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Abstract—Approximate computing (AxC) is being widely1

researched as a viable approach to deploying compute-intensive2

artificial intelligence (AI) applications on resource-constrained3

embedded systems. In general, AxC aims to provide dispropor-4

tionate gains in system-level power-performance-area (PPA) by5

leveraging the implicit error tolerance of an application. One of6

the more widely used methods in AxC involves circuit pruning7

of arithmetic operators used to process AI workloads. However,8

most related works adopt an application-agnostic approach to9

operator modeling for the design space exploration (DSE) of10

Approximate Operators (AxOs). To this end, we propose an11

application-driven approach to designing AxOs. Specifically, we12

use spiking neural network (SNN)-based inference to present an13

application-driven operator model resulting in AxOs with better-14

PPA-accuracy tradeoffs compared to traditional circuit pruning.15

Additionally, we present a novel FPGA-specific operator model16

to improve the quality of AxOs that can be obtained using17

circuit pruning. With the proposed methods, we report designs18

with up to 26.5% lower PDPxLUTs with similar application-level19

accuracy. Further, we report a considerably better set of design20

points than related works with up to 51% better-Pareto front21

hypervolume.22

Index Terms—Accelerator architecture, AxC, arithmetic circuit23

design, computer arithmetic, FPGAs, operator modeling, SNNs.24

I. INTRODUCTION25

THE LAST few years have seen rapid strides in bringing26

artificial intelligence (AI)-based processing into our day-27

to-day lives. While the more complex processing, such as28

analytics and large generative AI, are still limited to cloud-29

based computing, edge AI is becoming increasingly complex30

owing to applications, such as extended reality (XR) and large31

language model (LLM) inference. As a result, there is an32

increased effort across the computation stack—from algorithms33

to electronic devices–toward enabling complex AI on resource-34

constrained edge devices. At the algorithm level, spiking neural35

network (SNN) provides a cheaper alternative to traditional36

artificial neural networks (ANNs) [1]. In addition to being more37
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Fig. 1. Characterization results for the hardware implementation of a single
neuron and the constituent accumulator on an FPGA for different bit-width
accumulators. (a) Resource usage in terms of LUTs, FFs, and CC utilization.
(b) Power dissipation of accumulator components (total, clock, logic, and
signal) compared to the neuron’s components’ power dissipation.

biomimetic, SNNs provide a more energy-efficient alternative. 38

The improved energy efficiency usually emanates from avoiding 39

complex multiply-accumulate (MAC) operations. Further, the 40

spike train-based representation of the intermediate features 41

reduces the cost of data movement. However, to enable true 42

event-driven processing of SNNs, the hardware implementation 43

must enable the parallel processing of a large number of neurons. 44

Correspondingly, SNN-based processing can benefit from low- 45

cost implementations of each neuron. 46

The primary arithmetic operations in the neuron of an SNN 47

usually include the accumulation of the membrane potential 48

and the comparison of the membrane potential with a threshold 49

value. In digital hardware, the accumulation involves adding 50

the weight value to the current potential, depending upon 51

the presence/absence of a spike. Fig. 1 shows the cost of 52

implementing a single neuron on a field programmable gate 53

array (FPGA) and the corresponding cost of the accumulator. 54

The results correspond to the characterization of the neuron 55

on an AMD Xilinx Zynq UltraScale+TM MPSoC (ZU3EG 56

A484). The bar-plot groups in the figure correspond to dif- 57

ferent bit-widths of the accumulator while using signed 4-bit 58

integer weights. Fig. 1(a) shows the resource utilization in 59

terms of flip-flops (FFs), lookup tables (LUTs) and carry- 60

chains (CCs)1. The constituent accumulator uses between 61

44% to 78% of LUTs and between 35% to 60% of the 62

FFs used in the neuron. In Fig. 1(b), the bar plots show the 63

percentage of the power dissipation for each component— 64

logic, signal, and clock in the accumulator—compared to the 65

1Percentage utilization of all CCs in the FPGA.
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Fig. 2. Exhaustive designs for approximate signed 7-bit adders with overflow
using operator model and automated pruning proposed in [9]. LUT utilization
refers to the number of LUTs used for implementing the approximate operator.
(a) Operator-level design space. (b) Application-level design space.

