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Abstract—Embedded real-time systems generally execute in a1

predictable and deterministic manner to deliver critical function-2

ality within stringent timing constraints. However, the predictable3

execution behavior leaves the system vulnerable to schedule-based4

attacks. In this article, we present a multimode security-aware5

real-time scheduling scheme to counteract schedule-based attacks6

on multiprocessor real-time systems. To mitigate the vulnerability7

to the schedule-based attack, we propose a multimode scheduling8

method to reduce the accumulative attack effective window9

(AEW) of multiple victim tasks and prevent the untrusted tasks10

from executing during the AEW by distinctively scheduling11

mixed-trust tasks according to the system mode. To avoid the12

protection degradation due to the excessive blocking of untrusted13

tasks, we introduce a protection window for multiple victims14

on multiprocessors by analyzing the system protection capability15

limit under the system schedulability constraint. Furthermore,16

to maximize the protection capability of the multimode security-17

aware scheduling strategy on a multiprocessor platform, we18

also propose a security-aware packing algorithm to balance19

the workloads of mixed-trust tasks on different processors20

using a mixed-trust worst-fit decreasing heuristic strategy. The21

experimental results demonstrate that our proposed approach22

significantly outperforms the state-of-the-art method. Specifically,23

the AEW ratio and the AEW untrusted execution time ratio are24

reduced by 18.8% and 62.8%, respectively, while the defense25

success rate against ScheduLeak attack is improved by 16.3%.26

Index Terms—Multimode scheduling, multiprocessor, real-time27

systems, schedule-based attacks, security-aware scheduling.28

Manuscript received 5 August 2024; accepted 10 August 2024. This work
was supported in part by the National Natural Science Foundation of China
under Grant 62072067, Grant 62172069, Grant 62072076, Grant 62466059,
and Grant 61602080; in part by the Shandong Provincial Natural Science
Foundation under Grant ZR2023LZH016; and in part by the Xinjiang Network
Information Science and Technology Innovation Research Project under Grant
12421604. This article was presented at the International Conference on
Compilers, Architectures, and Synthesis for Embedded Systems (CASES)
2024 and appeared as part of the ESWEEK-TCAD Special Issue. This article
was recommended by Associate Editor S. Dailey. (Corresponding author: Chi
Lin.)

Jiankang Ren, Chunxiao Liu, Pengfei Wang, Simeng Li, and Shengyu
Li are with the Key Laboratory of Social Computing and Cognitive
Intelligence, Ministry of Education, Dalian University of Technology, Dalian
116024, China (e-mail: rjk@dlut.edu.cn; liuchuanxiao@mail.dlut.edu.cn;
wangpf@dlut.edu.cn; lsmhf@mail.dlut.edu.cn; lsyanling@mail.dlut.edu.cn).

Chi Lin is with the School of Software Technology, Dalian University of
Technology, Dalian 116024, China (e-mail: c.lin@dlut.edu.cn).

Wei Jiang is with the School of Information and Software Engineering,
University of Electronic Science and Technology of China, Chengdu 610054,
China (e-mail: weijiang@uestc.edu.cn).

Xiangwei Qi is with the School of Computer Science and Technology,
Xinjiang Normal University, Xinjiang 830054, China (e-mail: xiangweiqi10@
163.com).

Digital Object Identifier 10.1109/TCAD.2024.3445260

I. INTRODUCTION 29

EMBEDDED real-time systems are extensively applied in 30

safety-critical applications, such as automotive, aviation, 31

and industrial robotics. These systems generally execute in a 32

predictable and deterministic manner to deliver critical func- 33

tionality within stringent timing constraints. However, such 34

a predictable execution pattern exposes a vulnerability that 35

can be exploited by schedule-based attacks [1]. For example, 36

adversaries can leverage the deterministic execution patterns 37

to infer sensitive scheduling information through timing side- 38

channels [2]. With knowledge of system internals gleaned 39

from such attacks, malicious attackers can craft more effec- 40

tive tailored attacks, such as compromising system stability 41

through the injection of inaccurate data [3] and affecting vehi- 42

cle operations by obstructing control system signals [2], [4]. 43

Moreover, the relentless demand for computational power 44

has driven embedded real-time systems toward multiprocessor 45

architectures. Consequently, it is extremely important to offer 46

an effective security strategy to defend against schedule- 47

based attacks for multiprocessor real-time systems without 48

compromising real-time performance constraints. 49

The effectiveness of schedule-based attacks typically 50

depends on whether the attacker task is executed during the 51

attack effective windows (AEWs) of victim tasks [5]. For 52

example, the experimental evidence has shown that the AEW 53

for a control output overwrite attack on a customized rover 54

system with real-time Linux is 8.3 ms [2]. According to the 55

timing relationships between the execution states of the victim 56

and the attacker, schedule-based attacks can be divided into 57

four categories [6]: 1) the posterior attack that is launched 58

after the completion of the victim task; 2) the anterior attack 59

that is carried out before the victim task is executed; 3) the 60

concurrent attack that takes place while the victim task is 61

being executed; and 4) the pincer attack that is a hybrid 62

attack combining both posterior and anterior attacks. In this 63

article, we focus on mitigating the posterior schedule-based 64

attack. Note that, as a common threat to real-time systems, the 65

posterior schedule-based attacks, such as replay attacks, zero 66

dynamics attacks, and bias injection attacks, can be launched 67

to manipulate the output of a task, and their attack effects have 68

been demonstrated in Real-time Linux and FreeRTOS [2], [3]. 69

There is a wealth of literature on security-aware scheduling 70

methods to defend against schedule-based attacks (outlined 71

in Section II). Traditionally, research in this field has 72
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focused mainly on uniprocessor systems [5], [7], [8], [9],73

