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Abstract—Conditional neural networks (NNs) are networks in1

which the computations performed vary based on the input.2

Many NNs of interest (such as autoregressive transformers3

for sequence generation tasks) are inherently conditional since4

they process variable-length inputs or produce variable-length5

outputs. In addition, popular NN optimization techniques, such6

as early exit, result in the computational footprint varying7

across inputs. Computational irregularity across inputs presents8

a challenge to batching, a technique widely used to improve9

hardware utilization and throughput during NN inference.10

To address this challenge, we propose BatchCond, an opti-11

mized batching framework for Conditional NNs that consists12

of two key steps: 1) computational similarity-driven batch-13

ing (SimBatch) and 2) adaptive batch reorganization (ABR).14

SimBatch utilizes a lightweight DNN predictor to create batches15

of inputs that are more likely to share similar computa-16

tional patterns, thereby reducing computational irregularity.17

Further, ABR addresses residual irregularity by dynamically18

splitting batches into computationally similar sub-batches in19

a hardware-aware manner. Our experiments demonstrate that20

BatchCond improves the overall throughput of batched infer-21

ence by up to 6.6× (mean of 2.5×) across a suite of22

diverse Conditional NNs, including early-exit networks, dynamic23

slimmable networks, and autoregressive transformers. Code is24

available at https://github.com/surya00060/BatchCond.25

Index Terms—Batching, conditional neural networks (NNs),26

early exit, hardware-aware inference, large language models27

(LLMs), NNs, transformers.28

I. INTRODUCTION29

NEURAL networks (NNs) have achieved remarkable30

success in various domains, including computer31

vision [1], [2], [3], natural language processing [4], [5],32

[6], [7], [8], and audio processing [9], [10], and are used33

in many real-life applications, such as chatbots [11], [12],34

language translators [13], [14], photo editors [15], document35

processors [16], etc. As a result, NNs are executed on a36

wide spectrum of devices with varying computational and37
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storage capabilities, ranging from resource-constrained devices 38

(mobile phones, AR/VR headsets, smart watches, etc.) to large 39

cloud servers. Across this entire spectrum, batching, which 40

refers to the simultaneous processing of multiple inputs, is 41

a technique commonly used to improve execution efficiency. 42

When NNs are deployed for inference on cloud servers, 43

they receive inputs simultaneously from multiple users. For 44

instance, widely used services, such as voice search [17] 45

and chatbots [12], receive thousands to tens of thousands of 46

queries per second. These input queries are commonly batched 47

together and processed concurrently, improving throughput 48

by 1) increasing the utilization of highly parallel hardware 49

platforms and 2) reducing data movement costs by increasing 50

reuse of the NN’s weights across inputs in a batch. 51

Batching is most effective when all inputs in a batch 52

share the same computational pattern, thereby enabling fully 53

parallel load-balanced execution across processing elements 54

(PEs) in the underlying hardware platform. However, many 55

popular NNs are inherently conditional, with different inputs 56

activating different parts of the network and/or requiring dif- 57

ferent amounts of computational effort (Fig. 1). Transformers 58

are a notable example of Conditional NNs, since the com- 59

putational effort they expend directly varies based on the 60

length of the input sequence (e.g., number of words or 61

tokens). This variation is accentuated by the fact that the 62

computational complexity of attention scales quadratically 63

with input length. Similarly, autoregressive transformers used 64

for sequence generation tasks like machine translation produce 65

outputs in decoding steps, with different numbers of decoding 66

steps executed for different inputs. Variable computational 67

effort has also been shown to be a promising approach to 68

reducing the processing requirements of NNs [18], [19]. Some 69

notable examples include early-exit networks, which mod- 70

ulate network depth dynamically [20], [21], and slimmable 71

networks, which modulate network width dynamically [22]. 72

The computational irregularity present in Conditional NNs 73

manifests as control flow divergence and load imbalance in 74

the underlying hardware platform, degrading the efficiency of 75

batched execution. 76

Due to the challenges of batching in Conditional NNs, prior 77

works either use a batch size of one [20], [21] or perform 78

ineffectual computations to maintain regularity [5], [23]. Each 79

of these approaches has drawbacks. Executing inputs at a batch 80

size of one leads to hardware underutilization and adversely 81

impacts throughput. The alternative approach pads the data 82

and/or computations to maintain regularity. For instance, data 83

padding is performed in transformers by adding padding 84

tokens to shorter sequences to equalize the lengths of all 85
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Fig. 1. Examples of conditional NNs and their execution traces depicting
varying computations across inputs in a batch. Early-exit NNs and dynamic
slimmable NNs selectively activate different parts of the model for each input,
while the computational effort for transformers varies based on input and/or
output length. Decision points are points in the network where control flow
diverges for different inputs. (a) Early-exit CNN. (b) Dynamic slimmable
CNN. (c) Encoder-only transformer. (d) Early-exit transformer. (e) Seq2Seq
transformer.

