
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 1

Formal Verification of Virtualization-Based Trusted
Execution Environments

Hasini Witharana , Student Member, IEEE, Hansika Weerasena , Graduate Student Member, IEEE,
and Prabhat Mishra , Fellow, IEEE

Abstract—Trusted execution environments (TEEs) provide a1

secure environment for computation, ensuring that the code and2

data inside the TEE are protected with respect to confidentiality3

and integrity. Virtual machine (VM)-based TEEs extend this4

concept by utilizing virtualization technology to create isolated5

execution spaces that can support a complete operating system6

or specific applications. As the complexity and importance of7

VM-based TEEs grow, ensuring their reliability and security8

through formal verification becomes crucial. However, these9

technologies often operate without formal assurances of their10

security properties. Our research introduces a formal framework11

for representing and verifying VM-based TEEs. This approach12

provides a rigorous foundation for defining and verifying key13

security attributes for safeguarding execution environments. To14

demonstrate the applicability of our verification framework, we15

conduct an analysis of real-world TEE platforms, including16

Intel’s trust domain extensions (TDX). This work not only17

emphasizes the necessity of formal verification in enhancing18

the security of VM-based TEEs but also provides a systematic19

approach for evaluating the resilience of these platforms against20

sophisticated adversarial models.21

Index Terms—Confidential computing, confidentiality,22

integrity, property checking, trusted execution environments23

(TEEs).24

I. INTRODUCTION25

AS THE nature of computing evolves, ensuring the secu-26

rity and trustworthiness of sensitive data and critical27

applications has become an important concern. With the rapid28

growth of cloud computing, edge devices, and the Internet29

of Things (IoT), the need for robust security measures has30

never been more critical. Trusted execution environments31

(TEEs) emerge as a promising solution to improve secu-32

rity by providing a secure environment for the execution33

of sensitive code with sensitive data and the protection34

of confidential information [1]. TEEs offer a secure exe-35

cution environment that is isolated from the rest of the36

system, safeguarding against various threats, such as malicious37

software, unauthorized access, and hardware-based attacks.38

Manuscript received 2 August 2024; accepted 3 August 2024. This
work was supported in part by the Semiconductor Research Corporation
(SRC) under Grant 2022-HW-3128. This article was presented at the
International Conference on Compilers, Architectures, and Synthesis for
Embedded Systems (CASES) 2024 and appeared as part of the ESWEEK-
TCAD Special Issue. This article was recommended by Associate Editor
S. Dailey. (Corresponding author: Hasini Witharana.)

The authors are with the Department of Computer and Information Science
and Engineering, University of Florida, Gainesville, FL 32611 USA (e-mail:
witharana.hasini@ufl.edu).

Digital Object Identifier 10.1109/TCAD.2024.3443008

Fig. 1. Categories of TEEs.

TEEs utilize hardware and software components to establish 39

a secure environment where cryptographic operations, key 40

management, and other critical and confidential tasks can be 41

performed with security assurance. 42

TEEs come in various forms, each tailored to meet specific 43

requirements and challenges. Fig. 1 shows three types of 44

TEEs: 1) enclave-based TEEs (e.g., Intel software guard exten- 45

sions (SGX) [2], Sanctum [3]); 2) virtual machine (VM)-based 46

TEEs (e.g., Intel trust domain extensions (TDX) [4], AMD 47

secure encrypted virtualization (SEV) [5]), ARM confidential 48

computing architecture (CCA); and 3) TEEs for embedded 49

systems (e.g., Keystone [6]). Enclave-based TEEs leverage 50

hardware-supported isolation to create secure enclaves within 51

a processor. These enclaves are isolated regions of memory 52

resistant to external tampering and surveillance, ensuring the 53

integrity and confidentiality of the code and data. Intel SGX 54

is a prime example of an enclave-based TEE, allowing devel- 55

opers to create secure enclaves for the execution of sensitive 56

operations without revealing the data to the underlying system. 57

VM-based TEEs take advantage of virtualization technologies 58

to create secure execution environments within VMs. Intel 59

TDX and AMD SEV are some examples of VM-based TEEs. 60

They extend security to the virtualization layer by protecting 61

against attacks even in the presence of compromised hypervi- 62

sors. Embedded system-based TEEs are designed to cater to 63

the unique constraints and requirements of embedded systems 64

and IoT devices. For example, Keystone integrates with 65

RISC-V architectures to provide hardware-enforced memory 66

protection and secure execution environments, making it well- 67

suited for resource-constrained embedded systems. 68

VM-based TEEs are important in cloud computing due to 69

their ability to offer scalable and flexible security solutions that 70

are well-suited to the dynamic nature of cloud services. Unlike 71

1937-4151 c© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

https://orcid.org/0000-0003-0761-6169
https://orcid.org/0000-0001-7107-8137
https://orcid.org/0000-0003-3653-6221

2 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS

Fig. 2. Overview of our formal verification framework.