[10], but lately, attention has turned toward multiprocessor74

systems [11], [12]. More recently, Chen et al. [11] proposed a75

temporal isolation-based protection approach SchedGuard++76

to protect against posterior schedule-based attacks on mul-77

tiprocessors with multiple victims by preventing untrusted78

tasks from running within AEWs of victim tasks. It can79

provide best-effort protection for the multiprocessor system80

under schedulability constraints. However, it has four major81

drawbacks.82

1) It tends to allocate all untrusted tasks to the same83

processors, thereby reducing opportunities to miti-84

gate schedule-based attacks by strategically scheduling85

untrusted tasks with parallel processing capabilities of86

multiprocessors.87

2) Upon the completion of a victim task’s execution on a88

processor, it blocks all other processors, including those89

running trusted tasks. This resource wastage leads to a90

decline in the performance of security protections under91

the system schedulability constraint.92

3) It employs an empirical protection window to guide93

the security-aware scheduling, neglecting the system94

protection capability limit imposed by schedulability95

constraints. This may result in over blocking of untrusted96

tasks, ultimately compromising the performance of the97

security protection.98

4) It conducts an offline analysis for the maximum tolerable99

blocking times of tasks, ignoring the run-time system100

behavior. The inherent pessimism of offline analysis101

results in a degradation of protection performance,102

particularly when handling task sets with high103

utilization.104

To overcome the above limitations, we propose a multimode105

security-aware real-time scheduling approach called MM-106

SARTS for multiprocessor real-time systems to optimize107

the system protection capability under system schedulability108

constraints. MM-SARTS enables the system to operate in109

different modes, each with its own specific security-aware110

scheduling strategy, to mitigate schedule-based attacks by111

distinctively scheduling mixed-trust tasks according to the112

system’s operational status. The primary contributions of our113

work can be summarized as follows.114

1) We presented an example to illustrate the limitations of115

the isolation-based protection method SchedGuard++116

for multiprocessor systems with multiple victims.117

2) We proposed a multimode security-aware real-time118

scheduling method to mitigate schedule-based attacks119

by distinctively scheduling mixed-trust tasks according120

to the system mode, coupled with an online priority121

inversion feasibility test.122

3) We introduced a protection window for multiple victims123

on multiprocessors to avoid protection degradation due124

to excessive blocking of untrusted tasks by analyzing125

the system protection capability limit under the system126

schedulability constraint.127

4) We developed a security-aware task-to-processor pack-128

ing algorithm that maximizes the protection capability129

of the multimode security-aware scheduling strategy on130

a multiprocessor system by balancing the workloads of 131

mixed-trust tasks across different processors. 132

The experimental evaluation based on an automotive bench- 133

mark indicates that our method can effectively decrease the 134

AEW ratio and the AEW untrusted execution time ratio and 135

enhance the attack defense success rate. 136

II. RELATED WORK 137

Since the pioneer research by Son et al. [13] on 138

information leakage in real-time systems caused by pre- 139

dictable system execution patterns, numerous studies have 140

focused on security-aware real-time scheduling strategies to 141

counter schedule-based attacks. These security-aware schedul- 142

ing techniques can generally be categorized into two groups: 143

1) randomization-based scheduling and 2) isolation-based 144

scheduling. 145

In randomization-based scheduling, obfuscation mecha- 146

nisms are used to diversify the schedule, making it difficult for 147

attackers to accurately predict the timing behavior of victim 148

tasks [7], [8], [9], [14], [15], [16], [17]. For the fixed-priority 149

real-time system in which each task is assigned a static priority 150

level, Yoon et al. [7] introduced a randomized security-aware 151

scheduling method based on priority inversion. This method 152

leverages statically calculated priority inversion budgets to 153

resist the schedule-based side-channel attacks while ensuring 154

the real-time performance. To increase randomness in the task 155

execution pattern, Yoon et al. [14] utilized runtime information 156

at each scheduling decision point to enhance the uncertainty 157

of task schedules while ensuring system schedulability. For 158

the time-triggered real-time system, where tasks are executed 159

according to a predetermined and fixed schedule constructed 160

based on the schedulability constraints, Krüger et al. [15], [16] 161

analyzed vulnerabilities related to timing inference and mali- 162

cious behavior and proposed an online job randomization 163

method and an offline schedule-diversification method to 164

mitigate timing inference-based attacks. For the dynamic- 165

priority real-time system, where task priorities are calculated 166

during system execution, Chen et al. [8] introduced a ran- 167

domized scheduling method to obscure the earliest deadline 168

first scheduling policy with limited priority inversions at run- 169

time. This method effectively introduces unpredictability into 170

execution patterns of tasks, particularly when the system oper- 171

ates under low and medium loads. However, its conservative 172

predetermination of task priority inversion limits, without 173

considering dynamic run-time system behavior, can lead to 174

performance degradation under heavy utilization. To address 175

this problem, Ren et al. [9] proposed an enhanced randomized 176

scheduling strategy that leverages runtime system information 177

to increase feasible priority inversion opportunities while 178

ensuring system schedulability. Although randomization-based 179

scheduling methods can significantly increase timing uncer- 180

tainty, making it harder to predict task execution states, it has 181

been demonstrated that they may fail to protect against certain 182

schedule-based attacks and, in some cases, even increase the 183

attack success rate [6]. 184

In isolation-based scheduling, various temporal isolation 185

mechanisms are employed to prevent interference among tasks, 186
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thereby protecting sensitive information from unauthorized187

