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ANALYTICAL SOLUTIONS FOR SOLUTE TRANSPORT IN GROUND-WATER SYSTEMS WITH UNIFORM FLOW 1’7 

a Finite system with third-type source 
boundary condition 

Governing equation 

One-dimensional solute-transport equation: 

E& -$E-,~ 
at ax2 ax 

Boundary conditions: 

VC =VC-DaC 0 ax' x=0 

x=L 

Initial condition: 

c=o, O<x<L at t=O 

Assumptions: 

(48) 

(49) 

(50) 

(51) 

1. 

0 

2. 

3. 
4. 

Fluid is of constant density and viscosity. 
Solute may be subject to first-order chemical trans- 
formation (for a conservative solute, h=O). 
Flow is in x-direction only, and velocity is constant. 
The longitudinal dispersion coefficient (D), which is 
equivalent to D, (eq. 7), is constant. 

Analytical solution 

The solution to equation 48 was first presented by 
Selim and Manse11 (1976). The following equation is 
modified from a form presented in van Genuchten and 
Alves (1982, p. 66-67): 

C(x,t)=C, 

I 
[ 
w+w- w-w2 -E 

2v Bv(u+v) 
exp 

( )I D 

(52) 

where U=dVL+4XD and pi are the roots of the 
equation 

p cot pm+vL_o 
VL 4D ’ (53) 

For a solute that is not subject to first-order chem- 
ical transformation (X=0), equation 52 can be simpli- 
tied (Gershon and Nir, 1969, p. 837; van Genuchten 
and Alves, 1982, p. 13) as 

C(x,t)=C, 1 VL vx v2t 
l-2pxp 2D-m [ 1 

(54) 

For large values of time (steady-state solution), 
equation 52 can be reduced (van Genuchten and Alves, 
1982, p. 59) to 

C(x)=C, 

{ 

exp~~]+~~~~~cxp[(~)-~] .(55) 

[ 
(u+v) (u-v)2 - -2wJ+V~ex4-~l 2v I 

Comments: 

The roots of equation 53 can be found by standard 
root-search techniques. An iterative technique using 
Newton’s second-order correction method was 
described in the preceding section. 

Linear equilibrium adsorption and ion exchange can 
be simulated by first dividing the coefficients D and V 
by the retardation factor, R (eq. 15). (Note: U in eqs. 
52 and 55 would be given by U=dV*+4XD*). Tempo- 
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ral variations in source concentration can be simulated 
through the principle of superposition (eq. 39). 

Description of program FINITE 

The analytical solution to the one-dimensional 
solute-transport equation for a finite system with a 
third-type (or first-type) source boundary condition at 
the inflow end is computed by the program FINITE, 
described in detail in the preceding section. The main 
program reads and prints all input data needed to 
specify model variables. The required input data and 
the format used in preparing a data file are shown in 
table 1. 

The main program then calls subroutine ROOT3 to 
compute the positive roots of equation 53 when a 
third-type source boundary condition is specified, and 
executes a set of nested loops. The inner loop calls 
subroutine CNRML3 to calculate the concentration 
for a particular time value and distance; the outer loop 
cycles through all specified time values and prints a 
table of concentration in relation to distance for each 
time value. Graphs of concentration in relation to 
distance can also be plotted. 

Subroutines ROOT3 and CNRML3 

Subroutine ROOT3 calculates the roots of the equa- 
tion a-cot(a)-b*a’+c=O. The procedure followed is 
similar to that for subroutine ROOT1 (described in the 
preceding section), with ~12 as an initial estimate for 
the first root. 

Subroutine CNRMLS calculates the normalized con- 
centration (C/C,) for a particular time value and 
distance value, using equation 52 for a solute subject 
to first-order chemical transformation and equation 54 
if the solute is conservative (X=0). The number of 
terms taken in the infinite series summation is speci- 
fied in the input data. 

Sample problem 2 

In sample problem 2, the solute introduced into the 
soil column is assumed to be conservative. Model 
variables are identical to those in sample problem la 
and are 

Velocity (V) =0.6 in/h 
Longitudinal dispersion (D) =0.6 in21h 
System length (L) =12 in 
Solute concentration opposite =l.O mg/L. 

inflow boundary (C,) 

Concentrations are calculated for points 0.5 in apart at 
elapsed times of 2.5, 5, 10, 15, and 20 hours. 

The input data set for sample problem 2 is shown in 
figure 6A; a computer plot of concentration profiles 
generated by the program FINITE is shown in figure 
6B. Output for this sample problem is presented in 

attachment 4. Sample problem 2 required 4.3 s of CPU 
time on a Prime model 9955 Mod II. 

Comparison of figures 4B and 6B shows that the 
principal difference between the solutions for a first- 
type and a third-type source boundary condition is 
reflected in the solute concentrations near the inflow 
boundary at early times. As mentioned previously, 
these differences decrease with decreasing values for 
the quantity D/V. 

Semi-infinite system with first-type 
source boundary condition 

Governing equation 

One-dimensional solute-transport equation: 

Boundary conditions: 

c=c,, 2;=0 

c ac,() 
tax 7 >; = cc 

Initial condition: 

c=o, o<x<a at t=O 

Assumptions: 

1. Fluid is of constant density and viscosity. -. 

(57) 

(5% 

l (59) ’ 

2. Solute may be subject to first-order chemical trans- 
formation (for a conservative solute, X=0). 

3. Flow is in x-direction only, and velocity is constant. 
4. The longitudinal dispersion coefficient (D), which is 

equivalent to D, (eq. 7), is constant. 

(56) 

Analytical solution 

The following equation was modified from Bear 
(1972, p. 630) and van Genuchten and Alves (1982, 
p. 60): 

+exp[&(V+U)]*erfc[ ;$I}, 030) 

where U=dV”+4h.D. 

The analytical solution for a solute not subject to 
first-order chemical transformation (X=0) was derived 
by Ogata and Banks (1961) as 
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A 

Sample Problem 2 -- Solute transport in a finite-length 
soil column with a third-type boundary condition at x=0 
Model Parameters: L=12 in, V=O.6 in/h, D=0.6 in**2/h 

Kl=O.O per h, CO=l.O mg/L 
- 

3 25 05 50 1 
M/L IN/H IN**2/H PER HOUR INCHES HOURS 

1.0 0.6 0.6 0.0 12.0 1.2 
::: 0.5 4.5 t*: 

9:o 

t.2 

9:5 

2.0 6.0 2.5 6.5 ?Z 3.5 

1E 6.5 10.0 10.5 11:o 
7.5 

11.5 
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SompLe ProbLem 2 -- SoLute transport in o finite-length 
soiL coLumn with o third-type boundary condition at x-0 

Model Parameters: L-12 in, V-O.6 in/h, D-O.6 inwx2/h 
Kl-0.0 per h, CO-l.0 mg/L 

0 1.2 2.4 
OISTANCE FILONG 
3.6 4.8 X-&S, IN7i:CtlES 8.4 9.6 10.6 12 

igure 6.-(A) Sample input data set, and (B) concentration profiles generated by the program 
FINITE for a conservative solute in a finite-length system with third-type source boundary 
condition after 2.5, 5, 10, 15, and 20 hours (sample problem 2). 
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C,x,t,=$‘{erfc[~]+exp[#erfc[$]}. (61) 

For large values of time (steady-state solution), 
equation 60 reduces (modified from Bear, 1972, p. 631) 
to 

C(x)=C, exp &(V-U) [ 1 6% 

Comments: 

Equations 60 and 61 are presented in this form to 
utilize computer routines that accurately compute the 
product of an exponential term (exp [xl) and the 
complementary error function (denoted as erfc [y]). 

Linear equilibrium adsorption and ion exchange can 
be simulated by first dividing the coefficients D and V 
by the retardation factor, R (eq. 15). (Note: U in eqs. 
60 and 62 would be given by U=dV*+4XD*). Tempo- 
ral variations in source concentration can be simulated 
through the principle of superposition (eq. 39). 

Description of program SEMINF 

The program SEMINF computes the analytical 
solution to the one-dimensional solute-transport equa- 
tion for a semi-infinite system with a first-type or 
third-type source boundary condition at the inflow 
end. It consists of a main program and two 
subroutines-CNRMLl and CNRML3. The function 
of the main program and subroutine CNRMLl are 
outlined below; the program code listing is presented 
in attachment 2. Subroutine CNRML3, called when a 
third-type boundary condition is specified, is 
described in a subsequent section. 

The program also calls the subroutine EXERFC 
and the output subroutines TITLE, OFILE, and 
PLOTlD, which are common to most programs 
described in this report. These subroutines are 
described in detail later. 