enclave-based TEEs, which are designed for securing small72

pieces of sensitive code and data within tightly controlled73

memory regions, VM-based TEEs can secure entire VMs,74

offering a broader and more flexible approach to isolation75

and security in cloud environments. In this article, we present76

a formal verification framework for VM-based TEEs for77

confidentiality and integrity.78

Fig. 2 presents an overview of our formal verification79

framework for security verification of TEE architectures. We80

first conduct an abstraction of the TEE architecture that81

accurately represents the TEE behavior by following the spec-82

ification. This abstraction phase simplifies the specification,83

focusing on the essential aspects relevant to confidentiality84

and integrity. Next, we develop a formal model for VM-based85

TEE architectures based on the abstraction. Then, we derive86

properties related to confidentiality and integrity from the TEE87

specification. Finally, we perform property checking to verify88

whether the TEE formal model satisfies the specified proper-89

ties, ensuring that the TEE architecture meets the predefined90

security criteria on confidentiality and integrity. Specifically,91

this article makes the following major contributions: 1) we92

present a comprehensive formal model that defines the security93

boundaries of confidential VMs, explicitly considering the94

capabilities of adversaries with access to advanced attack95

vectors; 2) we formally model confidentiality and integrity96

properties, tailoring them for VM-based TEEs; 3) we introduce97

a detailed formal model for the Intel TDX architecture,98

developed using the Rosette language; and 4) we formally99

verify the confidentiality and integrity of Intel TDX for code100

and data in use.101

This article is organized as follows. Section II provides rele-102

vant background and surveys related efforts. Section III defines103

the formal model for VM and adversary. Section IV pro-104

vides formal definitions for both confidentiality and integrity.105

Section V conducts a security analysis of Intel TDX for106

confidentiality and integrity. Sections VI and VII provide107

details of formal modeling of TDX architecture and cache.108

Section VIII discusses the results of the formal analysis.109

Finally, Section IX concludes this article.110

II. BACKGROUND AND RELATED WORK111

This section first provides relevant background on112

VM-based TEEs. Next, it surveys related efforts in security113

verification of TEE architectures.114

A. Background: VM-Based TEEs115

We first introduce VMs. Next, we discuss confidential116

VMs. Finally, we provide an overview of Intel TDX, which117

implements confidential VM architecture.118

1) Virtual Machine: A VM enables software-based emula- 119

tion of physical computers. This technology allows for running 120

an operating system (OS) and applications within an isolated 121

and encapsulated environment. VMs facilitate multiple OSes 122

to operate concurrently on the same physical hardware. This is 123

achieved through virtualization, which significantly enhances 124

resource utilization, flexibility, and isolation in computing 125

environments. At the heart of a VM lies the hypervisor, or VM 126

monitor (VMM), a critical component tasked with managing 127

and allocating the physical resources among VMs. Hypervisors 128

come in two varieties: 1) Type 1 (bare-metal), which operates 129

directly on the host hardware and 2) Type 2 (hosted), which 130

functions on top of an existing OS. 131

The VMM orchestrates access to hardware components, 132

such as CPUs, memory, storage, and network interfaces, 133

enabling the seamless and concurrent operation of multiple 134

VMs on a single physical machine. The core virtualization 135

concept: hardware abstraction allows each VM to operate as 136

though it has its own dedicated hardware. Each VM hosts its 137

own guest OS, providing an independent operating environ- 138

ment that interacts with the virtualized hardware, ensuring that 139

applications run in a manner that is both efficient and isolated 140

from the host system and other VMs. Even though VMs are 141

isolated from each other, they are not entirely separate entities 142

in terms of security. The shared use of the hypervisor, under- 143

lying hardware, memory subsystem, and other components 144

of the virtualization stack introduces potential vulnerabilities. 145

These shared resources can become attack vectors, where a 146

malicious entity might exploit one VM or host system to gain 147

unauthorized access to or influence over others or the host 148

system itself. This inherent risk highlights the critical need for 149

confidential VMs. 150

2) Confidential Virtual Machines: Confidential VMs are 151

designed to protect against threats, including malicious 152

insiders, compromised hypervisors, and other potential vul- 153

nerabilities in the virtualization stack. Confidential VMs use 154

memory encryption with a unique key for each VM to 155

protect the contents of the VM’s memory from unauthorized 156

access. This ensures confidentiality by ensuring the memory 157

contents remain inaccessible and secure from external threats 158

and internal attackers gaining access to physical memory. 159

Furthermore, they also provide integrity protection mecha- 160

nisms to verify that data and code have not been tampered 161

with. The creation of confidential VMs often utilizes hardware- 162

based security features offering a level of protection that 163

extends even to the host hypervisor. Confidential VMs often 164

use secure boot mechanisms and attestation processes. A 165

secure boot ensures that only authenticated and trusted code 166

is executed during the VM’s startup. This works against 167

malicious software and rootkits that might attempt to load 168

during the boot process. Attestation verifies the integrity and 169

authenticity of the VM for external entities. Specifically, 170

attestation allows a third party to confirm that the VM is 171

running the expected software stack. 172

Fig. 3 shows the basic building blocks required for 173

VM-based TEE architecture. It starts with a secure boot pro- 174

cess; the system relies on a foundational security mechanism 175

known as the root of trust (RoT), complemented by the prin- 176

ciple of a chain of trust. The RoT is pivotal for ensuring that 177

WITHARANA et al.: FORMAL VERIFICATION OF VIRTUALIZATION-BASED TEEs 3

Fig. 3. Overview of VM-based confidential computing.

only authenticated and integrity-verified firmware and software178

are loaded for execution. It achieves this through the provision179

of essential cryptographic functions and services. Initially, the180

RoT verifies the integrity and authenticity of the bootloader181

and establishes the first link in the chain of trust. Once the182

bootloader is authenticated, it securely loads and verifies the183

firmware, setting the stage for the execution environment.184

Hypervisor can create and manage VMs. In a type 2 hypervisor185

configuration, a host OS will work alongside the hypervisor,186

while type 1 will have only a hypervisor. A fundamental187

element of a VM-based confidential computing framework188

is the security monitor. It operates at a low level, closely189

interacting with the hypervisor and host OS to monitor and190

control access to resources, manage permissions, and ensure191

isolation between different confidential VMs. The security192

monitor’s primary objectives include preventing unauthorized193

access to sensitive data, ensuring that software components194

cannot interfere with each other maliciously, and enforcing195

compliance with security protocols. Intel TDX module [4] is196

one of the examples of a secure monitor.197

3) Intel TDX: Intel TDX [4] is an example of a confidential198

VM architecture. TDX provides the infrastructure to create199

hardware-isolated VMs known as trust domains (TDs), which200

are designed to operate securely within a system, separate201

from the VMM or hypervisor and any other unrelated software202

entities. To protect the confidentiality and integrity of the203

code and data within a TD, Intel TDX uses technologies,204

such as multikey total memory encryption (MKTME) and205

hashing techniques. Fig. 4 shows an overview of the Intel206

TDX architecture. Intel TDX is engineered to function within207

a secure arbitration mode (SEAM), which is an extension to208

the prior VM extension (VMX) architecture. SEAM introduces209

a new VMX root operation mode, referred to as SEAM root,210

specifically constructed to support CPU-attested modules that211

establish TDs for VM guests. The SEAM operation is divided212

into two logical modes: 1) TDX nonroot mode for the TD213

guest operations and 2) TDX root mode, which is reserved for214

host-side activities.215

B. Related Work216

This section surveys related efforts, including static analysis,217

simulation-based testing, and formal verification.218

1) Static Analysis: Google’s security review of Intel TDX219

employed static analysis tools to uncover numerous attack220

vectors and security issues [7]. Security review discovered221

81 potential avenues for attacks, confirmed 10 security flaws,222

Fig. 4. Overview of Intel TDX architecture.

