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AxOSpike: Spiking Neural Networks-Driven
Approximate Operator Design

Salim Ullah™, Siva Satyendra Sahoo™, and Akash Kumar™, Senior Member, IEEE

Abstract—Approximate computing (AxC) is being widely
researched as a viable approach to deploying compute-intensive
artificial intelligence (AI) applications on resource-constrained
embedded systems. In general, AxC aims to provide dispropor-
tionate gains in system-level power-performance-area (PPA) by
leveraging the implicit error tolerance of an application. One of
the more widely used methods in AxC involves circuit pruning
of arithmetic operators used to process AI workloads. However,
most related works adopt an application-agnostic approach to
operator modeling for the design space exploration (DSE) of
Approximate Operators (AxOs). To this end, we propose an
application-driven approach to designing AxOs. Specifically, we
use spiking neural network (SNN)-based inference to present an
application-driven operator model resulting in AxOs with better-
PPA-accuracy tradeoffs compared to traditional circuit pruning.
Additionally, we present a novel FPGA-specific operator model
to improve the quality of AxOs that can be obtained using
circuit pruning. With the proposed methods, we report designs
with up to 26.5% lower PDPxLUTs with similar application-level
accuracy. Further, we report a considerably better set of design
points than related works with up to 51% better-Pareto front
hypervolume.

Index Terms—Accelerator architecture, AxC, arithmetic circuit
design, computer arithmetic, FPGAs, operator modeling, SNNs.

I. INTRODUCTION

HE LAST few years have seen rapid strides in bringing

artificial intelligence (AlI)-based processing into our day-
to-day lives. While the more complex processing, such as
analytics and large generative Al, are still limited to cloud-
based computing, edge Al is becoming increasingly complex
owing to applications, such as extended reality (XR) and large
language model (LLM) inference. As a result, there is an
increased effort across the computation stack—from algorithms
to electronic devices—toward enabling complex Al on resource-
constrained edge devices. At the algorithm level, spiking neural
network (SNN) provides a cheaper alternative to traditional
artificial neural networks (ANNs) [1]. In addition to being more
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Fig. 1. Characterization results for the hardware implementation of a single

neuron and the constituent accumulator on an FPGA for different bit-width
accumulators. (a) Resource usage in terms of LUTs, FFs, and CC utilization.
(b) Power dissipation of accumulator components (total, clock, logic, and
signal) compared to the neuron’s components’ power dissipation.

biomimetic, SNNs provide a more energy-efficient alternative.
The improved energy efficiency usually emanates from avoiding
complex multiply-accumulate (MAC) operations. Further, the
spike train-based representation of the intermediate features
reduces the cost of data movement. However, to enable true
event-driven processing of SNNs, the hardware implementation
must enable the parallel processing of a large number of neurons.
Correspondingly, SNN-based processing can benefit from low-
cost implementations of each neuron.

The primary arithmetic operations in the neuron of an SNN
usually include the accumulation of the membrane potential
and the comparison of the membrane potential with a threshold
value. In digital hardware, the accumulation involves adding
the weight value to the current potential, depending upon
the presence/absence of a spike. Fig. 1 shows the cost of
implementing a single neuron on a field programmable gate
array (FPGA) and the corresponding cost of the accumulator.
The results correspond to the characterization of the neuron
on an AMD Xilinx Zynq UltraScale+™ MPSoC (ZU3EG
A484). The bar-plot groups in the figure correspond to dif-
ferent bit-widths of the accumulator while using signed 4-bit
integer weights. Fig. 1(a) shows the resource utilization in
terms of flip-flops (FFs), lookup tables (LUTs) and carry-
chains (CCs)'. The constituent accumulator uses between
44% to 78% of LUTs and between 35% to 60% of the
FFs used in the neuron. In Fig. 1(b), the bar plots show the
percentage of the power dissipation for each component—
logic, signal, and clock in the accumulator—compared to the

lPercentage utilization of all CCs in the FPGA.
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Fig. 2. Exhaustive designs for approximate signed 7-bit adders with overflow
using operator model and automated pruning proposed in [9]. LUT utilization
refers to the number of LUTSs used for implementing the approximate operator.
(a) Operator-level design space. (b) Application-level design space.

power dissipation of the same component in the neuron. The
line plot shows the percentage of total power consumption in
the accumulator compared to the neuron. Here, too we observe
a considerable fraction of the cost in the accumulator. While
Fig. 1 demonstrates the effect of precision scaling on the
implementation of the neuron, additional circuit-level methods
can be explored for low-cost computer arithmetic.

Approximate Computing (AxC) forms one of the more
novel approaches to implementing resource-efficient comput-
ing [2]. In general, AxC aims to provide disproportionate gains
in power-performance-area (PPA) by leveraging the implicit
error tolerance of an application. While the general principle
of AxC can be implemented at different abstractions, approx-
imate circuits for arithmetic operations are widely researched
as a viable approach for Al workload processing [3], [4].
This can be attributed to the homogeneity of arithmetic
units (primarily MACs) being used across a wide spectrum
of AI algorithms and the inherent error-tolerant nature of
Al applications. In AxC, circuit pruning to generate novel
Approximate Operators (AxOs) for computer arithmetic forms
a primary method for implementing low-cost hardware [5],
[6], [7], [8], [9]. Novel approaches to circuit pruning—both
application-specific and otherwise—have been proposed for
application-specific integrated circuits (ASICs) and FPGAs.
While ASIC-based designs can provide a higher degree
of circuit optimizations, FPGAs‘s capability to dynamically
deploy designs with varying PPA-error tradeoffs makes them
an attractive option for AxC.

Related works in FPGA-based AxO design include meth-
ods ranging from synthesizing ASIC-optimized AxOs for
FPGA-based implementations [10], manual pruning in FPGA-
optimized accurate operator implementations [8], to automated
pruning of accurate operators to generate a library of AxOs [9].
However, all these methods adopt fairly generic operator
models and circuit pruning methods. For instance, Fig. 2
shows the design space for a signed 7-bit adder with the
AxOs generated through the operator model proposed in
AppAxO [9]. This operator model includes removing a subset
of LUTs from the accurate operator implementation to realize
AxOs. Consequently, the resulting design space comprises 127
(27 — 1) AxOs with LUT utilization ranging from 1 to 7. It
is worth noting that the accurate 7-bit adder implementation

in Fig. 2 processes two 7-bit operands and produces a 7-
bit result, which results in arithmetic overflows for some
input combinations. This implementation is referred to as
OvErr_BASE adder.