Main program 

The main program reads and prints all input data 
needed to specify model variables. The required input 
data and the format used in preparing a data file are 
shown in table 2. 

The program next executes a set of nested loops. 
The inner loop calls subroutine CNRMLl to calculate 
the concentration for a particular time value and 
distance. The outer loop cycles through all specified 
time values and prints a table of concentration in 
relation to distance for each time value. Graphs of 
concentration in relation to distance can also be 
plotted. 

Subroutine CNRMLl 

Subroutine CNRMLl calculates the normalized con- 
centration (C/C,) for a particular time value and 
distance, using equation 60 for a solute subject to 
first-order chemical transformation and equation 61 if 
the solute is conservative (h=O). 

Sample problems 3a and 3b 

Two sample problems are presented. In sample 
problem 3a, a conservative solute is introduced into a 
long soil column. The system is idealized as being 
semi-infinite in length, with model variables as 

Velocity (V) =0.6 in/h 
Longitudinal dispersion (D) =0.6 in”/h 
Solute concentration at inflow =l.O mg/L. 

boundary (C,) 

Concentrations are calculated for points 0.5 in apart at 
elapsed times of 2.5, 5, 10, 15, and 20 hours. 

In sample problem 3b, solute is removed by both 
first-order solute decay and linear equilibrium adsorp- 
tion. Additional model variables are 

Solute half-life (T1,, ) =7.6 days 
Soil bulk density (pJ =0.047 

lb(mass)/in3 
Porosity (n) =0.45 
Slope of adsorption isotherm (k) =70 in3/lb 

(mass). 

From these values, the following terms are obtained 
using equations 15 and 25: 

Decay constant (X) =0.0038 per 
hour 

Retardation factor (R) =8.31 
Scaled velocity (V*) =0.072 in/h 
Scaled dispersion coefficient (D”) =0.072 in2/h. 

Concentrations are calculated for points 0.5 in apart at 
elapsed times of 20, 50, 100, and 150 hours. 

Input data sets for sample problems 3a and 3b are 
shown in figures 7A and 8A; computer plots of con- 
centration profiles generated by the program SEM- 
INF are also shown. Output for sample problem 3a is 
presented in attachment 4. Sample problems 3a and 3b 
each required 3 s of CPU time on a Prime model 9955 
Mod II. 

Comparison of the concentration profiles at 20 hours 
in each plot (figs. 7B and 8B) shows the effect of both 
solute decay and adsorption on solute movement. 
Comparison of figures 7B and 48 shows the difference 
in concentration profiles that would result if the 
solution for a semi-infinite syst,em were used to sim- 
ulate transport in a finite system. The most significant 
difference is the lower solute concentrations and the 

- 



ANALYTICAL SOLUTIONS FOR SOLUTE TRANSPORT IN GROUND-WATER SYSTEMS WITH UNIFORM FLOW 21 

Table 2 .-Input data format for the program SEMINF 

Data VEUiable 
set Columns Format name DescriDtion 

1 1 - 60 A60 TITLE Data to be printed in a title box on first page of program output. 
Last line in data set must have an *=" in colucm 1. First four lines 
are also used as title for plot. ________________--________c_____________-------------------------------------------------------------------- 

2 l-4 14 NBC Boundary condition type (NBC - 1 for first-type boundary condition; 
NBC - 3 for third-type boundary condition). 

5-6 14 Nx t&saber of r-coordinates at which solution will be evaluated. 

0 - 12 14 NT Xumber of time values at which solution will be evaluated. 

13 - 16 14 IPLT Plot control variable. Concentration profiles will be plotted if IPLT 
is greater than 0. ________________________________________-------------------------------------------------------------------- 

3 1 - 10 A10 CUXITS Character variable used as label for units of concentration in program 
output. 

11 - 20 A10 VUNITS Units of ground-water velocity. 

21 - 30 A10 DUXITS Units of dispersion coefficient. 

31 - 40 A10 XUNITS Units of solute-decay coefficient. 

41 - 50 A10 LUXITS Units of length. 

51 - 60 A10 TUXITS Units of time. --____---------_--__---------------------------------------------------------------------------------------- 
4 1 - 10 F10.0 co Solute concentration at inflow boundary. 

11 - 20 P10.0 vx Ground-water velocity in x-direction-l 

21 - 30 F10.0 DX Longitudinal dispersion coefficient.' 

31 - 40 F1O.O DK First-order solute decay coefficient.' 

41 - 50 F10.0 XSCLP Scaling factor by which x-coordinate values are divided to convert them 
to plotter inches. ______----______--__---------------------------------------------------------------------------------------- 

5 1 - 00 6FlO.O X(I) X-~;;.inates at which solution will be evaluated (eight values per 
. ------------------__---------------------------------------------------------------------------------------- 

6 1 - 60 6FlO.O T(I) Time values at which solution will be evaluated (eight values per 
line). 

'All units must be consistent. 

steeper gradients near x=12.0 in (fig. 7B). As men- 
tioned previously, differences between the two solu- 
tions decrease with increased column Peclet number 
(P) and lower values for the number of displaced pore 
volumes (T). 

Semi-infinite system with third-type 
source boundary condition 

Governing equation 

One-dimensional solute-transport equation: 

Boundary conditions: 

VC,=VC+Dg, x=0 

(63) 

C 
aC 

, dx=o, x=cc 

Irzitial condition: 

c=o, o<x<m at t=O 

6’3 

(66) 

Assumptions: 

1. Fluid is of constant density and viscosity. 
2. Solute may be subject to first-order chemical trans- 

formation (for a conservative solute, h=O). 
3. Flow is in x-direction only, and velocity is constant. 
4. The longitudinal dispersion coefficient (D), which is 

equivalent to D, (eq. 7), is constant. 

Analytical solution 

The following equation is modified from Cleary and 
Ungs (1978, p. 10): 
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A 
Sample Problem 3a -- Solute transport in a semi-infinite 
soil column with a first-type boundary condition at x=0 
Model Parameters: V=O.E in/h, D=0.6 in**2/h 

Kl=O.O per h, CO=l.O mg/L 

I MG 
1 25 05 1 

.--IL IN/H IN**2/H PER HOUR INCHES HOURS 
1.0 

i:; 
0.6 0.0 

0.0 1.0 1.5 ;.i 
2: 

12:o 

ii:: Co" i:z 10.0 6:0 
2.5 3.0 3.5 

1::: 1;:: 11.5 7.5 

2.5 5.0 10.0 15.0 20.0 

Sample Problem 30 -- Solute transport in o semi-infinite 
s0i.L column with o first-type boundory condition ot x-0 

ModeL Parameters: V-O.6 in/h, D-O.6 inHr2/h 
Kl-0.0 per h, CO-l.0 mg/L 

Figure 7.-(A) Sample input data set, and (B) concentration profiles generated by the program SEMINF 
for a conservative solute in a semi-infinite system with first-type source boundary condition after 
2.5, 5, 10, 15, and 20 hours (sample problem 3a). 
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A 
Sample Problem 3b -- Solute transport in a semi-infinite 
soil column with a first-type boundary condition at x=0 
Model Parameters: V=O.O72 in/h, D=0.072 in**2/h 

K1=0.0038 per h, CO=l.O mg/L 
Solute is subject to first-order decay and linear adsorption 
s== 

1 25 04 1 
m/L IN/H IN**P/A PER HOUR INCHES HOURS 

0':: 0.072 0.5 0.072 1.0 0.0038 2; 2.5 

12:o 2: 4.5 8.5 ;:: :*ii 9:5 8:0 8.5 10.0 10.5 

20.0 50.0 100.0 150.0 

Sample Problem 3b -- Solute transport in o semi-infinite 
soil column with a first-type boundary condition at x-0 

Model Parameters: V-O.072 in/h, O-0.072 innw2/h 
Kl-0.0038 per h, CO-l.0 mg/L 

- - - 0 I.2 2.4 3.6 4.8 6 7.2- L-4 9.c l0.i I2 
DISTRNCE ALONG X-RXIS, IN INCHES 

Figure 8.-(A) Sample input data set, and (B) concentration profiles generated by the program SEMINF 
for a solute subject to first-order decay and linear equilibrium adsorption in a semi-infinite system 
with first-type source boundary condition after 20, 50, 100, and 150 hours (sample problem 3b). 
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ax,t>= 4hD q2 exppg-At].erf~[~] 

-(++l)exp[&,V+U)]*erfc[~]}, (67) 

where 

U=@+4hD. 