power dissipation of the same component in the neuron. The66

line plot shows the percentage of total power consumption in67

the accumulator compared to the neuron. Here, too we observe68

a considerable fraction of the cost in the accumulator. While69

Fig. 1 demonstrates the effect of precision scaling on the70

implementation of the neuron, additional circuit-level methods71

can be explored for low-cost computer arithmetic.72

Approximate Computing (AxC) forms one of the more73

novel approaches to implementing resource-efficient comput-74

ing [2]. In general, AxC aims to provide disproportionate gains75

in power-performance-area (PPA) by leveraging the implicit76

error tolerance of an application. While the general principle77

of AxC can be implemented at different abstractions, approx-78

imate circuits for arithmetic operations are widely researched79

as a viable approach for AI workload processing [3], [4].80

This can be attributed to the homogeneity of arithmetic81

units (primarily MACs) being used across a wide spectrum82

of AI algorithms and the inherent error-tolerant nature of83

AI applications. In AxC, circuit pruning to generate novel84

Approximate Operators (AxOs) for computer arithmetic forms85

a primary method for implementing low-cost hardware [5],86

[6], [7], [8], [9]. Novel approaches to circuit pruning—both87

application-specific and otherwise—have been proposed for88

application-specific integrated circuits (ASICs) and FPGAs.89

While ASIC-based designs can provide a higher degree90

of circuit optimizations, FPGAs‘s capability to dynamically91

deploy designs with varying PPA-error tradeoffs makes them92

an attractive option for AxC.93

Related works in FPGA-based AxO design include meth-94

ods ranging from synthesizing ASIC-optimized AxOs for95

FPGA-based implementations [10], manual pruning in FPGA-96

optimized accurate operator implementations [8], to automated97

pruning of accurate operators to generate a library of AxOs [9].98

However, all these methods adopt fairly generic operator99

models and circuit pruning methods. For instance, Fig. 2100

shows the design space for a signed 7-bit adder with the101

AxOs generated through the operator model proposed in102

AppAxO [9]. This operator model includes removing a subset103

of LUTs from the accurate operator implementation to realize104

AxOs. Consequently, the resulting design space comprises 127105

(27 − 1) AxOs with LUT utilization ranging from 1 to 7. It106

is worth noting that the accurate 7-bit adder implementation107

in Fig. 2 processes two 7-bit operands and produces a 7- 108

bit result, which results in arithmetic overflows for some 109

input combinations. This implementation is referred to as 110

OvErr_BASE adder. 111

Fig. 2(a) displays the LUT-error tradeoffs of the complete 112

design space. For this purpose, the outputs of the OvErr_BASE 113

approximate adders are compared with an overflow-safe adder 114

that processes 7-bit operands to produce an 8-bit output. The 115

error metric used in the plot, AVG_ABS_REL_ERR, estimates 116

the mean statistics for the error in the sum produced by the 117

operator, compared to the accurate value, for all possible input 118

combinations. AppAxO’s approximation methodology does 119

not include any adaptations in the accurate implementation of 120

an operator that accounts for the accuracy degradation during 121

the subsequent circuit pruning. Further, similar to most related 122

works, AppAxO adopts a bottom-up approach to AxO design 123

for an application and can lead to limited benefits for an 124

application. 125

The bottom-up approach usually involves taking a generic 126

operator model and implementing circuit pruning with the 127

model. For instance, Fig. 2(b) shows the AxOs in Fig. 2(a) 128

used as the accumulator in the neurons in an SNN for MNIST 129

digit classification [11]. The Pareto-front w.r.t. the AxOs’ LUT 130

utilization and the application’s classification error follows 131

a similar pattern to that in Fig. 2(a), with five dominant 132

designs. Since the initial accurate design does not contain any 133

application-specific optimizations, there is limited scope to 134

obtain any application-specific benefits during the design space 135

exploration (DSE) for AxOs using such generic approaches. 136

To this end, we present an application-driven approach to 137

designing AxOs. 138

Our novel contributions include the following. 139

1) We present an SNN-driven approximation methodology 140

for designing AxOs. Specifically, we propose a novel 141

approximate operator model that integrates SNN-specific 142

adaptations to obtain improved PPA-error tradeoffs with 143

circuit pruning. With the proposed adaptation, we report 144

designs with up to 26.5% lower PDPxLUTs, while 145

maintaining the same application-level accuracy. 146

2) We present FPGA-specific pruning-aware optimizations 147

to the operator model. Specifically, we propose novel 148

adaptations to the accurate implementation of signed 149

adders that allow for recovering some of the errors 150

introduced during circuit pruning. With the proposed 151

method, we report up to 102.1% better-Pareto front 152

hypervolume than related state-of-the-art methods. 153

3) We present an improved circuit pruning method for 154

FPGA-based AxOs. Specifically, we propose a technique 155

that integrates additional Degrees-of-Freedom (DoFs) 156

during circuit pruning, compared to state-of-the-art 157

methods. With this approach, we report a considerably 158

better set of design points than related works with up to 159

51% higher-Pareto front hypervolume. 160

The remainder of this article is organized as follows. We 161

present a brief background and survey of the related works 162

in Section II. Section III presents the application and neuron 163

model of the SNN used for evaluating the proposed methods. 164

We present the novel operator models and approximate designs 165
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in Section IV. The experimental evaluation of the proposed166