Fig. 2(a) displays the LUT-error tradeoffs of the complete
design space. For this purpose, the outputs of the OvErr_BASE
approximate adders are compared with an overflow-safe adder
that processes 7-bit operands to produce an 8-bit output. The
error metric used in the plot, AVG_ABS_REL_ERR, estimates
the mean statistics for the error in the sum produced by the
operator, compared to the accurate value, for all possible input
combinations. AppAxO’s approximation methodology does
not include any adaptations in the accurate implementation of
an operator that accounts for the accuracy degradation during
the subsequent circuit pruning. Further, similar to most related
works, AppAxO adopts a bottom-up approach to AxO design
for an application and can lead to limited benefits for an
application.

The bottom-up approach usually involves taking a generic
operator model and implementing circuit pruning with the
model. For instance, Fig. 2(b) shows the AxOs in Fig. 2(a)
used as the accumulator in the neurons in an SNN for MNIST
digit classification [11]. The Pareto-front w.r.t. the AxOs’ LUT
utilization and the application’s classification error follows
a similar pattern to that in Fig. 2(a), with five dominant
designs. Since the initial accurate design does not contain any
application-specific optimizations, there is limited scope to
obtain any application-specific benefits during the design space
exploration (DSE) for AxOs using such generic approaches.
To this end, we present an application-driven approach to
designing AxOs.

Our novel contributions include the following.

1) We present an SNN-driven approximation methodology
for designing AxOs. Specifically, we propose a novel
approximate operator model that integrates SNN-specific
adaptations to obtain improved PPA-error tradeoffs with
circuit pruning. With the proposed adaptation, we report
designs with up to 26.5% lower PDPxLUTs, while
maintaining the same application-level accuracy.

We present FPGA-specific pruning-aware optimizations
to the operator model. Specifically, we propose novel
adaptations to the accurate implementation of signed
adders that allow for recovering some of the errors
introduced during circuit pruning. With the proposed
method, we report up to 102.1% better-Pareto front
hypervolume than related state-of-the-art methods.

We present an improved circuit pruning method for
FPGA-based AxOs. Specifically, we propose a technique
that integrates additional Degrees-of-Freedom (DoFs)
during circuit pruning, compared to state-of-the-art
methods. With this approach, we report a considerably
better set of design points than related works with up to
51% higher-Pareto front hypervolume.

The remainder of this article is organized as follows. We
present a brief background and survey of the related works
in Section II. Section III presents the application and neuron
model of the SNN used for evaluating the proposed methods.
We present the novel operator models and approximate designs

2)

3)
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in Section IV. The experimental evaluation of the proposed
contributions is discussed in detail in Section V. Section VI
concludes this article with a summary of the presented work
and a discussion of the scope for related future work.

II. BACKGROUND AND RELATED WORKS
A. Designing Approximate Arithmetic Operators

Recently AxC techniques covering multiple layers of the
computation stack, including AxOs have been proposed
[12]. Similarly, various works have proposed novel tech-
niques for designing AxOs that utilize the LUT- and
CC-based structures in an FPGA more efficiently. For instance,
Ullah et al. [13], [14], [15] have presented methodologies for
building higher-order AxOs from optimized lower-order AxOs
(4x4 multipliers). Similarly, Ullah et al. [8] have presented
approximate signed multipliers based on the radix-4 booth
algorithm [16]. They limited the approximation to the partial
product generation and used manual removal of LUTs, along
with truncating input bits to present a few AxO designs. The
LUT selection is based on the ranking of LUTSs contributing
to the critical path delay (CPD) and power dissipation. The
CPD usually refers to the maximum delay from any FF
output to any FF input. For combinational arithmetic units,
it translates to the maximum delay between any of the
inputs and any of the outputs. Ullah et al. [9], [17] have
provided an automated approach to this pruning methodology
for synthesizing both application-specific and application-
agnostic AxOs. In another approach, the works presented
in [10] and [18] perform FPGA-specific DSE on a set of ASIC
optimized AxOs generated using EvoApprox [5]. While this
approach reduces the design space considerably, it limits the
scope of FPGA-specific optimizations that can be explored
using circuit pruning

Broadly, the design methodologies for FPGA-based AxOs
can be categorized into the following approaches.

1) Application Specificity: While some works integrate the
application’s behavior during the DSE [5], [9] for AxOs,
other works design AxOs considering operator-level
error metrics only [8], [17].

Synthesis and Selection: Selection refers to choos-
ing the appropriate AxOs to be implemented in the
FPGA-based accelerator. The selection could be from
a set of ASIC optimized AxOs or from FPGA-specific
designs [8], [10], [18]. However, the synthesis approach
entails integrating the FPGA- and/or application-specific
characteristics to design novel AxOs [9], [15], [17].
Manual and Automated DSE: While some of the
related works employ manual optimizations to circuit
pruning [8], other works employ automated search
methods, including state-of-the-art machine learning
algorithms [5], [9], [10]. The difference in both these
approaches usually results in a varying number of
AxO designs and the corresponding range of PPA-error
tradeoffs.

2)

3)

B. Edge Al and SNN

Edge computing forms an essential component of any mod-
ern computing ecosystem. To this end, various methods for

enabling edge Al on resource-constrained embedded systems
are being actively researched. Network pruning, the removal
of individual noncritical parameters and filters from a trained
ANN, constitutes one such approach [19], [20], [21]. Further,
precision scaling of the weights and/or features is widely
used to reduce the computation and data movement costs of
ANN-inference [22], [23]. However, such generic approaches,
including weights clustering, sparse computing [24], etc., do
not alter the need for large amounts of data movement and
MAC operation considerably. In contrast, SNNs employ an
event-driven processing and holds the potential for reducing
energy consumption by orders of magnitude. The reduction
in computing costs is primarily derived from eliminating
multiplication operations between weights and features and
by computing only when a spike occurs. Similarly, the rep-
resentation of the features by a spike train enables reducing
the data movement requirements in terms of memory and
communication. Further, generic methods, such as network
pruning and precision scaling, can also be applied to SNN-
based computing.

