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10-3 810.1 INTRODUCTION

§10.1. Introduction

In the Introduction to Finite Element Methods (IFEM) course two-dimensional problems were
emphasized. The axisymmetric problem considered in this and following two Chapters of this
course providesa“bridge” to the treatment of three-dimensional elasticity. Besidesitsinstructional
value, the treatment of axisymmetric structures has considerable practical interest in aerospace,
civil, mechanical and nuclear engineering.

810.1.1. The Axisymmetric Problem

The axisymmetric problem deals with the analysis of structures of revolution under axisymmetric
loading. A structure of revolution or SOR isgenerated by agenerating cross section that rotates 360°
about an axis of revolution, asillustrated in Figure 10.1. Such structures are said to be rotationally
Symmetric.

[~

AXxis of revolution

Generating
¢ cross-section

FiGure 10.1. A structure of revolution is generated by rotating a
generating cross section about an axis of revolution.

Thetechnical importance of SOR’sisconsiderabl e because of thefollowing practical considerations:

1. Fabrication: axisymmetric bodies are usualy easier to manufacture than bodies with more
complex geometries. Think for example of pipes, piles, axles, wheels, bottles, cans, cups,
nails.

2. Strength: axisymmetric configurations are often optimal in terms of strength to weight ratio
because of the favorable distribution of the structural material. (Recall that the strongest
columns and shafts, if wall buckling isignored, have annular cross sections.)
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|
FiGure 10.2. Axisymmetric loading on a SOR: F = concentrated
load, F, = radial component of “ring” line load.

3.  Multipurpose: hollow axisymmetric bodies can assume a dual purpose as both structure and
shelter, asin containers, vesseals, tanks, rockets, etc.

Perhaps the most important application of SORs is containment and transport of liquid and gasses.
Specific examples of such structures are pressure vessels, containment vessels, pipes, cooling
towers, and rotating machinery (turbines, generators, shafts, etc.).

But a SOR by itself does not necessarily define an axisymmetric problem. It is also necessary
that the loading, as well as the support boundary conditions, be rotationaly symmetric. Thisis
illustrated in Figure 10.2 for loads.

If these two conditions are met:

axisymmetric geometry and axisymmetric loading

the response of the structure is axisymmetric (also called radially symmetric). By thisis meant that
al quantities of interest in structural analysis: displacement, strains, and stresses, are independent
of the circumferential coordinate defined below.

Remark 10.1. A linear SOR under non-axisymmetric loading can be treated by a Fourier decomposition
method. Thisinvolves decomposing the load into a Fourier seriesin the circumferential direction, calculating
the response of the structure to each harmonic term retained in the series, and superposing the results. The
axisymmetric problem considered here may be viewed as computing the response to the zero-th harmonic.
This superposition technique, however, islimited to linear problems.
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(c) Finite element idealization

(a) Solid-fuel rocket schematics (b) Nozzleexit cone

FIGURE 10.3. Axisymmetric FE analysis of atypical rocket nozzle (carried out by E. L.
Wilson at Aerojet Corporation, circa 1963). Figure from paper cited in footnote 1.

TR e T

FIGURE 10.4. Two quasi-axisymmetric marine structures. (a) The Draugen oil-drilling platform (artist’s sketch).
The first monotower concrete platform built by Norwegian Contractors. The concrete structure is 295 m high. First
deployed in 1993. The seven cells at the bottom of the seaform areservoir system that can store up to 1.4 M barrels
of ail. (b) TheTroll oil-drilling platform (artist sketch). Thetallest concrete platform built to date. 1tis386 mtall and
has 220,000 m® of concrete. The foundation consists of 36 m tall concrete skirts that penetrate into the soft seabed.
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810.1.2. Some SOR Examples

Rocket Analysis. The analysis of axisymmetric structures by the Finite Element Method (FEM)
has a long history that may be traced back to the early 1960s. Recall that the FEM originated in
the aircraft industry in the mid 1950s. Aircraft are not SORS, but several structures of interest in
aerospaceare, notably rockets. Asthe FEM began to disseminate throughout the aerospaceindustry,
interest in application to rocket analysis prompted the development of the first axisymmetric finite
elements during the period 1960-1965. These elements were of shell and solid type. The first
archival-journal paper on axisymmetric solid elements, by E. L. Wilson, appeared in 1965.% Figure
10.3 shows aredlistic application to arocket nozzle presented in that first paper.

