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Abstract—Counterfeiting, overproduction, and cloning of in-
tegrated circuits (ICs) and associated hardware have emerged
as major security concerns in the modern globalized microelec-
tronics supply chain. One way to combat these issues effectively
is to deploy hardware authentication techniques that utilize
physical unclonable functions (PUFs). PUFs utilize intrinsic
variations in hardware that occur during the manufacturing
and fabrication process to generate device-specific fingerprints or
immutable signatures that cannot be replicated by counterfeits
and clones. However, unavoidable factors like environmental
noise and harmonics can significantly deteriorate the quality
of the PUF signature. Besides, conventional PUF solutions are
generally not amenable to in-field authentication of hardware,
which has emerged as a critical need for Internet of Things (IoT)
edge devices to detect physical attacks on them. In this paper,
we introduce frequency-domain PUF or FDPUF, a novel PUF
that analyzes time-domain current waveforms in the frequency
domain to create high-quality authentication signatures that are
suitable for in-field authentication. FDPUF decomposes electrical
signals into their spectral coefficients, filters out unnecessary
low-energy components, reconstructs the waveforms, and gen-
erates high-quality digital fingerprints for device authentication
purposes. Compared to existing authentication mechanisms, the
higher quality of the signatures through frequency-domain anal-
ysis makes the proposed FDPUF more suitable for protecting
the integrity of the edge computing hardware. We perform
experimental measurements on FPGA and analyze FDPUF prop-
erties using the NIST test suite to demonstrate that the FDPUF
provides better uniqueness and robustness than its time-domain
counterpart while being attractive for in-field authentication.

Index Terms—Hardware Authentication, PUF, FPGA, NIST,
DCT, Wiener filter, Counterfeiting, Frequency-Domain.

I. INTRODUCTION

Counterfeiting is an international criminal industry that
spans the whole spectrum of all manufactured products.
With the recent shift of the global semiconductor industry
from a vertical business model to a horizontal model and
a shorter time-to-market strategy, the fabless manufacturers
share their design with untrusted offshore fabrication facil-
ities or foundries. Additionally, the integration companies
acquire Intellectual Properties (IPs) from untrusted vendors.
For these reasons, counterfeit electronics have become an
increasingly concerning security matter in the hardware in-
dustry. Other forms of hardware attacks include in-field al-
terations/tampering and hardware Trojans. The combination
of these attacks can lead to product failures, cause a loss
in revenue for businesses, and bring economic disaster that
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impacts national and public security. In this scenario, physical
unclonable function (PUF) based authentication techniques
can play a critical role in mitigating hardware counterfeiting
and cloning.

Physical unclonable functions or PUFs are complex struc-
tures that exploit the manufacturing process variations-borne
random fluctuations in device properties, e.g., gate delay,
threshold voltages, etc., to generate device-specific unique fin-
gerprints. These uncontrollable random variations are known
as entropy sources of the PUF. In the existing literature,
there are a plethora of physical parameters that have been
utilized to design and implement various PUFs, such as time,
frequency, voltage/current, logical states, delay, capacitance,
electrical/magnetic field, and intensity [1].

The early concept of the frequency-based PUF was realized
using ring oscillators (ROs) in the RO PUF [2]. In this
concept, a pair of ring oscillators containing an odd number
of inverters are put into race condition, and their outputs are
fed into a comparator circuit. Based on the frequency/speed
of each oscillator, the comparator outputs a binary ‘0’ or
‘1’. The inherent delays in the lines or the logic gates are
primarily uncorrelated. As a result, this feature was used to
design the RO PUF. As RO PUF suffers from inter-dependence
issues of the ring oscillators, to alleviate their mutual locking
mechanism, a new structure named TERO PUF (Transient
Effect Ring Oscillator) was proposed [3]. Instead of ROs, the
TERO structure consists of an SR latch with two AND gates
and an even number of inverters (two or more), known as the
TERO loop. A single CTRL signal governs the S and R input
of the loop. Instead of utilizing the oscillation frequencies, it
takes advantage of the number of oscillations, eliminating the
locking phenomenon.

Acoustical PUF (APUF) [4] is an example of a PUF that
is built on the characterization of an electronic property.
It utilizes the frequency spectrum of glass delay lines that
transform the electrical signal into ultrasound; then, the data
dimensionality is reduced with principal component analysis
(PCA) to generate unique signatures. A few other PUF in-
stances that employ the optical frequencies and structural im-
perfections of optical materials are FiberID [5], liquid crystal
PUF [6], and quantum optical PUF [7]. The FiberID exploits
the unique Rayleigh backscatter patterns at the molecular
level within the optical fiber structure. These patterns are
generated due to manufacturing process variations captured
through optical frequency domain reflectometry (OFDR). On
the other hand, Cholesteric Liquid Crystal (ChLC) shells
reflect unique and colorful light patterns once illuminated.
These random and unpredictable patterns are the frequency
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response of the reflected light, and these are generated due
to structural variations, which the liquid crystal PUF exploits
for object authentication [6]. Authors in [7] proposed that it
takes advantage of the nanoscale deformities in 2D materials.
These defects and spatial variations in the material bandgap
are spawned during crystal growth and are characterized
by photoluminescence measurements. Apart from utilizing
variations in optical parameters, some alternative techniques
utilize radio frequency (RF) to generate device-level identifiers
or digital fingerprints. RF-DNA PUF uses radio-frequency
scattering instead of optical refraction [8], RF-PUF [9] utilizes
the inherent frequency offsets and I-Q imbalances within the
data transmission channel.