contributions is discussed in detail in Section V. Section VI167

concludes this article with a summary of the presented work168

and a discussion of the scope for related future work.169

II. BACKGROUND AND RELATED WORKS170

A. Designing Approximate Arithmetic Operators171

Recently AxC techniques covering multiple layers of the172

computation stack, including AxOs have been proposed173

[12]. Similarly, various works have proposed novel tech-174

niques for designing AxOs that utilize the LUT- and175

CC-based structures in an FPGA more efficiently. For instance,176

Ullah et al. [13], [14], [15] have presented methodologies for177

building higher-order AxOs from optimized lower-order AxOs178

(4×4 multipliers). Similarly, Ullah et al. [8] have presented179

approximate signed multipliers based on the radix-4 booth180

algorithm [16]. They limited the approximation to the partial181

product generation and used manual removal of LUTs, along182

with truncating input bits to present a few AxO designs. The183

LUT selection is based on the ranking of LUTs contributing184

to the critical path delay (CPD) and power dissipation. The185

CPD usually refers to the maximum delay from any FF186

output to any FF input. For combinational arithmetic units,187

it translates to the maximum delay between any of the188

inputs and any of the outputs. Ullah et al. [9], [17] have189

provided an automated approach to this pruning methodology190

for synthesizing both application-specific and application-191

agnostic AxOs. In another approach, the works presented192

in [10] and [18] perform FPGA-specific DSE on a set of ASIC193

optimized AxOs generated using EvoApprox [5]. While this194

approach reduces the design space considerably, it limits the195

scope of FPGA-specific optimizations that can be explored196

using circuit pruning197

Broadly, the design methodologies for FPGA-based AxOs198

can be categorized into the following approaches.199

1) Application Specificity: While some works integrate the200

application’s behavior during the DSE [5], [9] for AxOs,201

other works design AxOs considering operator-level202

error metrics only [8], [17].203

2) Synthesis and Selection: Selection refers to choos-204

ing the appropriate AxOs to be implemented in the205

FPGA-based accelerator. The selection could be from206

a set of ASIC optimized AxOs or from FPGA-specific207

designs [8], [10], [18]. However, the synthesis approach208

entails integrating the FPGA- and/or application-specific209

characteristics to design novel AxOs [9], [15], [17].210

3) Manual and Automated DSE: While some of the211

related works employ manual optimizations to circuit212

pruning [8], other works employ automated search213

methods, including state-of-the-art machine learning214

algorithms [5], [9], [10]. The difference in both these215

approaches usually results in a varying number of216

AxO designs and the corresponding range of PPA-error217

tradeoffs.218

B. Edge AI and SNN219

Edge computing forms an essential component of any mod-220

ern computing ecosystem. To this end, various methods for221

enabling edge AI on resource-constrained embedded systems 222

are being actively researched. Network pruning, the removal 223

of individual noncritical parameters and filters from a trained 224

ANN, constitutes one such approach [19], [20], [21]. Further, 225

precision scaling of the weights and/or features is widely 226

used to reduce the computation and data movement costs of 227

ANN-inference [22], [23]. However, such generic approaches, 228

including weights clustering, sparse computing [24], etc., do 229

not alter the need for large amounts of data movement and 230

MAC operation considerably. In contrast, SNNs employ an 231

event-driven processing and holds the potential for reducing 232

energy consumption by orders of magnitude. The reduction 233

in computing costs is primarily derived from eliminating 234

multiplication operations between weights and features and 235

by computing only when a spike occurs. Similarly, the rep- 236

resentation of the features by a spike train enables reducing 237

the data movement requirements in terms of memory and 238

communication. Further, generic methods, such as network 239

pruning and precision scaling, can also be applied to SNN- 240

based computing. 241

Hardware acceleration forms one of the major factors that 242

has enabled extracting useful results from AI computing. 243

Similar to ANNs, SNNs can also benefit from hardware 244

acceleration. However, their asynchronous event-driven nature 245

of computing can benefit the most from spatial accelerators 246

rather than GPUs or other thread parallel accelerators. To this 247

end, various ASIC- and FPGA-based accelerators have been 248

proposed for SNNs. FPGA-based implementations of SNN 249

accelerators include SyncNN [25], Gyro [26] and RANC [27]. 250

A more detailed survey of FPGA implementations of SNNs 251

can be found in [28]. One of the common themes across the 252

SNN accelerators is toward enabling the mapping of a high 253

number of parallel neurons. Precision scaling and approximate 254

operators can enable reduced resource consumption of each 255

neuron, thereby allowing a larger number of neurons to 256

work in parallel within the same resource constraints. There 257

has been very little work related to using approximation in 258

SNNs, specifically related to hardware design. Sen et al. [29] 259

have proposed an algorithm-level approximation approach for 260

SNNs. Specifically, the proposed method involves determining 261

spike-triggered neuron updates that can be skipped with little 262

or no impact on output quality. Consequently, the energy con- 263

sumption owing to the computing and memory access for each 264

of those unnecessary updates can be saved. Our current work 265

focuses more on the design of low-cost hardware arithmetic 266

for the accumulator in the neuron and is complementary to 267

algorithm-level approximations, such as network pruning and 268

AxSNN [29]. 269

C. Summary 270

For our current work, we focus on the design of AxOs 271

driven by an SNN application. We do not propose any novel 272

SNN architectures, instead focusing on how existing archi- 273

tectures can benefit from AxC and precision scaling. In this 274

context, Table I summarizes the different aspects of designing 275

approximate arithmetic operators across related works. 276

Application-Specific Operator Model: While some of the 277

related works perform application-specific DSE, the starting 278
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TABLE I
COMPARING RELATED WORKS

point of the operator model does not include any application-279

specific information. This bottom-up approach does not280

leverage application-specific behavior and relies on the search281

algorithm to integrate the application’s error tolerance while282

synthesizing/selecting novel AxOs.283

Pruning-Aware Operator Model: Similarly most related284

works use generic implementations of the accurate operator as285

the operator model and do not implement any pruning-aware286

modifications in the model.287

FPGA-Specific Pruning With Automated Search: While a lot288

of works use FPGA-specific pruning in their automated search289

methods, they do not fully exploit different DoFs available for290

pruning and the consequent rewiring during the synthesis of291

novel AxOs.292

To this end, we posit that the design of AxOs can benefit293

from more complex operator models that integrate information294

from both the application and the underlying hardware struc-295

tures of the platform architecture.296

III. SNN MODEL297

A. MNIST Digit Recognition298

For our current work, we use the classification problem for299

MNIST digit recognition [11] using fully connected layers300

only as the network model. Fig. 3 shows the network structure301

that includes a single hidden layer along with the input and302

output layers. While the training is usually performed at303

a higher precision (IEEE FP32), the trained model is then304

quantized to varying integer precisions, to enable low-cost305

arithmetic. Although, the network can be trained specifically306

for an SNN implementation, we have limited the current307

work to using the trained weights of the ANN, similar to the308

approach used in SyncNN [25]. Next, we compare and contrast309

the different aspects of the network for ANN- and SNN-based310

processing.311

1) Input Encoding: In ANNs, the pixel values of the input312

image are encoded into precision-specific integer values and313

passed onto the next layer. However, SNNs are tailored to exploit314

time-varying data, and hence, each pixel value needs to be315

encoded into a spike train, a sequence of 0s and 1s. Depending316

upon the type of encoding—rate, latency, or delta—each pixel317

(feature) is converted into a spike train of a fixed length. We have318

used rate encoding, which uses the input features to determine319

the spiking frequency. Fig. 3 shows the hypothetical spike trains320

across ten timesteps for some input features.321

Fig. 3. MNIST digit recognition: ANN versus SNN.

