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10–3 §10.1 INTRODUCTION

§10.1. Introduction

In the Introduction to Finite Element Methods (IFEM) course two-dimensional problems were
emphasized. The axisymmetric problem considered in this and following two Chapters of this
course provides a “bridge” to the treatment of three-dimensional elasticity. Besides its instructional
value, the treatment of axisymmetric structures has considerable practical interest in aerospace,
civil, mechanical and nuclear engineering.

§10.1.1. The Axisymmetric Problem

The axisymmetric problem deals with the analysis of structures of revolution under axisymmetric
loading. A structure of revolution or SOR is generated by a generating cross section that rotates 360◦

about an axis of revolution, as illustrated in Figure 10.1. Such structures are said to be rotationally
symmetric.

Axis of revolution

Generating 
cross-section

Figure 10.1. A structure of revolution is generated by rotating a
generating cross section about an axis of revolution.

The technical importance of SOR’s is considerable because of the following practical considerations:

1. Fabrication: axisymmetric bodies are usually easier to manufacture than bodies with more
complex geometries. Think for example of pipes, piles, axles, wheels, bottles, cans, cups,
nails.

2. Strength: axisymmetric configurations are often optimal in terms of strength to weight ratio
because of the favorable distribution of the structural material. (Recall that the strongest
columns and shafts, if wall buckling is ignored, have annular cross sections.)
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F

Fr

Figure 10.2. Axisymmetric loading on a SOR: F = concentrated
load, Fr = radial component of “ring” line load.

3. Multipurpose: hollow axisymmetric bodies can assume a dual purpose as both structure and
shelter, as in containers, vessels, tanks, rockets, etc.

Perhaps the most important application of SORs is containment and transport of liquid and gasses.
Specific examples of such structures are pressure vessels, containment vessels, pipes, cooling
towers, and rotating machinery (turbines, generators, shafts, etc.).

But a SOR by itself does not necessarily define an axisymmetric problem. It is also necessary
that the loading, as well as the support boundary conditions, be rotationally symmetric. This is
illustrated in Figure 10.2 for loads.

If these two conditions are met:

axisymmetric geometry and axisymmetric loading

the response of the structure is axisymmetric (also called radially symmetric). By this is meant that
all quantities of interest in structural analysis: displacement, strains, and stresses, are independent
of the circumferential coordinate defined below.

Remark 10.1. A linear SOR under non-axisymmetric loading can be treated by a Fourier decomposition
method. This involves decomposing the load into a Fourier series in the circumferential direction, calculating
the response of the structure to each harmonic term retained in the series, and superposing the results. The
axisymmetric problem considered here may be viewed as computing the response to the zero-th harmonic.
This superposition technique, however, is limited to linear problems.
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(b)  Nozzle exit cone(a) Solid-fuel rocket schematics

Rotational axis

(c) Finite element idealization

21.37"

Figure 10.3. Axisymmetric FE analysis of a typical rocket nozzle (carried out by E. L.
Wilson at Aerojet Corporation, circa 1963). Figure from paper cited in footnote 1.

(a) (b)

Figure 10.4. Two quasi-axisymmetric marine structures. (a) The Draugen oil-drilling platform (artist’s sketch).
The first monotower concrete platform built by Norwegian Contractors. The concrete structure is 295 m high. First
deployed in 1993. The seven cells at the bottom of the sea form a reservoir system that can store up to 1.4 M barrels
of oil. (b) The Troll oil-drilling platform (artist sketch). The tallest concrete platform built to date. It is 386 m tall and
has 220,000 m3 of concrete. The foundation consists of 36 m tall concrete skirts that penetrate into the soft seabed.
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§10.1.2. Some SOR Examples

Rocket Analysis. The analysis of axisymmetric structures by the Finite Element Method (FEM)
has a long history that may be traced back to the early 1960s. Recall that the FEM originated in
the aircraft industry in the mid 1950s. Aircraft are not SORs, but several structures of interest in
aerospace are, notably rockets. As the FEM began to disseminate throughout the aerospace industry,
interest in application to rocket analysis prompted the development of the first axisymmetric finite
elements during the period 1960-1965. These elements were of shell and solid type. The first
archival-journal paper on axisymmetric solid elements, by E. L. Wilson, appeared in 1965.1 Figure
10.3 shows a realistic application to a rocket nozzle presented in that first paper.