One of the significant drawbacks of the analog electrical
signal is the associated environmental noise. The presence of
such unavoidable noise impairs the integrity of the waveform.
Additionally, such noise belongs to higher harmonics of the
fundamental frequencies. These harmonics also contain a tiny
fraction of the overall signal energy, thus contaminating the
signals. However, it is nearly impossible to analyze a signal
in the time domain and remove such undesired components,
which motivates us to develop this frequency-domain PUF.

In this paper, we introduce frequency-domain PUF, or
FDPUF, a novel PUF methodology that analyzes the time-
domain current waveforms, decomposes them into the fre-
quency domain, removes unnecessary/low-energy signal com-
ponents, performs noise filtering, then reconstructs the signal
to generate device-specific biometric fingerprints/signatures
for authentication. We re-use the current measurements that
are collected in designing CurIAs [10]. CurIAs demonstrated
superior performance as PUF in terms of uniqueness, robust-
ness, and randomness. This study aims to improve robustness
performance through frequency-domain analysis compared to
its time-domain counterpart. We apply the DCT technique to
compress and transform the time domain signal into spec-
tral coefficients to achieve this. Then we set a threshold of
signal energy level to filter out the components that do not
contain any significant signal information. From the nature of
DCT, most of these low-energy components belong to higher
frequencies. We set these redundant coefficients to zero and
employ the Wiener filter to remove signal noise. Hence, we
perform an inverse DCT (IDCT) to reconstruct the denoised
signal. Finally, we implement our signature generation tech-
nique (discussed in [10]) on the reconstructed waveforms,
transform them into digital signatures, and compute the PUF
metrics such as uniqueness, robustness, uniformity, and ran-
domness. We explore that the FDPUF demonstrates better
uniqueness and robustness compared to CurIAs. To the best
of our knowledge, this is the only existing PUF design based
on the frequency domain analysis of the current signals. Fig.
1 depicts how FDPUF can be used for authenticating edge
devices in the field.

The remainder of the paper is organized as follows. We
provide background on PUF technology and a brief survey of
existing PUF research and practice in Section II. We present
the FDPUF design methodology and describe the signature
extraction steps in Section III. In Section IV, we present the
experimental measurement setup, supply current data collec-

Fig. 1: FDPUF can be used to authenticate edge devices
in-field through sensing and analysis of supply current in
response to specific workloads.

tion, and analysis of FDPUF signatures. We conclude and
present potential future work in Section V.

II. BACKGROUND

A. Device Life-cycle and Hardware Supply Chain

The modern electronic supply chain is long and complex
as the entities/parties involved in this process can be spread
across the globe. Fig. 2 depicts a simplified view of the
different stages of a device’s life cycle and its involvement
in the modern IC supply chain. The production starts with
the process of the device specifications. After the specs are
finalized, the design process kicks off. The overall design
procedure consists of three significant steps, starting from RTL
design to the generation of GDSII fabrication files. In the first
step, the RTL designers perform behavioral circuit description
simulations. Once the circuits pass the RTL simulations, the IC
designers transform the hardware description circuits into gate-
level circuits. Next, the physical design and layout process
begins. At the end of the layout stage, the digital GDSII files
are generated and passed down to the foundries for fabrication.

The foundries fabricate the ICs, perform functionality tests,
assemble them, and distribute them through the marketing
partners. After the system integration takes place, the devices
are deployed in-field. After a certain deployment period, a
couple of things can happen to the devices. Firstly, they might
reach their end-of-life and are no longer usable. As a result,
they are discarded or recycled for usable components. On
the other hand, they might also need periodic service for
maintenance or repair. So they are transferred to the authorized
service centers. If the service centers can successfully repair
the devices, they get redeployed for further usage.

Threat Model: For the proposed authentication protocol,
we consider the following threats associated with the IC life
cycle:

1) Supply Chain Threats: Hardware supply chain manage-
ment is a growing issue due to the increasing vulnerabilities
and threats associated with different levels/stages. Any un-
trusted party within the supply chain can potentially inject vul-
nerabilities/malicious components in both software/hardware
levels, manipulate and exfiltrate data/secret information with
a mischievous intent [13]. The supply chain has become even
more susceptible to attacks in recent times due to the high
cost of foundry/fabrication facility maintenance, from design
to packaging of hardware, which in turn requires third-party



Fig. 2: The life-cycle of an integrated circuit (IC)/device and various stages of a modern IC supply chain [11], [12].

outsourcing vendors for specific steps within the fabrication
process, as illustrated in Fig. 2. The outsourcing required for
these specific steps within the fabrication process creates a new
realm of security concerns for IC designers due to the lack
of trustworthiness in the various entities involved in IC/SoC
(System on a Chip) design and fabrication. Once the design
is shipped to the foundry for fabrication, it is entirely out of
the hands of the designers. It elevates the distrust between the
parties/individuals involved from the design to fabrication.

2) Post-Deployment Threats (for IoT/Edge Devices): Once
the ICs have been integrated into consumer devices (e.g.,
drones, home-security appliances, smart home devices, etc.)
in IoT systems and deployed in the field, they are vulnerable
to diverse physical attacks. Replacement of a hardware compo-
nent, e.g., an IC by a compromised one, altering device func-
tionality through addition/removal of components, rewiring
the components, etc., constitutes powerful physical attacks on
edge devices. These attacks have emerged as significant attack
vectors for edge computing devices used in wide-ranging ap-
plications, e.g., environmental sensing, structural monitoring,
and military/defense surveillance, which expose the hardware
to an adversary and make it vulnerable to physical attacks. We
incorporate this threat into our threat model definition.

Trust Model: In our authentication protocol trust model,
we assume that:

• the IC designer is trusted,
• the IC fabricator/manufacturer is untrusted,
• the system integrator is trusted,
• the device is deployed in untrusted setting, and
• the authenticator/verifier is trusted.