access [5], [10], [18], [19], [20]. For the fixed-priority real-188

time systems, Völp et al. [18] suggested using an idle189

system thread to defend against information leakage. Similarly,190

Pellizzoni et al. [20] and Mohan et al. [19] suggested the191

introduction of flush tasks to prevent the schedule-based192

information leakage between low- and high-security tasks.193

However, this mechanism introduces significant overhead,194

yielding in a poor response time for real-time tasks and195

reducing system schedulability. To prevent the execution of196

untrusted tasks during the AEWs, Chen et al. [5] proposed197

a coverage-oriented scheduling policy to provide determinis-198

tic isolation against posterior schedule-based attacks without199

affecting schedulability. However, this approach overlooks200

the limit of system protection capacity due to schedulability201

constraints in security-aware scheduling decisions, potentially202

leading to poor security performance from excessive blocking203

of untrusted tasks. Moreover, it conducts an offline analysis of204

the maximum acceptable blocking time budget, which results205

in diminished protection performance when handling task sets206

with high utilization due to the pessimism of the offline207

analysis. To avoid the excessive blocking of untrusted tasks208

and the pessimism of the offline analysis, Ren et al. [10]209

proposed a security-aware real-time scheduling scheme based210

on the protection window and the online feasibility test.211

However, this method is limited to single-core systems with212

a single victim task. For multiprocessor platforms with213

multiple victims, Chen et al. [11] introduced an approach214

named SchedGuard++, which extends the coverage-oriented215

scheduling approach in [5] with the worst-case response216

time analysis for mixed-trust tasks on the multiprocessor.217

Nevertheless, it fails to fully exploit the parallelism of mul-218

tiprocessor systems to optimize security performance under219

schedulability constraints by decreasing the AEW ratio and220

the AEW untrusted execution time ratio.221

In this article, we propose a novel isolation-based security-222

aware scheduling approach for multiprocessor systems with223

multiple victims. Our approach differs from these existing224

methods in that it can effectively reduce the AEW ratio and225

the AEW untrusted execution time ratio through multimode226

scheduling based on an online priority inversion feasibility227

test. Furthermore, our approach enhances the overall system228

protection capability of multiprocessor systems by balancing229

mixed-trust task workloads across different processors.230

III. SYSTEM AND ADVERSARY MODEL231

A. System Model232

We consider a real-time system comprising N independent233

periodic real-time tasks, denoted by � = {τ1, . . . , τN}, exe-234

cuted on a multiprocessor system with P identical processors235

of unit capacity, identified as � = {π1, . . . πP}, following236

a partitioned fixed-priority preemptive scheduling strategy237

commonly used in OSEK/VDX operating system [21] and238

AUTOSAR [22]. Each task τi ∈ � is defined as τi =239

(Ci, Ti, Di), where240

1) Ci is the worst-case execution time (WCET) of τi;241

2) Ti is the period of τi;242

3) Di is the relative deadline of τi. 243

For a task τi, we use utilization symbolized by Ui to indicate 244

the ratio Ci/Ti, and use U� = ∑
τi∈� Ui to represent the 245

total utilization of the task set �. We consider all tasks to 246

be implicit-deadline tasks, where the deadline Di is equal to 247

the period Ti, and they are initially released at the same time 248

t = 0. The hyperperiod of a task set � is indicated by H� , 249

which is the least common multiple of all task periods for task 250

set �. The job of task τi is represented as Ji,j, and its release 251

time is indicated as ri,j, which is a member of the infinite set 252

{0, Ti, 2Ti, . . .}. For a job Ji,j of task τi released at ri,j, its 253

completion time is represented as fi(ri,j). If each task τi ∈ � 254

can meet its deadline in the worst-case scenario, the system 255

is considered schedulable. For each task τi ∈ �, it has a 256

unique priority, and its priority is allocated based on the rate 257

monotonic (RM) policy [23]. The set of tasks with priorities 258

higher than task τi is denoted as hp(τi), while the set of tasks 259

with lower priorities is indicated as lp(τi). Following [5], the 260

idle times are treated as instances of an extra idle task in 261

the system, and the idle task has the lowest priority, infinite 262

execution time, and infinite period and deadline. 263

B. Adversary Model 264

In this article, we follow the vendor-oriented security model 265

in [20], where information leakage from a vendor’s sensitive 266

tasks to other vendors’ tasks is undesirable. For a system, 267

high-critical tasks (e.g., engine and brake control tasks in 268

a self-driving system) are regarded as victim tasks. Given 269

a victim task set, tasks are classified as trusted (from the 270

same vendor as a victim task, or an idle task) or untrusted 271

(all other tasks, which may be attackers). It is assumed that 272

only untrusted tasks pose an attack risk, and the scheduler is 273

trustworthy. 274

We consider an attack scenario where an adversary carries 275

out a posterior schedule-based attack on the victim task by 276

exploiting external connections on the target platform [6]. It 277

is assumed that the adversary has taken control of certain 278

tasks, turning them into attackers within the system, and is 279

able to modify their control flow. The attacker is unaware 280

of the concrete scheduling scheme, but it can deduce certain 281

scheduling parameters by monitoring the execution windows 282

of compromised tasks. For example, such an attack can 283

covertly deduce the locations and routes of self-driving cars 284

through the external network [4]. We assume that for the attack 285

to be effective, it must be carried out within a certain time 286

window after the victim task completes to steal, corrupt, or 287

overwrite the victim’s output. We define such a time window 288

as the AEW. 289

Definition 1 [11]: For a victim task τ v
i , its AEW, denoted 290

by ωi, is defined as the time period during which schedule- 291

based attacks are effective and ineffective otherwise. 292

To characterize the amount of AEWs generated by a victim 293

task within a time interval, we define the accumulative AEWs 294

of a victim task as follows. 295

Definition 2 [11]: Given a scheduling policy P and a 296

schedulable task set � under P , for a victim task τ v
i ∈ �, its 297

accumulative AEW within the time interval [t1, t2), denoted 298
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by �({τ v
i },P, t1, t2), is defined as the set of all time intervals299

that belong to the AEW of task τ v
i within time interval [t1, t2).300

We focus on multiprocessor real-time systems with multiple301

victim tasks, and the AEWs of different victim tasks can poten-302

tially overlap because of the parallel execution on different303

processors. Here, we formally define the accumulative AEW304

for a set of victim tasks as the union of their AEWs.305

Definition 3 [11]: Given a scheduling policy P and a306

schedulable task set � under P , for the victim task set �v ⊆ �,307

its accumulative AEW within the time interval [t1, t2), denoted308

by �(�v,P, t1, t2), is defined as the union of AEWs of all309

victim tasks in �v over the time interval [t1, t2), i.e.,310

�
(
�v,P, t1, t2

) =
⋃

τ v
i ∈�v

�
({

τ v
i

}
,P, t1, t2

)
(1)311

where �({τ v
i },P, t1, t2) is the accumulative AEW of task τ v

i312

over the time interval [t1, t2) under scheduling policy P .313

To assess the protection performance of a scheduling policy,314

we define the AEW ratio and the AEW untrusted execution315

time ratio as follows.316

Definition 4: Given a scheduling policy P and a schedula-317

ble task set � under P , the AEW ratio of the task set � under318

P within the time interval [t1, t2), denoted by �(�,P, t1, t2),319

is defined as320

�(�,P, t1, t2) = L
(
�v,P, t1, t2

)

t2 − t1
(2)321

where �v represents all victim tasks in �, and L(�v,P, t1, t2)322

is the cumulative length of the accumulative AEW323

�(�v,P, t1, t2) of task set �v within the time interval [t1, t2).324

From Definition 4, we can observe that for a task set �,325

a higher AEW ratio indicates a larger attack surface, thereby326

increasing its susceptibility to attacks.327

Definition 5: Given a scheduling policy P and a schedu-328

lable task set � under P , the AEW untrusted execution time329

ratio for the task set � within the time interval [t1, t2),330

denoted by 	(�,P, t1, t2), is defined as the total execution331

time of untrusted tasks within AEWs in [t1, t2) divided by their332

cumulative execution time within the time interval [t1, t2), i.e.,333

	(�,P, t1, t2) =
∑

τi∈�u EAEW
i (P, t1, t2)

∑
τi∈�u Ei(P, t1, t2)

(3)334

where �u is the set of all untrusted tasks in �, EAEW
i (P, t1, t2)335

represents the total execution time of the untrusted task τi ∈336

�u within AEWs in [t1, t2) under scheduling policy P and337

Ei(P, t1, t2) denotes the cumulative execution time of task τi338

within [t1, t2) under scheduling policy P .339

From Definition 5, we can see that for a task set �, as the340

AEW untrusted execution time ratio increases, the execution341

time of untrusted tasks within AEWs tends to be longer, thus342

resulting in a higher likelihood of successful attacks.343

Goal: The main objective of this work is to develop an344

efficient security-aware multiprocessor real-time scheduling345

strategy to schedule a given set of periodic real-time tasks346

on the multiprocessor platform with multiple victim tasks,347

such that all tasks are schedulable and the chance for the348

adversary to launch a successful posterior scheduler-based349

TABLE I
TASK PARAMETERS OF AN EXAMPLE TASK SET �

attack is reduced by minimizing the AEW ratio and the AEW 350

untrusted execution time ratio. 351

IV. MULTIMODE SECURITY-AWARE REAL-TIME 352

SCHEDULING 353

A. Motivation 354

Before presenting our multimode security-aware real-time 355

scheduling scheme, we first provide an example to discuss the 356

limitations of the existing temporal isolation-based protection 357

method SchedGuard++ [11] and to motivate the multimode 358

security-aware real-time scheduling strategy. The basic idea of 359

SchedGuard++ can be succinctly described as follows. 360

1) In the task-to-processor allocation process, each victim 361

task is initially allocated to a single processor. Next, 362

trusted tasks are evenly distributed among processors 363

with victim tasks based on their utilizations. Finally, 364

untrusted tasks are distributed evenly among processors 365

without victim tasks. It is important to note that, to 366

assign a feasible processor to each task, trusted and 367

untrusted tasks may be allocated to any processor, 368

regardless of whether that processor has a victim task. 369

2) It schedules tasks on the basis of an empirical protection 370

window. Once a victim task is completed on a processor, 371

the protection window starts. During the protection win- 372

dow, all other processors are attempted to be blocked. 373

Note that when a task reaches its maximum tolerable 374

blocking time (i.e., the longest duration that a task can 375

be paused or delayed by lower priority tasks under the 376

schedulability constraint), it is allowed to execute within 377

the protection window to ensure system schedulability. 378

It has been demonstrated that SchedGuard++ can defend 379

against posterior schedule-based attacks on multiprocessors 380

by preventing untrusted tasks from being executed during the 381

AEW. However, SchedGuard++ cannot effectively reduce the 382

AEW ratio and the AEW untrusted execution time ratio for 383

some sets of tasks. Now, we illustrate this with an example. 384

Example 1: Consider a task set � depicted in Table I 385

scheduled on four processors � = {π1, π2, π3, π4} under 386

SchedGuard++. As shown in Fig. 1, it is the simulation 387

of a synchronous arrival sequence (SAS) for the task set 388

� under SchedGuard++. From Fig. 1, we can see that all 389

untrusted tasks are allocated to processors π3 and π4, although 390

there remains some capacity on processors π1 and π2. This 391

reduces opportunities to mitigate the schedule-based attack 392
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Fig. 1. SAS simulation for task set � under SchedGuard++.