SOR Members as Major Structural Components. Often important structural components are have
axisymmetric geometry such as pipes, but the entire structure is not SOR. Two examples taken
from the field of petroleum engineering are shown in Figure 10.4.> These are two recent designs
of oil-drilling platforms intended for water depths of 300 to 400m. As can be observed the main
structural members are axisymmetric (reinforced concrete cylindrical shells). Thiskind of structure
is often analyzed by global-local techniques. In the global anaysis such members are treated with
beam or simplified shell models. Forces computed from the global analysis are then applied to
individual members for amore detailed 3D analysis that may take advantage of axisymmetry.
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Ficure 10.5. Solid Rocket Booster (SRB) of Space Shuttle orbiter: a quasi-axisymmetric structure.

L E. L. Wilson, Structural Analysis of Axisymmetric solids, AIAA Journal, Vol. 3, No. 12, 1965.

2 From the article by B. Jacobsen, ‘ The evolution of the offshore concrete platform,” in From Finite Elements to the Troll
Platform — a book in honor of Ivar Holand's 70th Anniversary, ed. by K. Bell, Dept. of Structural Engineering, The
Norwegian Institute of Technology, Torndheim, Norway, 1994.
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Fi1GuRE 10.6. (@) Global cylindrical coordinate system (r, z, 0) for axisymmetric structural
analysis; (b) strains and stresses with respect to cylindrical coordinate system.

Quasi-axisymmetric structures. Thereisanimportant classof structuresthat may betermed “quasi-
axisymmetric,” in which the axisymmetric geometry islocally perturbed by non-axisymmetric fea-
tures such as access openings, foundations and nonstructural attachments. Important examples are
cooling towers, container vehicles, jet enginesand rockets. Seefor examplethe SRB of Figure 10.5.
Such structures may benefit from a global-local analysisif the axisymmetric characteristics domi-
nate. In this case the global analysisis axisymmetric but the local analyses are not.

810.2. The Governing Equations

§10.2.1. Global Coordinate System

To simplify the governing equations of the axisymmetric problem it is natura to use a global
cylindrical coordinate system (r, z, 9) where

r  theradial coordinate: distance from the axis of revolution; alwaysr > 0.
z theaxial coordinate: directed along the axis of revolution.
6  thecircumferential coordinate, also called the longitude.

The global coordinate system is sketched in Figure 10.6(a).

Remark 10.2. Note that {r, z} form a right-handed Cartesian coordinate system on the 6 = const planes,
whereas {r, 8} form a polar coordinate system on the z = const planes.

§10.2.2. Displacement, Strains, Stresses

The displacement field isafunction of r and z only, defined by two components:

u(r, z) = [ig 2] (10.1)

ur iscaled theradial displacement and u; isthe axial displacement. The circumferential displace-
ment component, Uy, is zero on account of rotational symmetry.
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The infinitessmal strain tensor in cylindrical coordinates is represented by the symmetric matrix:

€ €&z 6o
(10.2)

[e]:|:erz €7 €y
€0 €xn G

Because of the assumed axisymmetric state, €4 and e, vanish, leaving only four distinct compo-
nents:

er &; O
[el=|&; e O (10.3)
0 0 ey

Each of these vanishing componentsisafunction of r and z only. Asusual in preparation for finite
element work, the nonvanishing components are arranged asa 4 x 1 strain vector:

Er

eZZ
e= 10.4
6 (10.4)

YVrz

inwhichy,, = &,+e, = 2¢,. Thisdiffersfromtheplanestresscase consideredintheintroductory
course in the appearance of ey4, the “hoop” or circumferential strain.

The stress tensor in cylindrical coordinatesis represented by the symmetric matrix

Orr Orz  Org
[ol=| 0z 0z o0n (10.5)

Oro Oz Ogg

Again because of axisymmetry the components o;4 and o,y vanish, leaving four nontrivial compo-

nents:
Orr  Orz 0
[o]=|0rz 02z O (10.6)

0 0 (of17]

Each of the nonvanishing componentsis a function of r and z. Collecting these four components
into a stress vector:

o= (10.7)

where o, , = oy,. The difference with respect to the plane stress problem is again the appearance
of the “hoop” or circumferential stress oyg.

The stresses and strains over an infinitessmal volume are depicted in Figure 10.7.
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10-9 8§10.3 GOVERNING EQUATIONS

Ficure 10.7. A uniform radial displacement u; induces a circumferential strain u, /r.