B. Related Works

Some published works perform electromagnetic (EM) and
side-channel analysis in the frequency domain to prevent
potential attacks on hardware. For example, the authors in [14]
proposed an analysis scheme to compute the oscillation
frequency and location of small RO PUF blocks via EM
emission measurements. They successfully launched an attack
on FPGA-based RO PUF and extracted the primary signal

paths, including the complete PUF model. The authors in [15]
evaluated the EM analysis (EMA) threats on RO PUFs through
EM trace measurements to sniff out the PUF responses from
the geometric/current-path leaks. Similarly, a side-channel-
based analysis and physical security of TERO PUF were
presented in [16]. The authors launched attacks on TERO
PUF by measuring the time domain signals and analyzing
them via short-time Fourier Transform (STFT) to reveal the
frequency domain information. This attack was able to extract
a significant chunk of the PUF bits with reasonable accuracy.

On the other hand, frequency domain analysis has been
widely used for fault detection in analog circuits. The au-
thors in [17], [18] employed Discrete Wavelet Transformation
(DWT) techniques on dynamic supply current waveforms
for both fault detection/diagnosis and localization. Wavelet
transformation is more advantageous than FFT because the
former contains both time and frequency information in the
decomposed data. In these approaches, the authors acquired
the current signature from the golden or fault-free device,
performed simulation and measurements of test circuits that
may or may not contain faults, and finally compared the
computed wavelet coefficients from both cases.

For fault detection, several researchers have adopted an-
other frequency domain analysis technique, Discrete Cosine
Transform (DCT). Reference [19] demonstrated a DCT-based
approach to detect faults in physical materials. DCT has also
been used in fault detection in electric vehicles’ batteries [20]
and in electrical/mechanical fault detection in induction mo-
tors [21]. These techniques analyzed the voltage, current, and
vibration waveforms for fault characterization and detection.
Some authors even applied a DCT-based approach in develop-
ing fault-tolerant [22] and process variation tolerant [23] archi-
tectures for Peak Signal-to-Noise Ratio (PSNR) improvement
and yield enhancement.

Our comprehensive literature review reveals that the articles
incorporate the random variations in either optical, or radio
frequency (RF), or electromagnetic (EM) emission at the
physical level to design various PUF structures. Some other
aspects of frequency domain-based analysis were used in
a circuit’s fault detection using power/voltage/current traces.



However, to the best of our knowledge, none of the current
works focus on analyzing electrical signals in the frequency
domain and extracting the inherent randomness/irregularities
as entropy sources.

C. Discrete Cosine Transform (DCT)

Discrete Cosine Transform (DCT) was introduced by
Ahmed et al. in 1973 for pattern recognition and Wiener
filtering purposes [24]. Today, DCT is widely used in speech,
image, and video compression due to its energy compaction
characteristics. A fairly accurate reconstruction is possible
using a handful of DCT coefficients because the neighboring
coefficients are highly correlated [25]. As a result, DCT is
extremely successful in the reduction of data or truncation of
feature space [26].

The DCT of a signal/sequence Y (n), n = 0, 1, ..., (N − 1)
is expressed as:

Cy(0) =

√
2

N

N−1∑
n=0

Y (n)

Cy(k) =
2

N

N−1∑
n=0

Y (n) cos
k(2n+ 1)π

2N
,

(1)

here, Cy(k) is the kth DCT coefficient and k =
1, 2, 3, ..., (N − 1). Eqn. (1) can be generalized as:

Cy(k) = α(k)

N−1∑
n=0

Y (n) cos
k(2n+ 1)π

2N
, (2)

where, α(k) is the scaling factor defined as:

α(k) =


√

1
N , k = 0√
2
N , k = 1, 2, 3, ...(N − 1).

(3)

The basis vectors of this transform, [
√

1
2 , cos

k(2n+1)π
2N ]

belong to one of the Chebyshev polynomial classes. The
kth Chebyshev polynomial can be expressed as, T̂k(γq), q =
1, 2, ..., N [27]. The T̂k(q) is equivalent to:

T0(n) =

√
1

2

Tk(n) = cos
k(2n+ 1)π

2N
,

(4)

here, k = 1, 2, ..., (N − 1) and n = 0, 1, ..., (N − 1). The
inverse discrete cosign transformation (IDCT) is defined as:

Y (n) =

√
1

2
Cy(0) +

N−1∑
k=1

Cy(k) cos
k(2n+ 1)π

2N
(5)

Eqn. (5) can be generalized as:

Y (n) =

N−1∑
k=0

α(k)Cy(k) cos
k(2n+ 1)π

2N
(6)

Fig. 3: A general Wiener filtering structure [29].

The orthogonality property can be applied to achieve [27],
[24]:

N−1∑
n=0

Tk(n)Tl(n) =


N/2, k = l = 0

N/2, k = l ̸= 0

0, k ̸= l.

. (7)

If DCT possessed orthonormality property, it could be
considered as a unitary transform [28], which implies that:

N−1∑
n=0

[Y (n)]2 =

N−1∑
k=0

[Cy(k)]
2. (8)

From Eqn. (1) and (5), it is clear that DCT synthesis
is both periodic and evenly symmetric due to the cosine
operations [28]. Compared to the Discrete Fourier Transform
(DFT), DCT is computationally more efficient as the latter
uses only real numbered coefficients and does not require
complex additions or multiplications. As a result, 1-D DCT
(DCT Type-2) is a great choice for analyzing finite-length
current waveforms for PUF applications because it reduces
the total system overhead for implementation.

D. Energy Compaction with DCT

It is an inherent property of the DCT-2 that the signal energy
is mainly concentrated in the initial coefficients. Following
Parseval’s theorem,

N−1∑
n=0

|Y (n)|2 =
1

N

N−1∑
k=0

α(k) |Cy(k)|2 . (9)

As DCT energy is concentrated within lower indices, the signal
tends to have most of its energy fixed in the lower frequencies.
So, if the remainder of the coefficients is set to zero, it will
remove the higher frequency components, and it might not
have any severe impact on the signal [28].