and made 5 modifications to enhance the code’s defense 223

mechanisms. The review assessed four components of Intel 224

TDX, including the MCHECK mechanism in BIOS, the 225

nonpersistent SEAM loader, the persistent SEAM loader, and 226

the design of the TDX module. However, this approach did 227

not provide formal security guarantees. In fact, this security 228

review highlights the need of formal verification. 229

2) Simulation-Based Validation: Simulation-based testing 230

methodologies have been used to evaluate the security 231

of TEEs. Google’s examination of AMD SEV technology 232

through simulation-based testing uncovered critical vulnera- 233

bilities [8]. This hands-on approach allows for a practical 234

assessment of TEE security. Simulation-based verification 235

faces the exponential input space complexity to cover all 236

possible scenarios [9], [10]. Nevertheless, the lack of formal 237

security guarantees limits the ability of simulation-based 238

testing to guarantee the security properties of TEE systems. 239

3) Formal Verification: ProveriT [11] provides a theorem 240

proving solution to formally verify Global Platform TEE 241

common criteria. Ma et al. [12] developed a formal model for 242

memory isolation that includes a detailed formalization of the 243

ARMv8 architecture’s hardware components associated with 244

memory isolation, as well as the formalization of a TrustZone 245

monitor that facilitates switching between secure and non- 246

secure worlds. A recent study [13] introduces a verification 247

methodology for ARM TrustZone using property checking 248

techniques. Sardar et al. [14], [15] formally specifies the 249

attestation mechanism using ProVerif’s specification language. 250

This work only focuses on the attestation process, whereas 251

our work focuses on memory confidentiality and integrity of 252

Intel TDX. Ozga [16] presented a methodology for formally 253

modeling and proving the security of a security monitor, which 254

is a key component of VM-based confidential computing 255

systems. 256

While there are promising efforts for formally verifying 257

different types of TEE architectures, including verification 258

of Intel SGX [17], verification of ARM Trustzone [12], 259

and verification of RISC-V based TEEs [16], and existing 260

formal verification solutions, cannot be directly applied to 261

the TDX architecture due to their inherent differences in the 262

implementation of the TEE architecture. 263

III. FORMAL MODELING OF VM AND ADVERSARY 264

In this section, we first define a formal model for VM, 265

including VM state, VM inputs, and VM outputs. Next, we 266

define a formal model for the adversary. Throughout this 267

4 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS

article, the symbol = is used to denote intensional equality,268

which asserts that two expressions or variables are equivalent269

in all respects, including their state, value, or configuration.270

Similarly, the symbol ⇔ represents an equivalence relation or271

extensional equality in our context.272

A. Formal Model for Virtual Machines273

A VM is initiated with a specific allocation of resources,274

including CPU cores, memory, and storage. The virtualization275

platform often uses a unique identifier or configuration snap-276

shot of the foundational state, enabling users to guarantee that277

the VM was initialized according to the predefined settings.278

The VM’s configuration includes the boot sequence with OS279

image, and the virtual hardware components assigned to the280

VM, such as memory size and disk space.281

VM: A user deploys a VM denoted as v. The attributes of282

this VM include a unique identifier for the VM (v.id), the283

VM’s OS image (v.os), VM’s virtual address list (v.valist),284

VM’s memory size (v.mem), and VM’s data and code pages285

(v.data). These attributes define the configuration of the VM,286

enabling it to perform designated computing tasks within a287

virtualized environment.288

VM State: At any given moment, the host machine exists in289

a certain state (m). The state of the VM, Sv(m), can be seen as290

a specific instance of the overall system state, capturing key291

operational data. This includes the virtual memory mapping292

Vmem : Va → W, which represents a function from virtual293

addresses (Va) to their corresponding values in machine words294

(W); a set of general-purpose registers regs : N → W indexed295

by natural numbers; the program counter pc : Va, indicating the296

VM’s current execution point; and the VM’s attributes, which297

are established at the VM’s creation and remain unchanged298

during its operation. The initial state initv defines the starting299

condition of the VM’s memory (Vmem) at the time of its300

instantiation. For simplicity, initv(Sv(mv)) denotes that Sv(mv)301

is in its initial state, as configured before any operations have302

been executed within the VM.303

VM Inputs: The inputs to the VM, Iv(m) = (ID
v (m)+IR

v (m)),304

can be categorized into two main types: 1) external inputs305

and 2) internal inputs. External Inputs (ID
v (m)) can change the306

state of a VM, such as initializing it to runnable. These inputs307

are received from the external environment and, given the VM308

operates in a potentially hostile environment, may come from309

sources under adversarial control. However, they consist of310

a predefined set of instructions, making the impact of these311

inputs deterministic. On the other hand, internal inputs (IR
v (m))312

run inside the VM, such as code and data, where the impact313

of the internal inputs can be variable.314

VM Outputs: The outputs of the VM, Ov(m), project the315

machine state of the VM. VM output can have both encrypted316

data in memory and decrypted data inside the processor.317

Specifically, Ov(m) focuses on memory elements while data318

is in use.319

VM Execution: The execution of a VM is modeled as a320

deterministic process with respect to input Iv(m), where the321

next state of the VM, is a function of its current state, Sv(m),322

and its inputs, Iv(m). We assume that one virtual CPU for323

each VM and single thread is used per applications in the 324

VM. We also assume that code and data running inside the 325

VM is not malicious. Therefore, it is safe to assume that 326

IR
v (m) does not lead to nondeterministic process. Given the 327

deterministic assumption, the VM’s execution at any step can 328

be defined by the transitive closure of the transition relation 329

mi � mj, indicating that the VM can transition from state mi 330

to state mj based on the operational semantics of its instruction 331

set. This transition relation implies a set of all possible 332

states that can be reached from a given state, directly or 333

indirectly, through multiple steps or transitions. It essentially 334

expands the basic transition relation to include not just direct 335

successors but all reachable states. This transition process 336

involves first identifying the next instruction to execute based 337

on the current state of the virtual memory (Vmem) and the 338

program counter (pc). Following this, the identified instruction 339

is executed, which may involve bitvector operations, memory 340

accesses, and interactions with VM-specific primitives for 341

security, randomness, and I/O operations. 342

B. Formal Model for Adversary 343

A confidential VM operates under the assumption of a 344

privileged adversary who has compromised all software layers 345

except for the confidential VM platform itself (security moni- 346

tor). This section defines the adversary’s potential actions and 347

their implications for the VM. 348

Adversary State: The privileged adversary is capable of 349

pausing the VM at any moment, executing arbitrary instruc- 350

tions that can modify the adversary’s state (Av(m)), the VM’s 351

inputs (Iv(m)), and can initiate or terminate VM instances. We 352

show the adversary’s influence through the attack relation over 353

pairs of states: (m1, m2) ∈ attack if the attacker can transition 354

the system’s state from m1 to m2. A key constraint is that 355

the attack operation cannot alter the confidential VM state, 356

ensuring Sv(m1) = Sv(m2). This maintains the integrity of the 357

VM despite the adversary’s actions. 358

Here, attack is a subset of the transition relation �, indi- 359

cating that an adversary’s actions are confined to utilizing the 360

platform’s instructions to alter the system’s state. Furthermore, 361

the attack relation is reflexive, denoting that the adversary 362

might choose not to alter the state: ∀m.(m, m) ∈ attack. This 363

model allows the adversary to operate concurrently with the 364

VM, with the capability to modify the machine’s state before 365

the VM’s launch and to alter the VM’s initial state. 366

Adversary Monitoring: In a confidential VM environ- 367

ment, untrusted software, including potential adversaries, may 368