Hardware acceleration forms one of the major factors that
has enabled extracting useful results from AI computing.
Similar to ANNs, SNNs can also benefit from hardware
acceleration. However, their asynchronous event-driven nature
of computing can benefit the most from spatial accelerators
rather than GPUs or other thread parallel accelerators. To this
end, various ASIC- and FPGA-based accelerators have been
proposed for SNNs. FPGA-based implementations of SNN
accelerators include SyncNN [25], Gyro [26] and RANC [27].
A more detailed survey of FPGA implementations of SNNs
can be found in [28]. One of the common themes across the
SNN accelerators is toward enabling the mapping of a high
number of parallel neurons. Precision scaling and approximate
operators can enable reduced resource consumption of each
neuron, thereby allowing a larger number of neurons to
work in parallel within the same resource constraints. There
has been very little work related to using approximation in
SNNss, specifically related to hardware design. Sen et al. [29]
have proposed an algorithm-level approximation approach for
SNNs. Specifically, the proposed method involves determining
spike-triggered neuron updates that can be skipped with little
or no impact on output quality. Consequently, the energy con-
sumption owing to the computing and memory access for each
of those unnecessary updates can be saved. Our current work
focuses more on the design of low-cost hardware arithmetic
for the accumulator in the neuron and is complementary to
algorithm-level approximations, such as network pruning and
AxSNN [29].

C. Summary

For our current work, we focus on the design of AxOs
driven by an SNN application. We do not propose any novel
SNN architectures, instead focusing on how existing archi-
tectures can benefit from AxC and precision scaling. In this
context, Table I summarizes the different aspects of designing
approximate arithmetic operators across related works.

Application-Specific Operator Model: While some of the
related works perform application-specific DSE, the starting
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TABLE I
COMPARING RELATED WORKS

Related Work  [5]  [10] [9] [8] [17] AxOSpike
OpAeféﬂ;)(ini\\;l?del X X X X X v
operar Modet X XK KX/
Crom e KX

MOSaen Y L XL

279 point of the operator model does not include any application-
280 specific information. This bottom-up approach does not
1 leverage application-specific behavior and relies on the search
282 algorithm to integrate the application’s error tolerance while
s synthesizing/selecting novel AxOs.

284 Pruning-Aware Operator Model: Similarly most related
285 works use generic implementations of the accurate operator as
286 the operator model and do not implement any pruning-aware
257 modifications in the model.

28 FPGA-Specific Pruning With Automated Search: While a lot
280 of works use FPGA-specific pruning in their automated search
200 methods, they do not fully exploit different DoFs available for
201 pruning and the consequent rewiring during the synthesis of
200 novel AxOs.

203 To this end, we posit that the design of AxOs can benefit
20+ from more complex operator models that integrate information
205 from both the application and the underlying hardware struc-
206 tures of the platform architecture.

2

®

2

@

297 III. SNN MODEL
208 A. MNIST Digit Recognition

200  For our current work, we use the classification problem for
a0 MNIST digit recognition [11] using fully connected layers
aot only as the network model. Fig. 3 shows the network structure
sz that includes a single hidden layer along with the input and
a3 output layers. While the training is usually performed at
s« a higher precision (IEEE FP32), the trained model is then
a5 quantized to varying integer precisions, to enable low-cost
as arithmetic. Although, the network can be trained specifically
s7 for an SNN implementation, we have limited the current
as work to using the trained weights of the ANN, similar to the
aoe approach used in SyncNN [25]. Next, we compare and contrast
s1o the different aspects of the network for ANN- and SNN-based
1 processing.

sz 1) Input Encoding: In ANNSs, the pixel values of the input
a3 image are encoded into precision-specific integer values and
314 passed onto the next layer. However, SNNs are tailored to exploit
a5 time-varying data, and hence, each pixel value needs to be
asis encoded into a spike train, a sequence of Os and 1s. Depending
17 upon the type of encoding—rate, latency, or delta—each pixel
a1 (feature) is converted into a spike train of a fixed length. We have
a9 used rate encoding, which uses the input features to determine
a0 the spiking frequency. Fig. 3 shows the hypothetical spike trains
a1 across ten timesteps for some input features.

3

Input layer
T E Y Hidden
‘J—'—‘—lr!-‘—‘—l-‘* layer Output
I @, layer
/ t > 8 >
28x28/ 1l 111, 7@® - @ 7/
G = ) 0
. i el
2 39 55
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VL L L @ -
e , o
Va1 @ @ y
[V UG 128
N EN— 784  npeurons  eurons

10 timesteps peurons

Fig. 3. MNIST digit recognition: ANN versus SNN.

2) Neuron Processing: In ANNSs, the incoming features
(integer values) to a neuron are multiplied by their corre-
sponding weight values, accumulated across all inputs, and are
passed to an activation function like ReLU to determine the
features for the next layer. However, in SNNs, the neuron takes
the sum of weighted inputs across all input edges, weighted
by the input spike value. These values are integrated over
time (membrane voltage) and once a constant threshold value
is reached, a spike is generated from the neuron, and the
membrane voltage is reset. As a result, the output from a
neuron is also a spike train, unlike the integer-valued outputs
from an ANN‘s neuron.

3) Output Classification: In the case of ANNs implement-
ing output classification, a Softmax layer is used to determine
the image class. However, in the SNN, we can use the count of
spikes on the output layer’s nodes to determine the appropriate
class of the image. As shown in Fig. 3, a well-trained network
would exhibit a clear difference in the number of spikes seen
at each node after the 10 timesteps.

B. Neuron Model

The Hodgkin—Huxley Neuron model [30] is widely con-
sidered the closest to how biological neurons behave. SNN
implementations use a wide spectrum of neuron models.
The leaky integrate-and-fire (LIF) neuron is the most widely
used model in SNN implementations [31], [32]. However, the
LIF model also has complex implementation due to many
internal states owing to the refractory period and decay of
the membrane voltage. As a result, more digital-friendly low-
cost implementations have been proposed [33]. For our current
work, we have used the basic integrate and fire (IF) model.
It does not encode any decay and refractory period-related
information and the internal state is only defined by the current
membrane voltage. If the voltage (accumulated value) exceeds
the threshold value, a spike is generated and the accumulator
value is reset. Although simple, the model allows us to focus
on the variations in the accumulator operator implementation.
However, the accumulator-related AxO exploration can be
easily expanded to other neuron models.