2) Neuron Processing: In ANNs, the incoming features 322

(integer values) to a neuron are multiplied by their corre- 323

sponding weight values, accumulated across all inputs, and are 324

passed to an activation function like ReLU to determine the 325

features for the next layer. However, in SNNs, the neuron takes 326

the sum of weighted inputs across all input edges, weighted 327

by the input spike value. These values are integrated over 328

time (membrane voltage) and once a constant threshold value 329

is reached, a spike is generated from the neuron, and the 330

membrane voltage is reset. As a result, the output from a 331

neuron is also a spike train, unlike the integer-valued outputs 332

from an ANN‘s neuron. 333

3) Output Classification: In the case of ANNs implement- 334

ing output classification, a Softmax layer is used to determine 335

the image class. However, in the SNN, we can use the count of 336

spikes on the output layer’s nodes to determine the appropriate 337

class of the image. As shown in Fig. 3, a well-trained network 338

would exhibit a clear difference in the number of spikes seen 339

at each node after the 10 timesteps. 340

B. Neuron Model 341

The Hodgkin–Huxley Neuron model [30] is widely con- 342

sidered the closest to how biological neurons behave. SNN 343

implementations use a wide spectrum of neuron models. 344

The leaky integrate-and-fire (LIF) neuron is the most widely 345

used model in SNN implementations [31], [32]. However, the 346

LIF model also has complex implementation due to many 347

internal states owing to the refractory period and decay of 348

the membrane voltage. As a result, more digital-friendly low- 349

cost implementations have been proposed [33]. For our current 350

work, we have used the basic integrate and fire (IF) model. 351

It does not encode any decay and refractory period-related 352

information and the internal state is only defined by the current 353

membrane voltage. If the voltage (accumulated value) exceeds 354

the threshold value, a spike is generated and the accumulator 355

value is reset. Although simple, the model allows us to focus 356

on the variations in the accumulator operator implementation. 357

However, the accumulator-related AxO exploration can be 358

easily expanded to other neuron models. 359

IV. APPROXIMATE OPERATOR DESIGN 360

The accumulator in the SNN neuron accumulates W − 361

bit weights to produce an N − bit output. We denote such 362
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TABLE II
PERFORMANCE COMPARISON OF 4 × 8_8 AND 8 × 8_8 ADDERS

accumulators as W × N_N, where W < N, in this article.363

The actual value of N is an important design decision and364

defines the upper limits of adders before producing overflows.365

For example, using a 4-bit adder to accumulate 4-bit weights366

while producing a 4-bit output (denoted as 4 × 4_4 adder)367

is susceptible to producing arithmetic overflow frequently.368

Meanwhile, employing a higher-bit width accumulator, such369

as 4 × 8_8, would result in less frequent overflows for the370

accumulation of 4-bit weights. However, the FPGA-optimized371

implementations of a W × N_N adder and an N × N_N372

adder show that both adders produce similar PPA metrics. For373

example, Table. II compares the LUT utilization, CPD, and374

dynamic power consumption of 4 × 8_8 and 8 × 8_8 FPGA-375

optimized adders. In the 4 × 8_8 adder, the 4-bit operand is376

sign-extended before addition with the 8-bit operand. It can be377

observed that both implementations have similar performance378

metrics. Therefore, we have used N × N_N operators to379

accumulate W −bit weights in this work. This design decision380

also helps implement SNN-specific adaptations to improve the381

accuracy of proposed adders.382

A. Implicit Approximation by Overflow383

Fig. 4 depicts the LUTs and carry chains-based repre-384

sentation of our base N × N_N design for N = 4.385

In this configuration, the LUTs receive operands in 2’s386

complement form and utilize (1) to determine the values387

of the output signals O5 and O6. These signals govern388

the corresponding carry chains in the FPGAs to compute389

the final sum. Despite being an accurate adder, the base390

adder is still susceptible to generating incorrect outcomes391

due to arithmetic overflows. Hence, we refer to it as the392

OvErr_BASE adder.2 The arithmetic overflows encountered by393

the OvErr_BASE adder can significantly impact the output394

accuracy of SNNs, which work on the principle of pro-395

ducing a spike when the accumulated weight values reach396

a threshold value. These arithmetic overflows can result in397

comparing an incorrect accumulated value with the threshold398

value399

O5 = Ax AND Bx; O6 = Ax XOR Bx. (1)400

The arithmetic overflows occur when the addition of two401

positive numbers produces a negative result or the addi-402

tion of two negative numbers produces a positive number.403

In our current work, we explore the research question of404

whether an approximate N × N_N adder with PPA sim-405

ilar to an N × N_N OvErr_BASE adder produces more406

accurate results by controlling overflows. To answer this407

question, we propose three overflow-safe approximate adders408

that utilize resources similar to an OvErr_BASE adder.409

2Fig. 2 has used a 7-bit OvErr_BASE adder.

Fig. 4. LUTs and carry chains-based implementation of a 4-bit signed adder:
OvErr_BASE design.

Fig. 5. N × N_N OvCtrl_POS and OvCtrl_NEG adder structure.