by strategically scheduling untrusted tasks with the parallel393

processing characteristics of multiprocessors. We also can394

observe that once a job of victim task τ v
1 is completed, all395

other processors, including the processor π2 with trusted tasks,396

are attempted to be blocked. This results in a reduction in397

the system’s parallel processing capability and an increase in398

the AEW ratio. Obviously, some untrusted jobs are executed399

during AEWs of victim tasks τ v
1 and τ v

2 . From Fig. 1, we can400

see that the accumulative AEW within [0, 20) is 3 + 5 + 3 =401

11, and hence the AEW ratio within [0, 20) is 11/20 = 0.55.402

We also can see that the total execution time of untrusted403

tasks within AEWs in [0, 20) is 2+ 6 = 8 and the cumulative404

execution time of untrusted tasks within [0, 20) is 2× 4+2×405

4 + 5 + 5 = 26, and thus the AEW untrusted execution time406

ratio within [0, 20) is 8/26 ≈ 0.3077. Note that it is possible407

to decrease the AEW ratio within [0, 20) to 0.45 and the AEW408

untrusted execution time ratio within [0, 20) to 0 using our409

multimode security-aware real-time scheduling approach (see410

Example 2).411

B. Multimode System Model412

To mitigate the vulnerability to schedule-based attacks,413

we model the real-time system as a multimode system and414

introduce an enforcement mechanism to prevent untrusted415

tasks from being executed during AEWs of victim tasks by416

scheduling specific jobs to execute based on the system mode.417

Multimode System: The real-time system is modeled as a418

multimode system characterized by a set of system modes M,419

an initial system mode M0 ∈ M, a set of mode transitions420

R ⊆ M ×M, and a set of implicit-deadline periodic tasks421

T that execute in the system modes. Here, we consider three422

system modes: 1) normal mode MN; 2) victim mode MV; and423

3) protection mode MP, with the initial mode being the normal424

mode (i.e., M0 = MN). For each mode M ∈M, we consider425

that all tasks in the set T should be executed. The mode426

transition is triggered by a mode change request event (MCR).427

Enforcement in a Mode: To mitigate schedule-based attacks428

by strategically scheduling mixed-trust tasks based on the429

system’s operational mode, we define the scheduling enforce-430

ment for each system mode as follows.431

1) Normal Mode MN: Untrusted tasks are executed as432

much as possible on each processor. This enables the433

system to execute untrusted tasks to the greatest extent434

possible before the execution of victim tasks, preventing435

untrusted tasks from launching posterior schedule-based436

attacks.437

2) Victim Mode MV: Victim tasks are executed as much 438

as possible on each processor. This allows victim tasks 439

on different processors to execute simultaneously, max- 440

imizing the overlap of AEWs of victim tasks across 441

processors and thereby reducing the accumulative AEW 442

size of multiple victim tasks in the multiprocessor 443

system. 444

3) Protection Mode MP: Trusted and idle tasks are executed 445

as much as possible on each processor. With this mode, 446

we can minimize the risk of potential attacks on victim 447

tasks by preventing untrusted tasks from being executed 448

during AEWs of victim tasks. 449

Note that the mode enforcement is nonstrict. When a task 450

must be executed for schedulability, regardless of its type, 451

it can be executed in any mode to maintain the system 452

schedulability. 453

Enforcement Upon an MCR: When the system is operating 454

in mode Ms and receives an MCR associated with an outgoing 455

transition (Ms, Mt), it immediately switches to the new mode 456

Mt and performs the enforcement. We consider four mode 457

transitions. 458

1) MN→ MV: This transition allows the system to execute 459

untrusted tasks prior to the execution of victim tasks. It 460

is triggered when no untrusted tasks are pending on any 461

processor, or when there is a victim task that must be 462

executed for schedulability. 463

2) MV → MP: This transition enables the system to execute 464

trusted tasks after the completion of victim tasks. It 465

is triggered when no victim tasks are pending on any 466

processor. 467

3) MP → MN: This transition is used to avoid the 468

protection degradation due to the excessive blocking of 469

untrusted tasks. It is triggered when the duration of 470

the protection mode exceeds a specific threshold. This 471

threshold is set based on the system protection capability 472

limit characterized by the protection window given in 473

Section IV-C. 474

4) MP → MV: This transition is designed to ensure the 475

schedulability of the victim tasks and provide timely 476

protection for them. It is triggered when a victim task 477

must be executed for schedulability. 478

C. Protection Window of Multiple Victims on Multiprocessor 479

To effectively mitigate schedule-based attacks by preventing 480

the protection degradation caused by the excessive blocking 481

of untrusted tasks in the protection mode, we introduce the 482

protection window for multiple victim tasks on the mul- 483

tiprocessor platform. This protection window characterizes 484

the limit of system protection capability under schedulability 485

constraints. 486

Definition 6: Given a schedulable task set �(πk) on a 487

uniprocessor πk, the protection window of a victim job J v
i,j of 488

victim task τv
i ∈ �(πk), denoted by Si,j, is defined as the length 489

of time interval [f v(rv
i,j), min {rv

i,j + Tv
i , bu}), where f v(rv

i,j) is 490

the finish time of the job J v
i,j, Tv

i is the period of task τ v
i , 491

and bu is the start time of execution of the first untrusted job 492

executed after f v(rv
i,j). 493
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Definition 7: Given a schedulable task set �(πk) on a494

uniprocessor πk, the protection window of a victim task τv
i ∈495

�(πk), denoted by Si, is defined as the minimum protection496

window of jobs for victim task τ v
i , i.e.,497

Si = min
1≤j≤H�(πk)

/Tv
i

{Si,j} (4)498

where Si,j is the protection window of job J v
i,j for τ v

i , H�(πk)499

is the hyperperiod of �(πk), and Tv
i is the period of τ v

i .500

Lemma 1: Given a schedulable task set �(πk) on a unipro-501

cessor πk, the protection window of a victim task τ v
i ∈ �(πk)502

is bounded by503

Smax
i = Tv

i

⎛

⎝1−
⎛

⎝
∑

τj∈�u(πk)

Uj

⎞

⎠− Uv
i

⎞

⎠ (5)504

where �u(πk) is the set of all untrusted tasks in task set �(πk),505

Tv
i is the period of task τ v

i , and Uj and Uv
i represent the506

utilizations of tasks τj and τ v
i , respectively.507

Proof: For a hyperperiod with m = H�(πk)/Tv
i jobs of the508

victim task τ v
i , where H�(πk) is the hyperperiod of task set509

�(πk) and Tv
i is the period of task τ v

i , we can derive the510

following inequality based on Definition 7:511

mSi ≤
∑

1≤l≤m

Si,l (6)512

where Si,l is the protection window of victim job J v
i,l, and Si513

is the protection window of victim task τ v
i .514

According to Definition 6, there is no execution of any515

untrusted task or victim task τ v
i within the protection window516

of the job of victim task τ v
i , and hence we can derive517

∑

1≤l≤m

Si,l ≤ H�(πk) −
⎛

⎝
∑

τj∈�u(πk)

H�(πk)

Tj
Cj

⎞

⎠− H�(πk)

Tv
i

Cv
i518

= mTv
i

⎛

⎝1−
⎛

⎝
∑

τj∈�u(πk)

Uj

⎞

⎠− Uv
i

⎞

⎠. (7)519

From (6) and (7), we can derive the following:520

Si ≤ Tv
i

⎛

⎝1−
⎛

⎝
∑

τj∈�u(πk)

Uj

⎞

⎠− Uv
i

⎞

⎠. (8)521

Thus, the protection window of the victim task τ v
i ∈ �(πk)522

is bounded by Smax
i given in (5).523

Definition 8: Given a schedulable task set �(πk) on a524

uniprocessor πk, the protection window of all victim tasks in525

task set �(πk), denoted by S(πk), is defined as the minimum526

protection window of victim tasks in task set �(πk), i.e.,527

S(πk) = min
τ v

i ∈�v(πk)
{Si} (9)528

where �v(πk) is the set of all victim tasks in task set �(πk),529

and Si is the protection window of victim task τ v
i ∈ �v(πk).530

Note that for a processor without a victim task, we assume531

its protection window to be infinite. Based on Definition 8 and532

Lemma 1, we can directly derive the following lemma.533

Algorithm 1 Multimode Security-Aware Scheduling
Input: Scheduling point t, current system mode Mt, task set �(πk),

ready queue Qt, victim ready queue QV
t , trusted ready queue

QT
t , untrusted ready queue QU

t .
Output: A job executed at time t.
1: if Mt = MN then
2: Jtest ← the highest priority job in QU

t
3: else if Mt = MV then
4: Jtest ← the highest priority job in QV

t
5: else
6: if QT

t 	= ∅ then
7: Jtest ← the highest priority job in QT

t
8: else
9: Jtest ← idle job

10: end if
11: end if
12: if Jtest is the highest priority job in Qt then
13: Jtest is executed until the next scheduling point.
14: else
15: (flag, Et

test) ← FeasibilityTest(�(πk),Jtest, t)
16: if flag = True then
17: Jtest is executed until the next scheduling point.
18: else
19: The highest priority job in Qt is executed until the next

scheduling point.
20: end if
21: end if

Lemma 2: Given a schedulable task set �(πk) on a unipro- 534

cessor πk, the protection window S(πk) of all victim tasks in 535

task set �(πk) is bounded by 536

Smax(πk) = min
τ v

i ∈�v(πk)