SOR Members as Major Structural Components. Often important structural components are have
axisymmetric geometry such as pipes, but the entire structure is not SOR. Two examples taken
from the field of petroleum engineering are shown in Figure 10.4.2 These are two recent designs
of oil-drilling platforms intended for water depths of 300 to 400m. As can be observed the main
structural members are axisymmetric (reinforced concrete cylindrical shells). This kind of structure
is often analyzed by global-local techniques. In the global analysis such members are treated with
beam or simplified shell models. Forces computed from the global analysis are then applied to
individual members for a more detailed 3D analysis that may take advantage of axisymmetry.

Figure 10.5. Solid Rocket Booster (SRB) of Space Shuttle orbiter: a quasi-axisymmetric structure.

1 E. L. Wilson, Structural Analysis of Axisymmetric solids, AIAA Journal, Vol. 3, No. 12, 1965.

2 From the article by B. Jacobsen, ‘The evolution of the offshore concrete platform,’ in From Finite Elements to the Troll
Platform — a book in honor of Ivar Holand’s 70th Anniversary, ed. by K. Bell, Dept. of Structural Engineering, The
Norwegian Institute of Technology, Torndheim, Norway, 1994.
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Figure 10.6. (a) Global cylindrical coordinate system (r , z, θ ) for axisymmetric structural
analysis; (b) strains and stresses with respect to cylindrical coordinate system.

Quasi-axisymmetric structures. There is an important class of structures that may be termed “quasi-
axisymmetric,” in which the axisymmetric geometry is locally perturbed by non-axisymmetric fea-
tures such as access openings, foundations and nonstructural attachments. Important examples are
cooling towers, container vehicles, jet engines and rockets. See for example the SRB of Figure 10.5.
Such structures may benefit from a global-local analysis if the axisymmetric characteristics domi-
nate. In this case the global analysis is axisymmetric but the local analyses are not.

§10.2. The Governing Equations

§10.2.1. Global Coordinate System

To simplify the governing equations of the axisymmetric problem it is natural to use a global
cylindrical coordinate system (r, z, θ) where

r the radial coordinate: distance from the axis of revolution; always r ≥ 0.

z the axial coordinate: directed along the axis of revolution.

θ the circumferential coordinate, also called the longitude.

The global coordinate system is sketched in Figure 10.6(a).

Remark 10.2. Note that {r, z} form a right-handed Cartesian coordinate system on the θ = const planes,
whereas {r, θ} form a polar coordinate system on the z = const planes.

§10.2.2. Displacement, Strains, Stresses

The displacement field is a function of r and z only, defined by two components:

u(r, z) =
[

ur (r, z)
uz(r, z)

]
(10.1)

ur is called the radial displacement and uz is the axial displacement. The circumferential displace-
ment component, uθ , is zero on account of rotational symmetry.
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The infinitesimal strain tensor in cylindrical coordinates is represented by the symmetric matrix:

[ e ] =
[ err erz erθ

erz ezz ezθ

ezθ ezθ eθθ

]
(10.2)

Because of the assumed axisymmetric state, erθ and ezθ vanish, leaving only four distinct compo-
nents:

[ e ] =
[ err erz 0

erz ezz 0
0 0 eθθ

]
(10.3)

Each of these vanishing components is a function of r and z only. As usual in preparation for finite
element work, the nonvanishing components are arranged as a 4 × 1 strain vector:

e =




err

ezz

eθθ

γr z


 (10.4)

in which γr z = erz+ezr = 2erz . This differs from the plane stress case considered in the introductory
course in the appearance of eθθ , the “hoop” or circumferential strain.

The stress tensor in cylindrical coordinates is represented by the symmetric matrix

[σ] =
[

σrr σr z σrθ

σr z σzz σzθ

σrθ σzθ σθθ

]
(10.5)

Again because of axisymmetry the components σrθ and σzθ vanish, leaving four nontrivial compo-
nents:

[σ] =
[

σrr σr z 0
σr z σzz 0
0 0 σθθ

]
(10.6)

Each of the nonvanishing components is a function of r and z. Collecting these four components
into a stress vector:

σ =




σrr

σzz

σθθ

σr z


 (10.7)

where σr z ≡ σr z . The difference with respect to the plane stress problem is again the appearance
of the “hoop” or circumferential stress σθθ .

The stresses and strains over an infinitesimal volume are depicted in Figure 10.7.
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u

rz

r
r + ur

Figure 10.7. A uniform radial displacement ur induces a circumferential strain ur /r .

§10.3. Governing Equations

The elasticity equations for the axisymmetric problem are the field equations: strain-displacement,
stress-strain, and stress equilibrium equations, complemented by displacement and stress boundary
conditions.