However, they introduce deliberate approximations in the 410

addition process to avoid overflows. In the following sec- 411

tions, we will discuss these approximate architectures in 412

detail. 413

B. Application-Specific Overflow-Safe Approximate Adders 414

The initial two overflow-safe approximate adders, denoted 415

as OvCtrl_POS and OvCtrl_NEG, are based on analyzing both 416

operands’ sign bit, i.e., the most-significant bit (MSB). Fig. 5 417

demonstrates a generic view of the two proposed architectures. 418

As shown in Fig. 5, the LUT receiving the sign bits, i.e., AN−1 419

and BN−1, has been detached from the rest of the circuit. If 420

both operands are positive, i.e., the MSB of both operands 421

is 0, the corresponding LUT produces a 0 output. Similarly, 422

if both operands are negative, the LUT produces a 1 as the 423

output. For all other input combinations, the sum’s sign bit 424

(SN−1) accurate computation depends on the output carry from 425

the preceding computation. However, the routing of the output 426

carry from the preceding computations to the most significant 427

LUT results in extra routing delays and, therefore, has not been 428

considered in this design. In our proposed OvCtrl_POS and 429

OvCtrl_NEG architectures, we used LUT‘s available input pins 430

to provide more bits from the input operands (AN−2, AN−3, 431

BN−2, BN−3) to predict the missing carry. Equation (2) defines 432

the logic the most significant LUT implements for such cases. 433

However, in some cases, the LUT cannot predict the correct 434

sign bit due to the lack of knowledge about other bits of the 435

operands. For instance, Table III presents two examples of a 6- 436

bit adder. The three most significant bits in both examples are 437

the same, but they produce answers with different signs. For 438

such cases, we approximate the sign bit to either 0 (resulting 439

in OvCtrl_POS architecture) or 1 (resulting in OvCtrl_NEG 440

architecture) 441

Sign =
(
−2N−1AN−1 + 2N−2AN−2 + 2N−3AN−3

)
442

+
(
−2N−1BN−1 + 2N−2BN−2 + 2N−3BN−3

)
. (2) 443
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TABLE III
6 × 6_6 OvCtrl_POS AND OvCtrl_NEG EXAMPLE

Fig. 6. N × N_N OvRec_AccMSB adder structure.

The OvCtrl_POS and OvCtrl_NEG overflow-safe adders444

have some limitations, which contribute to reducing the445

application-level accuracy of SNNs. For example, for446

OvCtrl_NEG adder, the result of performing X − X is not447

equal to zero. To overcome the limitations of OvCtrl_POS and448

OvCtrl_NEG architectures, we present the OvRec_AccMSB449

overflow-safe approximate adder. Fig. 6 presents the generic450

structure of an N × N_N OvRec_AccMSB adder. Compared to451

the OvCtrl_POS and OvCtrl_NEG designs, this architecture452

is based on the carry chains of the FPGAs. For operands453

with different signs, this architecture behaves like the base454

OvErr_BASE architecture. However, for operands with the455

same sign (either both positive or both negative), this architec-456

ture employs different functions for the two most significant457

LUTs. In particular, the second most significant LUT and the458

associated carry chain element (highlighted by the blue color459

in Fig. 6) always generate a 0 carry-out and forward it to the460

carry chain element of the most significant LUT. In the case461

of positive operands, the most significant LUT (highlighted462

by the green color) uses the O6 output to forward a 0 to463

the associated carry chain element. The carry chain element464

performs an XOR operation on the O6 and the carry-in (which465

is 0) to produce a 0. Similarly, in the case of negative operands,466

the most significant LUT forwards a 1 to the carry chain467

element using the O6 line. The carry chain element performs468

an XOR operation on the O6 and the carry-in (which is 0) to469

produce a 1. When dealing with operands with the same sign,470

the output SN−2 produced by the second most significant LUT471

and the associated carry chain is approximate. As explained,472

this is due to the fact that in such cases, the second most473

significant LUT and the associated carry chain are dedicated474

to generating and forwarding a 0 carry-out to the following475

carry chain element.476

C. Approximation by Circuit Pruning477

1) Pruning-Aware INIT-Value Exploration: The circuit478

pruning techniques, such as those presented in AppAxO [9], do479

not account for mitigating the pruning-induced output errors.480

For instance, Fig. 7 provides an example of an AppAxO-481

based approximate signed adder that demonstrates this issue.482

In the shown approximate adder, the LUT that processes483

Fig. 7. AppAxO pruning technique-based an approximate 4 × 4_4 signed
adder [9].

inputs A1 and B1 has been pruned, and as a result, the 484

associated carry chain element does not contribute to the 485

computation of the sum bit S1 or generate an output carry for 486

the following location. In this approximate design, the output 487

carry generated by the least significant LUT and associated 488

carry chain element (from processing A0 and B0) is forwarded 489

to the carry chain element processing inputs A2 and B2. 490

However, the propagation of wrong carries can produce AxOs, 491

which are more susceptible to producing arithmetic overflows 492

in general. 493

In our proposed AxOs generation methodology, referred 494

to as AxOSpike, we take advantage of the available 495

LUT input pins to introduce redundancy and mitigate the 496

impact of pruning-induced errors. Fig. 8 shows an example 497

of AxOSpike‘s error-mitigation technique for the approximate 498

adder presented in Fig. 7. In this technique, every LUT (except 499

for the most significant LUT) also receives the inputs of 500

the proceeding LUT. For example, the least significant LUT 501

receives inputs A0, B0, and A1, B1. Moreover, the location of 502

every LUT is identified by an N-bit binary string. For example, 503

for the 4×4_4 adder in the example, we will use a 4-bit string 504

1101. The 0 in the binary string identifies that the second 505

least significant LUT has been pruned away. In AxOSpike, 506

every LUT also receives the pruning status of the following 507

LUT. For example, the least significant LUT receives E1 as 508

the fifth input. As the second least significant LUT is pruned 509

(binary string 1101), the E1 input will be set to 1. With the 510

redundant inputs and information about the pruning status of 511

proceeding LUT, different INIT3 values can be explored for 512

every LUT to mitigate the impact of pruning-induced errors. 513

In our proposed work, we explored different INIT values to 514

predict the input carry for a carry chain element following 515

a pruned location. For example, for the approximate adder 516

shown in Fig. 8, the least significant LUT will predict the 517

input carry for the carry chain element associated with inputs 518

A2 and B2. In this process, the accuracy of output S0 can be 519

traded to predict the correct carry for the following locations. 520

For the current work, we have selected two INIT values 521

denoted as v1(hexadecimal value X′6666666688888888) and 522

v2 (hexadecimal value X′666606608888F880). It should be 523

noted that INIT values exploration provides a large design 524

space, and there can be other possible INIT values that provide 525

better-error recovery for the approximate adders. 526

3The function implemented by a LUT is represented by a 64-bit INIT value.
Please see Xilinx Configurable Logic Block User Guide for more details.
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Fig. 8. AxOSpike: Redundant inputs-based N × N_N adder to mitigate
pruning-induced errors.