For a conservative solute (h=O), the solution to 
equation 63 is given by Lindstrom and others (1967) 
and van Genuchten and Alves (1982, p. 10) as 

C(x,t)=C,(ierfc[s]+ $exp[ -e] 

-i[ I+$+g]expg)*erfc[s]). (68) 

For large values of time (steady-state solution), 
equation 67 can be reduced (Gershon and Nir, 1969, p. 
837) to 

C(x)=C,(v+U)*exp 2D 2v [x,,-U)]. (69) 

Comments: 

Equations 67 and 68 are presented in this form to 
utilize computer routines that compute the product of 
an exponential term and the complementary error 
function. For extremely small values of X, calculations 
of concentration values using equation 67 may be 
subject to round-off errors as both the denominator in 
the first term and the terms within the bracket 
approach zero. 

Linear equilibrium adsorption can be simulated by 
dividing the coefficients D and V by the retardation 
factor, R (eq. 15). Temporal variations in source 
concentration can be simulated through the principle 
of superposition (eq. 39). 

Description of program SEMINF 

The analytical solution to the one-dimensional 
solute-transport equation for a semi-infinite system 
with a third-type (or first-type) source boundary con- 
dition is computed by the program SEMINF, 
described in detail in the preceding section. The main 
program reads and prints all input data needed to 

specify model variables. The required input data and 
the format used in preparing a data file are shown in 
table 2. 

The program next executes a set of nested loops. 
The inner loop calls subroutine CNRML3 to calculate 
the concentration for a particular time value and 
distance. The outer loop cycles through all specified 
time values and prints a table of concentration in 
relation to distance for each time value. Graphs 
of concentration in relation to distance can also be 
plotted. 

Subroutine CNRML3 

Subroutine CNRML3 calculates the normalized con- 
centration (C/C,> for a particular time value and 
distance, using equation 67 for a solute subject to 
first-order chemical transformation and equation 68 if 
the solute is conservative (X=0). 

Sample problem 4 

In sample problem 4, a conservative solute is intro- 
duced into a long soil column. The system is idealized 
as being semi-infinite in length, with model variables 
as 

Velocity (V) 
Longitudinal dispersion (D) 
Solute concentration opposite inflow 

=0.6 in/h 
=0.6 in2/h 

boundary (C,) =l.O mg/L. 

Concentrations are calculated for points spaced 0.5 in 
apart at elapsed times of 2.5, 5, 10, 15, and 20 hours. 

The input data set for sample problem 4 is shown in 
figure 9A; a computer plot of concentration profiles 
generated by the program SEM INF is shown in figure 
9B. Because of the third-type boundary condition, 
solute concentration computed near x=0 at early 
times differs from C,. 

Program output for this sample problem is pre- 
sented in attachment 4. Sample problem 4 required 
3.6 s of CPU time on a Prime model 9955 Mod II. 

Two-Dimensional Solute 
Transport 

Several analytical solutions are available for the 
two-dimensional form of the solute-transport equation 
(eq. 10). These solutions can be used to simulate 
transport of contaminants from sources within rela- 
tively thin aquifers, provided t.he solute is generally 
well mixed throughout the thickness of the aquifer and 
vertical concentration gradients are negligible. Trans- 
port of contaminants within a vertical section along 
the centerline of a contaminant plume in a thick 
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B 

Sample Problem 4 -- Solute transport in a semi-infinite 
soil column with a third-type boundary condition at x=0 
Model Parameters: V=O.6 in/h, D=0.6 in**Z/h 

Kl=O.O per h, CO=l.O mg/L 
==c= 

3 25 05 1 
MG/i IN/H IN**Z/H PER HOUR INCHES HOURS 

o’.i 
4:o 

0.6 0.5 0.6 1.0 0.0 1.5 t-i 2.5 
4.5 5.0 5.5 6:0 6.5 

8.0 8.5 9.0 9.5 10.0 10.5 
12.0 

2.5 5.0 10.0 15.0 20.0 

3.0 
7.0 

11.0 

3.5 
7.5 

11.5 

Sompte Problem 4 -- Solute transport in 0 semi-infinite 
soil column with o third-type boundory condition ot x-0 

Model Porometers: V-O.6 in/h, O-O.6 inn*2/h 
Kl-0.0 per h, CO-l.0 mg/L 

0.9 

0.8 

0.7 

0.6 

0.5 

0.4 

0.3 

0.2 

0.1 

0 
0 1.2 2.4 3.6 

OISTRNCE k:ONG X-F& IN7&HES 
8.4 3.6 10.8 12 

Figure 9.-(A) Sample input data set, and (B) concentration profiles generated by the program SEMINF 
for a conservative solute in a semi-infinite system with third-type source boundary condition after 
2.5, 5, IO, 15, and 20 hours (sample problem 4). 
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aquifer can be simulated with these solutions if the 
solute source is wide enough that horizontal concen- 
tration gradients, which cause solute movement per- 
pendicular to the centerline, are negligible. 

In the first solution presented, the aquifer is 
assumed to be of infinite area1 extent and to have a 
continuous point source in the x,y plane (equivalent to 
a line source extending the entire thickness of the 
aquifer). Fluid having a known solute concentration is 
injected into the aquifer at a constant rate. It is 
further assumed that the injection rate is small, and 
that the uniform flowfield around the well is not 
disturbed. Solutions in which radial flow away from an 
injection well is considered are discussed by Hseih 
(1986). A solution for an area1 source where solute 
enters the aquifer at a known flux and concentration is 
given by Code11 and others (1982). 

For the remaining solutions presented in this sec- 
tion, aquifers are assumed to be of semi-infinite length 
and to have a solute source at the inflow boundary (at 
x=0). The width of the aquifer can be treated as being 
finite or infinite in extent. In an infinite-width system, 
impermeable boundaries at the edges of the aquifer 
are presumed to be far enough away as to have a 
negligible effect on solute distribution within the area 
of interest. Idealized diagrams of both types of sys- 
tems are shown in figure 10. 

One type of source configuration, referred to as a 
“strip” source (Clear-y and Ungs, 1978), has a finite 
width extending from y=Y, to y=Y, at x=0 (fig. 10). 
The concentration within the strip is uniform and 
equal to C,. At the boundary of the strip source (at 
y=Y, or y=Y,), th e concentration is equal to 0.5 C,. 
Elsewhere along the inflow boundary, the concentra- 
tion is zero. Combinations of strip sources could be 
used to simulate odd-shaped concentration distribu- 
tions or multiple sources through use of the principle 
of superposition, as previously described. 

A solute source can also have a “gaussian” concen- 
tration distribution (Cleary and Ungs, 19’78, p. 80) 
given by 

[ 1 -(y-Y,>2 
C=C,exp 2a2 , x=0, (70) 

where 
C, =maximum concentration at center of gaussian 

concentration distribution, 
Y, =y-coordinate of center of solute source (X,=0), 

and 
(T =standard deviation of the gaussian distribu- 

tion. 
A field situation in which a gaussian distribution can 

be found is shown in figure 11. The solute concentra- 
tion at the waste-disposal pond is unknown, but a line 
of monitoring wells downgradient from the site and 

normal to the direction of flow s,hows a concentration 
distribution that approximates a gaussian curve. (This 
is expected, as the concentration distribution along a 
cross section normal to the direction of flow taken at 
any point downgradient from an ideal point source 
would be gaussian.) The standard deviation of the 
distribution can be determined from the data as 

(Y-Y,) z!rZZzZ 
“d-2 ln(C/C,)’ (71) 

where C is the concentration observed at a well a 
distance (y-Y,> away from the point of maximum 
concentration. 

Solving equation 71 may lead to differing values of u 
if the observed data are not perfectly gaussian. An 
alternative procedure (R.M. Clear-y, Princeton Uni- 
versity, written commun., 1978) is to (1) normalize the 
data by dividing the observed concentrations by C,, 
(2) plot a histogram of the normalized concentration 
with respect to y, and (3) calculate the area under the 
curve. The standard deviation can be approximated by - 
a=area/V2n. A sample problem illustrating the use of 
both methods is presented later. 

This section presents analytical solutions for an 
l Aquifer of infinite area1 extent with a continuous 

point source, when fluid is injected at a constant 
rate and concentration, 

l Semi-infinite aquifer of finite width with a strip 
source, 

l Semi-infinite aquifer of infinite width with a strip 
source, and 

l Semi-infinite aquifer of infinite width with a gaus- 
sian source. 