sequences in a batch, resulting in fixed computational effort86

for all sequences. Padding ensures computational regularity,87

but the redundant computations lead to increased latency and88

energy consumption.89

To overcome the aforementioned challenges, we propose90

BatchCond, a framework for optimized batched inference91

in Conditional NNs. BatchCond utilizes two complemen-92

tary optimizations: 1) computational similarity-driven batching93

(SimBatch) and 2) adaptive batch reorganization (ABR).94

SimBatch identifies inputs that are likely to share similar95

computational patterns by using a lightweight DNN-based96

predictor, and groups them to form batches. Thus, SimBatch97

decreases computational irregularity among inputs in a batch,98

leading to improved hardware utilization with fewer redundant99

computations. ABR addresses any residual computational100

irregularity by dynamically splitting batches into sub-batches101

in a hardware-aware manner (i.e., when doing so is likely102

to result in improved throughput). We summarize our main103

contributions as follows.104

1) We propose BatchCond, a framework for efficient105

batched inference in Conditional NNs. To the best of our106

knowledge, BatchCond is the first general framework107

for improving throughput during batched inference in all108

types of Conditional NNs.109

2) We propose computational similarity-driven batching110

(SimBatch) to create batches of inputs that are likely to111

share similar computational patterns, thereby reducing112

intrabatch computational irregularity.113

3) We introduce ABR to address residual computational 114

irregularity by dynamically reorganizing batches into 115

computationally similar sub-batches. 116

4) Across a suite of five diverse Conditional NNs, we 117

demonstrate that BatchCond improves throughput by up 118

to 6.6× (average of 2.5×) compared to existing methods. 119

The remainder of this article is organized as follows. 120

Section II provides an overview of Conditional NNs, and 121

outlines the challenges they present to batched inference. 122

Section III introduces the BatchCond framework and describes 123

the constituent steps in detail. Our experimental setup is 124

described in Section IV, and the results of our experiments are 125

presented in Section V. Section VI describes existing efforts 126

closely related to our work, and Section VII concludes this 127

article. 128

II. PRELIMINARIES 129

This section provides a brief overview of Conditional NNs 130

and outlines the challenges of performing batched inference 131

therein. 132

A. Conditional Neural Networks 133

1) Definition and Taxonomy: In this work, we define 134

Conditional NNs as NNs that satisfy one or more of the 135

following criteria. 136

1) CondNN.1: The computations performed are not the 137

same for all possible inputs. 138

2) CondNN.2: The same set of weights and biases are not 139

used to process all possible inputs. 140

We broadly categorize Conditional NNs into three types 141

based on the attribute of the NN that is modulated: 142

1) Conditional-Depth NNs; 2) Conditional-Width NNs; 143

and 3) Conditional-Depth+Width NNs. At a high level, 144

Conditional-Depth NNs use different numbers of layers to 145

process each input, while Conditional-Width NNs use different 146

activation sizes and/or numbers of weights in each layer 147

(but use the same number of layers) for different inputs. 148

Conditional-Depth+Width NNs modulate both the number 149

and sizes of layers for different inputs. Conditional NNs 150

adjust the computational effort expended on each input based 151

on outcomes at decision points. We define decision points 152

as locations in the computational graph where control flow 153

diverges across different inputs. 154

2) Examples of Conditional NNs: Table I provides repre- 155

sentative examples of Conditional NNs from the literature, 156

along with their types and decision points. Decision points are 157

also illustrated using examples in Fig. 1. For instance, early- 158

exit NNs [20] can process easy samples without having to 159

execute all layers of the NN by using side-branch classifiers. 160

As a result, fewer computations are performed on easy samples 161

compared to difficult samples by activating only a subset of all 162

weights and biases in the NN (satisfying conditions CondNN.1 163

and CondNN.2). On the other hand, inputs to large language 164

models (LLMs) [7], [8] can have different lengths, since real- 165

world text inputs can be arbitrarily long. As a result, more 166

computations are performed on longer sequences (since more 167

tokens need to be processed) compared to shorter sequences. 168
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TABLE I
TAXONOMY OF CONDITIONAL NNS