{
Smax

i

}
(10) 537

where �v(πk) is the set of all victim tasks in task set �(πk), 538

and Smax
i is the protection window upper bound of task τ v

i ∈ 539

�v(πk) given in (5). 540

Definition 9: Given a schedulable task set � scheduled on 541

a multiprocessor � with a partitioned scheduling policy, the 542

protection window of all victim tasks in the task set �, denoted 543

by S�, is defined as follows: 544

S� = min
πk∈�
{S(πk)} (11) 545

where S(πk) is the protection window of all victim tasks in 546

the task set �(πk) assigned to processor πk ∈ �. 547

Based on Definition 9 and Lemma 2, the following theorem 548

can be directly derived. 549

Theorem 1: Given a schedulable task set � scheduled on 550

a multiprocessor � with a partitioned scheduling policy, the 551

protection window of all victim tasks in � is bounded by 552

Smax
� = min

πk∈�
{
Smax(πk)

}
(12) 553

where Smax(πk) is the protection window upper bound of tasks 554

assigned to the processor πk ∈ � given in (10). 555

For a task set � scheduled on a multiprocessor � with a 556

partitioned scheduling policy, once the duration of the pro- 557

tection mode MP exceeds Smax
� , the system will immediately 558

enter the normal mode MN to avoid the protection degradation 559

due to excessive blocking of untrusted tasks. 560



REN et al.: MULTIMODE SECURITY-AWARE REAL-TIME SCHEDULING ON MULTIPROCESSORS 7

D. Multimode Security-Aware Scheduling561

Based on the multimode system model given in Section IV-B562

we propose a multimode security-aware real-time scheduling563

algorithm to provide best-effort security protection for victim564

tasks while maintaining system schedulability. The key idea of565

this scheduling algorithm is to reduce the accumulative AEW of566

multiple victim tasks and prevent untrusted tasks from executing567

during the AEW by distinctively scheduling mixed-trust tasks568

according to the system mode.569

As given in Algorithm 1, it is our multimode security-aware570

scheduling algorithm written in pseudocode. In the algorithm,571

there is a ready queue Qt that holds all jobs that are ready572

to run and waiting to be executed, with QV
t , QT

t , and QU
t573

representing the ready queues for victim jobs, trusted jobs,574

and untrusted jobs, respectively. The scheduling decisions are575

made by selecting a candidate job according to the system576

mode. When the system is in normal mode, the execution577

feasibility of the ready untrusted job with the highest priority578

will be checked (lines 1 and 2). When the system is in victim579

mode, the execution feasibility of the ready victim job with580

the highest priority will be checked (lines 3 and 4). When the581

system mode is in protection mode, if there are some trusted582

jobs in the ready queue, the execution feasibility of the ready583

trusted job with the highest priority will be checked (lines 6584

and 7); otherwise, the execution feasibility of the idle job will585

be checked (line 9). Note that it is always feasible for the586

highest priority job in the ready queue Qt, since there is no587

priority inversion for its execution (lines 12 and 13). If Jtest588

is not the highest priority job in ready queue Qt, an online589

priority inversion feasibility test is performed for Jtest, and the590

online feasibility test algorithm is given in Algorithm 2. If it591

is feasible to execute the selected job, the selected job will be592

executed at t (lines 16 and 17); otherwise, the highest priority593

job in the ready queue Qt will be executed (line 19). Note that594

the selected job is executed until the next scheduling point.595

In our scheduling algorithm, the scheduling points include the596

arrival time of the MCR associated with a mode translation,597

the completion time of the current job, the moment when the598

running job experienced the feasible execution time Et
test, and599

the release instant of new jobs.600

From Algorithm 1, we can find that some higher priority601

tasks can be blocked by lower priority tasks (i.e., priority602

inversion) during the security-aware scheduling of each system603

mode. To ensure system schedulability in the presence of pri-604

ority inversion, we conduct an online feasibility test based on605

the priority inversion budget analysis, similar to the approach606

in [10]. For convenience, we provide a summary of the online607

feasibility test based on priority inversion budget analysis here.608

Definition 10 [7]: Given a task set �(πk) scheduled on a609

uniprocessor πk, the maximum priority inversion budget of610

task τh ∈ �(πk) at time t, denoted by Bt
h, is defined as the611

maximum amount of time for which all lower priority tasks612

lp(τh) are allowed to execute before τh finishes at t, while613

ensuring the schedulability of τh in the worst-case scenario.614

In the analysis of the priority inversion budget for a task615

τh ∈ hp(τtest), we consider its two adjacent jobs J t
h and J t′

h ,616

where job J t
h is the last job of task τh released no later than617

time t and job J t′
h is the first job of task τh released after618

Algorithm 2 Online Feasibility Test

Input: Task set �(πk), Vi of τi ∈ �(πk) calculated off-line with
(19) and (20), test job Jtest, scheduling point t, ready queue Qt,
job J t

h that is the last job of task τh ∈ hp(τtest) released no later
than time t.

Output: The feasibility flag of executing job Jtest at time t, and
the maximum feasible execution time Et

test of job Jtest.
1: flag← True
2: Et

test ← C̃t
test

3: for all τh ∈ hp(τtest) do
4: Calculate Ih(t, dt

h) with equation (14)
5: if J t

h ∈ Qt at time t then

6: Bt
h ← dt

h − t − C̃t
h − Ih(t, dt

h)
7: else
8: Bt

h ← dt
h − t + Vh − Ih(t, dt

h)
9: end if

10: if Bt
h > 0 then

11: Et
test ← min{Et

test,Bt
h}

12: else
13: flag← False
14: Et

test ← 0
15: break
16: end if
17: end for
18: return (flag, Et

test)

time t. Depending on whether J t
h is in the ready queue Qt or 619

not at time t, we consider two cases. 620

Case 1 (Job J t
h Is in Ready Queue Qt at Time t): In this 621

case, we can focus solely on the analysis of the job J t
h of task 622

τh at time t. Let dt
h be the absolute deadline of job J t

h . Based 623

on Definition 10, by analyzing the workload during the time 624

interval [t, dt
h), the maximum priority inversion budget Bt

h of 625

task τh at time t can be expressed as 626

Bt
h ≥ dt

h − t − C̃t
h − Ih

(
t, dt

h

)
(13) 627

where C̃t
h is the worst-case remaining execution time of job 628

J t
h . Ih(t, dt

h) is the worst-case workload of tasks in hp(τh) 629

during the time interval [t, dt
h), and it can be calculated by 630

Ih
(
t, dt

h

) =
∑

τj∈hp(τh)

C̃t
j +

∑

τj∈hp(τh)