All solutions can account for first-order solute decay. 
Four computer programs (POINT2, STRIPF, 
STRIP1 and GAUSS) were written to calculate con- 
centrations in these systems as a function of distance 
and elapsed time. 

Aquifer of infinite areal extent with 
continuous poinit source 

Governing equidion 

The analytical solution for a continuous point source 
has been presented by several authors, including Bear 
(1972, 1979), Fried (1975, p. 132), and Wilson and 
Miller (1978). The solution is derived by first solving 
the solute-transport equation for an instunt!neous 
point source and then integrating the solution over 
time. The two-dimensional solute-transport equation 
for an instantaneous point source is given by 

- 
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dC --&=Dx~+Dy~-v~-Ac 
3 Q' C,exp [ 1 w-x,> 

c(x,Y>= 
2Dx 

Q' +-$ C$(x-X,>S(y-Y&t-t’) (72) 

Boundary conditions: 

c !a() 
‘ax ’ 

x= +aJ 

c aCz() 
‘ay ’ y= +w, 

where 
V =V,, velocity in x-direction, 
Q’ =fluid injection rate per unit thickness of aqui- 

fer, 
n =aquifer porosity, 

dt =infinitesimal time interval, 
S =dirac delta (impulse) function, 

X,,Y,=x- and y-coordinates of point source, and 
t’ =instant at which point source activates 

(assumed to be 0). 

Initial condition: 

c=o, --co< y<+m and --co<x<+~ at t=O (75) 

Assumptions: 

1. Fluid is of constant density and viscosity. 
2. Solute may be subject to first-order chemical trans- 

formation (for a conservative solute, h=O). 
3. Flow is in x-direction only, and velocity is constant 

(no radial flow). 
4. The longitudinal and transverse dispersion coeffi- 

cients (D, and DJ are constant. 

Analytical solution 

The following equation, modified from Bear (1979, 
p. 274)) represents the analytical solution for an 
instantaneous point source integrated with respect to 
time, such that 

C(x,y,t)= CoQ' oxp[ “(;; y Ii,‘; 
4nrdD,D, 

1 dT,(W 

where T is a dummy variable of integration for the 
time integral. 

The steady-state solution is given (modified from 
Bear, 1979, p. 274) as 

ZnndD,D, 

Kl\}, (77) 

where K, is the modified Bessel function of second 
kind and zero order. Tables of values and polynomial 
approximations for K,(x) are given by Abramowitz 
and Stegun (1964, p. 37, p. 417422). 

Comments: 

The integral in equation 76 cannot be simplified 
further and must, therefore, be evaluated numeri- 
cally. A Gauss-Legendre numerical integration tech- 
nique, used in the computer program written to 
evaluate the analytical solution (eq. 76)) is described 
later. 

The integral in equation 76 is difficult to evaluate 
correctly at x and y values near the point source. 
(Mathematically, when (x-X,> and (y-Y,> approach 
zero, the integral in eq. 76 becomes a form of the 
exponential integral, E,(t), which becomes infinite at 
t=O; see Abramowitz and Stegun, 1964, p. 228.) 
Farther away from the point source, generally when 
(x-XJ2 is larger than V2, a meaningful solution can be 
obtained. 

Linear equilibrium adsorption and ion exchange can 
be simulated by first dividing Q’ and the coefficients 
D,, D,, and V by the retardation factor, R (eq. 15). 
Temporal variations in source concentration or multi- 
ple sources can be simulated through the principle of 
superposition. 

Description of program POINT2 

The program POINT2 computes the analytical solu- 
tion to the two-dimensional solute-transport equation 
for an aquifer of infinite area1 extent with a continuous 
point source. It consists of a main program and the 
subroutine CNRMLB. The functions of the main pro- 
gram and subroutine are outlined below; the program 
code listing is presented in attachment 2. 

The program also calls subroutine GLQPTS and the 
output subroutines TITLE, OFILE, PLOT2D, and 
CNTOUR, which are common to most programs 
described in this report. These subroutines are 
described in detail later. 

Main program 

The main program reads and prints all input data 
needed to specify model variables. The required input 
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Figure IO.-(A) Plan view and vertical section of idealized two-dimensional solute transport in an aquifer of 
semi-infinite length and finite width, and (B) plan view of idealized two-dimensional solute transport in an aquifer 
of semi-infinite length and infinite width. 
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Figure Il.-(A) Plan view of a semi-infinite aquifer of infinite width showing location of waste-disposal pond and 
monitoring wells, and graph of (B) observed solute concentration values and gaussian curve used to 
approximate concentration distribution at x=0. 
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Table 3.-Input data format for the program POINT2 

Data Variable 
set c01Lmms Format name Descriotion 

1 1 - 60 A60 TITLE Data to be printed in a title box on the first page of program output. 
Last line in data set must have an *a" in column 1. First four lines 
are also used as title for plot. ------------------------------------------------------------------------------------------------------------ 

2 l- 4 14 Nx Number of x-coordinates at which solution will be evaluated. 

5- 8 14 NY Number of y-coordinates at which solution will be evaluated. 

9-12 14 NT Number of time values at which solution will be evaluated. 

13 - 16 14 NMAX Number of terms used in the numerical integration technique (must be 
equal to 4, 20, 60, 104, or 2561. 

17 - 20 14 IPLT Plot control variable. Contours of normalized concentration will be 
plotted if IPLT is greater than 0. ----------------------------------------------------------------------------------------~------------------- 

3 1 - 10 A10 CUNITS Character variable used as label for units of concentration in program 
output. 

11 - 20 A10 VUNITS Units of ground-water velocity. 

21 - 30 A10 DUNITS Units of dispersion coefficient. 

31 - 40 A10 KUNITS Units of solute-decay coefficient. 

41 - 50 A10 LIMITS Units of length. 

51 - 60 A10 TUNITS Units of time. __________________----------------------------------------------------------------------~------------------- 
4 1 - 10 F1O.O CO Solute concentration in injected fluid. 

11 - 20 F10.0 vx Ground-water velocity in x-direction. 

21 - 30 F10.0 DX Longitudinal dispersion coefficient. 

31 - 40 F10.0 DY Transverse dispersion coefficient. 

41 - 50 F1O.O DK First-order solute-decay coefficient. 
-------------------------------------------------------------------------------------------------------~---- 

5 1 - 10 F1O.O xc X-coordinate of point source. 

11 - 20 F10.0 YC Y-coordinate of point source. 

21 - 30 P10.0 w Fluid injection rate per unit thiclcness of aquifer'. 

31 - 40 F1O.O KIN Aquifer porosity. -----------------------------------------------------------------------------------------~------------------ 
6 1 - 80 8FlO.O X(I) X-coordinates at which solution will be evaluated (eight values per 

line). 
-----------------------------------------------------------------------------------------~------------------ 

7 1 - 80 8FlO.O Y(I) Y-zcofinates at which solution will be evaluated (eight values per 
-----------------------------------------------------------------------------------------~------------------ 

8 1 - 60 8FlO.O T(I) Tim;n;lues at which solution will be evaluated (eight values per 
------------------------------------------------------------------------------------------.------------------ 
29 1 - 10 F1O.O XSCLP Scaling factor by which x-coordinate values are divided to convert them 

to plotter inches. 

11 - 20 F10.0 YSCLP Scaling factor used to convert y-coordinates into plotter inches. 

21 - 30 F10.0 DELTA Contour increment for plot of normalized concentration (must be between 
0.0 and 1.0). 

'For the solution to be consistent, units of QM must be identical to those of the dispersion coefficients. 

'Data line is needed only if IPLT (in data set 2) is greater than 0. 

data and the format used in preparing a data file are The program next executes a set of three nested 
shown in table 3. The routine then calls the subroutine loops. The inner loop calls subroutine CNRMLB to 
GLQPTS, which reads the data file GLQ.PTS contain- calculate the concentration at all specified y- 
ing values of the positive roots and weighting func- coordinate values for a particular x-coordinate value 
tions used in the Gauss-Legendre numerical integra- and time. The middle loop cycles through all x- 
tion technique. coordinate values. The outer loop cycles through all 
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specified time values and prints a table of concentra- 
tions in relation to distance for each time value. Model 
output can also be plotted as a series of maps showing 
lines of equal solute concentration. 