§10.3.1. Kinematic Equations

The strain-displacement equations for the axisymmetric problem are:

err = ∂ur

∂r
, ezz = ∂uz

∂z
, eθθ = ur

r
, γr z = ∂ur

∂z
+ ∂uz

∂r
= erz + ezr = 2erz . (10.8)

In matrix form:

e =




err

ezz

eθθ

γr z


 =




err

ezz

eθθ

2erz


 =




∂
∂r 0

0 ∂
∂z

1
r 0
∂
∂z

∂
∂r




[
ur

uz

]
= D u. (10.9)

where D is the 4 × 2 strain-displacement (symmetric-gradient) operator. A noteworthy difference
with respect to the plane stress case is the appearance of the hoop strain eθθ = ur/r . Thus a uniform
radial displacement is no longer a rigid body motion, but produces a circumferential strain. The
physical reason behind this phenomenon is illustrated in Figure 10.7. The length of the original
circumference is 2πr , which grows to 2π(r + ur ), inducing a strain 2πur/2πr = ur/r .

§10.3.2. Constitutive Equations

For a linear hyperelastic material, and ignoring thermal and prestress effects, the most general
constitutive equation consistent with axisymmetry takes the form:

σ =




σrr

σzz

σθθ

σr z


 =




E11 E12 E13 E14

E12 E22 E23 E24

E13 E23 E33 0
E14 E24 0 E44







err

ezz

eθθ

γr z


 = E e (10.10)

To retain axisymmetry, the cross-coupling between the shear strain and hoop stress must vanish.
Consequently E34 = E43 = 0.
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For an isotropic material of elastic modulus E and Poisson’s ratio ν,

E = E

(1 + ν)(1 − 2ν)




1 − ν ν ν 0
ν 1 − ν ν 0
ν ν 1 − ν 0
0 0 0 1

2 (1 − 2ν)


 (10.11)

Remark 10.3. The coefficients of E go to infinity if ν → 1/2, which characterizes an incompressible material.
This behavior is a consequence of the “confinement” effect in solids and appears also in general 3D analysis.
On the other hand, the plane stress constitutive matrix remains finite for ν = 1

2 , a behavior that is characteristic
of thin bodies such as plates and shells. Physically, the small transverse dimension of bodies in plane stress
(plates) allows the material to freely expand or contract in the z direction.

§10.3.3. Equilibrium Equations

The general (three dimensional) differential equations of equilibrium in cylindrical coordinates are

1

r

∂

∂r
(rσrr ) + 1

r

∂

∂θ
(σrθ ) + ∂

∂z
σr z − σθθ

r
+ br = 0

1

r

∂

∂r
(rσzr ) + 1

r
σzθ + ∂

∂z
σzz + bz = 0

1

r2

∂

∂r
(r2σθr ) + 1

r

∂

∂θ
σθθ + ∂

∂z
σθ z + bθ = 0

(10.12)

where br , bz , bθ are the components of the body force field in the r , z and θ directions, respectively.
For the axisymmetric problem these equations reduce to

1

r

∂

∂r
(rσrr ) + ∂

∂z
σr z − σθθ

r
+ br = 0

1

r

∂

∂r
(rσzr ) + ∂

∂z
σzz + bz = 0

(10.13)

The third equation in (10.12) is identically satified if bθ = 0, because σθr = σθ z = 0 and σθθ is
independent of θ . If bθ �= 0 the problem cannot be treated as axisymmetric.

§10.3.4. Boundary Conditions

As usual boundary conditions can be of displacement (PBC) or of stress or traction (FBC) type.
They are specified on portions Su and St of the boundary, respectively. The reduction of the stress
BCs to two dimension is further discussed in §10.4.2 and §10.4.3.
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§10.4. Variational Formulation

The variational form of the axisymmetric problem is illustrated with the widely used Total Potential
Energy (TPE) form. The delicate part of the formulation is the dimensionality reduction step.

§10.4.1. The TPE Functional

The Total Potential Energy (TPE) functional contains only displacements as master field:


[u] = U [u] − W [u]. (10.14)

Here the strain energy functional is

U [u] = 1
2

∫
V

σT e dV = 1
2

∫
V

eT E e dV = 1
2

∫
V




err

ezz

eθθ

2erz




T 


E11 E12 E13 E14

E12 E22 E23 E24

E13 E23 E33 0
E14 E24 0 E44







err

ezz

eθθ

2erz


 dV .

(10.15)

In (10.15) the strains are a slave field are derived from displacements. Superscript u used in Chapter
3–8 to identify the master filed is omitted to reduce clutter.