Fig. 9. Comparing the pruning-based DSE performance of AppAxO [9] and
AxOSpike for the same design: 7×7_7 OvRec_AccMSB adder. (a) Operator-
level Pareto fronts. (b) Application-level Pareto fronts.

2) Enhanced Automated Circuit Pruning: The AxOs that527

are based on logic pruning usually remove the computational528

blocks by setting them to a constant value of 0. For example,529

the output S1 is truncated to 0 in the AppAxO pruning-based530

approximate adder in Fig. 7. However, in our experiments,531

we have identified that truncating computational blocks (LUTs532

and carry chain elements) and replacing their functionality533

with a constant 1 can significantly improve the output accuracy534

in some cases. As observed in Fig. 8, AxOSpike provides the535

opportunity to replace the truncated output S1 by either 0 or 1.536

This additional degree of freedom also significantly increases537

the AxOs design space. For example, for the 4 × 4_4 approx-538

imate adder presented in Fig. 7, AppAxO provides 24 − 1 =539

15 different approximate versions, whereas AxOSpike provides540

34 − 1 = 80 approximate versions for the architecture shown541

in Fig. 8.542

The AxOSpike pruning technique can be applied to all543

approximate adders presented in this work. To highlight the544

efficacy of AxOSpike‘s generated AxOs, we compare them545

with AppAxO-generated approximate adders. Fig. 9 shows546

this comparison on both operator- and application-level for 7×547

7_7 approximate adders. For this comparison, we have consid-548

ered only the OvRec_AccMSB designs. As shown in Fig. 9(a),549

the nondominated design points provided by AxOSpike pro-550

vide a better-accuracy-performance tradeoff with 24% higher551

hypervolume of the resulting Pareto front. Similarly, the552

utilization of these approximate adders for the classification553

of the MNIST dataset using the SNN model discussed in554

Section III shows that AxOSpike-generated AxOs also con-555

tributes to better-accuracy-performance tradeoffs resulting in556

51% higher hypervolume.557

TABLE IV
DESIGNS USED FOR EXPERIMENTAL EVALUATION OF AxOSpike

V. EXPERIMENTS AND RESULTS 558

A. Experiment Setup 559

All the arithmetic operators implemented in the current 560

work are designed in VHDL and synthesized for the 7VX330T 561

device of the Virtex-7 family using AMD Xilinx Vivado 562

2020.2. The dynamic power is computed by recording the 563

dynamic switching activity for all possible input combinations 564

of the multiplier configurations. For this purpose, we have 565

used the Vivado Simulator and Power Analyzer tools. The 566

behavioral characterization of the operators was based on the 567

results of simulating every possible input combination of the 568

operator, with the implemented design. The SNN model is 569

implemented in C++ and Python using PyBind11. PyTorch 570

and snnTorch [34] were used for ML-related functionality 571

and datasets, and the image-to-spike conversions. The same 572

threshold value has been used across all neurons in an SNN. 573

Table IV shows the different accumulator designs used in 574

the experimental evaluation. The precision of the accumulator 575

is varied from 6 bits to 10 bits. While the OvErr_BASE 576

and OvRec_AccMSB designs were analyzed across different 577

precision, the OvCtrl_POS and OvCtrl_NEG design ver- 578

sions were analyzed only for the 6- and 8-bit operators. 579

Further, we implemented automated circuit pruning for some 580

of the design versions. For the circuit pruning-based oper- 581

ators, we have also explored the impact of utilizing the 582

two INIT values of LUTs, i.e., v1 (X′6666666688888888) 583

and v2 (X′666606608888F880), on improving their output 584

accuracy. Since we use exhaustive sampling, design versions 585

that result in a large number of AxO designs were not used 586

for pruning experiments. However, more intelligent search 587

methods can be implemented in the current framework for the 588

DSE in such large design spaces. The last two columns in the 589

table show the number of designs used for the operator-level 590

and application-level characterization. While the operator- 591

level analysis involves determining PPA and various error 592

metrics, application-level analysis involves only behavioral 593

analysis. As a result, all the PPA metrics mentioned in the 594

subsequent results refer to the hardware characterization of the 595

approximate accumulator design. 596
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Fig. 10. Joint distribution of operands in the neuron’s accumulator for
inference on a single image. (a) Distribution assuming zero overflow during
accumulation. (b) Distribution when using the 8×8_8 OvErr_BASE adder as
accumulator.

B. SNN Model Analysis597

We have used 4-bit weights for the SNN implemented in598

our current work. Even with the 4-bit quantization of the599

weights, the network can reach nearly 98% accuracy, assum-600

ing no overflow occurs during accumulation. For instance,601

Fig. 10(a) shows the distribution of the operand values of602

the accumulation in all the neurons for a single inference,603

assuming all additions are overflow-safe. The vertical axis604

corresponds to the weights and follows the distribution of the605

4-bit weights. The horizontal axis, showing the distribution of606

the current membrane voltage value as the second operand of607

the accumulator, ranges from -800 to 300. When using the608

8×8_8 OvErr_BASE adder, the accuracy drops to around 85%.609

This drop in accuracy due to the overflow is clear from the610

changed distribution of the operands shown in Fig. 10(b).611

The accuracy of the SNN can also vary depending upon the612

threshold value used in the model, and the number of timesteps613

used in the input encoding. Fig. 11 shows the variation of614

the SNN’s accuracy using the 8×8_8 OvErr_BASE adder for615

varying threshold values and number of timesteps. While the616

accuracy varies considerably with the threshold, it stays fairly617

stable over the different number of timesteps. The boxplot in618

the figure shows the distribution of the maximum accuracy for619

the different number of timestep experiments. The maximum620

accuracy varies by less than 0.1% across the 10 different621

timestep experiments. The threshold value for the neuron can622

be viewed as a trainable parameter of the SNN model, with623

some related works exploring joint optimization of the weights624

and the threshold value. However, since we have used post-625

training quantization of the weights, we have employed a626

sweep of the threshold values to demonstrate how the threshold627

value can be used to recover the loss in accuracy due to628

quantization (and approximation) to some extent. For the629

subsequent experiments related to the SNN behavior analysis,630

we report the maximum classification accuracy over varying631

threshold values for 10 timesteps.632

C. Application-Specific Operator Modeling633

1) Operator-Level Analysis: In our current work, we have634

presented four different design variants, including the baseline635

OvErr_BASE design, that provide varying error tradeoffs.636

Fig. 11. SNN accuracy variation with threshold value and the number of
timesteps using the 8×8_8 OvErr_BASE adder as accumulator.