Subroutine CNRMLZ 

Subroutine CNRMLZ calculates the normalized con- 
centration (C/C,) for a particular time value and 
distance. The integral in equation 76 is evaluated 
through a Gauss-Legendre numerical integration 
technique. The Gauss integration formula used is 
given by Abramowitz and Stegun (1964) as 

where 

I1 f(x)dx=~wi l f(zi), 
-1 i=l 

(78) 

n =order of Legendre polynomial, 
wi =weighting functions, 

f(z,) =value of integrand calculated with variable of 
integration equal to zi, and 

zi =roots of nth order polynomial. 
The normalized roots of the Legendre polynomial and 
the corresponding weighting functions are passed by 
subroutine GLQPTS and scaled in the subroutine to 
account for the non-normalized limits of integration 
(from 0 to t rather than from - 1 to + 1). 

The number of terms summed in the numerical 
integration (equivalent to the order of the polynomial) 
is specified by the user. Roots of the Legendre poly- 
nomial of order 4, 20, 60, 104, and 256 (from data in 
Cleary and Ungs, 1978) are provided in data file 
GLQ.PTS. In general, the more terms used in the 
integration, the more accurate the approximation; 
however, this must be weighed against the corre- 
sponding increase in computational effort and time. 
Additional discussions of the numerical integration 
technique are presented in a later section describing 
subroutine GLQPTS. 

Sample problem 5 

In sample problem 5, an abandoned borehole that 
penetrates a brackish artesian formation is discharg- 
ing into an overlying freshwater aquifer. Model vari- 
ables are 

Aquifer thickness =lOO ft 
Discharge rate = 1,250 ft3/d 
Ground-water velocity (V) =2 ftld 
Longitudinal dispersivity (a,) =30 ft 
Transverse dispersivity (aUt> =6 ft 
Source concentration (C,) =l,OOO mg/L 
Point-source location (X,,Y,> =o, 500 ft 
Aquifer porosity (n) =0.25. 

From these values, the terms obtained are 
Discharge rate per unit thickness 
of aquifer (Q’) = 12.5 ft2/d 

Coefficient of longitudinal 
dispersion (D,) =60 ft21d 

Coefficient of transverse 
dispersion (D,) =12 ft2/d. 

Concentrations are calculated at lo-ft intervals along 
the x-axis from x= -60 ft to x=200 ft, and at 5-ft 
intervals along the y-axis from y=450 ft to y=550 ft. 
Chloride concentration distribution after 25 days and 
100 days is simulated. 

The input data set for sample problem 5 is shown in 
figure 12A. A computer-generated contour plot of 
normalized concentrations (C/C,> at both time values 
is shown in figure 12B. Program output for this 
sample problem is presented in attachment 4. Sample 
problem 5 required 9 s of CPU time on a Prime model 
9955 Mod II. 

Aquifer of finite width with 
finite-width solute source 

Governing equation 

Two-dimensional solute-transport equation: 

ac a2c 
dt- - Dx -+D,F-V $hC dX2 f 

(79) 

Boundary conditions: 

c=c,, x=0 and Y,< y<Y, 

c=o, x=0 and y<Y, or y>Y, (80b) 

c aC=, 
pay 7 y=o 

c !a() 
)ay 9 y=w 

c aC,o 
'ax 9 

x=cn 

where 
V =velocity in x-direction, 

(81) 

(82) 

(83) 

Y, = y-coordinate of lower limit of solute source at 
x=0 

Y, =y-coordinate of upper limit of solute source at 
x=0, and 

W =aquifer width. 
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Initial condition: Description of program STRIPF 

c=o, O<x<m and O<y<W at t=O (84 

Assumptions: 

1. Fluid is of constant density and viscosity. 
2. Solute may be subject to first-order chemical trans- 

formation (for a conservative solute, h=O). 
3. Flow is in x-direction only, and velocity is constant. 
4. The longitudinal and transverse dispersion coeffi- 

cients (D,, DJ are constant. 

The program STRIPF computes the analytical solu- 
tion to the two-dimensional solute-transport equation 
for an aquifer of finite width with a finite-width or 
“strip” solute source at the inflow boundary. It con- 
sists of a main program and subroutine CNRMLF. 
The functions of the main program and subroutine are 
outlined below; the program code listing is presented 
in attachment 2. 

Analytical solution 

The following equation is modified from Hewson 

The program also calls the subroutine EXERFC 
and the output subroutines TITLE, OFILE, 
PLOTBD, and CNTOUR, which are common to most 
programs described in this report. These subroutines 
are described in detail later. 

(1976): 

C(x,y,t)=C,CL,P, cos (qy) 
n=O 

l [ exp pp]erfc[ *] 

+exp[p]erfc[ s]] 

where 

1 
l/2, n=O 

L= 1 , n>O 

y2-Yl n=O 

p,= W 

i 

[sin (qY,)-sin (qydl 00 
n7r , 

q=n7FlW, n=0,1,2,3. . . 

p=~V2+4D,(neD,+h) 

Comments: 

(85) 

Terms in the infinite series in equation 85 tend to 
oscillate, and the series converges slowly for small 
values of x; thus, a large number of terms may be 
needed to ensure convergence. A good initial estimate 
is 100 terms. For larger values of x, the series 
converges more quickly. 

The solution can yield results with either D, or X=0. 
Linear equilibrium adsorption and ion exchange can 
be simulated by first dividing the coefficients D,, D,, 
and V by the retardation factor, R (eq. 15). Temporal 
variations in solute concentration and odd-shaped 
source configurations can be simulated through the 
principle of superposition. 

Main program 

The main program reads and prints all input data 
needed to specify model variables. The required input 
data and the format used in preparing a data file are 
shown in table 4. 

The program next executes a set of three nested 
loops. The inner loop calls subroutine CNRMLF 
to calculate the concentration at all specified y- 
coordinate values for a particular x-coordinate value 
and time. The middle loop cycles through all x- 
coordinate values. The outer loop cycles through all 
specified time values and prints a table of concentra- 
tion in relation to distance for each time. Model output 
can also be plotted as a map showing lines of equal 
solute concentration. 

Subroutine CNRMLF 

Subroutine CNRMLF calculates the normalized 
concentration (C/C,) for a particular time value and 
distance using equation 85. The maximum number of 
terms in the infinite series summation is specified by 
the user. Because terms in the series tend to oscillate, 
a subtotal of the last 10 terms is kept, and when the 
subtotal is less than a convergence criterion set at 
1 x 10-12, the series summation is halted. If the series 
does not converge after the specified maximum num- 
ber of terms are taken, a warning message is printed 
on the program output. 

Sample problem 6 

In sample problem 6, migration of chloride ion in 
landfill leachate through a narrow, relatively thin, 
valley-fill aquifer is simulated. Model variables are 

Aquifer width (W) 
Lower limit of solute source (YJ 
Upper limit of solute source (Y2> 
Ground-water velocity (V,) 
Longitudinal dispersivity (01~) 
Transverse dispersivity (at> 

=3,000 ft 
=400 ft 
=2,000 ft 
=l ftld 
=200 ft 
=60 ft 
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Table 4.-Input data format for the program STRIPF 

Data V53Iiable 
set c01lmms Format name Description - 

1 1 - 60 A60 TITLE Data to be printed in a title box on the first page of program output. 
Last line in data set must have au "=ll in colmm 1. First four lines 
are also used as title for plot. --_-_______---------____________________-------------------------------------------------~------------------ 

2 l-4 14 Nx Number of x-coordinates at which solution will be evaluated. 

5-6 I4 NY Number of y-coordinates at which solution will be evaluated. 

9 - 12 14 NT Number of time values at which solution will be evaluated. 

13 - 16 14 NMAX Maximum number of terms used in the infinite series summation. 

17 - 20 14 IPLT Plot control variable. Contours of normalized concentration will be 
plotted if IPLT is greater than 0. ----_______------------------------------------------------------------------------------------------------- 

3 1 - 10 A10 CUNITS Character variable used as label for units of concentration in program 
output. 

11 - 20 A10 VUNITS Units of ground-water velocity. 

21 - 30 A10 DUNITS Units of dispersion coefficient. 

31 - 40 A10 KUNITS Units of solute-decay coefficient. 

41 - 50 Al0 LUNITS Units of length. 

51 - 60 A10 TUNITS Units of time. ------------------------------------------------------------------------------------------~--------------~-- 
4 1 - 10 F10.0 co Solute concentration at inflow boundary. 

11 - 20 F10.0 vx Ground-water velocity in x-direction. 

21 - 30 F10.0 DX Longitudinal dispersion coefficient. 

31 - 40 F10.0 DY Transverse dispersion coefficient. 

41 - 50 F10.0 DK First-order solute-decay coefficient. ------------------------------------------------------------------------------------------~----------------- 
5 1 - 10 F10.0 W Aquifer width (aquifer extends from y = 0 to y - W). 

11 - 20 F10.0 Yl Y-coordinate of lower limit of finite-width solute source. 