The external work potential is the sum of contributions due to body force and prescribed surface
tractions:

W [u] = Wb[u] + Wt [u]

Wb[u] =
∫

V
bT u dV =

∫
V

[ br bz ]

[
ur

uz

]
dV

Wt [u] =
∫

St

t̂
T

u d S =
∫

St

[ t̂r t̂z ]

[
ur

uz

]
d S

(10.16)

Here b is the body force vector and t̂ the vector of surface tractions.

§10.4.2. Dimensionality Reduction

The element of volume dV that appears in U and Wb can be expressed as the “ring element”

dV = 2πr d A (10.17)

where d A is the element of area in the generating cross section. Insertion in (10.15) and the second
of (10.16) reduces U and Wb to area integrals:

U = 1
2 2π

∫
A

r eT E e d A (10.18)

Wb = 2π

∫
A

r bT u d A (10.19)

Notice the appearance of r in the integrand.

Similarly, the element of surface d S in Wt can be expressed as

d S = 2πr ds (10.20)
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where ds is an arclength element. Inserting in the last of (10.16) reduces Wt to a one-dimensional
(line) integral

Wt = 2π

∫
st

r tT u ds (10.21)

The common factor 2π in these integrals is (usually) suppressed in the finite element implementation.
This should not cause difficulties except for the case of a concentrated load, as discussed in the
following subsection.

We summarize the outcome of this dimensionality reduction by saying that the original three-
dimensional problem has been reduced to a two-dimensional one.

§10.4.3. Line and Point Forces

Body forces (e.g. gravity or centrifugal forces) and distributed surface forces (e.g. pressure) are
handled like in plane elasticity case explained in LFEM, but concentrated loads require more careful
treatment. There are two possibilities: a line load and an actual concentrated load.

A line load is actually a “ring” load (see Figure 10.2) acting on a circle described by a point of
the generating cross section. If the global components of this load are Fr and Fz , the appropriate
energy contribution to the loads potential W is

WF = 2πr(Fr ur + Fzuz) (10.22)

where (ur , uz) are the displacements of the “ring” point. Thus the ubiquitous 2π term can be
suppressed

A concentrated or point load F , however, can only act along the z direction at points on the axis of
revolution as illustrated in Figure 10.2. The corresponding work term is

WF = Fuz (10.23)

so the factor 2π is missing. To render this compatible with the other energy terms the load is divided
by 2π , so the contribution to the external loads potential is

WF = 2π

(
F

2π

)
uz (10.24)

This device can be visualized by regarding F as the limit of a z-directed ring load Fz as r → 0.

Remark 10.4. What the last equation means in practice is that if a concentrated force of, say, 1000 lb acts on
the z axis, it has to be divided by 2π (that is, 1000/2π ) before giving it to a SOR finite element program if the
factor of 2π has been suppressed. (It is important to read the users manual to see if that is the case.)

§10.4.4. Other Variational Forms

The Hellinger-Reissner (HR) functional and the equilibrium-stress hybrid functionals are derived
in the Exercises.

§10.5. Treating Plane Strain as a Limit Case

The problem of plane strain may be viewed as the limit of the axisymmetric case in which the axis
of revolution is moved to infinity so that r → ∞, and a “slice” of unit thickness is taken.

Thus a finite element program that handles the axisymmetric problem may be used to solve problems
of plane strain with acceptable approximation.
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10–13 Exercises

Homework Exercises for Chapter 10

Axisymmetric Solids (Structures of Revolution)

EXERCISE 10.1 [A:20] Derive the HR functional for the axisymmetric solid problem. Use compact matrix
notation, as done in §10.4.1 for the TPE form, because indicial notation does not fit this particular problem
well. In matrix notation, the complementary energy density is U∗ = 1

2 σT C σ, in which σ is the stress vector
(10.7) and C = E−1 the 4 × 4 elastic compliance matrix, with E given by (10.10).

Is there any difference in the treatment of body forces and surface tractions with respect to the TPE form?

EXERCISE 10.2 [A:20] Derive the equilibrium-stress hybrid functional for the axisymmetric solid problem.
Use compact matrix notation, as done in §10.4.1 for the TPE form, because indicial notation does not fit this
particular problem well. In matrix notation, the complementary energy density is U∗ = 1

2 σT C σ, in which σ

is the stress vector (10.7) and C = E−1 the 4 × 4 elastic compliance matrix, with E given by (10.10).

Is there any difference in the treatment of body forces and surface tractions with respect to the TPE form?

10–13