IV. APPROXIMATE OPERATOR DESIGN

The accumulator in the SNN neuron accumulates W —
bit weights to produce an N — bit output. We denote such
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TABLE 11
PERFORMANCE COMPARISON OF 4 x §_8 AND 8 x §_8 ADDERS

Design LUTs | CPD [ns] Power [uW]
4x8_8 8 1.36 463.05
8 x 8_8 8 1.43 499.1

accumulators as W x N_N, where W < N, in this article.
The actual value of N is an important design decision and
defines the upper limits of adders before producing overflows.
For example, using a 4-bit adder to accumulate 4-bit weights
while producing a 4-bit output (denoted as 4 x 4_4 adder)
is susceptible to producing arithmetic overflow frequently.
Meanwhile, employing a higher-bit width accumulator, such
as 4 x 8_8, would result in less frequent overflows for the
accumulation of 4-bit weights. However, the FPGA-optimized
implementations of a W x N_N adder and an N x N_N
adder show that both adders produce similar PPA metrics. For
example, Table. II compares the LUT utilization, CPD, and
dynamic power consumption of 4 x 8_8 and 8 x 8_8 FPGA-
optimized adders. In the 4 x 8_8 adder, the 4-bit operand is
sign-extended before addition with the 8-bit operand. It can be
observed that both implementations have similar performance
metrics. Therefore, we have used N x N_N operators to
accumulate W — bit weights in this work. This design decision
also helps implement SNN-specific adaptations to improve the
accuracy of proposed adders.

sss A. Implicit Approximation by Overflow
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Fig. 4 depicts the LUTs and carry chains-based repre-
sentation of our base N x N_N design for N = 4.
In this configuration, the LUTs receive operands in 2’s
complement form and utilize (1) to determine the values
of the output signals O5 and O6. These signals govern
the corresponding carry chains in the FPGAs to compute
the final sum. Despite being an accurate adder, the base
adder is still susceptible to generating incorrect outcomes
due to arithmetic overflows. Hence, we refer to it as the
OvErr_BASE adder.? The arithmetic overflows encountered by
the OvErr_BASE adder can significantly impact the output
accuracy of SNNs, which work on the principle of pro-
ducing a spike when the accumulated weight values reach
a threshold value. These arithmetic overflows can result in
comparing an incorrect accumulated value with the threshold
value

05 = A, AND B,; 06 = A, XOR B,. (1)

The arithmetic overflows occur when the addition of two
positive numbers produces a negative result or the addi-
tion of two negative numbers produces a positive number.
In our current work, we explore the research question of
whether an approximate N x N_N adder with PPA sim-
ilar to an N x N_N OvErr_BASE adder produces more
accurate results by controlling overflows. To answer this
question, we propose three overflow-safe approximate adders
that utilize resources similar to an OvErr_BASE adder.

2Fig. 2 has used a 7-bit OvErr_BASE adder.

B, A B, A B, A B, A
r ¢ [ L P
LUT LUT LUT LUT

06] 05| _ 06] 05] _ 06] 05 _ 06] 0]
B e
] | ] !

S3 SZ Sl SO

Fig. 4. LUTs and carry chains-based implementation of a 4-bit signed adder:
OvErr_BASE design.

BN-Z AN-Z Bl Al BIU AU

LUT
l 06] 05] ______06] 05 06] 05]
[ : ’
[_ﬁ """ ! !
Sn-1 SN 2 Sl SU

Fig. 5. N x N_N OvCtrl_POS and OvCtrl_NEG adder structure.

However, they introduce deliberate approximations in the
addition process to avoid overflows. In the following sec-
tions, we will discuss these approximate architectures in
detail.

B. Application-Specific Overflow-Safe Approximate Adders

The initial two overflow-safe approximate adders, denoted
as OvCtrl_POS and OvCtrl_NEG, are based on analyzing both
operands’ sign bit, i.e., the most-significant bit (MSB). Fig. 5
demonstrates a generic view of the two proposed architectures.
As shown in Fig. 5, the LUT receiving the sign bits, i.e., Ay—1
and By_1, has been detached from the rest of the circuit. If
both operands are positive, i.e., the MSB of both operands
is 0, the corresponding LUT produces a 0 output. Similarly,
if both operands are negative, the LUT produces a 1 as the
output. For all other input combinations, the sum’s sign bit
(Sn—1) accurate computation depends on the output carry from
the preceding computation. However, the routing of the output
carry from the preceding computations to the most significant
LUT results in extra routing delays and, therefore, has not been
considered in this design. In our proposed OvCtrl_POS and
OvCtrl_NEG architectures, we used LUT ‘s available input pins
to provide more bits from the input operands (Ay_2, Ay_3,
Bn_>, By—3) to predict the missing carry. Equation (2) defines
the logic the most significant LUT implements for such cases.
However, in some cases, the LUT cannot predict the correct
sign bit due to the lack of knowledge about other bits of the
operands. For instance, Table III presents two examples of a 6-
bit adder. The three most significant bits in both examples are
the same, but they produce answers with different signs. For
such cases, we approximate the sign bit to either O (resulting
in OvCtrl_POS architecture) or 1 (resulting in OvCtrl_NEG
architecture)

Sign = (—2N*1AN_1 N 2A5 0 + 2N’3AN_3>

+ <—2N_IBN_1 + 2N_ZBN_2 + 2N_SBN_3>. 2)
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TABLE III
6 x 6_6 OvCtri_POS AND OvCtrl_NEG EXAMPLE

Input A Input B Result
0(0]0]|]O|O0O|O0O] 1|1 |1 |1]0] 0| Negative
0O(o0ojoO0|1|1|O0]1]1|1|1]1] 0] Positve

Byi Avi ByaAyaByo Ao B, A By A
| | [ I | | [
LUT LUT coe LUT LUT
06] 05] 06] 05] 06] 05 06] 05]
! - ’ 0
| I ! !
Sy Sn-2 Sy So

Fig. 6. N x N_N OvRec_AccMSB adder structure.