⌈
dt

h − rt′
j

Tj

⌉

0

Cj (14) 631

where 
x�0 is the smallest non-negative integer greater than 632

or equal to x, C̃t
j is the worst-case remaining execution time 633

of task τj at time t, and rt′
j is the release time of the first job 634

of task τj released after time t. 635

Case 2 (Job J t
h Is Not in Ready Queue Qt at Time t): In 636

this scenario, the upcoming job J t′
h of task τh released after 637

time t should be analyzed. Let rt′
h and dt′

h be the release time 638

and the absolute deadline of job J t′
h . Based on Definition 10, 639

the maximum priority inversion budget Bt
h of task τh at time 640

t can be expressed as 641

Bt
h = Bh

(
t, rt′

h

)
+ Bh

(
rt′

h , dt′
h

)
(15) 642

where Bh(t, rt′
h ) and Bh(rt′

h , dt′
h ) are the maximum priority 643

inversion budgets of task τh during time intervals [t, rt′
h ) and 644
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[rt′
h , dt′

h ), respectively. By analyzing the workload during the645

time interval [t, rt′
h ), Bt

h(t, rt′
h ) can be expressed as646

Bh

(
t, rt′

h

)
≥ rt′

h − t − Ih

(
t, rt′

h

)
(16)647

where Ih(t, rt′
h ) is the worst-case workload of tasks in hp(τh)648

during the time interval [t, rt′
h ). Since task τh is an implicit-649

deadline periodic task (i.e., rt′
h = dt

h), (16) can rewritten as650

Bh

(
t, rt′

h

)
≥ dt

h − t − Ih
(
t, dt

h

)
(17)651

where Ih(t, dt
h) can be calculated with (14).652

For the maximum priority inversion budget Bh(rt′
h , dt′

h ) of653

task τh during time interval [rt′
h , dt′

h ), it can be expressed as654

Bh

(
rt′

h , dt′
h

)
≥ Vh (18)655

where Vh is the maximum amount of time that τh can656

additionally have while meeting its deadline when there are657

no deferred executions of tasks in hp(τh) at the release time658

of task τh. According to [14], Vh can be calculated offline,659

and it can be expressed as660

Vh = max {δ | Wh(δ) ≤ Dh} (19)661

where Dh is the relative deadline of task τh, and Wh(δ) is the662

duration between a critical instant and the response completion663

of the corresponding request of task τh with extra execution664

time δ. According to [23], Wh(δ) can be derived by solving665

the following iterative formula:666

Wn+1
h (δ) = W0

h (δ)+
∑

τj∈hp(τh)

⌈
Wn

h (δ)

Tj

⌉

Cj (20)667

where W0
h (δ) is the initial value of Wh(δ), and it is set as668

Ch+δ by considering the WCET and the extra execution time669

of task τh. Wn
h (δ) is the value of Wh(δ) at the nth iteration.670

By (15), (17), and (18), the maximum priority inversion671

budget Bt
h of task τh at time t can be expressed as672

Bt
h ≥ dt

h − t − Ih
(
t, dt

h

)+ Vh. (21)673

Based on the analysis of the two cases mentioned above,674

the maximum priority inversion budget Bt
h of task τh at time675

t is bounded by (13) and (21). Hence, a lower bound of Bt
h,676

denoted by Bt
h, can be calculated by677

Bt
h =

{
dt

h − t − C̃t
h − Ih

(
t, dt

h

)
J t

h ∈ Qt at time t
dt

h − t + Vh − Ih
(
t, dt

h

)
J t

h /∈ Qt at time t.
(22)678

From (22), for a task τtest, if Bt
h is greater than zero for each679

task τh ∈ hp(τtest), it is feasible to execute task τtest at time680

t by the priority inversion. Thus, we can obtain the following681

theorem.682

Theorem 2 [10]: For a schedulable task set �(πk) on a683

uniprocessor πk under the RM policy, if the job Jtest of684

task τtest ∈ �(πk) is executed with execution time Et
test at685

time t when Et
test ≤ Bt

h for all tasks τh ∈ hp(τtest) and686

Bt
h is calculated with (22), then the task set �(πk) is also687

schedulable.688

Proof: For the detailed proof, please refer to [10].689

As shown in Algorithm 2, it is the priority inversion budget- 690

based online feasibility test algorithm written in pseudocode. 691

In this algorithm, flag indicates whether Jtest can be executed 692

at time t and Et
test denotes its maximum feasible execution 693

time at time t. First, flag and Et
test are initialized to True 694

and C̃t
test, respectively (lines 1 and 2). Then, the feasibility 695

of executing the job Jtest at time t is checked by calculating 696

the lower bound of the maximum priority inversion budget for 697

each task τh ∈ hp(τtest). The upper bound on the workload 698

of each task in hp(τh) during the interval [t, dt
h) is calculated 699

by (14) (line 4). The lower bound of the maximum priority 700

inversion budget for task τh is calculated by (22) (lines 5–9). 701

If Bt
h > 0, the job Jtest can be executed at t with execution 702

time Bt
h while ensuring the schedulability of task τh, and Et

test 703

is updated to min{Et
test,Bt

h} (lines 10 and 11). If there exists 704

a task τh ∈ hp(τtest) whose Bt
h is not greater than 0, it is not 705

feasible to execute Jtest at time t (lines 12–16); otherwise, it 706

is feasible. 707

Lemma 3: Let �(πk) be the set of tasks scheduled on the 708

uniprocessor πk. The execution feasibility of a job Jtest of task 709

τtest ∈ �(πk) at time t can be obtained with the computational 710

complexity O(|hp(τtest)|2) with Algorithm 2, where hp(τtest) 711

is the set of higher priority tasks of τtest in task set �(πk) and 712

|hp(τtest)| is the number of tasks in hp(τtest). 713

Proof: From Algorithm 2, it is evident that the computa- 714

tional complexity of the priority inversion budget-based online 715

feasibility test for the job Jtest depends mainly on the number 716

of tasks with higher priority than τtest (i.e., line 3) and 717

the complexity to calculate Ih(t, dt
h) with (14) (i.e., line 4). 718

The number of tasks with higher priority than task τtest is 719

|hp(τtest)|. The complexity to calculate Ih(t, dt
h) with (14) is 720

O(|hp(τh)|) for each task τh ∈ hp(τtest). Since |hp(τh)| ≤ 721

|hp(τtest)| for each task τh ∈ hp(τtest), we can obtain that the 722

complexity of the feasibility test with Algorithm 2 for the job 723

Jtest is O(|hp(τtest)|2). 724

Theorem 3: For a schedulable task set �(πk) on a unipro- 725

cessor πk under the RM policy, it is also schedulable with 726

the multimode security-aware scheduling strategy given in 727

Algorithm 1. 728

Proof: According to lines 12–21 in Algorithm 1, for each 729

system mode, any job of tasks in �(πk) is executed with 730

a priority inversion or based on the priority assigned with 731

the RM policy. According to Theorem 2, for each system 732

mode, the schedulability of �(πk) can be ensured when 733

some jobs are executed with priority inversion based on the 734

online feasibility test given in Algorithm 2, since the task 735

set �(πk) is schedulable under the RM policy. Thus, mode 736

schedulability can be ensured for all system modes. Moreover, 737

when an MCR associated with a mode translation arrives, the 738

system will immediately enter the new mode and perform the 739

enforcement by calling Algorithm 1, and thus mode transition 740

schedulability can also be ensured. Therefore, we can conclude 741

that the task set �(πk) is also schedulable under the multimode 742

security-aware scheduling strategy. 743

Theorem 4: Let �(πk) be the task set scheduled on unipro- 744

cessor πk with the multimode security-aware scheduling 745

policy given in Algorithm 1. The computational complexity of 746
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Algorithm 1 is O(|�(πk)|2), where |�(πk)| is the number of747