observe aspects of the VM’s execution. These observations are 369

contingent on the confidentiality protections enforced by the 370

VM platform. While explicit outputs are invariably observable, 371

adversaries might also detect patterns through indirect means, 372

such as side channels, including memory access patterns and 373

computational timing. 374

The capability for an adversary to make observations is 375

formalized through the execution of arbitrary instructions or 376

the utilization of platform primitives. These actions allow 377

the adversary to monitor the effects of their operations 378

on the VM’s state. Let monitorv(m) denote the result of 379

WITHARANA et al.: FORMAL VERIFICATION OF VIRTUALIZATION-BASED TEEs 5

an observation for the machine state m. For instance, an380

attacker that only observes outputs enjoys the monitor function381

monitorv(m)
.= Ov(m). Observations by an adversary may382

include explicit data produced by the VM’s computational383

results intended for external consumption. Also the observa-384

tions may include indirect information that can be inferred385

from the VM’s operation, such as timing information, power386

consumption patterns, or memory access patterns. These obser-387

vations require more sophisticated analysis and may reveal388

sensitive information without direct access to the VM’s data.389

VM Execution With an Attacker: An execution trace of the390

VM is an unbounded-length sequence of states, denoted by391

σ = (m0, m1, . . . , mn), satisfying the condition ∀i·mi � mi+1;392

here, σ [i] refers to the ith element of the trace. Considering393

the ability of the attacker to pause and resume the VM at any394

time, we define the VM’s execution as the sequence of states395

from σ where the VM is actively executing.396

To identify when the VM is executing, we use the function397

curr(m) to denote the current mode of the platform, with398

curr(m) = v if the platform is executing the VM (v) in399

state m. Using this function, we can extract the steps in400

σ where the VM is executing, resulting in a subsequence401

(m′
0, m′

1, . . . , m′
m) where init(Sv(m′

0)) ∧ ∀i · curr(m′
i) = v. This402

subsequence represents the VM’s execution trace, including403

inputs, execution states, and outputs at each step. Given404

the VM’s execution trace, the attacker may perform attack405

actions between any two consecutive steps, represented as406

∀i.(m′
i, m′

i+1) ∈ attack. This action effectively introduces407

uncertainty in the VM’s state and inputs, providing the VM408

with potentially fresh inputs at each step.409

The semantics of a VM, denoted by [v], is defined as the410

set of all possible finite or infinite execution traces, capturing411

every possible input sequence. Formally412

[v] = {(Iv(m
′
0), Sv(m

′
0), Ov(m

′
0)

)
, . . . |init(Sv(m0))}.413

This model accounts for all potential input sequences414

because the VM may receive any value of input at any415

step. Furthermore, [v] is prefix-closed, acknowledging that the416

attacker can pause and terminate the VM’s execution at any417

time. The determinism of the VM’s program means that a418

specific sequence of inputs uniquely identifies a trace from419

[v] and determines the expected execution trace under that420

sequence of inputs.421

Table I provides a summary of notation used in defining422

formal models for both VMs and adversary.423

IV. FORMAL MODELING OF CONFIDENTIALITY424

AND INTEGRITY PROPERTIES425

In this section, we provide the formal definition for confi-426

dentiality and integrity properties with respect to VM-based427

trusted execution.428

Let λ(v) denote the measurement of a VM instance v, com-429

puted upon its launch. This measurement process guarantees430

∀m1, m2 · initv1(Sv1(m1)) ∧ initv2(Sv2(m2))431

⇒ λ(v1) = λ(v2)432

⇔ Sv1(m1) = Sv2(m2).433

TABLE I
TABLE OF NOTATIONS FOR DEFINING FORMAL MODELS

FOR VMS AND ADVERSARY

This measurement process involves computing a cryptographic 434

hash of the VM’s initial content and configuration, providing 435

a unique identity for the VM that serves as the basis for 436

authenticating its legitimacy. This hash serves as a fingerprint 437

of the VM at a particular point in time. The measurement 438

process asserts that any two VM instances with the same 439

measurement must have identical initial states, ensuring that 440

any deviation from the expected VM program is detectable by 441

the user. This assertion is based on the cryptographic property 442

of collision resistance, which implies that it is computationally 443

infeasible to find two distinct inputs (in this case, VM states) 444

that result in the same hash output. 445

A. Confidentiality 446

Confidentiality ensures that a privileged software attacker 447

cannot distinguish between the executions of two VMs, except 448

for what is revealed through observable outputs. An attacker 449

cannot gain information about the VM’s execution state or 450

internal processes beyond what is explicitly allowed through 451

the monitoring function, denoted as monitor. This function 452

provides all observations, including initial configurations, out- 453

puts to non-VM memory, and any potential side channel 454

leakages. To formally assert the confidentiality guarantee, we 455

propose the following: 456

∀σ1, σ2.

(
Av1(σ1[0]) = Av2(σ2[0]) ∧ 457

∀i.
(
curr(σ1[i]) = curr(σ2[i]) ∧ Iv1(σ1[i]) = Iv2(σ2[i])

) ∧ 458

∀i.
(
curr(σ1[i]) = v

) ⇒ 459

monitorv1(σ1[i + 1]) = monitorv2(σ2[i + 1])

)
460

⇒
(

∀i.Av1(σ1[i]) = Av2(σ2[i])

)
. 461

This formulation implies that for any two traces, σ1 and σ2, 462

that exhibit equivalent attacker operations and observations 463

(as permitted by monitor) but may differ in their private VM 464

6 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS

Fig. 5. Overview of confidentiality property.

states and internal executions, the observable outcome to the465

attacker must be identical. Here, σ [i] means the ith index of466

the execution trace. The input that is responsible for ith state in467

the trace is denoted as I(σ [i]) and the corresponding output is468

denoted as O(σ [i]). By adhering to this model, a VM platform469

ensures that all potential traces of VM execution, which470

may yield the same observable outputs but originate from471

distinct internal states, remain indistinguishable to an external472

observer. This guarantees that the VM’s confidentiality is473

preserved, preventing attackers from leveraging observable474

information to infer sensitive internal states or execution paths.475

Fig. 5 shows the confidentiality property. Let us assume476

that the two traces start with an equivalent state and differ477

from state m1. This is because the two VMs can perform478

different computations. Adversary monitoring is assumed to be479

the same in both traces. Also, adversary actions are assumed480

to be the same in both traces. This should lead to the481

adversary state being identical in each step. The confidentiality482

property implies that the adversary state only depends on the483

adversary’s actions and the initial state. Therefore, whatever484

the VM state is, it should not affect the adversary state. This485

shows that the adversary can only know information through486

the monitor function and not more.487

B. Integrity488

The integrity property states that the execution trace of489

the VM is solely determined by the sequence of inputs,490

independent of any interference by privileged software attack-491

ers beyond the provision of inputs. The integrity of a VM492

execution ensures that the VM’s operational sequence and493

its resultant states and outputs are determined solely by494

its sequence of inputs. Operations by an attacker, such as495

manipulation of I/O peripherals or execution of privileged496

instructions, should not deviate the VM’s execution from its497

intended path. The integrity property can be formalized as498

∀σ1, σ2.

(
SV(σ1[0]) = SV(σ2[0]) ∧499

∀i.
(
curr(σ1[i]) = V

) ⇔ (
curr(σ2[i]) = V

) ∧500

∀i.
(
curr(σ1[i]) = V

) ⇒ IV(σ1[i]) = IV(σ2[i])

)
501

⇒
(

∀i.SV(σ1[i]) = SV(σ2[i]) ∧ OV(σ1[i]) = OV(σ2[i])

)
.502

This states that if two execution traces, σ1 and σ2, begin503

with identical initial states and receive the same sequence of504

inputs, then despite any differences in the attacker’s operations505

Fig. 6. Overview of integrity property.

across the traces, the VM’s state transitions and outputs will 506

remain consistent across both traces. 507

This integrity model emphasizes a crucial aspect of VM 508

security: the system’s ability to maintain a predictable and 509

reliable execution path, even when under adversarial influence. 510

It ensures that the VM’s computation integrity is preserved, 511

thereby guaranteeing that the execution outcomes are solely 512

the result of the provided inputs and the VM’s deterministic 513

behavior. The determinism and equivalence of VM execution 514

can be formalized as 515

∀σ1, σ2.

