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Abstract

The main aim of this thesis is to advance our understanding of the process of

flood-wave propagation through storm-sewer systems by improving the meth-

ods available for simulating unsteady flows in closed conduits ranging from

free surface flows, to partly free surface-partly pressurized flows (mixed flows),

to fully pressurized flows. Two fully-conservative, computationally efficient

and robust models are formulated in this thesis. In the first model, pres-

surized flows are simulated as free surface flows using a hypothetical narrow

open-top slot (“Preissmann slot”). In the second model, free surface and pres-

surized flows are treated independently while interacting through a moving

interface. In the first model, a gradual transition between the pipe and the

slot is introduced and an explicit Finite Volume (FV) Godunov-type Scheme

(GTS) is used to solve the free surface flow governing equations. This model is

called the modified Preissmann model. In the second model, both free surface

and pressurized flows are handled using shock-capturing methods –specifically

GTS schemes. Open channel-pressurized flow interfaces are treated using a

shock-tracking-capturing approach. In this case, cell boundaries are intro-

duced at the location of open channel-pressurized flow interfaces, subdividing

some regular cells into two subcells, resulting in a variable mesh arrange-

ment that varies from one time step to the next. For boundary conditions,

an intrinsically conservative second-order accurate formulation is developed.
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The proposed formulation for boundary conditions maintains the conserva-

tion property of FV schemes and does not require any special treatment to

handle shocks at boundaries. Comparisons between simulated results and

experiments reported in the literature show that the two formulated models

can accurately describe complex flow features –such as negative open channel-

pressurized flow interfaces, interface reversals, and open-channel surges– that

have not been addressed well, or not considered at all, by previous models. Nu-

merical simulations also show that the formulated models are able to produce

stable results for strong (rapid) transients at field scale. The capability of the

modified Preissmann model to simulate transient flows in complex hydraulic

systems is demonstrated by its application to the Tunnel and Reservoir Plan

(TARP) Calumet system in Chicago. In general, the scope of this work is lim-

ited to single-phase flows (liquids). However, a simplified model for air-water

mixture flows, valid only when the amount of gas in the conduit is small, has

been implemented in the pressurized flow regime. This work does not include

the prediction of any type of air entrainment or air release.
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The main aim of this thesis is to advance our understanding of the pro-

cess of flood-wave propagation through storm-sewer systems by improving the

methods available for simulating unsteady flows in closed conduits ranging

from free surface flows, to partly free surface-partly pressurized flows (mixed

flows), to fully pressurized flows. Two fully-conservative, computationally ef-

ficient and robust models are formulated in this thesis. In the first model,

pressurized flows are simulated as free surface flows using a hypothetical nar-

row open-top slot (“Preissmann slot”). In the second model, free surface

and pressurized flows are treated independently while interacting through a

moving interface. In the first model, a gradual transition between the pipe

and the slot is introduced and an explicit Finite Volume (FV) Godunov-type

Scheme (GTS) is used to solve the free surface flow governing equations. This

model is called the modified Preissmann model. In the second model, both

free surface and pressurized flows are handled using shock-capturing meth-

ods –specifically GTS schemes. Open channel-pressurized flow interfaces are

treated using a shock-tracking-capturing approach. For boundary conditions,

an intrinsically conservative second-order accurate formulation is developed.

The proposed formulation for boundary conditions maintains the conserva-

tion property of FV schemes and does not require any special treatment to

handle shocks at boundaries. Comparisons between simulated results and

experiments reported in the literature show that the two formulated models

can accurately describe complex flow features –such as negative open channel-



pressurized flow interfaces, interface reversals, and open-channel surges– that

have not been addressed well, or not considered at all, by previous models.

Numerical simulations also show that the formulated models are able to pro-

duce stable results for strong (rapid) transients at field scale. In general, the

scope of this work is limited to single-phase flows (liquids). However, a sim-

plified model for air-water mixture flows, valid only when the amount of gas

in the conduit is small, has been implemented in the pressurized flow regime.

This work does not include the prediction of any type of air entrainment or

air release.