§10.3. Governing Equations

The elasticity equations for the axisymmetric problem are the field equations: strain-displacement,
stress-strain, and stress equilibrium equations, complemented by displacement and stress boundary
conditions.

810.3.1. Kinematic Equations

The strain-displacement equations for the axisymmetric problem are:

aur auz ur 8Ur auZ
&y, = = e AW ey =26, (108
€ ar 77 97 €0 ; Vrz 97 + ar €z+ €y €z ( )
In matrix form:
9 0
Er Er or ;
e e 0 =
e—= 2 = 2 = 0z |:ur ] =Du. (109)
€0 €0 rl 0 Uz
YVrz 2e, 0 0
0z or

where D isthe 4 x 2 strain-displacement (symmetric-gradient) operator. A noteworthy difference
with respect to the plane stress case i sthe appearance of thehoop straineyy = u; /r. Thusauniform
radial displacement is no longer a rigid body motion, but produces a circumferential strain. The
physical reason behind this phenomenon is illustrated in Figure 10.7. The length of the original
circumferenceis 2xr, which growsto 2 (r 4 u;), inducing astrain 2 u, /271 = U /r.

§10.3.2. Congtitutive Equations

For a linear hyperelastic material, and ignoring thermal and prestress effects, the most general
constitutive equation consistent with axisymmetry takes the form:

Orr Ein Epn Eiz Eu Er
0z Er Ex Ex Ex €

7 lof) Eiz Ex Ezxz O €90 ( )
Otz Eiu Ex O Eu Yiz

To retain axisymmetry, the cross-coupling between the shear strain and hoop stress must vanish.
Consequently Ez; = E43 = 0.
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For an isotropic material of elastic modulus E and Poisson’sratio v,

1—v v Y 0
E v 1—v v 0
E— 10.11
A+nd—20 | v voo1—v 0 (10.15)
0 0 0 Z(1-—2v)

Remark 10.3. Thecoefficientsof E gotoinfinity if v — 1/2, which characterizes anincompressible material.
This behavior is a consequence of the “confinement” effect in solids and appears aso in general 3D analysis.
On the other hand, the plane stress constitutive matrix remainsfinitefor v = % , abehavior that is characteristic
of thin bodies such as plates and shells. Physically, the small transverse dimension of bodies in plane stress
(plates) allows the materia to freely expand or contract in the z direction.

810.3.3. Equilibrium Equations

The general (three dimensional) differential equations of equilibrium in cylindrical coordinates are

10 10 a o

Fa(rarr) + F%(Ure) + a—ZO'rz - % +b =0

10 1 )

r_a_r(razr) + FOZQ + 8_2022 +b,=0 (10.12)
190 10 a

r_28_r(r200r)+r_£ 99+8—2092+b9 =0

where by, b,, by arethe components of the body forcefield inther, zand 6 directions, respectively.
For the axisymmetric problem these equations reduce to

190 0
_a_(rUrr) + a_arz -~ 20 +b =0
ror z r (10.13)

190 d
r_a_r(rgzr) + a_ZUzz+ b,=0

The third equation in (10.12) isidentically satified if by = 0, because oyy = 0y, = 0 and oyy is
independent of 6. If by # 0 the problem cannot be treated as axisymmetric.

810.3.4. Boundary Conditions

As usual boundary conditions can be of displacement (PBC) or of stress or traction (FBC) type.
They are specified on portions §, and S of the boundary, respectively. The reduction of the stress
BCsto two dimension is further discussed in §10.4.2 and §10.4.3.
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810.4. Variational Formulation

Thevariational form of the axisymmetric problem isillustrated with the widely used Total Potential
Energy (TPE) form. The delicate part of the formulation is the dimensionality reduction step.

810.4.1. The TPE Functional
The Total Potential Energy (TPE) functional contains only displacements as master field:

[M[u] = U[u] — W[u]. (10.14)
Here the strain energy functional is

&r ]'[Eu Ep Eizs Eu &t

_1 T 1 [ T 1 €z Eio Exn Ex Ex €z
Ulu] = 2/Vcr edV = 2/Ve EedV = va o E Ex Es O o dv.
26, Eu Ex 0 Eu Ze(r 75 15

In (10.15) the strainsare aslavefield are derived from displacements. Superscript u used in Chapter
3-8 to identify the master filed is omitted to reduce clutter.