(
Sv1(σ1[0]) = Sv2(σ2[0]) ∧ 516

∀i.
(
curr(σ1[i]) = v1

) ⇔ (
curr(σ2[i]) = v2

) ∧ 517

∀i.
(
curr(σ1[i]) = v1

) ⇒ Iv1(σ1[i]) = Iv2(σ2[i])

)
518

⇒
(

∀i.Sv1(σ1[i]) = Sv2(σ2[i]) ∧ Ov1(σ1[i]) = Ov2(σ2[i])

)
. 519

This formalism establishes that if two VM instances 520

start with the same initial state and receive identical input 521

sequences, then their execution traces, including state tran- 522

sitions and outputs, will be equivalent. This equivalence 523

emphasizes the determinism property of the VM platform’s 524

execution model, ensuring that VM programs operate pre- 525

dictably and securely even in the presence of potential 526

attackers. 527

Fig. 6 shows the integrity property. Actions by the adversary 528

are marked as A1 and A2. Let us assume that the VM’s inputs 529

and actions remain consistent across both traces. Similarly, the 530

initial conditions of the VMs are identical. The adversary’s 531

actions are specified through the attack function, allowing for 532

possible variations between the traces. The integrity verifica- 533

tion necessitates demonstrating that the state and outputs of 534

the VM remain unchanged in spite of these differences. The 535

assumption that the adversary operates for an equal number of 536

steps in both traces does not limit their capability, as any attack 537

necessitating a variable number of steps across traces can be 538

replicated within this model by extending the shorter trace of 539

the adversary with a series of nonoperative steps. According 540

to this theorem, under the specified assumptions, the state and 541

outputs of the VM at every step are guaranteed to be the same 542

across both traces. 543

V. ANALYSIS OF TDX ARCHITECTURE 544

This section provides a security analysis for data confiden- 545

tiality and integrity of Intel TDX [4] architecture, which is an 546

example of a VM-based TEE architecture. 547

WITHARANA et al.: FORMAL VERIFICATION OF VIRTUALIZATION-BASED TEEs 7

Fig. 7. TD life cycle state diagram with HKID states.

A. Intel TDX: Ensuring Data Confidentiality548

Intel TDX safeguards the confidentiality of TD data across549

memory, the processor, and the bus by encrypting data dur-550

ing transmission from the processor back to memory. This551

encryption uses the MKTME system, employing AES-XTS552

with 128-bit encryption for each cache line. The unique keys553

for each TD, identifiable through a host KeyID (HKID), are554

generated and managed securely, with encryption keys stored555

internally and not disclosed to unauthorized entities.556

Upon activation of TDX, physical memory is partitioned557

into secure (private) and normal (shared) regions, with the558

former designated for sensitive TD data and the latter for559

interactions with nontrusted entities. The allocation to either560

region is determined by the state of the highest order bit of561

the guest physical address (GPA), ensuring a clear separation562

and safeguarding of confidential data.563

The life cycle of a TD includes several key states, from564

creation and key configuration to potential blocking and565

eventual teardown, each facilitated by specific API calls.566

This process begins with the creation of a new TD and the567

generation of an ephemeral key, followed by its configuration568

and operational management through the key encryption table569

(KET) and KeyID ownership table (KOT), ensuring secure and570

efficient key management throughout the TD’s existence.571

In this section, we briefly describe the functionality of572

different HKID states in Fig. 7.573

1) HKID Assigned State: Achievable through the574

tdh_mng_create API, this state marks the initialization575

of a new TD. Initially, the hypervisor ensures that any576

changes in the cache related to the TD’s physical pages577

are committed. Following this, it establishes the TD578

root (TDR) and creates a unique, temporary key for the579

TD. An HKID is generated and recorded in the KOT580

for each involved package.581

2) Keys Configured State: This state occupies the majority582

of a TD’s operational lifespan. The TD’s temporary583

key is set up in the KET, with a secondary state584

machine managing the TD’s activities. The TD transi-585

tions through several substates: from “uninitialized” to586

Fig. 8. Key management with TDR, KOT, and KET.

“initialized,” and finally to “runnable.” To incorporate 587

the necessary TD control extension (TDCX) pages, the 588

tdh_mng_addcx API is utilized. The TD’s state within 589

the TDR is initialized using tdh_mng_init, and achieving 590

the runnable state is finalized with tdh_mng_finalize. 591

3) Blocked State: Any interruptions or faults prompt the 592

TD to move into the blocked state, during which 593

access to the TD’s private memory is suspended, and 594

related caches are cleared. The tdh_mng_vpflushdone 595

API checks for the complete flushing of cache lines 596

associated with the TD’s address or HKID. 597

4) Teardown State: In this final phase, the host’s 598

VMM reclaims the HKID and clears both the 599

translation lookaside buffer (TLB) and cache. It 600

proceeds to remove all private and control pages 601

of the TD through tdh_phymem_page_reclaim, with 602

tdh_phymem_page_wbinvd being employed to ensure 603

any modified cache lines are flushed. 604

These states highlight the dynamic and secure manage- 605

ment of TDs within the TDX framework, emphasizing data 606

confidentiality through stringent key control and memory 607

encryption practices, as shown in Fig. 8. 608

B. Intel TDX: Guaranteeing Memory Integrity 609

Intel TDX maintains memory integrity via a dual approach, 610

incorporating a TD owner bit and a message authentication 611

code (MAC), both embedded within ECC memory. A 128-bit 612

MAC key is created during system initialization, with a 28-bit 613

MAC generated for each memory write. This MAC, alongside 614

the TD owner bit, aids in verifying data integrity during reads, 615

with discrepancies indicating potential integrity breaches and 616

resulting in the marking of compromised cache lines. 617

The TD owner bit serves as a gatekeeper, controlling access 618

based on whether a physical address is associated with a 619

private HKID. This mechanism ensures that only authorized 620

SEAM mode operations can access secured memory segments, 621

with all other requests being denied and returned as null, 622

thereby preserving the integrity of sensitive data. 623

8 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS

Listing 1. EPT.

Furthermore, any attempt to write to a protected memory624

segment outside of SEAM mode triggers the reset of the cor-625

responding TD owner bit, marking the segment as poisoned.626

This serves as a critical fail-safe, triggering a TD exit and,627

if necessary, transitioning the TD to a fatal state for security,628

thereby emphasizing the robust measures in place to maintain629

memory integrity within the TDX architecture.630

VI. FORMAL MODELING OF INTEL TDX ARCHITECTURE631

The formal model is developed following the Intel TDX632

module specification. We model the Intel TDX architec-633

ture using Rosette [18] to enable symbolic simulation of634

the complex mechanisms, including TDX tables, application635

binary interfaces (ABIs), and other configurations essential636

for ensuring memory confidentiality and integrity within TDs.637

This section details the formal modeling, highlighting only the638

key components that form the backbone of TDX security.639

A. Defining TDX Tables640

The TDX specification has various tables, each serving a641

unique purpose in the security architecture. Among these, the642

extended page table (EPT), KET, and KOT are foundational643

elements for confidentiality.644

1) Extended Page Table: The EPT maps GPAs to host645

physical addresses (HPAs) and maintains the page state,646

incorporating a shared bit to differentiate between secure and647

shared memory spaces. This mapping is crucial for memory648

isolation and confidentiality.649

Listing 1 shows a hash table sec_ept created using make-650

hash, which serves as a repository for managing EPT entries,651

and a custom-defined structure sec_ept_entry, which keep652

track of the essential attributes of each entry, including HPA,653

GPA shared status (gpa_shared), and the entry’s current654

state (state). This approach enables efficient tracking and655

manipulation of memory addresses between the host and VMs,656

facilitating a streamlined mechanism to oversee the shared or657

exclusive access to physical memory resources.658

2) Key Encryption Table and KeyID Ownership Table: The659

KET (Listing 2) associates each TD’s ephemeral encryption660

key with its corresponding HKID, playing a pivotal role in661

encrypting memory access and safeguarding data in transit.662

The KOT, on the other hand, tracks the lifecycle state of each663

HKID, ensuring proper key management and assignment. Two664

hash table structures are used to represent the two tables.665

B. Trust Domain Management666

The management of TDs includes TD creation, key config-667

uration, handling exceptions, and teardown. We implemented668

structures to facilitate this, the TDR and TD control structure669

Listing 2. KET and key ownership table.