Therefore, even though the same weights and biases are used169

for sequences of different lengths, LLMs are conditional since170

they satisfy CondNN.1.171

B. Batched Inference and Its challenges in Conditional NNs172

1) Batched Inference: During batched inference, multiple173

inputs are processed in parallel in order to better utilize the174

available hardware resources. Batched inference in parallel175

hardware systems involves the following steps.176

1) When NNs are deployed for inference, they receive177

inputs simultaneously from multiple sources, which are178

then concatenated to form batches. Inputs that are each179

of shape (h, w) are combined along a batching axis to180

form a batched input of shape (b, h, w). Here, b is the181

batch size, and b is chosen such that all weights and182

activations fit in device memory.183

2) At the start of execution, weights and biases of the184

first layer of the NN are loaded from off-chip device185

memory to on-chip scratchpad memory, where the input186

activations reside.187

3) PEs perform the necessary computations by reading188

weights and activations from the scratchpad, and writing189

outputs back into the scratchpad.190

4) Then, weights of the second layer of the NN are loaded191

into the scratchpad (commonly pipelined by overlapping192

memory transfers with computations on the first layer),193

and this process is repeated for all layers.194

As multiple inputs in a batch are processed in parallel in step 3,195

the cost of data movement for weights and biases is amortized196

across all samples in a batch, instead of being repeated for197

each input as is done when b = 1. In addition, modern198

parallel engines [41], [42], [43], [44] contain large numbers199

of PEs to allow for massively parallel matrix multiplications.200

Consequently, the number of computations when b = 1 is201

not large enough to fully utilize all the available PEs, leading202

to underutilization. Batched inference takes advantage of this203

underutilization to process multiple inputs in parallel, thereby204

improving throughput.205

2) Challenges in Conditional NNs: Massively paral-206

lel hardware accelerators, such as GPUs [41], [42] and207

TPUs [43], [44], are designed to exploit the implicit paral-208

lelism present in NN workloads for maximum performance.209

Unlike traditional CPUs with branch predictors and reorder210

buffers, parallel accelerators have orders-of-magnitude more211

compute units (PEs). However, each compute unit has a212

much simpler control path. For instance, in GPUs, the control 213

flow is shared among a group of threads (called warps), 214

which perform computations together in lockstep. Similarly, 215

matrix multiplications can be realized on systolic arrays 216

in TPUs by orchestrating the inputs and weights using a 217

predefined dataflow with no explicit control. The regularity 218

of the computations involved enables parallel vector/matrix 219

operations to be executed with a scalar control input, thereby 220

maximizing compute throughput. In summary, since modern 221

parallel systems tradeoff complicated control logic for more 222

compute units, workloads that require fine-grained control are 223

executed inefficiently. For instance, when a simple if then 224

else code block is executed on GPUs, certain PEs stall 225

and wait for other PEs to complete execution (since GPUs 226

always execute in lockstep fashion), leading to poor hardware 227

utilization. 228

When the exact same computations are performed on all 229

samples in a batch, they can be efficiently executed in 230

parallel due to the regularity of computations. However, the 231

computations performed on different samples in a batch are 232

different in Conditional NNs as illustrated in Fig. 1, making 233

them ill-suited to batched inference. For instance, in early-exit 234

NNs, different samples in the batch exit at different layers. 235

Consequently, if some inputs exit at layer i while other inputs 236

exit only at layer i+ j, then PEs assigned to the exited samples 237

remain idle during execution of layers i + 1 to i + j for the 238

late-terminating samples. In slimmable NNs, samples executed 239

at smaller width are processed faster than samples requiring 240

larger widths, leading to underutilization in PEs processing 241

samples at smaller width. In transformers, shorter sequences 242

in a batch finish execution earlier than longer sequences, 243

leaving PEs assigned to shorter sequences idle while waiting 244

for longer sequences to finish execution. Similarly, during 245

machine translation, words are generated one at a time. 246

Therefore, inputs leading to longer translated outputs require 247

more decoding steps, leaving PEs assigned to inputs with 248

shorter translated outputs idle. In summary, batched-inference 249

in Conditional NNs introduces control flow divergence among 250

samples in a batch due to the varying outcomes at each 251

decision point, leading to hardware underutilization and hence, 252

reduced throughput. 253

Moreover, existing methods perform compute and/or data 254

padding to execute batches with divergence by introducing 255

ineffectual computations. Conditional-Depth NNs use compute 256

padding, whereas Conditional-Width NNs use data padding. 257

For instance, in early-exit networks, where the execution 258
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Fig. 2. Overview of the BatchCond framework, which consists of two key components—SimBatch and ABR. SimBatch forms batches of samples that are
likely to share similar computational patterns. ABR optimizes the execution of batches in the presence of residual computational irregularity by dynamically
choosing between padding and sub-batch splitting.