Fig. 12. Comparison of the PPA metrics for the OvErr_BASE and
OvRec_AccMSB adders for different bit-width N×N_N adders.

TABLE V
OPERATOR-LEVEL ERROR METRICS VARIATION IN THE DIFFERENT

VARIANTS OF THE 6 × 6_6 ADDER

Table V shows the values of the operator-level statisti- 637

cal error metrics of each 6×6_6 adder, compared to the 638

6×6_7 overflow-safe adder. These error metrics are commonly 639

employed to characterize the output quality of approximate 640

circuits by comparing the approximate outputs with the 641

accurate outputs, indicating the magnitude and frequency of 642

errors [35]. The OvErr_BASE design has the largest value 643

of the minimum and maximum error magnitudes along with 644

the lowest-error probability. Similarly, the OvRec_AccMSB 645

design has the lowest-average error, average absolute error, 646

average relative error, and the lowest-average absolute rela- 647

tive error, albeit with the highest probability of error. The 648

OvRec_AccMSB, OvCtrl_NEG, and OvCtrl_POS designs have 649

similar maximum and minimum error values. However, in 650

the application-specific analysis, we observed very few bene- 651

fits with the OvCtrl_NEG and OvCtrl_POS versions (shown 652

later), especially for higher-bit widths. Therefore, we limit the 653
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Fig. 13. Comparison of the operator-level error metrics for the OvErr_BASE
and OvRec_AccMSB adders for different bit-width N×N_N adders. (a)
Average error and relative error metrics. (b) Probability of error, average
absolute error, and range of errors.

further analysis to the comparison of the OvErr_BASE and654

OvRec_AccMSB versions.655

Fig. 12 shows the comparison of the PPA metrics for656

different bit width of the N×N_N OvErr_BASE and657

OvRec_AccMSB adders. Expectedly, resource utilization and658

power dissipation rise with increasing bit widths. Also,659

the OvErr_BASE and OvRec_AccMSB designs show similar660

LUT and CC utilization. However, the power and CPD661

vary slightly between the two design variants. This can be662

attributed to the different architecture of the OvRec_AccMSB663

design. Furthermore, the behavior of the designs also varies664

depending on the sign signals of the operands. The com-665

parison of the operator-level behavior of the OvErr_BASE666

and OvRec_AccMSB designs is shown in Fig. 13. The667

OvRec_AccMSB designs exhibit zero average error across668

different precisions. Except for increased probability of error,669

the OvRec_AccMSB designs exhibit better-error metrics than670

OvErr_BASE across different bitwidth N×N_N adders.671

2) Application-Level Analysis: We experimented with672

using the proposed design variants of the N×N_N adders673

as the accumulators in the SNN’s neurons. While the674

OvErr_BASE and OvRec_AccMSB variants exhibited increas-675

ing accuracy with increasing bit-width (N), the OvCtrl_POS676

and OvCtrl_NEG versions did not show such patterns. Fig. 14677

Fig. 14. Variation of classification accuracy with the threshold value for
different design variants of 8×8_8 adders used as an accumulator in the SNN’s
neuron.

Fig. 15. Comparison of the PPA-error tradeoffs of different N×N_N adders
when used as accumulators in the SNN’s neurons.

Fig. 16. Comparing the operator-level DSE performance of v2 and v1 for
the 7×7_7 adder designs. (a) OvErr_BASE. (b) OvRec_AccMSB.

shows the variation of the resulting SNN‘s classification accu- 678

racy with different threshold values for the four 8×8_8 adder 679

designs. As can be seen from the figure, the accuracy of the 680

OvCtrl_POS and OvCtrl_NEG designs achieves a maximum of 681

around 20% accuracy. The comparison of the PPA-error trade- 682

offs across different bit width operators is shown in Fig. 15. 683

The SNN’s classification error decreases with increasing bit 684

width for both OvErr_BASE and OvRec_AccMSB adders. 685

The proposed OvRec_AccMSB design shows lower error 686

than OvErr_BASE across all bit widths. The 8- and 9-bit 687

OvRec_AccMSB adders result have similar accuracy as the 9- 688

and 10-bit OvErr_BASE adders, respectively. This amounts 689

to 26.5% and 20.93% lower PDPxLUTs for similar accuracy, 690

respectively, with the OvRec_AccMSB adders. 691
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Fig. 17. Comparing the operator-level DSE performance of v2 and v1 for
the 8×8_8 adder designs. (a) OvErr_BASE. (b) OvRec_AccMSB.

Fig. 18. Comparing the SNN-level performance of v2 and v1 for the 7×7_7
adder designs. (a) OvErr_BASE. (b) OvRec_AccMSB.