Listing 3. TDH_MNG_CREATE ABI.

(TDCS), which maintain state and control information for 670

each TD. 671

1) TD Creation: TDs are instantiated and assigned unique 672

HKIDs, with their ephemeral keys generated and stored 673

securely. This process involves interactions with the physical 674

address metadata table (PAMT) for memory allocation and the 675

cache to ensure confidentiality during TD operations. Listing 3 676

shows the ABI for TDH_MNG_CREATE, which manages 677

creating and initializing a transactional data handler (TDH) 678

by mapping hpa to HKID. Initially, it checks the current state 679

of the given HKID and the hpa in two hash tables (KOT 680

for HKIDs and PAMT for physical addresses) to determine 681

if the HKID is private, not yet assigned, or if the hardware 682

page is not yet allocated or is in a nondisclosure agreement 683

state (PT_NDA). If these conditions are met, the function 684

proceeds to mark the HKID as assigned (HKID_ASSIGNED) 685

in the KOT table and creates a new PAMT entry with initial 686

parameters. Finally, it initializes a new TDR with default or 687

initial values. This setup indicates a mechanism for managing 688

access and operations on hardware resources, ensuring data 689

privacy and integrity through proper handling of hardware keys 690

and memory pages. 691

2) Key Configuration: TDH_MNG_KEY_CONFIG 692

(Listing 4) is designed to configure keys for a TDR associated 693

with a specific hpa. It begins by retrieving the current entry 694

for the given PAMT and determining its state, specifically 695

checking if it matches the expected type for transactional data 696

records (PT_TDR). It then checks the tdr for a fatal error 697

condition (td_fatal) and its lifecycle state to ensure it is in 698

the HKID_ASSIGNED state, indicating that a HKID has been 699

assigned but not yet configured with keys. 700

If the page is correctly prepared for transactional data, 701

no fatal errors are present, and the TDH is ready for key 702

configuration, the function proceeds to update KET with the 703

WITHARANA et al.: FORMAL VERIFICATION OF VIRTUALIZATION-BASED TEEs 9

Listing 4. TDH_MNG_KEY_CONFIG ABI.

Listing 5. TDH_MNG_VPFLUSH ABI.

hardware key ID extracted from TDR and sets a new key704

(key_val). It then updates the tdr structure itself to reflect that705

the keys have been configured, changing its lifecycle state to706

KEYS_CONFIGURED.707

3) Handling Interrupts and Exceptions: Handling of inter-708

rupts and exceptions is crucial for the secure and stable709

operation of TDs. This involves saving the current TD state,710

scrubbing the VCPU state, and executing a cache flush to711

maintain data integrity.712

The function TDH_MNG_VPFLUSH (Listing 5) is respon-713

sible for securely flushing a virtual page from the cache.714

The function starts by looking up the state of the page715

associated with the given physical address in PAMT. It716

assesses the lifecycle state of the tdr to ensure it is either717

in the HKID_ASSIGNED or KEYS_CONFIGURED state,718

and verifies that the HKID related to the tdr is marked as719

assigned in KOT. If these conditions are met, the tdr is in an720

appropriate state for flushing. This is critical for maintaining721

data consistency and security, ensuring that no sensitive data722

remains in the cache that could be accessed inappropriately.723

After flushing the cache, the function updates the state of the724

HKID in the KOT to HKID_FLUSHED, indicating that the725

flush operation has been completed. Finally, it updates the726

lifecycle state of the tdr to TD_BLOCKED, indicating that727

the tdr is in a state where it cannot perform regular operations.728

4) TD Teardown: TDH_MNG_KEY_FREEID (Listing 6)729

function is designed for releasing or freeing HKIDs that are730

no longer in use.731

It first verifies that the specified physical address is asso-732

ciated with a page prepared, that the TDR is in a blocked733

Listing 6. TDH_MNG_KEY_FREEID ABI.

state (TD_BLOCKED), and that the HKID has been flushed 734

(HKID_FLUSHED). This ensures the function operates under 735

safe conditions where the data associated with the tdr and 736

HKID has been securely managed and is ready for cleanup. 737

Upon confirming these prerequisites, the function sets the 738

HKID’s state to HKID_FREE in the KOT, marking it available 739

for future assignments. Additionally, it updates the tdr to 740

reflect a teardown lifecycle state (TD_TEARDOWN) and resets 741

the HKID within the tdr, effectively clearing the association 742

and preparing the system for new transactions. This process 743

is essential for the secure and efficient reuse of hardware 744

resources, ensuring that data integrity and confidentiality are 745

maintained throughout the lifecycle of a TD. 746

VII. FORMAL MODELING OF CACHE FOR TDX SYSTEMS 747

When the cache is unencrypted, the data stored within 748

remains in plaintext, posing significant risks to both data 749

integrity and confidentiality. Such a scenario lays the ground- 750

work for multiple security vulnerabilities, as unauthorized 751

access to this unencrypted data can lead to information leakage 752

or manipulation. In this section, we evaluate how the Intel 753

TDX module addresses these critical security concerns within 754

the context of a shared cache environment. This ensures that 755

even in a shared cache scenario, where multiple processes 756

or VMs might access the same physical cache resources, 757

data remains secure, isolated, and impervious to unauthorized 758

access or tampering, thereby upholding the highest standards 759

of integrity and confidentiality. We model and formally eval- 760

uate two distinct cache types, each capable of enhancing 761

security in TDX environments independently: 1) HKID-tagged 762

cache and 2) TD-owner-bit cache. 763

A. Basic Cache Structure and Initialization 764

The cache model in Listing 7 is designed to simulate a 765

4-way associative cache, a common setup in modern comput- 766

ing systems. This setup is characterized by a finite number 767

of cache sets, each with multiple ways to store data. The 768

model initializes hash maps to track the validity, tag, data, and 769

HKID of each cache line, providing a foundational structure 770

for simulating cache operations. 771

The init-cache function (Listing 8) populates these struc- 772

tures, initially setting all cache lines to an invalid state and 773

10 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS

Listing 7. Cache configuration.

Listing 8. Cache initialization.