of each input is terminated at a different layer, compute259

padding is performed to ensure all samples in a batch are260

executed up to the maximum depth required by samples in261

the batch. For instance, in a batch with two samples, if the262

first sample exits at layer i, and the second sample exits at263

layer i + j, both samples are executed up to layer i + j to264

maintain regularity. Consequently, unnecessary computations265

are performed on the first sample, thereby increasing latency266

of the first sample, while also preventing PEs from doing267

useful work. On the other hand, in transformers, each input268

requires a variable amount of computational effort based on269

the length of the input. However, all samples in a batch are270

padded to the length of the longest sequence in the batch,271

thereby introducing ineffectual computations and adversely272

impacting latency of shorter sequences in each batch. In273

summary, batched inference in Conditional NNs presents a274

distinct challenge due to varying computational requirements275

across inputs in a batch.276

III. BATCHCOND FRAMEWORK277

BatchCond is a framework that optimizes batched inference278

in Conditional NNs using two complementary techniques.279

The first technique, computational similarity-driven batching280

(SimBatch), batches samples that are likely to lead to the281

same outcomes at each decision point in the Conditional NN,282

thereby minimizing computational irregularity. The second283

technique, ABR, optimizes execution in the presence of resid-284

ual computational irregularities that remain after SimBatch.285

Fig. 2 provides an overview of the BatchCond framework. We286

explain SimBatch and ABR in greater detail in the following287

sections.288

A. Computational Similarity-Driven Batching289

The overall goal of SimBatch is to create batches of290

samples that are likely to share decision point outcomes, and291

hence, require the same computations. However, decision point 292

outcomes are made during runtime and are unknown prior 293

to sample execution. We address this challenge by creating a 294

decision point predictor NN (DPP-NN), which is a lightweight 295

NN that predicts the outcomes of different decision points 296

in the Conditional NN for a given input sample prior to 297

execution. The outputs of DPP-NN on a set of input samples 298

are used to create batches of samples that are predicted to 299

share computational patterns. Our procedure for designing the 300

DPP-NN for a given Conditional NN is as follows. 301

1) Data Collection: The training dataset for the DPP-NN is 302

generated by collecting decision outcomes at all decision 303

points in the Conditional NN for each sample in the 304

training dataset. This is done by performing inference 305

on the training dataset using the trained Conditional NN. 306

2) Model Initialization: The DPP-NN shares the same 307

architecture as the first layer of the Conditional NN, and 308

its weights are initialized from the same. Then, a fully 309

connected regression head is added to the model. The 310

size of the output produced by the regression head is 311

equal to the number of decision points in the Conditional 312

NN, with each entry in the output predicting the outcome 313

of the corresponding decision point. Since the DPP-NN 314

uses only one layer of the Conditional NN, its runtime is 315

only a small fraction of the Conditional NN’s runtime, 316

thereby limiting the overheads 317

3) Model Training: The DPP-NN is trained till convergence 318

on the collected dataset. 319

During inference, all samples are passed through the DPP- 320

NN to predict the outcomes at different decision points. 321

Then, the samples with similar decision outcomes are batched 322

together and fed to the Conditional NN for processing. In 323

effect, SimBatch reduces the intrabatch control flow diver- 324

gence, leading to higher utilization and hence, enhanced 325

throughput. We note that we do not use the predicted outcomes 326

to control execution, i.e., if the predicted outcome does not 327
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(a)

(b)

(c)

(d)

(e)

(f)

Fig. 3. Execution strategies for batches with control flow divergence in conditional-depth NNs [left, (a)–(c)] and conditional-width NNs [right, (d)–(f)].
(a) Compute padding. (b) and (e) Sub-batch splitting. (c) and (f) ABR. (d) Data padding.

match the actual outcome at a decision point, execution flow328

is decided based on the actual outcome and not the predicted329

outcome. Thus, there is no impact on accuracy.330

B. Adaptive Batch Reorganization331

SimBatch forms batches with reduced control flow diver-332

gence. However, since predictions from the DPP-NN are333

used to batch samples, it is unlikely that all batches will334

have zero divergence. In addition, input samples may have335

strict latency constraints (deadlines), and hence, cannot remain336

in the queue until other computationally similar inputs337

arrive. Either of these factors may result in the execution338

of computationally irregular batches. Therefore, BatchCond339

incorporates optimizations to deal batches with control flow340

divergence.341

Existing approaches deal with computational irregularity342

within a batch by padding data and/or computation, as343

described in Section II-B, leading to considerable overheads.344

In order to address the shortcomings of existing padding-345

based approaches, we propose ABR. The overarching idea in346

ABR is to dynamically select between batch splitting and data347

or compute padding. This is performed in a hardware-aware348

manner by precharacterizing conditions under which each of349

these alternatives is beneficial. The specifics of ABR are350

different for Conditional-Depth and Conditional-Width NNs,351

hence we describe it in each context in the following sections.352

1) Adaptive Batch Reorganization for Conditional-Depth353

NNs: We observe that compute padding used in Conditional-354

Depth NNs [Fig. 3(a)] leads to ineffectual computations,355

thereby adversely impacting throughput. To address this chal-356

lenge, we propose sub-batch splitting, an optimized execution357

strategy [Fig. 3(b)]. Sub-batch splitting splits the batch into358

two sub-batches at each decision point, with one sub-batch 359

containing all samples that terminated at the decision point, 360

and the other sub-batch containing samples that did not ter- 361

minate.1 Then, sub-batch splitting continues execution of only 362

the sub-batch with nonterminated samples, thereby eliminating 363

the need for compute padding and the resulting ineffectual 364

computations. 365

While sub-batch splitting eliminates ineffectual computa- 366

tions, it adds memory copy overheads during execution at 367

each decision point. Splitting batches into sub-batches of 368

terminated and nonterminated samples involves the following 369

steps: 1) indexing: positions of nonterminated samples in the 370

batch are obtained based on decision outcomes and 2) tensor 371

gathering: a new sub-batch is created by gathering nonter- 372

minated samples from the original batch. Modern parallel 373

systems require tensors to be in contiguous memory loca- 374

tions (Fig. 4) to maximally exploit parallelism. Consequently, 375

when nonterminated samples reside in noncontiguous memory 376

locations, they need to be gathered and copied to contiguous 377

locations in memory, resulting in overheads. As a result, 378

sub-batch splitting does not always improve throughput over 379

compute padding [Fig. 5(a)]. In particular, we observe that the 380

memory overheads of sub-batch splitting outweigh the impact 381

of performing fewer computations in two scenarios. 382

1We use the term terminated samples to refer to those samples whose
execution is halted between the current decision point and the next decision
point. For instance, in layer-skipping NNs, if layer l is skipped for a sample,
then it is placed in the batch of terminated samples at the decision point
immediately before layer l, and the sample is re-evaluated at the following
decision point. On the other hand, in early-exit NNs, if a sample is terminated
at layer l, it is retained in the batch of terminated samples till the end of
execution.
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Fig. 4. Memory overheads introduced while splitting a batch into two sub-
batches of terminated and nonterminated samples in early-exit NNs.

Fig. 5. Difference between compute/data padding Tpad and sub-batch
splitting Tsplit execution times. (a) Execution time for the final residual block
of ResNet-34 with early exit (Conditional-Depth) for different numbers of
samples in a batch exiting after the prefinal block. (b) Execution time for the
first encoder layer of BERT-base (Conditional-Width) for different numbers
of samples with a length of 64 (remaining samples in the batch are of length
96). B indicates the batch size.