Chapter 1

Introduction

In closed conduit hydraulic systems, free surface and pressurized flows may co-

exist simultaneously. For instance, Combined Sewer Overflow (CSO) systems

are generally designed to operate in free surface flow regime. However, the

large variations in the inflows together with the complex operation of these

systems may result in flow conditions that vary from dry to free surface flow

to partly free surface-partly pressurized flow (mixed flow), to fully pressur-

ized flow. Transitions from one flow regime to another are governed by flow

instabilities. The seminal articles by Yen (1986, 2001) classified the flow in-

stabilities in a sewer pipe into the following five types: (1) Dry bed instability;

(2) Supercritical-subcritical instability; (3) Roll wave instability; (4) Open

channel-pressurized flow instability; and (5) Fully pressurized flow instability.

Yen (1986, pg. 283) wrote “None of these instabilities has been investigated

in detail for unsteady flows, and perhaps except the second type instability

they are not very well understood by most engineers.” Unfortunately, and

by and large, this remark is as valid today as it was then. While a few re-

search attempts illuminated some of the features of these instabilities, this

has not yet provided sufficient understanding to guide the development of new

1



mathematical models.

The following discussion of the five types of instabilities summarizes the

reviews of these instabilities by Yen (1986, 2001), highlights the main forces

that are responsible for each instability and points out the features that a

model needs to have to describe each instability.

Dry bed instability

This instability occurs when the bed is nearly dry, making it largely irrelevant

to the study of sewer surcharging. This instability is governed by the gravity

and surface tension forces in such a way that the fluid tends to collect in

small isolated stagnant pools near the invert of the sewer when surface tension

dominates, while a thin film (sheet) flow commences when gravity dominates.

It must be noted, however, that flow routing through an originally dry sewer

poses a major numerical difficulty at the wet-dry interface. The usual practice

is to assume that the sewer is not completely dry, but has an initial thin film

of water the depth of which depends on the capability of the numerical model.

The same problem arises when the water level in the sewer becomes very small

and most codes become unstable and produce negative water levels.

Supercritical-subcritical instability

The main forces that define the transition between supercritical and subcritical

flow in a channel are the gravitational and inertial forces. The flow is super-

critical when the Froude number is larger than unity and subcritical when the

Froude number is smaller than unity. The fundamental difference between

supercritical and subcritical regimes is related to whether flow disturbances

can propagate in the direction opposite to the flow or not. In particular, while
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disturbances in a subcritical flow travel in both upstream and downstream

directions, disturbances in a supercritical flow travel in the downstream di-

rection only. The direction along which a disturbance can propagate has a

profound implication in modeling open channel flows in sewers. For exam-

ple, it is unphysical to impose external conditions at the downstream end of

a sewer when the flow at this location is supercritical. Indeed, the solution

of the open channel flow equations at a sewer boundary need to incorporate

some conditions to check whether the flow is subcritical or supercritical so as

to select the appropriate boundary conditions that need to be solved at the

boundaries. The selection of appropriate boundary conditions can be very

challenging when the flow at a particular boundary cycles rapidly between the

subcritical and the supercritical regimes and often involves trial and error.

A number of processes and secondary instabilities lead to the formation of

bores and jumps, also called shocks. Shocks are the final product of a complex

chain of flow bifurcations initiated by the primary instability, namely, the

supercritical-subcritical instability. For example, nonlinear and gravitational

effects cause the flow at a shock to plunge into a roller. The flow in the roller is

highly complex, involving air entrainment, strong turbulent actions and non-

hydrostatic effects. Any model based on the shallow water equations has no

hope of resolving the details of the flow inside the roller.

Fortunately, it turns out that flow details in a roller are not important for

the computations of water level and flow rate in sewers and channels. The

reasons for this are as follows. First, consider a control volume that extends

from the front of the roller to its end. The complex mixing inside this control

volume does not destroy mass. Also, the turbulent stresses inside this volume

dissipate energy, but, being internal forces, do not destroy momentum. There-
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fore, it is sufficient to choose a model that can conserve mass and momentum,

but not energy, across bores and jumps. The shallow water theory is well

suited for this purpose. Second, the time and length scale of the roller are

generally very small compared to the length and time scale that are of interest

in sewer flows. This allows the modeler to treat the roller simply as a point of

jump (discontinuity).

It is important to point out that the conceptualization of the roller by a

discontinuity poses theoretical and numerical problems. Indeed, the differen-

tial form of the shallow water equations is invalid at the discontinuity, as the

concept of derivatives simply fails at a jump. On the other hand, the integral

form of the open channel flow equations across the discontinuity is valid since

one can integrate a discontinuous function. Indeed, the integral form (also

called the weak solution) gives the so-called shock conditions, which simply

represent mass and momentum conservation across a jump. The validity of

the integral form of the solution at a jump favors the use of Finite Volume

schemes. Non-finite volume schemes often lead to non-physical oscillations

near shock fronts.