The external work potential is the sum of contributions due to body force and prescribed surface

tractions:
WI[u] = Wh[u] + Wi[u]

Uy
Wo[u] :/VbTudV:/V[br b, ] |:Uz:| dv (10.16)

V\/t[u]:/SfTudS=/S[fr fz][ﬂfz] ds

Here b isthe body force vector and t the vector of surface tractions.

§10.4.2. Dimensionality Reduction
The element of volume dV that appearsin U and W, can be expressed as the “ring element”

dV = 2zr dA (10.17)

where d A isthe element of areain the generating cross section. Insertionin (10.15) and the second
of (10.16) reduces U and W, to areaintegrals:

U= %Zn/reTEedA (10.18)
A

W, = Zn/ rbTudA (10.19)
A

Notice the appearance of r in the integrand.
Similarly, the element of surfacedSin W; can be expressed as

dS=2nrds (10.20)
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where ds is an arclength element. Inserting in the last of (10.16) reduces W; to a one-dimensional
(line) integral

W, = 27 / rtTuds (10.21)
&
Thecommonfactor 27 intheseintegralsis(usually) suppressedinthefiniteelement implementation.

This should not cause difficulties except for the case of a concentrated load, as discussed in the
following subsection.

We summarize the outcome of this dimensionality reduction by saying that the original three-
dimensional problem has been reduced to a two-dimensional one.

810.4.3. Lineand Point Forces

Body forces (e.g. gravity or centrifugal forces) and distributed surface forces (e.g. pressure) are
handled likein plane elasticity case explained in LFEM, but concentrated |oads require more careful
treatment. There are two possibilities. alineload and an actual concentrated load.

A line load is actually a “ring” load (see Figure 10.2) acting on a circle described by a point of
the generating cross section. If the global components of thisload are F, and F,, the appropriate
energy contribution to the loads potential W is

Wg = 2nr (Fruy + Fouy) (10.22)

where (ur, u,) are the displacements of the “ring” point. Thus the ubiquitous 2z term can be
suppressed

A concentrated or point load F, however, can only act aong the z direction at points on the axis of
revolution asillustrated in Figure 10.2. The corresponding work termis

Wr = Fu, (10.23)

so thefactor 27t ismissing. To render thiscompatible with the other energy termstheload isdivided
by 27, so the contribution to the external loads potential is

21
This device can be visualized by regarding F asthe limit of a z-directed ring load F, asr — O.

Wg =2r <£> U (10.24)

Remark 10.4. What the last equation meansin practice is that if a concentrated force of, say, 1000 Ib actson
the z axis, it hasto be divided by 27 (that is, 1000/27) before giving it to a SOR finite element program if the
factor of 27 has been suppressed. (It isimportant to read the users manual to seeif that is the case.)

810.4.4. Other Variational Forms

The Hellinger-Reissner (HR) functional and the equilibrium-stress hybrid functionals are derived
in the Exercises.

810.5. Treating Plane Strain asa Limit Case

The problem of plane strain may be viewed as the limit of the axisymmetric case in which the axis
of revolution is moved to infinity sothat r — oo, and a“dice” of unit thicknessis taken.

Thusafinite element program that handl esthe axisymmetric problem may be used to solve problems
of plane strain with acceptable approximation.
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10-13 Exercises

Homework Exercisesfor Chapter 10

Axisymmetric Solids (Structuresof Revolution)

EXERCISE 10.1 [A:20] Derivethe HR functiona for the axisymmetric solid problem. Use compact matrix
notation, as done in 8§10.4.1 for the TPE form, because indicial notation does not fit this particular problem
well. In matrix notation, the complementary energy density isi/* = %UT C o, inwhich o isthe stress vector
(10.7) and C = E~* the 4 x 4 elastic compliance matrix, with E given by (10.10).

Isthere any difference in the treatment of body forces and surface tractions with respect to the TPE form?
EXERCISE 10.2 [A:20] Derive the equilibrium-stress hybrid functional for the axisymmetric solid problem.
Use compact matrix notation, as donein 810.4.1 for the TPE form, because indicial notation does not fit this

particular problem well. In matrix notation, the complementary energy density isi/* = %O'T Co,inwhicho
is the stress vector (10.7) and C = E~* the 4 x 4 elastic compliance matrix, with E given by (10.10).

Isthere any difference in the treatment of body forces and surface tractions with respect to the TPE form?

10-13