1) When the size of sub-batch containing terminated sam-383

ples is much smaller than the size of the sub-batch384

containing nonterminated samples, the computational385

savings from sub-batch splitting are small. On the other386

hand, the memory overheads are large tensors contain-387

ing activations corresponding to nonterminated samples388

need to be copied into the new sub-batch. Since memory389

cost scales linearly with number of copies performed,390

the overheads outweigh the computational savings from391

using sub-batch splitting, making compute padding more392

efficient than sub-batch splitting.393

2) When the batch sizes are low, the hardware is under-394

utilized. As a result, the ineffectual computations from395

compute padding do not have any impact on throughput,396

since these computations are performed by PEs that397

would otherwise be idle. On the other hand, sub-batch398

splitting incurs overheads due to memory copies, but the399

computational savings from sub-batch splitting are not400

beneficial in any way. As a result, execution with sub-401

batch splitting is slower than execution with padding.402

Based on these observations, we propose ABR that com-403

bines the best of both worlds. In particular, ABR finds the best404

combination of padding and sub-batch splitting to maximize405

throughput [Fig. 3(c)]. At each decision point i, we check if406

the time taken for executing layers between decision points407

i and i + 1 with padding (Tpad) is less than the time taken408

for execution with sub-batch splitting (Tsplit). If Tpad > Tsplit, 409

we execute the layers between decision points with sub-batch 410

splitting, and vice-versa. 411

When executing a batch of size B, assume E samples are 412

terminated at decision point i. Then, Tpad is equal to the time 413

taken to execute layers between i and i + 1 for a batch of 414

size B. On the other hand, Tsplit is equal to the time taken to 415

execute layers between i and i + 1 for a batch of size B − E 416

plus the time taken to create the new sub-batch with B − E 417

nonterminated samples. Let Ti[B] be the time taken to execute 418

layers between decision points i and i+1 for a batch size of B. 419

Then 420

Tpad = Ti[B] 421

Tsplit = Ti[B − E] + Tgather[B − E] 422

Execution Strategy =
{

pad if Tpad < Tsplit
split if Tpad > Tsplit.

(1) 423

2) Adaptive Batch Reorganization for Conditional-Width 424

NNs: We find that data padding used in Conditional-Width 425

NNs [Fig. 3(d)] leads to ineffectual computations on padding 426

data, thereby adversely affecting throughput. Similar to the 427

Conditional-Depth case, we propose a compute-optimal sub- 428

batch splitting strategy that eliminates the need for padding 429

[Fig. 3(e)]. Sub-batch splitting splits the batch into multiple 430

sub-batches at each decision point, with each sub-batch con- 431

taining all samples that need to be executed at the same 432

width. Consequently, the number of sub-batches generated at 433

a decision point is equal to the number of possible width value 434

outcomes at the decision point. Then, sub-batch splitting exe- 435

cutes each sub-batch sequentially, thereby eliminating the need 436

for data padding and the resulting ineffectual computations. 437

Despite being compute-optimal, sub-batch splitting incurs 438

batch-splitting overheads, similar to the Conditional-Depth 439

case. In addition, sub-batch splitting serializes the execution of 440

different sub-batches in Conditional-Width NNs. (In contrast, 441

only one sub-batch is executed in Conditional-Depth NNs, 442

since the other sub-batch contains only terminated samples.) 443

However, we also note that sub-batches requiring smaller 444

width can be executed substantially faster than data padded 445

batches that must be executed at the largest width required by 446

all samples in the batch. As a result, the serialization overheads 447

always scale sublinearly with number of sub-batches formed. 448

Consequently, we find that sub-batch splitting is faster than 449

data padding only when the hardware is compute-bound 450

(i.e., all PEs are fully utilized) as shown in Fig. 5(b). In 451

addition, we also find that the serialization overheads of sub- 452

batch splitting can be reduced by merging sub-batches that 453

are not large enough to fully utilize the hardware into larger 454

batches. At a finer granularity, some samples from sub-batches 455

requiring smaller widths can be moved into sub-batches 456

requiring larger widths (using data padding) to ensure that 457

all sub-batches fully utilize the hardware, thereby maximizing 458

throughput. 459

Based on these observations, we propose ABR to find 460

the best combination of padding and sub-batch splitting to 461

maximize throughput [Fig. 3(f)]. At each decision point i, we 462

first find the time taken for execution with sub-batch splitting 463
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Algorithm 1 Hardware-Aware Batch Splitting at Each
Decision Point
Require: sub_batches Sub-batches of samples requiring same

widths; the number of sub-batches is equal to the number
of possible width outcomes

Require: ideal_batch_sizes smallest batch size that fully uti-
lizes the hardware for each possible width

1: sub_batches.sort_by_decreasing_width()
2: for i = 1 to num(sub_batches) do
3: if size(sub_batches[i]) ≥ ideal_batch_sizes[i] then
4: continue
5: end if
6: for j = i to num(sub_batches) do
7: num_samples_to_add = ideal_batch_sizes[i] -

size(sub_batches[i])
8: Move num_samples_to_add samples from

sub_batches[j] to sub_batches[i]
9: if size(sub_batches[i]) ≥ ideal_batch_sizes[i] then