The OvCtrl_POS and OvCtri_NEG overflow-safe adders
have some limitations, which contribute to reducing the
application-level accuracy of SNNs. For example, for
OvCtri_NEG adder, the result of performing X — X is not
equal to zero. To overcome the limitations of OvCrri_POS and
OvCtrl_NEG architectures, we present the OvRec_AccMSB
overflow-safe approximate adder. Fig. 6 presents the generic
structure of an N x N_N OvRec_AccMSB adder. Compared to
the OvCtrl_POS and OvCtrl_NEG designs, this architecture
is based on the carry chains of the FPGAs. For operands
with different signs, this architecture behaves like the base
OvErr_BASE architecture. However, for operands with the
same sign (either both positive or both negative), this architec-
ture employs different functions for the two most significant
LUTs. In particular, the second most significant LUT and the
associated carry chain element (highlighted by the blue color
in Fig. 6) always generate a O carry-out and forward it to the
carry chain element of the most significant LUT. In the case
of positive operands, the most significant LUT (highlighted
by the green color) uses the O6 output to forward a O to
the associated carry chain element. The carry chain element
performs an XOR operation on the 06 and the carry-in (which
is 0) to produce a 0. Similarly, in the case of negative operands,
the most significant LUT forwards a 1 to the carry chain
element using the O6 line. The carry chain element performs
an XOR operation on the O6 and the carry-in (which is 0) to
produce a 1. When dealing with operands with the same sign,
the output Sy_» produced by the second most significant LUT
and the associated carry chain is approximate. As explained,
this is due to the fact that in such cases, the second most
significant LUT and the associated carry chain are dedicated
to generating and forwarding a O carry-out to the following
carry chain element.

C. Approximation by Circuit Pruning

1) Pruning-Aware INIT-Value Exploration: The circuit
pruning techniques, such as those presented in AppAxO [9], do
not account for mitigating the pruning-induced output errors.
For instance, Fig. 7 provides an example of an AppAxO-
based approximate signed adder that demonstrates this issue.
In the shown approximate adder, the LUT that processes

By A B, A By A
| ] | ]
LUT ] [ LUT LUT
06] 09 06 05 06=1 lo of 0
[ N s I 0
| 1§ | | 1 I
! 0¥ }
S S, S1 So
Fig. 7. AppAxO pruning technique-based an approximate 4 x 4_4 signed
adder [9].

inputs A; and B; has been pruned, and as a result, the
associated carry chain element does not contribute to the
computation of the sum bit §; or generate an output carry for
the following location. In this approximate design, the output
carry generated by the least significant LUT and associated
carry chain element (from processing Ag and By) is forwarded
to the carry chain element processing inputs A and Bs.
However, the propagation of wrong carries can produce AxOs,
which are more susceptible to producing arithmetic overflows
in general.

In our proposed AxOs generation methodology, referred
to as AxOSpike, we take advantage of the available
LUT input pins to introduce redundancy and mitigate the
impact of pruning-induced errors. Fig. 8§ shows an example
of AxOSpike‘s error-mitigation technique for the approximate
adder presented in Fig. 7. In this technique, every LUT (except
for the most significant LUT) also receives the inputs of
the proceeding LUT. For example, the least significant LUT
receives inputs Ao, Bo, and Ay, B1. Moreover, the location of
every LUT is identified by an N-bit binary string. For example,
for the 4 x 4_4 adder in the example, we will use a 4-bit string
1101. The O in the binary string identifies that the second
least significant LUT has been pruned away. In AxOSpike,
every LUT also receives the pruning status of the following
LUT. For example, the least significant LUT receives Ej as
the fifth input. As the second least significant LUT is pruned
(binary string 1101), the E; input will be set to 1. With the
redundant inputs and information about the pruning status of
proceeding LUT, different INIT® values can be explored for
every LUT to mitigate the impact of pruning-induced errors.
In our proposed work, we explored different INIT values to
predict the input carry for a carry chain element following
a pruned location. For example, for the approximate adder
shown in Fig. 8, the least significant LUT will predict the
input carry for the carry chain element associated with inputs
As and B,. In this process, the accuracy of output Sp can be
traded to predict the correct carry for the following locations.
For the current work, we have selected two INIT values
denoted as vI(hexadecimal value X’'6666666638888888) and
v2 (hexadecimal value X'666606608888F880). It should be
noted that INIT values exploration provides a large design
space, and there can be other possible INIT values that provide
better-error recovery for the approximate adders.

3The function implemented by a LUT is represented by a 64-bit INIT value.
Please see Xilinx Configurable Logic Block User Guide for more details.
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B; A, E,B; A, B, A, E,B, A, By A,
[ 1 A
LUT LUT LUT
06] 05] 06] 05] 06=1] lo 06] 05
H [ L1 0
[ 1= I | [
! ! 0/1% |
S3 SZ Sl SO

Fig. 8.  AxOSpike: Redundant inputs-based N x N_N
pruning-induced errors.

adder to mitigate

0.85F
1.2 w--, <> Ax0Spike O% - __ <> Ax0Spike
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x  1f v s |
o - -
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Fig. 9. Comparing the pruning-based DSE performance of AppAxO [9] and
AxOSpike for the same design: 7x7_7 OvRec_AccMSB adder. (a) Operator-
level Pareto fronts. (b) Application-level Pareto fronts.

2) Enhanced Automated Circuit Pruning: The AxOs that
are based on logic pruning usually remove the computational
blocks by setting them to a constant value of 0. For example,
the output S is truncated to O in the AppAxO pruning-based
approximate adder in Fig. 7. However, in our experiments,
we have identified that truncating computational blocks (LUTSs
and carry chain elements) and replacing their functionality
with a constant 1 can significantly improve the output accuracy
in some cases. As observed in Fig. 8, AxOSpike provides the
opportunity to replace the truncated output S; by either O or 1.
This additional degree of freedom also significantly increases
the AxOs design space. For example, for the 4 x 4_4 approx-
imate adder presented in Fig. 7, AppAxO provides 2* — 1 =
15 different approximate versions, whereas AxOSpike provides
3* — 1 = 80 approximate versions for the architecture shown
in Fig. 8.