tasks in the task set �(πk).748

Proof: From Algorithm 1, it is evident that the com-749

putational complexity of the multimode security-aware750

scheduling algorithm primarily relies on the computational751

complexity of the online feasibility test based on the752

priority inversion budget analysis given in Algorithm 2,753

and the feasibility test is conducted no more than once754

for each scheduling point (lines 12–21). By referring to755

Lemma 3, it can be deduced that the computational com-756

plexity of Algorithm 1 is O(|�(πk)|2), which is polynomial757

complexity.758

E. Security-Aware Task Partitioning759

In this section, we present a partitioning algorithm to assign760

a set of mixed-trust real-time tasks � to P identical, unit-761

capacity processors �. The objective of this algorithm is762

to balance the mixed-trust task workloads across processors763

while ensuring system schedulability, such that the system764

protection capability can be maximized under the schedu-765

lability constraint. This is achieved with a mixed-trust WF766

decreasing heuristic strategy, which sequentially selects victim767

tasks, trusted tasks, and untrusted tasks to assign based on the768

WF decreasing heuristic.769

Algorithm 3 is our partitioning algorithm, written in pseu-770

docode. Here, the set of tasks assigned to processor πk is771

identified by �(πk). The algorithm starts by initializing �(πk)772

to null (line 1). Then, it tries to assign suitable processors773

to victim tasks (lines 4–15), trusted tasks (lines 16–29), and774

untrusted tasks (lines 30–43) in sequence. For each type of775

tasks, tasks are verified in descending utilization order (lines776

4, 16, and 30). In this order, each task is tried on each of the777

processors in �, ordered in increasing utilization. For a task,778

if no feasible processor is found, the algorithm aborts with779

a failure (lines 13, 27, and 41). If all tasks are successfully780

assigned, the algorithm reports success (line 44).781

Theorem 5: Given an implicit-deadline periodic real-time782

task set � = {τ1, τ2, . . . , τN}, if it is successfully partitioned783

by Algorithm 3 on P processors � = {π1, π2, . . . , πP} where784

the feasibility test of each processor is performed based on the785

schedulability condition of the RM policy, then all tasks in �786

can meet their deadlines under the multimode security-aware787

scheduling policy given in Algorithm 1.788

Proof: We consider any processor πk ∈ �, and the task789

set �(πk) assigned to πk. According to lines 5–10, 19-24,790

and 33–38 in Algorithm 3, the task set �(πk) is feasible791

on processor πk under the RM scheduling policy. Based792

on Theorem 3, task set �(πk) is also feasible under the793

scheduling strategy given in Algorithm 1. This implies that794

the task set on each local processor can be successfully795

scheduled. Consequently, we can conclude that the resulting796

task allocation obtained by Algorithm 3 always guarantees that797

all tasks in � can meet the deadlines under the multimode798

security-aware scheduling policy given in Algorithm 1 when799

task set � is successfully partitioned by Algorithm 3.800

Example 2: Consider the task set � given in Table I again.801

We consider that the task set � is allocated to four processors802

Algorithm 3 Security-Aware Task Partitioning

Input: Task set � = �v ∪ �t ∪ �u, multiprocessor platform � =
{π1,...,πP}.

Output: Task partitions {�(π1), �(π2), ..., �(πP)}.
1: �(πk)← ∅, for all k = 1, ..., P.
2: for all τv

i ∈ �v in descending order of Uv
i do

3: flag ← False
4: for all πk ∈ � in increasing order of U�(πk) do
5: if it is feasible for task set �(πk) ∪ {τv

i } then
6: �v ← �v \ τv

i
7: �(πk)← �(πk) ∪ {τv

i }
8: flag← True
9: break

10: end if
11: end for
12: if flag = False then
13: return FAILURE
14: end if
15: end for
16: for all τ t

i ∈ �t in descending order of Ut
i do

17: flag ← False
18: for all πk ∈ � in increasing order of U�(πk) do
19: if it is feasible for task set �(πk) ∪ {τ t

i } then
20: �t ← �t \ τ t

i
21: �(πk)← �(πk) ∪ {τ t

i }
22: flag← True
23: break
24: end if
25: end for
26: if flag = False then
27: return FAILURE
28: end if
29: end for
30: for all τu

i ∈ �u in descending order of Uu
i do

31: flag ← False
32: for all πk ∈ � in increasing order of U�(πk) do
33: if it is feasible for task set �(πk) ∪ {τu

i } then
34: �u ← �u \ τu

i
35: �(πk)← �(πk) ∪ {τu

i }
36: flag← True
37: break
38: end if
39: end for
40: if flag = False then
41: return FAILURE
42: end if
43: end for
44: return SUCCESS

� = {π1, π2, π3, π4} with the security-aware task partitioning 803

algorithm given in Algorithm 3, and the tasks allocated to each 804

processor are scheduled with the multimode security-aware 805

scheduling algorithm given in Algorithm 1. From the SAS 806

simulation for the task set � given in Fig. 2, we can see that all 807

tasks are schedulable and that all untrusted jobs are executed 808

outside AEWs of all victim tasks to protect all victim jobs 809

from being attacked by untrusted tasks. We can see that the 810

accumulative AEW within time interval [0, 20) is 6 + 3 = 9, 811

and hence the AEW ratio within time interval [0, 20) is 812

9/20 = 0.45. Since there is no untrusted task execution within 813

AEWs in time interval [0, 20), we can obtain that the AEW 814

untrusted execution time ratio within time interval [0, 20) is 815

0. Therefore, MM-SARTS can provide better protection than 816
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Fig. 2. SAS simulation for task set � under MM-SARTS.