10: break
11: end if
12: end for
13: end for
14: return sub_batches

(Tsplit) using the best arrangement of samples into sub-batches.464

We find this best arrangement using the procedure described465

in Algorithm 1. In particular, we identify sub-batches that are466

not large enough to fully utilize the hardware, and move as467

many samples as needed from sub-batches requiring smaller468

widths to enable full utilization. In effect, our hardware-469

aware batch-splitting method reduces serialization overheads470

by ensuring that all sub-batches are large enough to fully471

utilize the hardware, while also minimizing the amount of472

padding introduced while merging sub-batches. Subsequently,473

we check if the time taken for executing layers between474

decision points i and i + 1 with padding (Tpad) is less than475

the time taken for execution with sub-batch splitting (Tsplit).476

If Tpad > Tsplit, we execute the layers between decision points477

with sub-batch splitting, and vice-versa.478

When executing a batch of size B, assume there are k479

outcomes at decision point i, resulting in b1, b2, .., bk samples480

that require execution at width w1, w2, .., wk, respectively, such481

that b1 + b2 + ..+ bk = B and w1 < w2 < .. < wk. Then, Tpad482

is equal to the time taken to execute layers between i and i+1483

for a batch of size B at the maximum width wk. On the other484

hand, Tsplit is equal to the time taken to execute layers between485

i and i+1 for each sub-batch serially at their respective widths.486

We obtain the best arrangement of samples s1, s2, .., sk that487

require execution at width w1, w2, .., wk, respectively, using488

Algorithm 1, such that s1 + s2 + · · · + sk = B, by moving489

samples requiring smaller width to larger width to make sub-490

batches compute bound. Let Ti[B, W] be the time taken to491

execute layers between decision points i and i + 1 for a batch492

size of B at maximum width of W = wk. Then493

Tpad = Ti[b1 + b2.. + bk, wk]494

Tsplit = Ti[s1, w1] + Ti[s2, w2] + · · · + Ti[sk, wk]495

TABLE II
CONDITIONAL NN BENCHMARKS

Execution Strategy =
{

pad if Tpad < Tsplit
split if Tpad > Tsplit.

(2) 496

IV. EXPERIMENTAL METHODOLOGY 497

Performance Evaluation: We implement BatchCond using 498

PyTorch [45] and evaluate its performance on three differ- 499

ent hardware platforms: 1) NVIDIA Jetson AGX Xavier; 500

2) NVIDIA GeForce RTX 2080Ti; and 3) NVIDIA A40. 501

Jetson AGX Xavier is an edge platform that features an edge 502

GPU with 32 GB of unified memory. RTX 2080Ti is a desktop 503

GPU with 11 GB of memory. A40 is a data center GPU with 504

48 GB of memory. Due to limited space, we present overall 505

improvements on all platforms, while supplementary results 506

are reported only on the RTX 2080 Ti GPU. We use the largest 507

batch size that fits on the GPU for all experiments, unless 508

specified otherwise. 509

Application Benchmarks: We benchmark BatchCond on five 510

diverse Conditional NNs (Table II) with different axes of con- 511

ditionality. Early-exit networks represent Conditional-Depth 512

NNs, while dynamic slimmable networks and encoder-only 513

transformers are Conditional-Width NNs. Transformers with 514

early exits and Seq2Seq transformers are conditional in both 515

width and depth. 516

Hardware Precharacterization: We precharacterize our 517

hardware platform to obtain the following numbers for a 518

given Conditional NN: 1) Conditional-Depth NNs: Ti[B] and 519

TGather[B] for each layer (i) using different batch sizes (B) 520

for finding whether to pad or perform reorganization and 521

2) Conditional-Width NNs: ideal_batch_size[W] for different 522

widths (W) for finding the best arrangement of samples into 523

sub-batches, and Ti[B, W] and TGather[B] for each layer (i) 524

using different batch sizes (B) and widths (W) for finding 525

whether to pad or perform sub-batch splitting. 526

V. RESULTS 527

We first present the overall inference throughput improve- 528

ments achieved by BatchCond after incorporating all runtime 529

overheads. Subsequently, we present an ablation study to 530

evaluate the contribution of SimBatch and ABR to the overall 531

improvement. We also analyze the efficacy of SimBatch 532

in reducing computational irregularity and evaluate how 533

BatchCond performs in a deadline-aware inference setting. 534
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TABLE III
THROUGHPUT GAINS ACHIEVED BY THE BATCHCOND FRAMEWORK

Additionally, we examine the impact of batch size on through-535

put gains. Finally, we analyze the preinference (one-time) and536

inference-time overheads of the BatchCond framework.537

A. Overall Throughput538

Table III presents the throughput gains resulting from using539

BatchCond for batched inference on diverse Conditional NN540

benchmarks using all three hardware platforms. We compare541

BatchCond with the two baseline techniques currently used for542

Conditional NNs—inference with a batch size of 1 and random543

batching with padding. BatchCond improves throughput by544

up to 6.6× (geometric mean of 2.5×) compared to inference545

with random batching with padding. BatchCond also improves546

throughput by up to 75.5× (geometric mean of 41.8×)547

compared to inference with a batch size of 1.548

For transformers that are conditional in both depth and549

width, we empirically compare the two possible predictive550

batching strategies—batching samples that are likely to require551

the same network depth, and batching samples that have552

similar widths (in the case of text inputs, sequences that have553

similar numbers of words). We find that batching samples554

based on similarity in width leads to 1.6× higher average555

throughput compared to batching based on depth. This is556

because different samples exhibit substantially higher variance557

in width values compared to depth values (for instance, with558

BERT-base on the MNLI dataset, variance in width values559

is 75× higher than depth values). Hence, batching based on560

width leads to greater reduction in computational irregularity,561

and thereby higher throughput gains.562

In addition, we evaluate the impact of BatchCond on per-563

batch latency, using the example of Seq2Seq transformers564

(Conditional-Depth+Width) in Fig. 6. We find that BatchCond565

reduces the average latency by 1.9× compared to random566

batching with padding. The reduced latency is a direct conse-567

quence of the reduction in ineffectual computations performed.568

In particular, batches of sequences with shorter inputs and569

outputs are executed with substantially lower latency using570

BatchCond compared to random batching with padding. The571

maximum latency seen for a single batch with BatchCond572

Fig. 6. Improvement in per-batch latency distribution from BatchCond in
Seq2Seq transformers.