The AxOSpike pruning technique can be applied to all
approximate adders presented in this work. To highlight the
efficacy of AxOSpike‘s generated AxOs, we compare them
with AppAxO-generated approximate adders. Fig. 9 shows
this comparison on both operator- and application-level for 7 x
7_7 approximate adders. For this comparison, we have consid-
ered only the OvRec_AccMSB designs. As shown in Fig. 9(a),
the nondominated design points provided by AxOSpike pro-
vide a better-accuracy-performance tradeoff with 24% higher
hypervolume of the resulting Pareto front. Similarly, the
utilization of these approximate adders for the classification
of the MNIST dataset using the SNN model discussed in
Section III shows that AxOSpike-generated AxOs also con-
tributes to better-accuracy-performance tradeoffs resulting in
51% higher hypervolume.

TABLE IV

DESIGNS USED FOR EXPERIMENTAL EVALUATION OF AxOSpike

Accumulator Design Pruning-aware # Op-level # App-level
Precision Type versions characterizations | characterizations
OvErr_BASE vl, v2 665 x 2 665 x 2
OvCurl_POS vl, v2 211 x 2 211 x 2
6x6_6
OvCtrl_NEG vl, v2 211 x 2 211 x 2
OvRec_AccMSB vl, v2 65x2 65x2
77 7 OvErr_BASE vl, v2 2059 x 2 2059 x 2
- OvRec_AccMSB vl, v2 211 x 2 211 x 2
OvErr_BASE vl, v2 6305 x 2 1
8x8_8 OvCtrl_POS 1 1
OvCul_NEG - 1 1
OvRec_AccMSB vl, v2 665 x 2 665 x 2
9x9.9 OvErr_BASE 1 1
OvRec_AccMSB 1 1
10x10_10 OvErr_BASE - 1 1
OvRec_AccMSB 1 1

V. EXPERIMENTS AND RESULTS
A. Experiment Setup

All the arithmetic operators implemented in the current
work are designed in VHDL and synthesized for the 7VX330T
device of the Virtex-7 family using AMD Xilinx Vivado
2020.2. The dynamic power is computed by recording the
dynamic switching activity for all possible input combinations
of the multiplier configurations. For this purpose, we have
used the Vivado Simulator and Power Analyzer tools. The
behavioral characterization of the operators was based on the
results of simulating every possible input combination of the
operator, with the implemented design. The SNN model is
implemented in C++ and Python using PyBind11. PyTorch
and snnTorch [34] were used for ML-related functionality
and datasets, and the image-to-spike conversions. The same
threshold value has been used across all neurons in an SNN.

Table IV shows the different accumulator designs used in
the experimental evaluation. The precision of the accumulator
is varied from 6 bits to 10 bits. While the OvErr_BASE
and OvRec_AccMSB designs were analyzed across different
precision, the OvCtrl_POS and OvCtrl_NEG design ver-
sions were analyzed only for the 6- and 8-bit operators.
Further, we implemented automated circuit pruning for some
of the design versions. For the circuit pruning-based oper-
ators, we have also explored the impact of utilizing the
two INIT values of LUTs, i.e., vI (X'6666666688888888)
and v2 (X'666606608888F880), on improving their output
accuracy. Since we use exhaustive sampling, design versions
that result in a large number of AxO designs were not used
for pruning experiments. However, more intelligent search
methods can be implemented in the current framework for the
DSE in such large design spaces. The last two columns in the
table show the number of designs used for the operator-level
and application-level characterization. While the operator-
level analysis involves determining PPA and various error
metrics, application-level analysis involves only behavioral
analysis. As a result, all the PPA metrics mentioned in the
subsequent results refer to the hardware characterization of the
approximate accumulator design.
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Fig. 10. Joint distribution of operands in the neuron’s accumulator for
inference on a single image. (a) Distribution assuming zero overflow during
accumulation. (b) Distribution when using the 8x8_8 OvErr_BASE adder as
accumulator.

B. SNN Model Analysis

We have used 4-bit weights for the SNN implemented in
our current work. Even with the 4-bit quantization of the
weights, the network can reach nearly 98% accuracy, assum-
ing no overflow occurs during accumulation. For instance,
Fig. 10(a) shows the distribution of the operand values of
the accumulation in all the neurons for a single inference,
assuming all additions are overflow-safe. The vertical axis
corresponds to the weights and follows the distribution of the
4-bit weights. The horizontal axis, showing the distribution of
the current membrane voltage value as the second operand of
the accumulator, ranges from -800 to 300. When using the
8x8_8 OvErr_BASE adder, the accuracy drops to around 85%.
This drop in accuracy due to the overflow is clear from the
changed distribution of the operands shown in Fig. 10(b).

The accuracy of the SNN can also vary depending upon the
threshold value used in the model, and the number of timesteps
used in the input encoding. Fig. 11 shows the variation of
the SNN’s accuracy using the 8 x8_8 OvErr_BASE adder for
varying threshold values and number of timesteps. While the
accuracy varies considerably with the threshold, it stays fairly
stable over the different number of timesteps. The boxplot in
the figure shows the distribution of the maximum accuracy for
the different number of timestep experiments. The maximum
accuracy varies by less than 0.1% across the 10 different
timestep experiments. The threshold value for the neuron can
be viewed as a trainable parameter of the SNN model, with
some related works exploring joint optimization of the weights
and the threshold value. However, since we have used post-
training quantization of the weights, we have employed a
sweep of the threshold values to demonstrate how the threshold
value can be used to recover the loss in accuracy due to
quantization (and approximation) to some extent. For the
subsequent experiments related to the SNN behavior analysis,
we report the maximum classification accuracy over varying
threshold values for 10 timesteps.

C. Application-Specific Operator Modeling

1) Operator-Level Analysis: In our current work, we have
presented four different design variants, including the baseline
OvErr_BASE design, that provide varying error tradeoffs.
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Fig. 11.  SNN accuracy variation with threshold value and the number of
timesteps using the 8 x8_8 OvErr_BASE adder as accumulator.
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Fig. 12. Comparison of the PPA metrics for the OvErr_BASE and
OvRec_AccMSB adders for different bit-width NxN_N adders.