E. Wiener Filtering

Wiener filtering is a well-known technique in the field of
signal and image processing, where it restores the signals that
are contaminated by additive random noise [29], [30]. In a
practical scenario, most of this noise is unknown and needs to
be extracted and estimated from data segments.

Fig. 3 depicts a generalized Wiener filter structure. Here,
a N -element column vector, f that contains a signal, s and
noise component, n. We assume that the signal and noise are
mutually uncorrelated. For a N × N unitary transformation
matrix, A being applied to f , we can write:

F = Af = As+An ≡ S +N. (10)



A few examples of the unitary transformations would be
Fourier, Hadamard, Karhunen-Loève, DCT, etc.. Multiplying
F with a N × N filter matrix, G, we get the filtered matrix,
Ŝ. Finally, the inverse unitary transformation takes place to
retrieve/reconstruct the denoised estimated signal (Eqn. (11)).
The filter parameter, G, is chosen carefully to minimize the
Mean Square Error (MSE).

ŝ = A−1GF = A−1GAf. (11)

F. MSE and PSNR
The mean square error (MSE) is defined as:

MSE =
1

N

N−1∑
n=0

[Y (n)− Ŷ (n)]2, (12)

where Ŷ (n) is the estimated version of the N -bit long original
signal/vector, Y (n).

The Peak Signal-to-Noise Ratio (PSNR) is expressed
as [31]:

PSNR = 10 log10

[
(PeakV alue)2

MSE

]
. (13)

For proper signal quality restoration, the PSNR value of the
reconstructed signal should be >30 dB [23].

III. FDPUF DESIGN METHODOLOGY

A. System Architecture
The design methodology of the FDPUF is similar to

supply current analysis in the time domain, CurIAs [10].
We employ the dynamic current variations due to temporal
switching activities within sequential circuit structures, e.g.,
Linear/Non-Linear Feedback Shift Register (LFSR/NLFSR),
as our entropy source. They can be implemented into the
hardware components of an edge device (e.g., custom system-
on-chip, FPGA, microcontroller) either by adding separate
sequential structures or re-purposing existing circuit blocks
(e.g., counter, shift register, pipeline register, boundary scan,
etc.) to be configured as LFSR/NLFSR during authentication,
to minimize hardware overhead.

Dynamic current waveforms are measured from an edge
hardware, as in CurIAs. The primary novelty of this work lies
in performing data analysis in the frequency domain instead of
the time domain to create robust device-specific authentication
signatures, which can be verified by an external verifier during
the authentication process.

Fig. 4 illustrates the overall architecture of FDPUF. Firstly,
we assume that the collected time-domain current measure-
ment data or waveforms are noisy. We apply DCT to the
signal. After computing the DCT coefficients, we apply energy
thresholds to them as discussed in Section II-C in detail.
The energy thresholding allows us to detect the redundant
high-frequency coefficients that do not significantly contribute
to signal formation. We set the values of those redundant
coefficients to zero. In the next step, we apply Wiener filtering
for noise reduction. Hence, we apply inverse DCT (IDCT)
to compute the estimated signal/waveform on the denoised
signal. We apply the same signature generation technique to
transform IC-specific digital signatures.

Fig. 4: Architectural block diagram for the proposed FDPUF
based edge device authentication approach.

B. Frequency Domain Analysis Scheme using DCT

We start our frequency domain analysis by applying DCT
to the current waveforms in MATLAB1. We incorporate MAT-
LAB’s built-in function dct for this purpose. Every current
signal contains 100,000 datapoints, and as a result, every DCT
operation will produce 100,000 DCT coefficients.

1) Thresholding: After we collect the coefficients, we apply
the thresholding technique. In our method, we set the energy
threshold as 99.9%. Only a handful of the coefficients will
carry over 99.9% signal energy, and those that satisfy these
criteria are selected. We set the rest of the coefficients to zero,
as they can be considered mainly to belong to high frequencies
and unwanted components adding to the signal noise floor.

2) Applying Wiener Filter: Once we compute the modified
coefficient vector, we apply Wiener filtering using MATLAB’s
built-in function, wiener2. The wiener2 function takes two
main arguments, the input signal and the filter size, [m.n].
The filter size input argument creates a neighbor size of m×
n to estimate noise through local image mean and standard
deviation. We are applying 1-D DCT to our current waveforms,
and we set the filter size as [2,2].

3) Signal Reconstruction: To reconstruct the signal, we
employ the built-in inverse DCT function of MATLAB, idct
on the filtered signal. We measure signal quality using MSE,
PSNR, and SNR. Before generating the digital signature from
the reconstructed signal, we ensure that they have calculated
PSNR > 30 dB.

4) Signature Generation: Similar to CurIAs, we apply
64 different challenges to each of the 20 ICs and collect
challenge-specific currents. After applying DCT, thresholding
and coefficients selection, Wiener filtering, and IDCT, we
acquire the estimated waveform that is mostly free from
high-frequency and unwanted components that impact signal
integrity. Each of the current waveforms contains 100,000
datapoints, and we take an average over all the data points for
each measurement. Thus, we get 64 average current values for
every single IC. Then, for every IC, we divide the 64 current
values into four groups, with each group containing 16 values.
This selection is based on the mean and standard deviations
among them. By applying mutual comparison between each of
the current values within these four groups, we assign a binary
bit. Thus, for each group, we get 16C2 = 120 binary values,
and for every IC, we get a total 120×4 = 480-bit signature.