21 - 30 no.0 Y2 Y-coordinate of upper limit of finite-width solute source. 
-----------------------------------------------------------------------------------------~---------------~-- 
6 1 - 60 6FlO.O X(I) X-coordinates at which solution will be evaluated (eight values per 

line). ---________---------____________________--------------------------------------------------~----------------- 
7 1 - 60 6FlO.O Y(I) Y-coordinates at which solution will be evaluated (eight values per 

line). ____________---_________________________-------------------------------------------------------------------- 
6 1 - 60 6FlO.O T(I) Tim;s;;lues at which solution will be evaluated (eight values per 

___________------------------------------------------------------------------------------------------------- 
19 1 - 10 F1O.O XSCLP Scaling factor by which x-coordinate values are divided to convert them 

to plotter inches. 

11 - 20 F1O.O YSCLP Scaling factor used to convert y-coordinates into plotter inches. 

21 - 30 F1O.O DELTA Co;t.;wa!za!~~~t for plot of normalized concentration (must be between 
. . 

'Data line is needed only if IPLT (in data set 2) is greater than 0. 

Source concentration (C,) =l,OOO mg/L. 

From these values, the terms obtained are 

Dispersion in x-direction (D,) =200 fta/d 
Dispersion in y-direction (D,) = 60 ft2/d. 

Concentrations are calculated at 150-ft intervals along 
the x-axis for 4,500 ft, and at 100% intervals along the 
y-axis for 3,000 ft. Chloride concentration distribution 
after 1,500 and 3,000 days is simulated. 

The input data set for sample problem 6 is shown in 
figure 13A. A computer-generated contour plot of 
normalized concentration (C/C,) at each time value is 
shown in figure 13B. The lack of symmetry about the 
centerline of the chloride plume is due to the effect of 
the closer lateral boundary (at y=O). Lines of equal 
concentration are perpendicular to the lateral bound- 
ary, indicating that concentration gradients in the 
y-direction equal zero and, thus, no solute flux occurs 
across the boundary. Program output for this sample 
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problem is presented in attachment 4. Sample prob- 
lem 6 required 52 s of CPU time on a Prime model 
9955 Mod II. 

A 
? 

uifer of infinite width with 
inite-width solute source 

Governing equation 

Two-dimensional solute-transport equation: 

Bou?zdary conditions: 

c=c,, x=0 and Y,<y<Y, 

c=o, x=0 and y<Y, or y>Y, 

(-J aC,() 
pay f y=+c.Q 

(-J aC,(-J 
fax 7 x=w, 

c3f3 

(8%) 

(87b) 

c38) 

(89) 

where 
V =velocity in x-direction, 

Y, =y-coordinate of lower limit of solute source at 
x=0, and 

Y, =y-coordinate of upper limit of solute source at 
x=0. 

Initial condition: 

c=o, O<X<=J and --co<y<+w at t=O (90) 

Assumptions: 

1. 
2. 

3. 
4. 

Fluid is of constant density and viscosity. 
Solute may be subject to first-order chemical trans- 
formation (for a conservative solute, h=O). 
Flow is in x-direction only, and velocity is constant. 
The longitudinal and transverse dispersion coeffi- 
cients (D,, DJ are constant. 

The program STRIP1 computes the analytical solu- 
tion to the two-dimensional solute-transport equation 
for an aquifer of infinite width with a finite-width or 
“strip” solute source at the inflow boundary. It con- 
sists of a main program and the subroutine CNRMLI. 
The functions of the main program and subroutine are 
outlined below; the program code listing is presented 
in attachment 2. 

The program also calls subroutines EXERFC and 
GLQPTS and the output subroutines TITLE, OFILE, 
PLOTZD, and CNTOUR, which are common to most 
programs described in this report. These subroutines 
are described in detail later. 

Analytical solution Main program 

The following equation is modified from Cleary and 
Ungs (1978, p. 17): 

.{erfc[s]-erfc[z]}dT, @la> 

To improve the accuracy of the numerical integration, 
a variable substitution can be made where 7=Z4, 
yielding 

CCx,,N=-& ““I&] .tj$exp[ ~~(-g++--&] 

l [e~c[~]-erfc[$$j+]}& (glb) 
Comments: 

The integral in equation 91b cannot be simplified 
further and must be evaluated numerically. A Gauss- 
Legendre numerical integration technique was used in 
the computer program written to evaluate the analyt- 
ical solution and is described later. Round-off errors 
may still occur when evaluating the solution for very 
small values of x at late times. 

Linear equilibrium adsorption and ion exchange can 
be simulated by dividing the coefficients D,, D,, and V 
by the retardation factor, R (eq. 15). Temporal vari- 
ations in solute concentration and odd-shaped source 
configurations can be simulated through the principle 
of superposition. 

Description of progralm STRIPI 

The main program reads and prints all input data 
needed to specify model variables. The required input 
data and the format used in preparing a data file are 
shown in table 5. The routine then calls the subroutine 
GLQPTS, which reads the data file GLQ.PTS contain- 
ing values of the positive roots and weighting func- 
tions used in the Gauss-Legendre numerical integra- 
tion technique. 
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Table 5.-Input data format for the program STRIPI 

Data VEllZiElble 
set Columns Format name DescriDtiOn 

1 1 - 60 A60 TITLE Data to be printed in a title box on the first page of program output. 
Last line in data set must have an W=ll in column 1. First four lines 
are also used as title for plot. 

____________________---------------------------------------------------------------------------------------- 
2 l-4 14 Nx Number of x-coordinates at which solution will be evaluated. 

5-8 14 NY Number of y-coordinates at which solution will be evaluated. 

9-12 14 NT Number of time values at which solution will be evaluated. 

13 - 16 14 NM4x Number of terms used in the numerical integration techniques (must be 
equal to 4, 20. 60. 104, or 2561. 

17 - 20 14 IPLT Plot control variable. Contours of normalized concentration will be 
plotted if IPLT is greater than 0. 

________--___---____------------------------------------------ ________________------------------------------ 
3 1 - 10 A10 CUNITS Character variable used as label for units of concentration in program 

output. 

11 - 20 A10 VUNITS Units of ground-water velocity. 

21 - 30 A10 DUNITS Units of dispersion coefficient. 

31 - 40 A10 KUNITS Units of solute-decay coefficient. 

41 - 50 A10 LUNITS Units of length. 

51 - 60 A10 TUNITS Units of time. 
__________-_________---------------------------------------------------------------------------------------- 

4 1 - 10 F1O.O co Solute concentration at inflow boundary. 

11 - 20 F10.0 VX Ground-water velocity in x-direction. 

21 - 30 F10.0 DX Longitudinal dispersion coefficient. 

31 - 40 F1O.O DY Transverse dispersion coefficient. 

41 - 50 F1O.O DK First-order solute-decay coefficient. ________--__________----------------------------------------------------------------------------------- ----- 
5 1 - 10 F1O.O Yl Y-coordinate of lower limit of finite-width solute source. 

11 - 20 F10.0 Y2 Y-coordinate of upper limit of finite-width solute source. 
________---_________----------------------------------------------- ----------_________---------------------- 

6 1 - 80 8FlO.O X(11 X-coordinates at which solution will be evaluated (eight values per 
line). 

-----------_______--------------------------------------------- -----------________-------------------------- 
7 1 - 80 8FlO.O Y(I) Y-coordinates at which solution will be evaluated (eight values per 

line). 
____________________---------------------------------------------------------------------------------------- 

8 1 - 80 8FlO.O T(1) Time values at which solution will be evaluated (eight values per 
line). _____________-______---------------------------------- ____________-_______---------------------------------- 

19 1 - 10 F10.0 XSCLP Scaling factor by which x-coordinate values are divided to convert them 
to plotter inches. 

11 - 20 F10.0 YSCLP Scaling factor used to convert y-coordinates into plotter inches. 

21- 30 F10.0 DELTA Contour increment for plot of normalized concentration (must be between 
0.0 and 1.0). 

'Data line is needed only if IPLT (in data set 2) is greater than 0. 

The program next executes a set of three nested 
loops. The inner loop calls subroutine CNRMLI to 
calculate the concentration at all specified y- 
coordinate values for a particular x-coordinate value 
and time. The middle loop cycles through all x- 
coordinate values. The outer loop cycles through all 
specified time values and prints a table of concentra- 
tion in relation to distance for each time. Model output 
can also be plotted as a map showing lines of equal 
solute concentration. 

