test

compared to the ground truth of the dataset. Figure 7 illustrates

the time course of model accuracies in a sequence of car

scenarios. The teacher model (represented by the green line)

shows a lower average error than the student model without

fine-tuning (represented by the dashed line). This discrep-

ancy becomes particularly pronounced in the latter part of
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Fig. 7. Effect of different quality assessment approaches on the accuracy of the online active learning framework for the object detection task.

TABLE IV
ACCURACY OF THE OAL PLATFORM VARYING THE TRAINING SCHEDULES

IN OBJECT DETECTION TASK.

Metric MAE %update
%teacher
execution

Teacher 155.5 - -
No train 245.4 0.0 0.0
Train always 100.2 100.0 100.0
Accuracy-based 108.7 5.3 100.0
Our 100.8 9.2 9.2

TABLE V
ENERGY CONSUMPTION AND LATENCIES OF THE OAL PLATFORM

VARYING THE TRAINING SCHEDULES IN OBJECT DETECTION TASK ON AN

EDGE DEVICE AND A SERVER.

Device Jetson NX RTX 2070 SUPER

Performance
Energy

mWh
Time Energy

mWh
Time

ms Hz ms Hz

Accuracy-based 28.2 55.7 17.9 269.3 10.5 95.6
Our 19.3 32.8 30.5 197.4 7.4 135.5

the figure, where the two lines diverge by more than 200

pixels. In the initial segment of the scene, all models show

similar performance, as the reference vehicle for the evaluation

was stationary at a traffic signal, resulting in a static scene.

The train always approach (cyan line), unfeasible for online

deployment, shows excellent performance, outperforming even

the teacher model in the last plot segment. In spite of its

counterintuitive nature, whereby student models are trained

from the labels of the teacher model, this demonstrates that the

model, through its training process, achieves better adaptation

to the scene, consequently yielding improved performance.

Furthermore, it is noteworthy to mention that in training the

SSD model, we employed a data augmentation scheme as

proposed by the authors in their paper. The blue line, on

the other hand, represents the OAL model inspired by [12].

Although this method is also not achievable in real-time, it

performs very well, closely resembling the performance of the

train always approach, except for some peaks. Our framework

performs almost analogously to the train always approach,

outperforming the accuracy based approach and stands out as

the most suitable for deployment in a real-world scenario.

Table IV provides a quantitative measure of the findings

depicted in the plot. As mentioned earlier, the teacher model

outperforms the student model without training (i.e., No train),

with a mean absolute error (MAE) of 155.5 pixels compared to

245.4 pixels. Among the methods employing fine-tuning, the

train always approach shows an improvement, lowering the

MAE to 100.2 pixels on average. This methodology, despite

its superior performance, demands 100% of the teacher’s

executions and all feasible training data, making it impractical

in a real-world scenario. The accuracy-based approach yields

a MAE of 108.7 pixels. It executes the teacher model 100% of

the time (for comparison and label acquisition) and conducts

training only 5.3% of the time. In contrast, the proposed

methodology achieves a better result with a MAE of 100.8

pixels, executing both training and the teacher model (for label

acquisition) 9.2% of the time, thereby achieving significant

computational savings.

Table V presents a performance analysis similar to that

in Table II. This table compares our OAL approach with

the accuracy-based approach in terms of energy consumption

and execution time on both edge and server devices in OD

task. Even for OD task, our OAL approach outperforms the

accuracy-based approach, demonstrating higher performance

in both execution times and energy. Furthermore, the trade-off

between execution frequency and average energy consumption

(Hz/mWh) gets better with a deployment in the NVIDIA

Jetson (1.58) over a deployment in the desktop server (0.68).

These results demonstrate that our approach is generalizable

and effective for both human pose estimation and object

detection tasks.

V. CONCLUSION

This work aimed to enable on-device neural network train-

ing, with a specific focus on fine-tuning for video analysis

models. We developed a novel methodology for determining

the optimal moments for initiating training in real-time and

privacy-aware systems. Our approach leverages the princi-

ples of low rank approximation to identify the presence of

noise within a sequence. The execution of the teacher model

and subsequent training through knowledge distillation occurs

when our approach detects a noisy sequence. While state-of-

the-art approaches selected training steps through comparison

with teacher predictions, our approach employed low-rank

approximation theory on student predictions to determine op-

timal training scheduling, saving teacher executions. Through

comprehensive experimentation, we applied our methodology

to two wide-spread tasks (i.e., human pose estimation and

object detection) on public datasets and a real case study,
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demonstrating its effectiveness in achieving high accuracy

while saving computational resources. By reducing the fre-

quency of teacher executions, selecting the optimal training

samples and minimizing training times, our approach gives a

practical solution for online fine-tuning, enabling the deploy-

ment of intelligent video analysis applications on resource-

constrained edge devices. In future work, we aim to further

enhance the efficiency of neural networks, conducting training

directly on the device of even more complex models. This

includes investigating various accelerators and implementing

efficient schedulers to achieve real-time performance.

REFERENCES

[1] Y. Guo, F. Deligianni, X. Gu, and G.-Z. Yang, “3-D canonical pose
estimation and abnormal gait recognition with a single RGB-D camera,”
IEEE Robotics and Automation Letters, vol. 4, no. 4, pp. 3617–3624,
2019.

[2] J. Lim et al., “Designing path of collision avoidance for mobile
manipulator in worker safety monitoring system using reinforcement
learning,” in IEEE ICSR, 2021, pp. 94–97.

[3] M. M. Alam, L. Torgo, and A. Bifet, “A survey on spatio-temporal
data analytics systems,” ACM Comput. Surv., vol. 54, no. 10s, nov
2022. [Online]. Available: https://doi.org/10.1145/3507904

[4] W. Khan, E. Ahmed, S. Hakak, I. Yaqoob, and A. Ahmed, “Edge
computing: A survey,” Future Generation Computer Systems, vol. 97,
pp. 219–235, 2019.

[5] B. Li, B. Wu, J. Su, and G. Wang, “EagleEye: fast sub-net evaluation
for efficient neural network pruning,” LNCS, vol. 12347, pp. 639–654,
2020.

[6] P. Wang, X. He, G. Li, T. Zhao, and J. Cheng, “Sparsity-inducing
binarized neural networks,” in Conference on Artificial Intelligence,
2020, pp. 12 192–12 199.

[7] A. Howard, M. Sandler, B. Chen, W. Wang, L.-C. Chen, M. Tan, G. Chu,
V. Vasudevan, Y. Zhu, R. Pang, Q. Le, and H. Adam, “Searching for
mobilenetv3,” in IEEE ICCV, 2019, pp. 1314–1324.

[8] S. Teerapittayanon, B. McDanel, and H. Kung, “Branchynet: Fast
inference via early exiting from deep neural networks,” in Proc. of
International Conference on Pattern Recognition, vol. 0, 2016, p. 2464
– 2469.

[9] V. Mehlin, S. Schacht, and C. Lanquillon, “Towards energy-
efficient deep learning: An overview of energy-efficient approaches
along the deep learning lifecycle,” 2023. [Online]. Available:
https://arxiv.org/abs/2303.01980

[10] T. Panagiotakopoulos, P. L. Dovesi, L. Härenstam-Nielsen, and
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