1https://www.mathworks.com/products/matlab.html



(a) (b) (c)

Fig. 5: Uniqueness, robustness, and uniformity results for 20 ICs at nominal operating conditions (T = 25 ◦C, VSupply = 3 V ).
Here, the X-axes of the plots represent the average inter and intra-Hamming distances (HD), and Hamming weights (HW),
measured using Eqn. (14), (15), and (16); Y-axes denote the corresponding frequencies; for 480-bit signatures over 20 ICs: (a)
Inter-HD results; (b) Intra-HD results; and (c) Uniformity.

IV. EXPERIMENTAL RESULTS AND SECURITY ANALYSIS

In this section, we present FDPUF evaluation results using
experiments performed on 20 Intel MAX10 FPGA chips on
20 custom Printed Circuit Boards (PCBs), each of which
represents an independent edge device. We measure supply
current values from each PCB corresponding to several input
challenges. After compression, filtering, and reconstructing the
current signals, we apply the proposed signature generation
technique and generate 480-bit signatures for each PCB. For
the data collection process, we define the nominal conditions
as VSupply = 3.0V , and environmental temperature as 25◦C.

A. Uniqueness of Signatures

Uniqueness signifies the quality of a PUF in generating
distinct responses over multiple instances of the same entity
for the same challenge/input. For example, if a group of
ten PUFs is designed and fabricated within ten different
chips and a single challenge is applied to them, each PUF
should generate different responses. Inter-Hamming distance
(Inter-HD) is the parameter commonly used to quantify the
uniqueness of a PUF. As the probability of the maximum
difference between two binary digits, ‘0’ and ‘1’, is 50%, in
an ideal scenario, the average inter-HD of a group of PUFs
should be 50%. The average inter-HD is defined as as [32]:

HDInter,Avg. =
2

k(k − 1)

k−1∑
i=1

k∑
j=i+1

HD(Ri, Rj)

n
× 100%,

(14)
where Ri and Rj are n-bit response from ith and jth instance
of the PUF (i ̸= j) for challenge C, and k is the total number
of PUF instances under evaluation.

In our proposed method, we conduct practical experiments
on 20 Intel MAX 10 FPGAs on 20 different HaHa boards
and measure supply current values corresponding to the input
challenges. After compression, filtering, and reconstructing
the current signals, we apply signature generation techniques
discussed in Section III-B4 and generate 480-bit signatures for
each IC. For the data collection process, we define the nominal

conditions as VSupply = 3.0 V, and environmental temperature
as 25 ◦C. Fig. 5(a) illustrates the computed uniqueness of this
PUF in terms of the inter-HD histogram of the signatures at
nominal conditions. The plot demonstrates that the average
intra-HD is 49.85%, close to the ideal value of 50%. The X-
axis of this plot represents the normalized Hamming distances
between signatures, i.e., and the percentage of bit differences
between PUF responses. The distribution is spread from 0.4 to
0.7, indicating a tight distribution with a substantial uniqueness
property.

B. Robustness of Signatures

Robustness, also known as reproducibility, is the metric
to determine whether the PUF can accurately regenerate the
same responses for the same challenge sets, irrespective of
the environmental conditions. As the performance of any
electronic device depends on environmental stress factors
such as supply voltage, temperature, and time, the robustness
gauges the capacity of the PUF to produce the same responses
under the stressed circumstances compared to the nominal
condition. PUF randomness is measured by intra-Hamming
distance (intra-HD) and expressed by Eqn. (15). Ideally, a PUF
should be able to regenerate its response independent of the
stress factors exactly, so the average intra-HD should be 0%.

HDIntra,Avg. =
1

k

k∑
i=1

HD(Ri,1, Ri,2)

n
× 100%, (15)

here Ri,1 and Ri,2 are the n-bit responses from the ith

instance for challenge C for 1st and 2nd measurement, re-
spectively. The intra-HD is computed by averaging the total
differences in responses over k different PUFs.

We assess the robustness of our proposed PUF in three dif-
ferent scenarios. First, we perform two sets of measurements
under the nominal conditions and compare the results. Then,
we change the supply voltage of the HaHa board and repeat the
experiments under the nominal temperature (25 ◦C). Hence,
we perform further measurements by altering the surrounding
temperature; however, this time, we operate the board at the



nominal supply voltage (3.0 V). We discuss the outcomes of
the experiments in the following sections.

Fig. 5(b) elucidates the intra-HD of our proposed PUF in
nominal conditions. We perform two sets of experiments under
nominal operating conditions for 20 ICs, generate 480-bit PUF
responses/each, and compare the results to determine their re-
producibility. From the plot, we observe that the average intra-
HD is calculated as 1.27%, which is close to the ideal value
of 0%. We can conclude that the PUF can accurately replicate
the response bits over multiple measurements. We note another
important aspect once we closely compare Fig. 5(a) and 5(b)
as both of them have a similar X-axis (normalized HD). We
discover that the spread of these two distributions does not
overlap. It is a vital feature while examining PUF quality,
as any overlap between these two distributions will cause
ambiguity between the uniqueness and robustness of a PUF.
As there is no overlap between these two distributions, we
can safely assume that the PUF can not only generate unique
device-specific signatures, but they are also recreating the
responses with high probability.

1) Supply Voltage Variations: Our experimental platform,
the HaHa board, can operate within the supply voltage range
2.1 V – 3.3 V. We take advantage of this operating range to ex-
tend our experiments across four different voltage levels: 2.1,
2.5. 3.0 (nominal) and 3.3 V by keeping the nominal/ambient
temperature. We apply the same challenge vectors to the
PUF and measure the supply currents at specified voltages.
Fig. 6 demonstrates the inter-HD and intra-HD results for
these experiments. We discover that for 2.1, 2.5, 3.0, and 3.3
V, the intra-HD values calculated are 3.83%, 3.2%, 1.27%,
and 2.29%, respectively. It means that there are minimal bit-
errors for this large supply voltage variation, which signifies
our proposed approach’s strong robustness property. On the
other hand, the computed average inter-HD values are 50.3%,
49.33%, 49.85%, and 49.75% for 2.1, 2.5, 3.0, and 3.3 V,
respectively. All these values are very close to the ideal 50%,
which manifests that the PUF can generate unique signatures
under stressed conditions.