Subroutine CNRMLI 

Subroutine CNRMLI calculates the normalized con- 
centrations (C/C,,) for a particular time value and 
distance. The integral in equation 91 is evaluated 
through a Gauss-Legendre numerical integration 
technique. The normalized roots of the Legendre 
polynomial and the corresponding weighting functions 
are passed by subroutine GLQPTS and scaled in the 
subroutine to account for the non-normalized limits of 
integration (from 0 to t”4 rather than from - 1 to + 1). 
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The number of terms summed in the numerical 
integration (equivalent to the order of the polynomial) 
is specified by the user. Roots of the Legendre poly- 
nomial of order 4, 20, 60, 104, and 256 are provided in 
data file GLQ.PTS. In general, the more terms used in 
the integration, the more accurate the approximation; 
however, this must be weighed against the corre- 
sponding increase in computational effort and time. 
Additional discussions of the numerical integration 
technique are presented in a later section describing 
subroutine GLQPTS. 

Sample problem 7 

In sample problem ‘7, contaminant migration from a 
waste-disposal pond through the upper glacial aquifer 
of Long Island, N.Y., is simulated. Data are from a 
numerical modeling study by Pinder (1973). Model 
variables are 

Lower limit of solute source (Y1> =635 ft 
Upper limit of solute source (Y.J =865 ft 
Ground-water velocity (V) =1.42 ftld 
Longitudinal dispersivity (0~~) =70 ft 
Transverse dispersivity (OLJ =14 ft 
Source concentration (C,) =40 mg/L. 

Lateral boundaries are far enough from the area of 
interest that the aquifer can be treated as being 
infinite in width. From these values, the terms 
obtained are 

Dispersion in x-direction (D,) =lOO fts/d 
Dispersion in y-direction (D,) = 20 ft’ld. 

Concentrations are calculated at 100~ft intervals along 
the x-axis for 3,000 ft, and at 50-ft intervals on the 
y-axis for 1,500 ft. Concentration distributions after 5 
years (1,826 days) are simulated. 

The input data set for sample problem 7 is shown in 
figure 14A. A computer-generated contour plot of 
normalized concentration (C/C,> is shown in figure 
14B. Program output for this sample problem is 
presented in attachment 4. Sample problem 7 required 
1 min (minute) 25 s of CPU time on a Prime model 
9955 Mod II. 

Aquifer of infinite width with solute 
source having gaussian concentration 

distribution 
Governing equation 

Two-dimensional solute-transport equation: 

(92) 

Bounda y conditions: 

-(Y-y,>2 C=C,exp 2a2 [ I , x=0 (93) 

c aC,() 
'ay 9 y=+oO (94 

c ac,() 
'ax 9 

:<=cc, t (95) 

where 
C, =maximum concentration at center of gaussian 

solute source, 
Y, =y-coordinate of center of solute source at x = 0, 

and 
(T =standard deviation of gaussian distribution. 

Initial condition: 

C=O, O<x<w and -c~yc:+~ at t=O (96) 

Assumptions: 

1. Fluid is of constant density and viscosity. 
2. Solute may be subject to first-order chemical trans- 

formation (for a conservative solute, h=O). 
3. Flow is in x-direction only (V,=O), and velocity is 

constant. 
4. The longitudinal and transverse dispersion coeffi- 

cients (D,, DY) are constant. 

Arralytical solution 

The following equation is 
and others (1980, p. 905): 

modified from Gureghian 

. (97) 
where 

V2 
P’4D,fA 

and 7 is a dummy variable of integration for the time 
integral. 

To improve the accuracy of the numerical integra- 
tion, a variable substitution (modified from Cleary and 
Ungs, 1978, p. 20) can be made where 7=Z4, yielding 
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B 

f 

A 

Sample Problem 7 -- Solute transport in a semi-infinite 
aquifer of infinite width with a continuous ‘strip’ source 
Model Data: V-l.42 ft/d, DX-100.0 ft**2/d, DY-20.0 ft**2/d 

Yl-635 ft, Y2-865 ft, CO-40.0 mg/L 

31 31 1 104 1 
MG/L ET/D FT**2/D PER DAY FEET DAYS 

40.0 1.42 100.0 20.0 0.0 
635.0 865.0 

0.0 100.0 200.0 300.0 400.0 500.0 600.0 700.0 
800.0 900.0 1000.0 1100.0 1200.0 1300.0 1400.0 1500.0 

1600.0 1700.0 1800.0 1900.0 2000.0 2100.0 2200.0 2300,O 
2400.0 2500.0 2600.0 2700.0 2800.0 2900.0 3000.0 

0.0 50.0 100.0 150.0 200.0 250.0 300.0 350.0 
400.0 450.0 500.0 550.0 600.0 650.0 700.0 750.0 
800.0 850.0 900.0 950.0 1000.0 1050.0 1100.0 1150.0 

1200.0 1250.0 1300.0 1350.0 1400.0 1450.0 1500.0 
1826.0 

500. 500. 0.1 

Sam 
aqui P 

Le Problem 7 -- Solute transport in a semi-infinite 
er of infinite width with a continuous ‘strip’ source 

Model Data: V=1.42 ft/d, DX=lOO.O ft%c#2/d, DY=20.0 ft*G/d 
Y1=635 ft, Y2=865 ft, CO=40.0 mg/L 

1 2000 I I I I I 
NORMALIZED CONCENTRATION AT TIME - 1826.DAYS 
CONTOUR INTERVAL - 0.1 C/Co 

H J 

U 0 500 1000 1500 2000 2500 3000 

DISTANCE ALONG X-AXIS, IN FEET 

7gure 74.-(A) Sample input data set, and (B) computer plot of normalized concentration contours generated by the 
program STRIPI for a conservative solute in an aquifer of infinite width with finite-width solute source after 1,826 days 
(sample problem 7). 
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ZC,xa vx 
C(x,y,t)=~~~exp 2~, 

[ I 

q3z4w&k$f dZ 

x 1 . , (98) 
where 

Comments: 

The integral in equation 98 cannot be simplified 
further and must be evaluated numerically. A Gauss- 
Legendre numerical integration technique was used in 
the computer program written to evaluate the analyt- 
ical solution and is described later. 

Linear equilibrium adsorption and ion exchange can 
be simulated by first dividing the coefficients D,, D,, 
and V by the retardation factor, R (eq. 15). Temporal 
variations in solute concentration can be simulated 
through the principle of superposition. 

Description of program GAUSS 

The program GAUSS computes the analytical solu- 
tion to the two-dimensional solute-transport equation 
for an aquifer of infinite width with a solute source 
having a gaussian concentration distribution along the 
inflow boundary. It consists of a main program and the 
subroutine CNRMLG. The functions of the main pro- 
gram and subroutine are outlined below; the program 
code listing is presented in attachment 2. 

The program also calls the subroutine GLQPTS 
and the output subroutines TITLE, OFILE, and 
PLOTBD, which are common to most programs 
described in this report. These subroutines are 
described in detail later. 

Main program 

The main program reads and prints all input data 
needed to specify model variables. The required input 
data and the format used in preparing a data file are 
shown in table 6. The routine then calls the subroutine 
GLQPTS, which reads the data file GLQ.PTS contain- 
ing values of the positive roots and weighting func- 
tions used in the Gauss-Legendre numerical integra- 
tion technique. 

The program next executes a set of three nested 
loops. The inner loop calls subroutine CNRMLG 
to calculate the concentration at all specified y- 
coordinate values for a particular x-coordinate value 
and time. The middle loop cycles through all x- 

coordinate values. The outer loop cycles through all 
specified time values and prints a table of concentra- 
tion in relation to distance for each time value. Model 
output can also be plotted as a map showing lines of 
equal solute concentration. 

Subroutine CNRMLC 

Subroutine CNRMLG calculates the normalized 
concentration (C/C,) for a particular time value and 
distance. The integral in equation 98 is evaluated 
through a Gauss-Legendre numerical inte,gration 
technique. The normalized roots of the Legendre 
polynomial and the corresponding weighting functions 
are passed by subroutine GLQPTS and scaled in the 
subroutine to account for the non-normalized limits of 
integration, from 0 to t’” rather than from -1 to +l. 

The number of terms summed in the the numerical 
integration (equivalent to the order of the polynomial) 
is specified by the user. Roots of the Legendre poly- 
nomial of order 4, 20, 60, 104, and 256 are provided in 
data file GLQ.PTS. In general, the more terms used in 
the integration, the more accurate the approximation; 
however, this must be weighed against the corre- 
sponding increase in computational effort and time. 
Additional discussions of the numerical integration 
technique are presented in a later section describing 
subroutine GLQPTS. 