TABLE V
OPERATOR-LEVEL ERROR METRICS VARIATION IN THE DIFFERENT
VARIANTS OF THE 6 x 6_6 ADDER

Operator Type OVErr_BASE | OVCtrl_NEG | OvCirl_POS | OvRec_AccMSB
Error Metric
AVG_ERR 05 15 25 0
AVG_ABS_ERR 16 975 10.25 8
AVG_REL_ERR 039 09 124 022
AVG_ABS_REL_ERR 0.39 09 124 022
MAX_ERR 64 2 30 2
MIN_ERR o4 32 32 32
PROB_ERR 25 3047 32.03 375

Table V shows the values of the operator-level statisti-
cal error metrics of each 6x6_6 adder, compared to the
6x6_7 overflow-safe adder. These error metrics are commonly
employed to characterize the output quality of approximate
circuits by comparing the approximate outputs with the
accurate outputs, indicating the magnitude and frequency of
errors [35]. The OvErr_BASE design has the largest value
of the minimum and maximum error magnitudes along with
the lowest-error probability. Similarly, the OvRec_AccMSB
design has the lowest-average error, average absolute error,
average relative error, and the lowest-average absolute rela-
tive error, albeit with the highest probability of error. The
OvRec_AccMSB, OvCtrl_NEG, and OvCtri_POS designs have
similar maximum and minimum error values. However, in
the application-specific analysis, we observed very few bene-
fits with the OvCtrl_NEG and OvCtri_POS versions (shown
later), especially for higher-bit widths. Therefore, we limit the

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653



65:

>

65!

a

656

65

N

65i

®

659

66

=3

66

662

66

@

664

66!

a

66

=

667

66

@©

66!

©

670

67

672

67

&}

674

67!

a

67

o

67

N

ULLAH et al.: AxOSpike: SNNs-DRIVEN APPROXIMATE OPERATOR DESIGN

DAVG_REL ERR OAVG_ABS_REL_ERR

7 8 9 10 0.45
al 8| 8| 8| o4
g 3 g 3 g 3 g 3| o.35
Q 0 0 0
et R Tnd BTl T IR
> Plx R[E R[E B 0.2
& 5|6 6|6 6|6 6 .
o 0.
o[Jo [Jo[Jo] °*° m m m ’”
0.1
-0.1
0.05
-0.2 o
M oM@k ok ok o
g %08 5|3 3|8 %
o IR A D Il
g o la s Tl .
§515 8845
16 15 £(6 ¢
_o.5 | | L L S & S
7 8 9 10
-0.6
Relative
AVG ERR
Errors
(a)
40 300
35 900 T pvax ERR
250 1 -
30 OMIN_ERR
. 200 400
20 1o 0ol
150 Oy Y
15 -100 { [T ” 1] "
10 100
-600
5 50
° lollll
88888888 o il -1100
E % E % ] % ] % RN ] FRCA A
dalualuid 38284848 RIRIRLE
2918 9% 918 9 u'rgulgulgnlg ulgulgulgulg
&8 &5 glsd 4 old ofld ol of d o old J|d o
2 2 3 3 > ol> 0|> 0|3 @ > o|l> olb alb @
© ° ° © 6 |6 &%|06 5|0 m O |6 |6 &[0 «
718 | 9|10 & 8| & & &l & & &
7|8 | 9|10 7 8 9 10

PROB_ERR AVG_ABS_ERR

(b)

MAX/MIN_ERR

Fig. 13. Comparison of the operator-level error metrics for the OvErr_BASE
and OvRec_AccMSB adders for different bit-width NxN_N adders. (a)
Average error and relative error metrics. (b) Probability of error, average
absolute error, and range of errors.

further analysis to the comparison of the OvErr_BASE and
OvRec_AccMSB versions.

Fig. 12 shows the comparison of the PPA metrics for
different bit width of the NxXN_N OvErr_BASE and
OvRec_AccMSB adders. Expectedly, resource utilization and
power dissipation rise with increasing bit widths. Also,
the OvErr_BASE and OvRec_AccMSB designs show similar
LUT and CC utilization. However, the power and CPD
vary slightly between the two design variants. This can be
attributed to the different architecture of the OvRec_AccMSB
design. Furthermore, the behavior of the designs also varies
depending on the sign signals of the operands. The com-
parison of the operator-level behavior of the OvErr_BASE
and OvRec_AccMSB designs is shown in Fig. 13. The
OvRec_AccMSB designs exhibit zero average error across
different precisions. Except for increased probability of error,
the OvRec_AccMSB designs exhibit better-error metrics than
OvErr_BASE across different bitwidth N x/N_N adders.

2) Application-Level Analysis: We experimented with
using the proposed design variants of the NxN_N adders
as the accumulators in the SNN’s neurons. While the
OvErr_BASE and OvRec_AccMSB variants exhibited increas-
ing accuracy with increasing bit-width (N), the OvCtrl_POS
and OvCtrl_NEG versions did not show such patterns. Fig. 14
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Fig. 14.  Variation of classification accuracy with the threshold value for

different design variants of 8 x8_8 adders used as an accumulator in the SNN’s
neuron.
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the 7x7_7 adder designs. (a) OvErr_BASE. (b) OvRec_AccMSB.

shows the variation of the resulting SNN*s classification accu-
racy with different threshold values for the four 8 x8_8 adder
designs. As can be seen from the figure, the accuracy of the
OvCtrl_POS and OvCtrl_NEG designs achieves a maximum of
around 20% accuracy. The comparison of the PPA-error trade-
offs across different bit width operators is shown in Fig. 15.
The SNN’s classification error decreases with increasing bit
width for both OvErr_BASE and OvRec_AccMSB adders.
The proposed OvRec_AccMSB design shows lower error
than OvErr_BASE across all bit widths. The 8- and 9-bit
OvRec_AccMSB adders result have similar accuracy as the 9-
and 10-bit OvErr_BASE adders, respectively. This amounts
to 26.5% and 20.93% lower PDPxLUTs for similar accuracy,
respectively, with the OvRec_AccMSB adders.
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Fig. 17. Comparing the operator-level DSE performance of v2 and v1 for
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Fig. 19. Application-level results for pruning-aware models of 8 x8_8 adder
OvRec_AccMSB. (a) Comparing Pareto fronts. (b) Comparing Pareto-front
hypervolume.
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Fig. 18. Comparing the SNN-level performance of v2 and v/ for the 7x7_7
adder designs. (a) OvErr_BASE. (b) OvRec_AccMSB.