2) Operating Temperature Variations: In our next approach
to quantifying the robustness of the proposed PUF in different
operating conditions, we vary the surrounding temperature. We
use an ATS-505 Thermostream as the external variable thermal
source to achieve and apply controlled temperature directly on
the ICs for conducting temperature variation experiments for
four different temperatures: 10 ◦, 25 ◦, 55 ◦, and 85 ◦C. We
maintain the supply voltage constant at 3.0 V during tempera-
ture alteration experiments. Fig. 7 exhibits the complete results
of temperature variation experiments in terms of inter-HD and
intra-HD values. The calculated intra-HD values for 10 ◦, 25
◦, 55 ◦, and 85 ◦C are 3.9%, 1.27%, 4.47%, and 6.42%,
respectively. The plots signify that the operating temperature
has a significant impact on the robustness of a PUF, and
the further the operating temperature is from the nominal
condition, the performance gradually degrades. Especially at
85 ◦C, there is a comparatively higher percentage of bit-errors
than the nominal. However, we can explain this scenario from
the manufacturing specifications of Intel MAX 10 FPGAs. The
HaHa board is designed based on the commercial version of

MAX 10, which can withstand a maximum of 85 ◦C. At this
extreme temperature (according to the device specifications),
the degradation of overall performance is expected, and we
experience a high value of average intra-HD. On the con-
trary, the average inter-HD values are recognized as 50.24%,
49.85%, 49.99%, and 49.58% at 10 ◦, 25 ◦, 55 ◦, and 85 ◦C,
respectively. It signifies that even if the operating temperature
is altered from the nominal one, the PUF holds a strong
uniqueness property and can generate unique and uncorrelated
signatures with a high probability.

C. Uniformity of Signatures

Another vital metric for PUF evaluation is the uniformity
of its response bits. The uniformity of a PUF is an estimation
of how proportionately the ‘0’s and ‘1’s are distributed within
the response vectors. Ideally, a PUF must have a uniformity
of 50%, which means that the PUF signature must possess
an equal number of ‘0’s and ‘1’s. Uniformity, as expressed
in terms of percentage Hamming Weight (HW), is defined in
Eqn. (16), where Ri,k is the kth response bit from the ith PUF
instance consisting of n-bit signature length [32].

Uniformityi =
1

n

n∑
k=1

Ri,k × 100%, (16)

where Ri,k is the kth response bit from the ith PUF instance
and each signature is n-bit long.

Fig. 5(c) embodies the uniformity results of our proposed
PUF for 20 ICs, each of them having a 480-bit signature.
The X-axis on this plot represents the normalized Hamming
weight (HW), and the Y-axis shows their frequencies. Us-
ing Eqn. (16), the calculated average uniformity is 46.6%
(σHW−norm = 0.064), which is relatively close to the ideal
value. It means that out of 480 bits in a PUF signature,
there are 224 ‘1’s and 256 ‘0’s. Thus, our proposed technique
delivers a strong uniformity feature.

D. Randomness of Signatures

Randomness is one of the most critical PUF quality metrics
that need to be assessed due to their application in cryptogra-
phy and security applications. Every PUF exploits the process
variations as the source of entropy, and these variations are
unpredictable. For a PUF to be considered a gatekeeper of the
authentication procedure, there should be uniformity between
the ‘0’s and ‘1’s within the generated responses; specific sta-
tistical properties must also be maintained between them. As a
result, proper verification of the PUF responses is required to
ensure random bit sequence production. The National Institute
of Standards and Technology (NIST) provides the test suite
SP 800-22 [33] for this purpose. This test suite is a statistical
package that contains a series of statistical tests that assess
the randomness and unpredictability of any random or pseudo-
random binary generator.

The statistical tests in this test suite are designed to test a
particular null hypothesis (H0) that assumes the sequence is
random. The associated alternative hypothesis (Ha) assumes
the opposite, which means the sequence is not random. The



(a) At 2.1 V; Avg. Inter-HD = 50.30%, Avg. Intra-HD = 3.83%

(b) At 2.5 V; Avg. Inter-HD = 49.33%, Avg. Intra-HD = 3.20%

(c) At 3.0 V; Avg. Inter-HD = 49.85%, Avg. Intra-HD = 1.27%

(d) At 3.3 V; Avg. Inter-HD = 49.75%, Avg. Intra-HD = 2.29%

Fig. 6: Robustness results (Inter-HD and Intra-HD) for VSupply variations: (a) 2.1 V; (b) 2.5 V; (c) 3.0 V (nominal); and (d)
3.3 V. The experiments are performed at 25 ◦C temperature, and 480-bit signatures are generated for 20 different ICs. Here,
the X-axes of these histograms represent the average inter and intra-Hamming distances (HD) measured using Eqn. (14) and
(15) and Y-axes denote corresponding frequencies.