Sample problems 8a and 8b 

Two sample problems are presented. Sample prob- 
lem 8a is modified from an example presented in 
Gureghian and others (1980) for a conservative solute 
uniformly mixed in a thin aquifer of infinite width. 
Model variables are 

Maximum concentration (C,) =l,OOO mg/L 
Standard deviation of gaussian 

distribution (a) =130 ft 
Center of solute source (Y,) =450 ft 
Ground-water velocity (V,) =4 ftkl 
Coefficient of longitudinal 

dispersion (D,) =150 ft2/d 
Coefficient of transverse dispersion 

@,I =30 ft”/d. 
Concentrations are calculated at 50-ft intervals along 
the x-axis for 1,700 ft, and at 25ft intervals on the 
y-axis for 900 ft. The chloride concentration distribu- 
tion after 300 days is simulated. 

Sample problem 8b demonstrates two methods of 
calculating a value for u. Aquifer dimensions, ground- 
water velocity, and dispersion coefficients are the 
same as in problem 8a. Concentrations measured in 
monitoring wells 500 ft downgradient from a waste- 
disposal site are presented in table 7; figure 15 pre- 
sents a plot of the normalized concentration (C/C,> in 
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Table 6.-Input data format for the program GAUSS 

Data VS3dable 
set COlWrmS Format name DescriDtion 

1 1 - 60 A60 TITLE Data to be printed in a title box on the first page of program output. 
Last line in data set must have an "=" in column 1. First four lines 
are also used as title for plot. ______----__________----------------------------------------- ------------____-__---------------------------- 

2 l- 4 14 Nx Number of x-coordinates at which solution will be evaluated. 

5- 6 14 NY Number of y-coordinates at which solution will be evaluated. 

9-12 14 NT Number of time values at which solution will be evaluated. 

13 - 16 14 NnAx Number of terms used in the numerical integration technique (must be 
equal to 4, 20. 60, 104. or 256). 

17 - 20 14 IPLT Plot control variable. Contours of normalized concentration will be 
plotted if IPLT is greater than 0. ________________________________________-------------------------------------------------------------------- 

3 1 - 10 A10 CUNITS Character variable used as label for units of concentration in program 
output. 

11 - 20 A10 VUNITS Units of ground-water velocity. 

21 - 30 A10 DUNITS Units of dispersion coefficient. 

31 - 40 A10 XUNITS Units of solute-decay coefficient. 

41 - 50 A10 LUNITS Units of length. 

51 - 60 A10 TUNITS Units of time. -__--__----_________---------------------------------------------------------------------------------------- 
4 1 - 10 F1O.O a4 Maximum solute concentration at inflow boundary. 

11 - 20 F10.0 vx Ground-water velocity in x-direction. 

21 - 30 F10.0 DX Longitudinal dispersion coefficient. 

31 - 40 F10.0 DY Transverse dispersion coefficient. 

41 - 50 F1O.O DK First-order solute-decay coefficient. 
----------_------------------------------------------------ ------------_______------------------------------ 

5 1 - 10 F10.0 YC Y-coordinate of center of gaussian-distributed solute source. 

11 - 20 F10.0 ws Standard deviation of gaussian distribution describing solute source. ____________--______------------------------------------ ---_---------____----------------------------------- 
6 1 - 60 6FlO.O X(I) X-coordinates at which solution will be evaluated (eight values per 

line). 
____________--______----------------------------------- ____________________--------------------------------- 

7 1 - 60 8FlO.O Y(I) Y-coordinates at which solution will be evaluated (eight values per 
line). 

_-___---_-__________---------------------------------------- --__--------___-_------------------------------- 
8 1 - 80 8FlO.O T(I) Time values at which solution will be evaluated (eight values per 

line). ___________--_______--------------------------------- __________----______----------------------------------- 
19 1 - 10 F10.0 XSCLP Scaling factor by which x-coordinate values are divided to convert them 

to plotter inches. 

11 - 20 F10.0 YSCLP Scaling factor used to convert y-coordinates into plotter inches. 

21 - 30 F10.0 DELTA Co;t"XufFyyt for plot of normalized concentration (must be between 
. . 

'Data line is needed only if IPLT (in data set 2) is greater than 0. 

relation to distance along the y-axis (normal to the Input data sets for sample problems 8a and 8b are 
direction of flow). An average value of u, calculated shown in figures 16A and 17A. Computer-generated 

l from the observed concentrations (table 7) using equa- contour plots of normalized concentration (C/C,) are 
tion 70, is 66.1 ft. The area under the curve in figure shown in figures 16B and 17B. Comparison of figures 
15 can also be approximated and yields a u value of 16B and 17B shows the effect of varying o on the 
65.0 ft. A value of 65 ft was used in the input data for concentration distribution. Program output for sample 
sample problem 8b. problem 8a is presented in attachment 4. Sample 
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Table 7.-Measured solute concentrations in monitoring 
wells downgradient from the waste-disposal site in 
sample problem 8b 

well locations shown in fig. 111 

we11 location 
(x and y 

coordinates), 
in feet 

0, 200 

0, 250 

0, 300 

0, 350 

0, 400 

0, 450 

0, 500 

0, 550 

0, 600 

0, 650 

0, 700 

Measured solute Calculated value 
concentration, in of 0, in feet 

milligrams per liter (from eq. 71) 

2 70.9 

12 67.2 

65 64.2 

310 65.3 

725 62.3 

1,000 __ 

760 67.5 

290 63.6 

82 67.1 

9 65.2 

1 67.3 

problems 8a and 8b required 24 s of CPU time on a 
Prime model 9955 Mod II. 

Three-Dimensional Solute 
Transport 

Several analytical solutions are available for the 
three-dimensional form of the solute-transport equa- 
tion (eq. 9), including those presented in Cleary and 
Ungs (1978), Huyakorn and others (1987), Code11 and 
others (1982>, Sagar (1982), and Hunt (1978). These 
solutions are particularly useful, as they can simulate 
transport of contaminants from sources in relatively 
thick aquifers when both vertical and horizontal 
spread of the solute is of interest. In addition to a 
solution modified from Cleary and Ungs (1978, p. 
24-25), two solutions were derived by the author for 
this report. Detailed derivations of these solutions are 
presented in attachment 1. 

In the first solution presented, the aquifer is 
assumed to be of infinite extent along all three coor- 
dinate axes. Fluid is injected into the aquifer through 
a point source at a constant rate and solute concentra- 
tion (C,). It is further assumed that the rate of 
injection is low and does not disturb the predomi- 
nantly uniform flow field. In the remaining solutions 
presented in this section, the aquifer is assumed to be 
semi-infinite in length and to have a solute source 
located along the inflow boundary. The semi-infinite 
aquifer can be either finite in both width and height, 
extending from y=O to y=W and from z=O (the base 

of the aquifer) to z=H, or infinite in width and height. 
A diagram of an idealized three-dimensional aquifer of 
semi-infinite length and finite width and height is 
presented in figure 18. 

The solute source, referred to as a “patch” source 
(Cleary and Ungs, 1978), is of finite width and height 
and extends from y=Y, to y=Y, and from z=Z, to 
z=Z, at x=0 (fig. 18). The concentration within the 
patch is uniform and is equal to C,, except along the 
boundary of the patch source, where it is equal to 0.5 
C,. Elsewhere along the inflow boundary, the concen- 
tration is 0. Combinations of patch sources could be 
used to simulate odd-shaped concentration distribu- 
tions or multiple sources through the principle of 
superposition. First-order solute decay, adsorption, 
and ion exchange can also be simulated. A solution for 
a “gaussian source” of finite height along the boundary 
is given in Huyakorn and others (1987). 

Three computer programs, POINT3, PATCHF, 
and PATCHI, were developed to calculate concentra- 
tions in these systems as a function of distance and 
elapsed time. They are described in this section. 

Aquifer of infinite extent with 
continuous point source 

Governing equation 

The analytical solution for a continuous point source 
has been derived by first solving the solute-transport 
equation for an instantaneous point source and then 
integrating the solution over time. The three- 
dimensional solute-transport equation for an instan- 
taneous point source is given by 

.6(x-X,)6(y-Y,)6(z-Z,)6(t -tr>. (99) 

Boundary conditions: 

c aC,() 
‘ax ’ 

X”_foO 

c aC,() 
‘ay ’ y==- 

c CL, 
‘az ’ 

z= +m f 

where 
V =velocity in x-direction, 
Q =fluid injection rate, 
dt =infinitesimal time interval, 

S( > =dirac delta function, 

(101) 

(102) 
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