D. Pruning-Aware Operator Modeling

In addition to the operator modeling for SNN-driven error
recovery, we also propose generic pruning-aware optimization
to the operator model. Fig. 16 shows the Pareto front analysis
for operator-level results of 7x7_7 adder AxOs generated
using circuit pruning. The v2 plots include the proposed
optimizations. As seen in the figure, v2 results in consid-
erably better designs than v/ for both OvErr_BASE and
OvRec_AccMSB versions. An analysis of the combined Pareto
front shows only 1 and 2 AxOs belong to v/ compared to
6 and 7 designs from v2 in Fig. 16(a) and (b), respectively.
Similarly, Fig. 17 shows the results of 8§x8_8 AxOs. Here
too, we observed much improved Pareto front designs with the
proposed v2 operator model. In the corresponding combined
Pareto fronts, 1 and 2 designs belong to v/, compared to 7
and 11 AxOs with v2 for OvErr_BASE and OvRec_AccMSB
design variants, respectively.

Fig. 18 shows the application-level Pareto front analysis
for 7x7_7 adders. Here too, we observe improved quality
of results with the pruning-aware v2 model. However, with
the OvRec_AccMSB version in §x8_8 designs, we observed
better-Pareto front designs with v/, as seen in Fig. 19(a).
Fig. 19(b) compares the resulting hypervolume of the Pareto
fronts for application-level analysis. For the 7x7_7 designs,
the v2 version AxOs provide almost similar hypervolume
as from the combined Pareto front. While the individual
hypervolume of v2 designs for 8 x8_8 AxOs is lower, it still
contributes additional design points to the Pareto front. Across
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Fig. 20. Comparing the operator-level metrics of approximate 6x6_6

and 7x7_7 adder designs from AxOSpike and AppAxO. (a) 6x6_6 adders.
(b) 7x7_7 adders.
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Fig. 21. Comparing the operator-level metrics of approximate 8 x8_8 adder

designs from AxOSpike, AppAxO, and EvoApprox.

experiments for different operators, we observe up to 102.1%
improvement in the Pareto from hypervolume due to v2.

E. Comparing With State-of-the-Art

For comparing AxOSpike with related state-of-the-art works,
we chose EvoApprox [5] and AppAxO [9] as the set of
relevant works. This approach subsumes the comparison with
other related works, such as CoOAx [17], which is based on
a similar methodology as AppAxO and approxFPGAs [10],
which uses the designs present within the scope of EvoApprox
for DSE. Further, 8x8_8 adders are the only relevant designs
for the current work provided in the EvoApprox library.
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Fig. 22.  SNN’s classification Error versus LUT Utilization for approximate
8x8_8 adders used as accumulators in the SNN’s neuron.

1) Operator-Level: Fig. 20 shows the Pareto front analysis
of the 6x6_6 and 7x7_7 approximate adders generated with
the AppAxO methodology and those using AxOSpike. As can
be seen in the figures, AxOSpike generates designs with better-
PPA-error tradeoffs than AppAxO. With the combined Pareto
front analysis, we do not observe any designs from AppAxO
contributing to the Pareto front. However, this is expected as
the enhanced automated circuit pruning of AxOSpike subsumes
that of AppAxO. Even in the case of 8 x8_8 designs, including
the designs from EvoApprox, all the dominant points in the
combined Pareto front are the result of AxOSpike‘s proposed
modifications, as seen in Fig. 21. In addition to showing the
efficacy of the presently proposed methods, it also shows the
importance of integrating FPGA-specific optimizations into the
operator model. Unlike AxOSpike and AppAxO, the designs
in the EvoApprox library are optimized for ASIC implemen-
tation. and fail to leverage the FPGA-based structures for any
eITOr IECOVery.

2) Application-Level: For the application-level compari-
son with related state-of-the-art works, we used the 8x8_8
designs from EvoApprox. Additionally, we combined the
pruning methodology of AppAxO along with our proposed
OvRec_AccMSB design for another comparison point -
AppAxO+AccMSB. Fig. 22 shows the Pareto fronts of
the candidate designs while considering the LUT usage of
the adders along with the SNN’s classification accuracy.
Similar to the operator-level results, we observe higher-quality
designs generated using AxOSpike. The combined Pareto
front shows a total of 42 AxO designs, with EvoApprox
and AppAxO+AccMSB contributing just 1 and 3 designs,
respectively. A similar analysis while considering the adders’
PDPxLUTSs metrics, shown in Fig. 23, shows 1 and 4 designs
in the combined Pareto front resulting from EvoApprox and
AppAxO+AccMSB, respectively, out of a total of 98 points.
Fig. 24 shows the comparison of the Pareto front hypervolume
corresponding to Figs. 22 and 23. As evident, AxOSpike results
in much better designs than EvoApprox. Further, the results
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Fig. 23.  SNN’s classification error versus PDPxLUTs for approximate
8x8_8 adders used as accumulators in the SNN’s neuron.
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Fig. 24. Comparing the hypervolume for approximate 8x8_8 adders used

as accumulators in the SNN’s neuron.

show that the proposed OvRec_AccMSB design can be com-
bined with any complementary circuit pruning methodology,
such as AppAxO, to provide better-quality designs than state-
of-the-art methods.

VI. CONCLUSION

With the rising complexity of edge Al, novel approaches
spanning across the computing stack need to be developed.
SNNs and approximate arithmetic form two such emerging
computing paradigms at the algorithm and the circuit layer,
respectively. SNN-based processing is inherently error tolerant
and AxC should be able to leverage such error resilience
most effectively. However, a bottom-up approach to designing
AxOs can lead to limited benefits. In this current article,
we present novel methods of integrating both application-
specific and hardware platform-specific information into the
operator model, thereby enabling the search for consider-
ably better-quality designs with automated circuit pruning.
With the proposed techniques, we report designs with up
to 26.5% lower PDPxLUTs with similar application-level
accuracy. Further, we report a considerably better set of design
points than related works with up to 51% higher-Pareto front
hypervolume. The current work can be extended to include
more complex SNN neuron models and can benefit from
more intelligent automated DSE, especially for larger bit-width
operators.
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