(a) At 10 ◦C; Avg. Inter-HD = 50.24%, Avg. Intra-HD = 3.90%

(b) At 25 ◦C; Avg. Inter-HD = 49.85%, Avg. Intra-HD = 1.27%

(c) At 55 ◦C; Avg. Inter-HD = 49.99%, Avg. Intra-HD = 4.47%

(d) At 85 ◦C; Avg. Inter-HD = 49.58%, Avg. Intra-HD = 6.42%

Fig. 7: Robustness results (Inter-HD and Intra-HD) with Temperature variations: (a) 10 ◦C; (b) 25 ◦C (nominal); (c) 55 ◦C;
and (d) 85 ◦C. The experiments are performed at 3.0 V, and 480-bit signatures are generated for 20 different ICs.



hypothesis is tested against a predefined significance level, α.
For our experiments, we set α = 0.001. For each test, the
outcome is defined as the P-value and compared against α. If
the computed P-value > α, then we conclude that the sequence
is random with the confidence level of 99.9% ((1-α)×100%).
On the other hand, if P-value < α, then the sequence is
considered non-random with the same confidence level. In
addition to the P-value, a minimum number of sequences
needs to pass the tests individually for a series of generated
sequences to be considered as passing the comprehensive test.

TABLE I: NIST Test Suite results for the uniformity of P-
values and the proportion of passing sequence at a significance
level, α = 0.001. The tests are performed for 20 PUF
sequences, 480-bit long/each.

Statistical Test P-value Pass
Proportion Pass?

Frequency 0.437274 20/20 Y
Block Frequency 0.739918 20/20 Y
Cumulative Sums (Forward) 0.739918 20/20 Y
Cumulative Sums (Backward) 0.437274 20/20 Y
Runs 0.350485 20/20 Y
Longest Run 0.534146 20/20 Y
Approximate Entropy 0.834308 20/20 Y
Serial (Forward) 0.017912 19/20 Y
Serial (Backward) 0.090936 20/20 Y
Linear Complexity 0.004301 20/20 Y
FFT (960-bit, 10 sequences) 0.534146 10/10 Y
Non-Overlapping Template
(960-bit, 10 sequences) 0.213309 9/10 Y

We assess the randomness of our 20 PUF sequences, where
each sequence is 480-bit long. The P-values corresponding to
the tests must be > 0.001 for the tests to pass. At least 19 out
of the 20 sequences need to pass the test according to the test
standard. Table I depicts the results of the NIST randomness
test suite, where we conduct 10 of the tests within the suite.
We found that eight out of the ten tests pass for sequences that
are 480-bit long. The remaining tests (FFT/Spectral and non-
overlapping template) require approximately 1000-bit long
sequences. As a result, we concatenate a pair of sequences,
thus creating a unique signature of 960-bit, then run the test.
With this update, the tests run successfully, and the sequences
pass. From Table I, we note that in these two tests, the number
of passing sequences is compared against 10, as the number of
sequences is halved in this scenario. By incorporating proper
bit selection techniques, the randomness performance of the
PUF can be strengthened even further [34].

E. Varying the Signal Energy Threshold

One final aspect we study of the proposed frequency-domain
PUF is changing the input signal energy threshold while calcu-
lating the DCT coefficients with MATLAB. In Section III, we
discuss how we calculate the number of DCT coefficients that
represent a very high percentage of the energy, and we set zero
to the rest of the coefficients. We only consider the coefficients
that contain more than 99.9% of the signal energy in our
best-case scenario. We analyze the waveforms by lowering the

signal energy threshold as low as 70%, then 80%, and 90%,
and ensure that the signal can be reconstructed after filtering
with minimal errors. We found that the compressed signal
can not be adequately reconstructed by further lowering the
threshold. We also note that gradually increasing the signal en-
ergy threshold also increases the number of DCT coefficients,
and so does the accuracy of the reconstructed signals as the
MSEs drop as we boost up the signal energy threshold. Fig. 8
illustrates the comparison between the original signal and the
compressed, filtered, and reconstructed signal. Increasing the
signal threshold of the DCT coefficient calculation improves
the signal reconstruction.

TABLE II: Impact of signal energy threshold variations.

Signal energy threshold

70% 80% 90% 99.9%

Required coefficients 223 396 850 6567
MSE 2.99×10−4 2.75×10−4 2.43×10−4 1.60×10−4

PSNR (dB) 35.3 35.65 36.2 38.0
SNR (dB) 17.25 17.61 18.14 19.96
Inter-HD (%) 48.99 49.83 50.35 49.85
Intra-HD (%) 1.67 1.63 1.49 1.27

Table II summarizes the results by varying signal energy
threshold. We compute the number of coefficients required
to represent the defined energy level. Typically, the higher
threshold should increase the number of required DCT co-
efficients to compress the signal. The table also confirms that
we need 223, 396, 850, and 6567 coefficients out of 100,000
datapoints to compress the signal for 70%, 80%, 90%, and
99.9% energy thresholds, respectively. The next row of the
table also substantiates that increasing the signal threshold
decreases the MSE, i.e., the higher threshold corresponds to
more accurate signal reproduction. In addition to MSE, we also
compute the uniqueness and robustness of the reconstructed
signals over the various levels of the signal threshold. Table II
and Fig. 9 summarize these results. We discover that increasing
the signal threshold improves the robustness of the proposed
PUF as we compute the average intra-HDs as 1.67%, 1.63%,
1.49%, and 1.27% for 70%, 80%, 90%, and 99.9% energy
threshold, respectively. It denotes that increasing the signal
threshold improves the reconstruction and accuracy, enhancing
the signature reproduction. On the other hand, the average
inter-HDs are 48.99%, 49.83%, 50.35%, and 49.85% for
different thresholds, indicating a strong uniqueness.

F. Comparison with existing PUF structures

Table III provides a broader comparison between the pro-
posed frequency domain PUF with other existing state-of-
the-art methods, including its time domain counterpart, Cu-
rIAs [10]. Fig. 10 depicts the overall comparisons between
the performance of FDPUF and CurIAs over identical sup-
ply voltage and temperature variations. We observe that the
frequency domain demonstrates slightly better performance in
terms of uniqueness and robustness compared to CurIAs, but
the latter exhibits marginally better uniformity.