is also lower because ABR drops terminated samples (once 573

all output tokens have been generated), thereby speeding up 574

subsequent decoding iterations. 575

B. Ablation: Breakdown of Benefits From Each Technique in 576

the BatchCond Framework 577

We analyze the impact of each BatchCond optimization on 578

end-to-end performance in Fig. 7. We observe that SimBatch 579

reduces intrabatch computational irregularity, resulting in 1.8× 580

higher average throughput. We note that the throughput gain 581

from using SimBatch takes the runtime overheads of the DPP- 582

NN into account. We also find that ABR optimizes execution 583

in the presence of residual computational irregularity, resulting 584

in an additional 1.4× average increase in throughput. In 585

summary, SimBatch and ABR are synergistic optimizations 586

that can be combined to increase throughput during batched 587

inference of Conditional NNs. 588
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Fig. 7. Ablation Study: Breakdown of benefits from each technique in the
BatchCond framework.

TABLE IV
REDUCTION IN AVERAGE INTRABATCH VARIANCE FROM

USING THE BATCHCOND FRAMEWORK

C. Impact of SimBatch on Computational Irregularity589

In order to quantify the effectiveness of SimBatch in590

reducing computational irregularity, we measure the reduction591

in intrabatch variance of decision point outcomes (effective592

depth/width of the network) when SimBatch is used. The593

results are reported in Table IV. We find that SimBatch594

reduces variance by up to 37.5× (geometric mean of 8.8×).595

This results in the device utilization increasing by an average596

of 23.6% over random batching. The utilization improvement597

is a direct consequence of two factors: 1) control flow598

divergence is reduced, thereby reducing the amount of time599

for which some PEs are idle while waiting for others to finish600

and 2) the amount of ineffectual computations arising from601

the use of padding is reduced, thereby freeing up more PEs602

to perform useful work.603

D. Deadline-Aware Batched Inference With BatchCond604

The results presented in earlier sections are obtained under605

the assumptions that 1) all the samples in the test dataset are606

available at the start of inference and 2) none of the samples607

have any deadlines (latency constraints) that require them to608

processed before others. However, in practical deployment609

scenarios, not all samples may be available at the same time,610

and samples are likely to have deadlines. To demonstrate the611

effectiveness of BatchCond in this scenario, we consider a612

scenario where inputs arrive in windows, and all samples in613

Fig. 8. Impact of input window size on throughput gains and intrabatch
variance reduction for Seq2Seq transformer. For a window of size k, we
assume that only k inputs are available in the inference queue at any time, and
all k inputs in one window must be processed before moving on to samples in
the next window, thereby simulating bursty input rates and deadline constraints
that are likely to arise in practical scenarios.

one window must be processed before processing samples in 614

the next window. We present the results of using BatchCond 615

with different window sizes in Fig. 8. When small window 616

sizes are used, i.e., when only few inputs are available 617

for batching, it is impossible to create batches composed 618

entirely of computationally similar samples. In other words, 619

the flexibility available to BatchCond is reduced. As a result, 620

we find that throughput improvements from BatchCond are 621

smaller for smaller window sizes such as 64. However, we 622

note that even with small window sizes, the use of ABR leads 623

to substantial throughput improvement over both inference 624

with a batch size of 1 and batched inference with padding, 625

indicating that ABR is highly impactful even under strict 626

latency constraints (where SimBatch is not as effective due to 627

reduced options for batching). The throughput improvements 628

increase with window size, but largely saturate at a window 629

size of 512. 630

E. Impact of Batch Size on Throughput Improvements 631

We evaluate the effectiveness of BatchCond when different 632

batch sizes are used (Fig. 9). We observe that throughput 633

gains are typically higher at larger batch sizes. When very 634

small batch sizes are used, the hardware is often underutilized, 635

and hence, the ineffectual computations introduced by data 636

padding do not have a significant impact on throughput in 637

Conditional-Width NNs. For instance, in encoder-only trans- 638

formers, padding all sequences to the maximum length in the 639

batch does not impact throughput, since all sequences must 640

be processed by all Transformer layers irrespective of length, 641

and padding tokens are processed by PEs that would otherwise 642

have been idle. Consequently, BatchCond does not provide 643

significant improvements over random batching with padding 644

(Fig. 9). However, in Conditional-Depth NNs, batches of 645

samples that terminate early can be processed at lower latency 646
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Fig. 9. Impact of batch size on throughput gain.