D. Pruning-Aware Operator Modeling692

In addition to the operator modeling for SNN-driven error693

recovery, we also propose generic pruning-aware optimization694

to the operator model. Fig. 16 shows the Pareto front analysis695

for operator-level results of 7×7_7 adder AxOs generated696

using circuit pruning. The v2 plots include the proposed697

optimizations. As seen in the figure, v2 results in consid-698

erably better designs than v1 for both OvErr_BASE and699

OvRec_AccMSB versions. An analysis of the combined Pareto700

front shows only 1 and 2 AxOs belong to v1 compared to701

6 and 7 designs from v2 in Fig. 16(a) and (b), respectively.702

Similarly, Fig. 17 shows the results of 8×8_8 AxOs. Here703

too, we observed much improved Pareto front designs with the704

proposed v2 operator model. In the corresponding combined705

Pareto fronts, 1 and 2 designs belong to v1, compared to 7706

and 11 AxOs with v2 for OvErr_BASE and OvRec_AccMSB707

design variants, respectively.708

Fig. 18 shows the application-level Pareto front analysis709

for 7×7_7 adders. Here too, we observe improved quality710

of results with the pruning-aware v2 model. However, with711

the OvRec_AccMSB version in 8×8_8 designs, we observed712

better-Pareto front designs with v1, as seen in Fig. 19(a).713

Fig. 19(b) compares the resulting hypervolume of the Pareto714

fronts for application-level analysis. For the 7×7_7 designs,715

the v2 version AxOs provide almost similar hypervolume716

as from the combined Pareto front. While the individual717

hypervolume of v2 designs for 8×8_8 AxOs is lower, it still718

contributes additional design points to the Pareto front. Across719

Fig. 19. Application-level results for pruning-aware models of 8×8_8 adder
OvRec_AccMSB. (a) Comparing Pareto fronts. (b) Comparing Pareto-front
hypervolume.

Fig. 20. Comparing the operator-level metrics of approximate 6×6_6
and 7×7_7 adder designs from AxOSpike and AppAxO. (a) 6×6_6 adders.
(b) 7×7_7 adders.

Fig. 21. Comparing the operator-level metrics of approximate 8×8_8 adder
designs from AxOSpike, AppAxO, and EvoApprox.

experiments for different operators, we observe up to 102.1% 720

improvement in the Pareto from hypervolume due to v2. 721

E. Comparing With State-of-the-Art 722

For comparing AxOSpike with related state-of-the-art works, 723

we chose EvoApprox [5] and AppAxO [9] as the set of 724

relevant works. This approach subsumes the comparison with 725

other related works, such as CoOAx [17], which is based on 726

a similar methodology as AppAxO and approxFPGAs [10], 727

which uses the designs present within the scope of EvoApprox 728

for DSE. Further, 8×8_8 adders are the only relevant designs 729

for the current work provided in the EvoApprox library. 730
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Fig. 22. SNN’s classification Error versus LUT Utilization for approximate
8×8_8 adders used as accumulators in the SNN’s neuron.

1) Operator-Level: Fig. 20 shows the Pareto front analysis731

of the 6×6_6 and 7×7_7 approximate adders generated with732

the AppAxO methodology and those using AxOSpike. As can733

be seen in the figures, AxOSpike generates designs with better-734

PPA-error tradeoffs than AppAxO. With the combined Pareto735

front analysis, we do not observe any designs from AppAxO736

contributing to the Pareto front. However, this is expected as737

the enhanced automated circuit pruning of AxOSpike subsumes738

that of AppAxO. Even in the case of 8×8_8 designs, including739

the designs from EvoApprox, all the dominant points in the740

combined Pareto front are the result of AxOSpike‘s proposed741

modifications, as seen in Fig. 21. In addition to showing the742

efficacy of the presently proposed methods, it also shows the743

importance of integrating FPGA-specific optimizations into the744

operator model. Unlike AxOSpike and AppAxO, the designs745

in the EvoApprox library are optimized for ASIC implemen-746

tation. and fail to leverage the FPGA-based structures for any747

error recovery.748

2) Application-Level: For the application-level compari-749

son with related state-of-the-art works, we used the 8×8_8750

designs from EvoApprox. Additionally, we combined the751

pruning methodology of AppAxO along with our proposed752

OvRec_AccMSB design for another comparison point -753

AppAxO+AccMSB. Fig. 22 shows the Pareto fronts of754

the candidate designs while considering the LUT usage of755

the adders along with the SNN’s classification accuracy.756

Similar to the operator-level results, we observe higher-quality757

designs generated using AxOSpike. The combined Pareto758

front shows a total of 42 AxO designs, with EvoApprox759

and AppAxO+AccMSB contributing just 1 and 3 designs,760

respectively. A similar analysis while considering the adders’761

PDPxLUTs metrics, shown in Fig. 23, shows 1 and 4 designs762

in the combined Pareto front resulting from EvoApprox and763

AppAxO+AccMSB, respectively, out of a total of 98 points.764

Fig. 24 shows the comparison of the Pareto front hypervolume765

corresponding to Figs. 22 and 23. As evident, AxOSpike results766

in much better designs than EvoApprox. Further, the results767

Fig. 23. SNN’s classification error versus PDP×LUTs for approximate
8×8_8 adders used as accumulators in the SNN’s neuron.
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Fig. 24. Comparing the hypervolume for approximate 8×8_8 adders used
as accumulators in the SNN’s neuron.

show that the proposed OvRec_AccMSB design can be com- 768

bined with any complementary circuit pruning methodology, 769

such as AppAxO, to provide better-quality designs than state- 770

of-the-art methods. 771

VI. CONCLUSION 772

With the rising complexity of edge AI, novel approaches 773

spanning across the computing stack need to be developed. 774

SNNs and approximate arithmetic form two such emerging 775

computing paradigms at the algorithm and the circuit layer, 776

respectively. SNN-based processing is inherently error tolerant 777

and AxC should be able to leverage such error resilience 778

most effectively. However, a bottom-up approach to designing 779

AxOs can lead to limited benefits. In this current article, 780

we present novel methods of integrating both application- 781

specific and hardware platform-specific information into the 782

operator model, thereby enabling the search for consider- 783

ably better-quality designs with automated circuit pruning. 784

With the proposed techniques, we report designs with up 785

to 26.5% lower PDPxLUTs with similar application-level 786

accuracy. Further, we report a considerably better set of design 787

points than related works with up to 51% higher-Pareto front 788

hypervolume. The current work can be extended to include 789

more complex SNN neuron models and can benefit from 790

more intelligent automated DSE, especially for larger bit-width 791

operators. 792
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