(a) 70% Energy Threshold (b) 80% Energy Threshold

(c) 90% Energy Threshold (d) 99.9% Energy Threshold

Fig. 8: Comparison of original and reconstructed current waveforms at various energy thresholds: (a) 70%; (b) 80%; (c) 90%;
and (d) 99.9%. The original waveform is first compressed using DCT, then filtered using a Wiener filter, and then reconstructed
using inverse DCT. The X-axis of the plot represents the number of datapoints, and the Y-axis denotes the current waveform
amplitude (A) for each of the 100,000 datapoints.

TABLE III: Comparison of FDPUF with existing works on PUF structures.

Leakage PUF SRAM PUF PiRA PUF Analog PUF CMA PUF MMPUF MeLPUF CurlAs FDPUF
[35] [36] [37] [38] [39] [40] [41] [10] *

Device Technology IBM 90nm N/A N/A 65nm CMOS AMS 350nm TSMC 28nm TSMC 55nm TSMC 55nm TSMC 55nm
Platform Simulation SRAM PIC16 ASIC ASIC FPGA FPGA FPGA FPGA

Hardware Implementation No Yes Yes Yes Yes Yes Yes Yes Yes
Uniqueness (Inter-die HD) N/A 43.65% 50.7% 49.59% 51.48% 40.60% 50.05% 49.3% 49.85%

Uniformity N/A N/A N/A N/A N/A N/A N/A 49.63% 46.65%
Bit-Error (Optimum) ∼3% 4.61% 6.8% 5.3% 0.16% 3.35% 2.57% 1.32% 1.27%

Bit-Error (Worst) ∼18% N/A N/A 8.8% ∼17% N/A N/A 7.5% 6.42%
Randomness (NIST test) N/A Yes N/A Yes Yes N/A Yes Yes Yes

VSupply Range 1.0 to 1.4 V 5 V 5.5 V 0.9 to 1.2 V 1.0 to 1.5 V 0.9 to 1.1 V 2.0 to 3.3 V 2.1 to 3.5 V 2.1 to 3.5 V
Temperature Range 0 to 75 ◦C 25 ◦C 25 ◦C 0 to 50 ◦C -45 to 90 ◦C 0 to 70 ◦C 25 ◦C 10 to 85 ◦C 10 to 85 ◦C

Signature Length 100-bit 16-bit 80-bit 2048-bit 5000-bit 128-bit 1024-bit 1200-bit 480-bit
Hardware Overheads Low to Moderate Moderate Low Low to Moderate Low to Moderate Low Low to Moderate <1% LEs used <1% LEs used

* Current Work
N/A: Not Available

V. CONCLUSION

In this paper, we have presented FDPUF, a novel PUF-based
hardware authentication solution that creates a digital signature
by analyzing the supply currents in the frequency domain. We
utilized the time-domain current measurements collected by
precision current sensors and applied discrete cosine transform
(DCT) on them. We reconstructed the signals after applying
energy thresholds, Wiener filtering, and inverse DCT (IDCT).
The transformed signals delivered high PSNRs (> 30db),
ensuring that most of the noise was removed from the original
time-domain signal. For each of the 20 test chips under test, we
generated 480-bit signatures. The PUF signatures demonstrate

high uniqueness (∼ 49.85% avg. inter-HD), robustness (∼
1.27% avg. intra-HD), uniformity (46.65 %), and randomness.
We have performed experiments by varying the supply voltage
and the operating temperature. Based on our evaluation, the
FDPUF exceeds the robustness performance compared to
CurIAs, its time-domain counterpart. Using DCT allows the
PUF to be implemented with minimal additional overhead,
as this technique requires fewer computational resources than
other frequency domain analyses. Future work will explore
alternative frequency domain techniques, such as discrete
wavelet transformation (DWT). We expect that the robustness
can be enhanced even further by taking advantage of DWT’s



(a) At 70%; Avg. Inter-HD = 48.99%, Avg. Intra-HD = 1.67%

(b) At 80%; Avg. Inter-HD = 49.83%, Avg. Intra-HD = 1.63%

(c) At 90%; Avg. Inter-HD = 50.35%, Avg. Intra-HD = 1.49%

(d) At 99.9%; Avg. Inter-HD = 49.85%, Avg. Intra-HD = 1.27%

Fig. 9: Comparison of percentage bit-error at different signal energy thresholds: (a) 70%; (b) 80%; (c) 90%; and (d) 99.9%.

(a) (b)

Fig. 10: Comparison of uniqueness and robustness between FDPUF and CurIAs over supply voltage and temperature variations:
(a) Comparison of VSupply variation results at Temp = 25 ◦C. (b) Comparison of temperature variation results at VSupply =
3.0 V. The bit-errors increase as the observation points deviate from the optimum conditions.

joint time-frequency resolution.

The proposed authentication scheme is suitable for fin-
gerprinting hardware used for edge computing applications
that are vulnerable to counterfeiting, cloning, as well as
in-field tampering (e.g., replacement of a hardware compo-
nent) through physical attacks. FDPUF-based authentication
paradigm can be effectively employed on microelectronic
devices that do not have dedicated PUF structures, e.g.,
commercial off-the-shelf (COTS) hardware components, such
as FPGAs and micro-controllers, which are widely used in
edge computing. In COTS devices, the FDPUF paradigm

can be used to generate unique and robust authentication
signatures through frequency domain analysis of transient
current waveform acquired in response to specific workloads,
such as the boot code for a microcontroller. The workload can
be varied (as challenge vectors) to create a large challenge-
response space to further enhance the PUF’s applicability
for these devices. Extension of FDPUF to different classes
of microelectronic devices, including COTS, can be another
significant research area for future exploration.
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