Listing 9. HKID tagged cache model.

assigning default values to the tags, data, and HKIDs. This774

ensures a clean state from which cache operations can start.775

B. HKID Tagged Cache776

Integrating HKID into the cache model adds a layer of777

security by ensuring that cache lines are accessible only by the778

appropriate TD. Listing 9 shows our modeling of HKID tagged779

cache. This approach leverages HKIDs to tag cache lines, thus780

facilitating the validation of access requests based on the TD’s781

identity. HKID tagging is implemented by extending the cache782

model to include a mapping of cache lines to HKIDs. This783

extension allows the cache to check not only the validity and784

tag match for cache hits but also the HKID, ensuring that only785

requests from the owning TD can access the cached data.786

C. TD Owner Bit787

By using a TD owner bit in access control, TDX enforces788

strict access policies, allowing only SEAM mode processes789

to read secure cache lines, thereby significantly mitigating790

the risk of unauthorized data access. Listing 10 shows our791

modeling of TD owner bit cache. This cache management792

Listing 10. TD owner bit cache model.

strategy not only enhances data security by providing fine- 793

grained access control based on hardware-level identifiers but 794

also introduces a flexible framework for managing cache data 795

across multiple TDs. 796

VIII. EXPERIMENTS 797

This section demonstrates the effectiveness of our proposed 798

VM-based TEE verification framework to verify the Intel TDX 799

module. First, we describe our formal verification setup. Next, 800

we present the formal verification results of our framework. 801

A. Experimental Setup 802

Our model for Intel TDX and caches and properties for 803

formal security verification is constructed using Rosette [18] 804

formal verification language. We used the publicly avail- 805

able specification as well as implementation for the TDX 806

module [4] to derive the formal model. The Rosette model 807

has assertions, symbolic variables, and solver-aided functions. 808

The correctness of these elements is verified using Rosette’s 809

symbolic execution engine, which internally uses Z3 [19] SMT 810

solver to check the feasibility of paths and the satisfaction 811

of constraints. We ran our experiments on Intel i7-5500U @ 812

3.0GHz CPU with 16GB RAM machine. We have developed 813

15 confidentiality properties and 9 integrity properties for two 814

cache models: 1) HKID-tagged and 2) TD-owner-bit-tagged 815

cache. 816

B. Generation of Confidentiality Properties 817

The properties for confidentiality and integrity are defined 818

based on the threat model outlined in the TDX specification. 819

We have developed 15 confidentiality properties. 820

1) cP1: Assert that any GPA mapped to a specific HPA 821

within the secure EPT maintains confidentiality, mean- 822

ing no other GPA can map to this HPA. 823

WITHARANA et al.: FORMAL VERIFICATION OF VIRTUALIZATION-BASED TEEs 11

2) cP2: Assert that the ephemeral encryption key associated824

with a specific HKID in the KET table remains confi-825

dential and is not leaked or accessible to unauthorized826

entities.827

3) cP3: Assert that once an HKID is assigned, its state828

remains confidential and accurately reflects its assigned829

status within the KOT table.830

4) cP4: Assert that the lifecycle state of a TDR remains831

confidential and can only be one of the predefined832

states (INIT, FATAL, RUNNING), safeguarding the state833

transitions from unauthorized access.834

5) cP5: Assert that the page state of any entry in the835

secure EPT is limited to predefined states, protecting the836

confidentiality of page mappings.837

6) cP6: Assert that the key configuration state for a given838

HKID remains confidential and accurately reflects the839

TD_KEYS_CONFIGURED state, protecting the key con-840

figuration status from unauthorized changes.841

7) cP7: Assert that the finalization status of a TDCS842

remains confidential and is always set to true after843

finalizing.844

8) cP8: Assert that the confidentiality of the shared bit845

status for any given entry in the secure EPT.846

9) cP9: Assert that the package configuration bitmap of a847

TDR remains confidential, ensuring that the configura-848

tion details are protected from unauthorized disclosure.849

10) cP10: Assert that the association between a VCPU and850

its corresponding HKID is kept confidential.851

11) cP11: Assert that querying the cache with an incorrect852

HKID results in a cache miss.853

12) cP12: Assert that after querying with the correct HKID,854

a subsequent query with the same HKID and address855

results in a cache hit.856

13) cP13: Assert that querying with a different HKID857

(assuming unauthorized access) after a cache line is858

populated does not provide access to the data.859

14) cP14: Assert that after updating a cache line with a new860

HKID and data, the previous HKID no longer has access.861

15) cP15: Assert that once data is written to a cache line, it862

remains unchanged unless explicitly modified through a863

valid cache update.864

C. Generation of Integrity Properties865

We have developed nine integrity properties.866

1) iP1: Assert that the integrity of the EPT mappings by867

asserting that any entry mapping a GPA to a HPA cannot868

be in a “blocked” state.869

2) iP2: Assert that the integrity of the TDR lifecycle by870

asserting that once a TDR is finalized, its lifecycle state871

cannot be “INIT” or “FATAL.”872

3) iP3: Assert that the integrity of key state transitions873

within the TDX module by providing consistent transi-874

tions for a HKID based on its current state. Specifically,875

it asserts that an HKID assigned state can only move876

to the keys configured state, a keys configured state can877

transition to either blocked or teardown, and a blocked878

state can only move to teardown.879

Listing 11. Sample confidentiality assertion.