SchedGuard++ by effectively reducing the AEW ratio and817

the AEW untrusted execution time ratio with security-aware818

task partitioning and multimode security-aware scheduling.819

V. EVALUATION820

We conducted experimental evaluations to assess the821

performance of our multimode security-aware multiprocessor822

real-time scheduling method using synthetically generated823

workloads based on automotive benchmark [24]. In the exper-824

iment, we implemented the following six algorithms.825

1) RM-FF: RM scheduling combining with the first-fit (FF)826

bin-packing heuristic algorithm.827

2) RM-NF: RM scheduling combining with the next-fit828

(NF) bin-packing heuristic algorithm.829

3) RM-BF: RM scheduling combining with the best-fit830

(BF) bin-packing heuristic algorithm.831

4) RM-WF: RM scheduling combining with the WF bin-832

packing heuristic algorithm.833

5) SchedGuard++: The security-aware multiprocessor834

real-time scheduling method from [11].835

6) MM-SARTS: Our multimode security-aware multipro-836

cessor real-time scheduling method.837

Objectives: Our evaluation has two primary goals: 1)838

to compare the attack defense performance of our multi-839

mode security-aware multiprocessor scheduling approach with840

existing scheduling methods in terms of AEW ratio, AEW841

untrusted execution time ratio and ScheduLeak attack defense842

effect and 2) to assess the overhead of different scheduling843

methods by measuring the scheduler CPU time consump-844

tion with time.process_time_ns() method in the Python time845

module.846

A. Evaluation Setup847

The periods of all tasks are automotive specific semi-848

harmonic, and they are drawn at random from the set {1, 2,849

5, 10, 20, 50, 100, 200, 1000} with an associated appearance850

probability given in [24]. Task utilization is determined with851

the UUniFast approach from [25] and task priorities are852

assigned according to the RM scheduling policy. We define853

the normalized utilization Unor(�) of a task set � deployed854

on the multiprocessor platform � = {π1, . . . , πP} to be855

Unor(�) = U�

P
(23)856

where U� is the total utilization of the task set �, and P is the857

processor number. To ensure the generated task set’s utilization858

within a specific narrow range around the desired normalized859

utilization, with the above parameters, we generated the tasks 860

one at a time until the system utilization met the condition 861

U∗nor − 0.005 ≤ Unor(�) ≤ U∗nor + 0.005 (24) 862

where U∗nor ranges from 0.05 to 0.95 with step size of 0.05. 863

We consider that there are four processors (i.e., P = 4) in 864

the system. For each value of U∗nor, we generate 1000 task sets. 865

For each task set, there are 20–30 tasks. The experimental 866

results are averaged over these 1000 task sets. 867

Following the experimental setting in [11], 40% of the tasks 868

within the task set are chosen at random to be considered as 869

trusted tasks. 50% of the trusted tasks are randomly selected 870

as victim tasks while excluding the lowest priority task in the 871

task set. The AEWs of the victim tasks are determined as a 872

percentage from the set {10, 30, 50} of the period. 873

To validate the performance of MM-SARTS against the 874

schedule-based attack, we evaluated the defensive capabilities 875

of different scheduling approaches against the ScheduLeak 876

attack [2]. ScheduLeak is a common schedule-based attack 877

that utilizes a system timer to measure and reconstruct the 878

valid execution intervals of the attacker task with a lower 879

priority than the victim task. In our experiments, a ScheduLeak 880

attacker task is chosen at random from the untrusted tasks 881

in the task set. It is important to note that MM-SARTS can 882

be applied to the system with multiple attacker tasks. This 883

is because in MM-SARTS, every untrusted task is viewed 884

as a potential attacker task in the security-aware scheduling 885

process, and thus MM-SARTS can offer protection against all 886

untrusted tasks rather than focusing on a specific untrusted 887

task. 888

The experiments were conducted on a desktop computer 889

equipped with an AMD Ryzen 7 5800H CPU running at 3.20 890

GHz with 8 cores, featuring 16 GB of physical RAM, and 891

operating on a Linux kernel version 5.15.0-88-generic. 892

B. Results 893

AEW Ratio: Fig. 3 illustrates the AEW ratio within a 894

hyperperiod versus the utilization of the task set of differ- 895

ent algorithms for the systems with different AEW sizes. 896

Fig. 3 shows that RM-WF has a lower AEW ratio relative 897

to the other nonsecurity-aware RM scheduling approaches. 898

The possible reason for this is that RM-WF can effectively 899

balance the workload across different processors, thus fully 900

utilizing the system’s parallel processing capabilities to reduce 901

the AEW ratio. We can also observe that SchedGuard++ 902

performs worse than all nonsecurity-aware RM scheduling 903

methods in most cases, especially for the system with short 904

AEWs. The main reason for this is that once a victim task 905

finishes, SchedGuard++ blocks all other processors, including 906

processors running trusted tasks. This decreases the chance 907

that victim tasks execute in parallel, thereby reducing the part 908

of AEWs that overlaps between different processors. 909

Our main result is that MM-SARTS consistently outper- 910

forms all existing scheduling algorithms. The performance 911

gap tends to widen as the utilization decreases; the reason is 912

that, as the utilization decreases, there are more opportunities 913

for MM-SARTS to reduce the AEW ratio by increasing the 914
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(a) (b) (c)

Fig. 3. AEW ratio for different algorithms. (a) AEW is 10% of victim task period. (b) AEW is 30% of victim task period. (c) AEW is 50% of victim task
period.

(a) (b) (c)

Fig. 4. AEW untrusted execution time ratio for different algorithms. (a) AEW is 10% of victim task period. (b) AEW is 30% of victim task period. (c) AEW
is 50% of victim task period.

AEW overlap with security-aware task-to-processor packing915

and multimode security-aware scheduling. Specifically, for916

the system with an AEW size of 10%, when the system917

utilization is 0.60, MM-SARTS demonstrates an enhancement918

of approximately 18.8% over SchedGuard++, and a boost of919

around 13.2% compared to the best nonsecurity-aware RM920

scheduling method RM-WF [see Fig. 3(a)]. From Fig. 3(a), we921

can also find that the improvement of MM-SARTS in the AEW922

ratio is at its lowest point when the system utilization is 0.95.923

Even in this case, MM-SARTS still achieves an improvement924

of 11.8% over SchedGuard++, and a gain of 7.5% compared925

to the RM-WF scheduling method.926

AEW Untrusted Execution Time Ratio: Fig. 4 illustrates the927

AEW untrusted execution time ratio within a hyperperiod928

versus the system utilization of different algorithms for the929

systems with different AEW sizes. It clearly shows that RM-930

WF has a lower AEW untrusted execution time ratio compared931

to the other three RM scheduling approaches. We can observe932

that as the AEW size and system utilization increase, the AEW933

untrusted execution time ratios for all algorithms also increase.934

The reason is that, as the AEW size and system utilization935

increase, the AEW ratio and the untrusted task workload tend936

to increase. Note that when the system utilization is 0.05, for937

all AEW settings, the AEW untrusted execution time ratios938

of all methods tend to approach zero, though there is still a939

portion of task sets with a ratio greater than zero. Moreover,940

it is notable that SchedGuard++ outperforms all nonsecurity-941

aware RM-WF scheduling methods by effectively preventing942

the execution of untrusted tasks during the specified AEW.943

It is not surprising that MM-SARTS consistently performs944

better than SchedGuard++ in all scenarios. This is primarily945

due to MM-SARTS effectively reducing the AEW untrusted946

execution time ratio in a multiprocessor real-time system with947

multiple victims by distributing the mixed-trust task workload948

evenly across different processors and strategically scheduling949

mixed-trust tasks on each processor based on the system950

mode. Moreover, the enhancement in the AEW untrusted951

execution time ratio of MM-SARTS tends to rise as the system952

utilization increases for all AEW sizes. Specifically, in a953

Fig. 5. Defense success rate of different algorithms.

system with an AEW size of 10%, when the system utilization 954

is 0.6, MM-SARTS shows a 62.8% improvement compared to 955

SchedGuard++ and an 86.8% improvement compared to the 956

RM-WF scheduling method [see Fig. 4(a)]. 957

ScheduLeak Attack Defense Effect: Fig. 5 illustrates the 958

defense success rate against ScheduLeak versus the task set 959

utilization of different algorithms. Here, the defense success 960

rate is calculated as the failure rate of ScheduLeak to infer 961

accurate parameters of the victim task. From Fig. 5, we 962

can see that RM-WF has a higher defense success rate 963

relative to the other three RM scheduling approaches. We 964

also can see that both SchedGuard++ and MM-SARTS 965

exhibit superior defense capabilities against attacks compared 966

to nonsecurity-aware RM-WF scheduling methods. This supe- 967

riority is attributed to the ability of SchedGuard++ and 968

MM-SARTS to prevent the attacker task from running after 969

the victim task completes, creating a false impression for the 970

attacker about the victim’s execution time. Consequently, the 971

attacker is misled into launching an attack at an incorrect 972

time based on inaccurate timing information. Additionally, 973

it can be observed that MM-SARTS consistently surpasses 974

SchedGuard++, as MM-SARTS enhances defense effec- 975

tiveness through security-aware task-to-processor allocation 976

and multimode security-aware scheduling based on online 977

feasibility test. Specifically, when the system utilization is 978

0.6, MM-SARTS shows a 16.3% improvement compared to 979

SchedGuard++. 980

Scheduler Overhead: Fig. 6 illustrates a comparison of the 981

average online scheduling time within ten hyperperiods versus 982
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Fig. 6. Average online scheduling time of different algorithms.

system utilization for various algorithms. It is evident that983

the nonsecurity-aware RM scheduling methods have the least984

scheduler overhead, as they do not require online feasibility985

test for the priority inversion. We also can see that the overhead986

of MM-SARTS is slightly higher than that of SchedGuard++.987

The main reason for this is that MM-SARTS explores more988

opportunities for priority inversion to enhance protection989

performance, resulting in more online feasibility tests.990

VI. CONCLUSION991

We have proposed MM-SARTS, a multimode security-992

aware real-time scheduling technique against schedule-based993

attacks in fixed-priority real-time systems on multiprocessors.994

MM-SARTS works by distinctively scheduling mixed-trust995

tasks with an online priority inversion feasibility test according996

to system modes to minimize the AEW ratio and the AEW997

untrusted execution time ratio. In particular, we introduce the998

protection window for multiple victims on multiprocessors999

to avoid the protection degradation due to the excessive1000

blocking of untrusted tasks by analyzing the system protection1001

capability limit under the system schedulability constraint. To1002

maximize the protection capability of the multimode security-1003

aware scheduling strategy on the multiprocessor platform,1004

we also propose a security-aware task-to-processor packing1005

algorithm to balance the workloads of mixed-trust tasks across1006

different processors. Our evaluation shows that MM-SARTS1007

surpasses the existing security-aware scheduling method for1008

fixed-priority real-time systems on multiprocessors in terms of1009

the AEW ratio, the AEW untrusted execution time ratio, and1010

the attack defense capability.1011
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