compared to batches of late-terminating samples. As a result,647

even though ABR always chooses padding over splitting (and648

hence, ABR does not directly improve throughput), the use649

of SimBatch leads to substantial throughput gains over prior650

methods even when very small batch sizes are used (Fig. 9).651

We also note that at very small batch sizes, throughput gains652

arise solely from SimBatch, since ABR always chooses to pad653

compute and/or data due to hardware underutilization. When654

batch sizes are large enough to fully utilize the hardware, both655

ABR and SimBatch contribute toward throughput gains by656

reducing ineffectual computations and control flow divergence,657

leading to substantial throughput gains over prior methods in658

all types of Conditional NNs.659

F. Discussion of Overheads660

We discuss and quantify the overheads associated with661

each technique in the BatchCond framework. We reiterate662

that the results presented in prior sections are inclusive of all663

overheads.664

1) SimBatch: The use of DPP-NN to estimate outcomes at665

all decision points introduces two types of overheads.666

1) The training of this predictor incurs a one-time cost and667

is completed offline prior to deployment for inference.668

In our experiments, the training duration was less than669

1 h on a single Nvidia GeForce RTX 2080 Ti GPU for670

all our studied tasks.671

2) During inference, the DPP-NN processes each input to672

determine decision outcomes, adding runtime overhead.673

However, since the DPP-NN is composed of only the674

first layer of the Conditional NN, we find that the675

latency increase due to the DPP-NN is very small. In676

fact, the DPP-NN leads to <4% increase in latency677

in all our studied tasks. As reported earlier, the net678

improvement in throughput from SimBatch alone is679

1.8× after considering this overhead.680

2) ABR: While ABR does not introduce any additional681

inference-time overheads, it incurs a one-time cost to prechar-682

acterize the Conditional NN of interest on a given hardware683

platform (performed offline prior to deployment for infer-684

ence). In particular, the precharacterization involves executing685

representative inputs to measure all quantities mentioned in686

Section IV under Hardware precharacterization. We repeat687

TABLE V
COMPARISON WITH OTHER BATCHING FRAMEWORKS. NOTES: 1) AN

ENTRY OF “N/A” DENOTES THAT THE TECHNIQUE IS NOT APPLICABLE

TO THAT BENCHMARK. 2) NUMBERS FOR RELATED WORKS WERE

OBTAINED THROUGH OUR BEST-EFFORT REPRODUCTION OF THE

PROPOSED METHODS, AS NO OPEN-SOURCE CODE WAS AVAILABLE

all experiments 30 times, and average the measured times in 688

order to eliminate potential sources of noise and obtain stable 689

results. We found that precharacterizing a RTX 2080 Ti GPU 690

for executing all our studied benchmarks takes approximately 691

20 min. 692

VI. RELATED WORK 693

The vast majority of prior works on Conditional NNs either 694

perform inference with a batch size of one [20], [21], [22], 695

or use padding to ensure computational regularity [5], [23], 696

thereby adversely affecting throughput. LazyBatching [47] 697

and FluidBatching [49] are the only notable exceptions for 698

Conditional-Depth NNs, wherein samples are stalled at deci- 699

sion points by caching intermediate activations. Execution of 700

a stalled sample is continued only when sufficient numbers of 701

other samples with the same outcome arrive at the decision 702

point, or if samples are close to their deadlines. However, 703

these methods incur substantial storage overheads for storing 704

the large intermediate activations of stalled samples (thereby 705

limiting batch sizes that can be used), as well as high data 706

movement costs, both of which increase with number of 707

decision points in the network. We quantitatively compare 708

BatchCond with LazyBatching on an RTX 2080 Ti GPU 709

(Table V) and find that BatchCond achieves 1.3× and 1.5× 710

higher throughput on the early-exit CNN and the Seq2Seq 711

transformer, respectively. Gonzalez et al. [48] proposed sorting 712

and bucketing variable-length inputs based on their lengths to 713

reduce the amount of padding tokens. However, this method is 714

not applicable to Conditional NNs where input sizes are fixed 715

(e.g., early-exit CNNs, where easy inputs terminate early). 716

In addition, bucketing is challenging during inference, since 717

inputs arrive in windows. As a result, [48] is not guaranteed 718

to produce computationally similar batches, and [48] does not 719

provide any mechanism to accelerate batches where padding 720

becomes necessary. On the other hand, the ABR component of 721

BatchCond also accelerates the processing of computationally 722

irregular batches, leading to an average throughput gain of 723
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1.4× over [48] on benchmarks with variable size inputs724

(Table V).725

Prior works have also attempted to predict the out-726

comes of decision points in Conditional NNs. For instance,727

EdgeBERT [50] and Predictive Exit [51] design exit point728

predictors for early-exit networks to dynamically scale the729

voltage and frequency of the underlying hardware based on730

the exit point, enabling energy-efficient inference. However,731

these works do not focus on improving throughput, and in732

fact, evaluate only at batch sizes of 1. There have also733

been recent efforts in compiler research [52] to optimize734

program execution in the presence of control flow divergence735

through compiler optimizations, such as fusing memory gather736

operations and end-to-end kernel generation. These techniques737

are complementary to our optimizations.738

VII. CONCLUSION739

Batched inference is challenging in Conditional NNs due740

to irregularity in computational patterns across inputs. We741

address this problem by proposing BatchCond, an optimized742

batching framework for Conditional NNs. BatchCond is743

composed of two complementary techniques. Computational744

similarity-driven batching (SimBatch) batches samples that are745

likely to share similar computational patterns, thus reducing746

intrabatch divergence. ABR addresses the residual computa-747

tional irregularity by dynamically reorganizing batches into748

computationally similar sub-batches in a hardware-aware man-749

ner. Our evaluations on diverse hardware platforms reveal that750

BatchCond improves throughput of batched inference by up751

to 6.6× across diverse Conditional NN benchmarks.752
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