4) iP4: Assert that if a cache entry is marked as valid, it 880

must have a corresponding tag and data in the cache. 881

5) iP5: Asserts that within a single set in a set-associative 882

cache, all valid entries must have unique tags. 883

6) iP6: Asserts that each valid cache entry, the correspond- 884

ing HKID is correctly mapped to the same set and way 885

in the cache-hkid-map. 886

7) iP7: Assert that any cache entry from SEAM mode 887

marked as valid has a corresponding and correct TD 888

owner bit set. 889

8) iP8: Assert that for any two valid cache entries in 890

the same set but in different ways, their tags must be 891

different. 892

9) iP9: Assert that if two cache entries have the same 893

tag and are valid, they must have the same TD owner 894

bit. 895

Listing 11 shows sample confidentiality property (cP13) 896

of a cache system through symbolic execution. Initially, 897

symbolic variables pa1 and pa2 with a bit-vector size of 28 898

(bv28) representing physical addresses are initialized. Then 899

symbolic integers repl-way1, reply-way2, hkid1, and hkid2 are 900

introduced, with the latter two representing replacement cache 901

element. Sample assertion queries the cache twice, using the 902

same physical address (pa1) but different key identifiers (hkid1 903

and hkid2), and stores the results (hit flags, ways, and data) 904

in (hit1, way1, data1) and (hit2, way2, data2), respectively. 905

The confidentiality assertion checks if, hkid1 and hkid2 are 906

different, both cannot have cache hits for the same physical 907

address that could violate confidentiality. The assertion is 908

then solved, and the result is displayed, indicating whether 909

the cache system maintains confidentiality across the given 910

symbolic inputs. 911

D. Verification Results 912

Table II provides a summary of the verification outcomes 913

for three distinct models: 1) the TDX module; 2) HKID- 914

tagged-cache; and 3) TD-owner-bit-cache. It details the 915

number of lines of code in each model, with the TDX 916

module being the largest at 400 lines, and the HKID-tagged- 917

cache the smallest at 100 lines. The table also indicates 918

the number of confidentiality and integrity properties verified 919

for each module. Verification time, measured in seconds, 920

showcases the efficiency of the verification process for each 921

12 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS

TABLE II
ROSETTE MODELS AND VERIFICATION RESULTS

model, demonstrating the practicality and scalability of the922

verification process in evaluating the reliability and robustness923

of the models.924

Our work can be extended to other VM-based solutions.925

For example, if we consider AMD SEV, which uses x86926

architecture similar to Intel TDX, the changes needed are927

minimal. Similarly, AMD SEV uses an VM address space928

identifier (ASID) to uniquely identify the VM addresses,929

which is similar to HKID used by Intel TDX. To extend our930

formal model to AMD SEV, we need to model the ASID,931

but most of the formal model of Intel TDX module can be932

reused.933

IX. CONCLUSION934

This article has presented a comprehensive framework for935

the formal verification of VM-based TEEs, addressing the936

critical need for robust security mechanisms in the face937

of evolving threats. We have developed a formalization of938

confidentiality and integrity for confidential VMs, proposing939

a secure and verifiable model in the context of powerful940

adversaries. Our contributions, including the formalization of941

a confidential VM, the establishment of formal definitions for942

confidentiality and integrity within VM-based TEEs, and the943

development of a refinement-based methodology, underline the944

importance and effectiveness of formal verification in ensuring945

the security of VM-based TEEs. Our experimental results946

demonstrate the applicability and resilience of our framework947

to analyze sophisticated attack scenarios, highlighting its948

potential to significantly enhance the security posture. By949

proving the confidentiality and integrity guarantees of the Intel950

TDX platform through machine-checked proofs, we not only951

validate our approach but also pave the way for future research952

in securing virtualized TEE environments.953

REFERENCES 954

[1] H. Witharana, D. Chatterjee, and P. Mishra, “Verifying memory confi- 955

dentiality and integrity of Intel TDX trusted execution environments,” 956

in Proc. IEEE Int. Symp. Hardw. Orient. Security Trust (HOST), 2024, 957

pp. 44–54. 958

[2] “Intel software guard extensions (SGX),” .[Online]. Available: https:// 959

www.intel.com/content/www/us/en/developer/tools/software-guard- 960

extensions/overview.html 961

[3] V. Costan, I. A. Lebedev, and S. Devadas, “Sanctum: Minimal hardware 962

extensions for strong software isolation,” in Proc. USENIX Secur. Symp., 963

2016, pp. 857–874. 964

[4] “Intel trust domain extensions (TDX).” [Online]. Available: https:// 965

www.intel.com/content/www/us/en/developer/articles/technical/intel- 966

trust-domain-extensions.html. 967

[5] “AMD secure encrypted virtualization (SEV).” 2023. [Online]. 968

Available: https://developer.amd.com/sev/ 969

[6] D. Lee, D. Kohlbrenner, S. Shinde, K. Asanović, and D. Song, 970

“Keystone: An open framework for architecting trusted execution envi- 971

ronments,” in Proc. 15th Eur. Conf. Comput. Syst., 2020, pp. 1–16. 972

[7] (Intel, Santa Clara, CA, USA). Intel Trust Domain Extensions (TDX) 973

Security Review. 2023. [Online]. Available: https://services.google.com/ 974

fh/files/misc/intel_tdx_-_full_report_041423.pdf 975

[8] “AMD secure processor for confidential comput- 976

ing security review.” 2023. [Online]. Available: 977

https://storage.googleapis.com/gweb-uniblog-publish- 978

prod/documents/AMD_GPZ-Technical_Report_FINAL_05_2022.pdf 979

[9] H. Witharana, Y. Lyu, and P. Mishra, “Directed test generation for 980

activation of security assertions in RTL models,” ACM Trans. Design 981

Autom. Electron. Syst., vol. 26, no. 4, pp. 1–28, 2021. 982

[10] H. Witharana, Y. Lyu, S. Charles, and P. Mishra, “A survey on assertion- 983

based hardware verification,” ACM Comput. Surveys, vol. 54, no. 11, 984

pp. 1–33, 2022. 985

[11] J. Hu et al., “ProveriT: A parameterized, composable, and verified model 986

of TEE protection profile,” IEEE Trans. Depend. Secure Comput., early 987

access, Mar. 11, 2024, doi: 0.1109/TDSC.2024.3375311. 988

[12] Y. Ma, Q. Zhang, S. Zhao, G. Wang, X. Li, and Z. Shi, 989

“Formal verification of memory isolation for the trustzone-based 990

TEE,” in Proc. 27th Asia-Pacific Softw. Eng. Conf. (APSEC), 2020, 991

pp. 149–158. 992

[13] H. Sun and H. Lei, “A design and verification methodology for 993

a trustzone trusted execution environment,” IEEE Access, vol. 8, 994

pp. 33870–33883, 2020. 995

[14] M. U. Sardar, S. Musaev, and C. Fetzer, “Demystifying attestation in 996

Intel trust domain extensions via formal verification,” IEEE Access, 997

vol. 9, pp. 83067–83079, 2021. 998

[15] M. U. Sardar, T. Fossati, and S. Frost, “Comprehensive specification 999

and formal analysis of attestation mechanisms in confidential comput- 1000

ing,” in Proc. ICE, 2023, pp. 90–91. 1001

[16] W. Ozga, “Towards a formally verified security monitor for VM-based 1002

confidential computing,” in Proc. 12th Int. Workshop Hardw. Archit. 1003

Support Secur. Privacy, 2023, pp. 73–81. 1004

[17] P. Subramanyan, R. Sinha, I. Lebedev, S. Devadas, and S. A. Seshia, 1005

“A formal foundation for secure remote execution of enclaves,” in Proc. 1006

ACM SIGSAC Conf. Comput. Commun. Secur., 2017, pp. 2435–2450. 1007

[18] “Rosette language guide.” [Online]. Available: https://docs.racket- 1008

lang.org/rosette-guide/index.html 1009

[19] L. De Moura and N. Bjørner, “Z3: An efficient SMT solver,” in Proc. 1010

Int. Conf. Tools Algorithms Construct. Anal. Syst., 2008, pp. 337–340. 1011

http://dx.doi.org/0.1109/TDSC.2024.3375311

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Helvetica-Condensed-Bold
 /Helvetica-LightOblique
 /HelveticaNeue-Bold
 /HelveticaNeue-BoldItalic
 /HelveticaNeue-Condensed
 /HelveticaNeue-CondensedObl
 /HelveticaNeue-Italic
 /HelveticaNeueLightcon-LightCond
 /HelveticaNeue-MediumCond
 /HelveticaNeue-MediumCondObl
 /HelveticaNeue-Roman
 /HelveticaNeue-ThinCond
 /Helvetica-Oblique
 /HelvetisADF-Bold
 /HelvetisADF-BoldItalic
 /HelvetisADFCd-Bold
 /HelvetisADFCd-BoldItalic
 /HelvetisADFCd-Italic
 /HelvetisADFCd-Regular
 /HelvetisADFEx-Bold
 /HelvetisADFEx-BoldItalic
 /HelvetisADFEx-Italic
 /HelvetisADFEx-Regular
 /HelvetisADF-Italic
 /HelvetisADF-Regular
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