The supercritical-subcritical instability is highly relevant to sewer surcharg-

ing. It is possible that this instability can induce water depths higher than the

crown of the sewer, causing the transition to closed conduit flow. In addition, it

is also possible that this instability triggers the open channel-pressurized flow

instability even when the jump height is lower the sewer crown (see discussion

below).
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Roll wave instability

Roll waves can develop in perturbed steady supercritical flow when flow near

the wave crests experience less resistance than the flow near the troughs. When

this condition prevails, the wave front steepens since the flow near the crest

catches up with the flow near the trough in front of it. The back of the wave,

on the other hand, flattens out as the flow near the trough falls behind the

flow near the wave crest. If the channel is long enough, the steepening of the

wave fronts leads to the formation of hydraulic jumps (bores) and roll waves

develop, where the flow surface becomes a series of quasi-periodic structures

in the form of hydraulic jumps (bores) linked together by smooth gradually

varying surface.

Most of the work on stability analysis (e.g., Dressler 1949, Kranenburg

1992, Brook et al. 1999) has been done for the case of steady uniform base

flows and have shown that the critical Froude (F ) number for the transition to

roll waves is on the order of F = 2.0. When F > 2.0, the amplitude of small

waves experiences an exponential growth at the initial stage. As the amplitude

becomes large, nonlinear effects limit the growth of the instability, resulting

in bores of constant amplitude. These estimates are based on depth-averaged

shallow water equations when the momentum correction coefficient is equal

to 1.0. However, Chen (1995) showed that the transitional Froude number is

sensitive to the momentum correction factor.

The stability of a gradually varying flow in an open channel is studied in

(Kranenburg 1990, Ghidaoui and Kolyshkin 2002). It is shown that the non-

uniformity of the flow in the longitudinal direction has a significant impact on

the flow stability. The spatial variability of the friction force in a non-uniform

flow can induce conditions such that roll waves can develop in parameter re-
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gions that are deemed to be stable by the stability results of uniform flows.

Roll waves can be large enough to cause surcharging in sewers. Even when

the jumps are not high enough to cause surcharging, roll waves can interact

with the air in the gap between the water surface and crown, leading to open

channel-pressurized flow instability, which causes surcharging. Therefore, the

accuracy by which a model can predict the formation and amplitude of roll

waves is important. Recall that the shallow water equations assume that the

pressure is hydrostatic, and the wall shear during unsteady flow conditions is

given by relations that are derived for steady flow conditions. These assump-

tions are questionable in roll wave flows. As a result, models that use the

shallow water equations may not accurately predict the amplitude and speed

of roll waves and may even predict that there are no roll waves when in fact

these waves exist.

The comments on numerical modeling stated earlier in relation to the

supercritical-subcritical instability remain valid for the case of roll waves since

these waves contain jumps. In addition, the numerical scheme needs to have

little numerical dissipation in order to allow for small waves to develop into

roll waves when flow conditions are favorable. Large numerical dissipation can

artificially suppress the growth of instabilities. It is also important to note that

modelers may need to impose perturbations on their steady state solutions in

order to investigate whether the steady state solutions are stable or whether

roll waves will develop. Such perturbations are always present in real sewer

flows, but not necessarily in mathematical models; thus, resulting in the need

for introducing them by the modeler.
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Open channel-pressurized flow instability

There are a number of mechanisms that lead to the transition from open

channel to pressurized flow in a sewer. One of these mechanisms is the rapid

increase of water depth following a sudden change at the boundaries of the

sewer lines. Examples include a sudden rise of water level in a manhole or

dropshaft, a sudden closure of a gate or stoppage of a pump at downstream

end of a sewer, or a sudden opening of a gate at the upstream end of a sewer.

Accurate modeling of the inception of surcharging by flow changes at boundary

elements requires in-depth understanding of the flow’s physics, not only inside

the sewer, but also at its boundaries.

Another important surcharging mechanism is due to the Helmholtz in-

stability that develops at the air-water interface inside a sewer line, causing

entrapment of air cavities and large pressure oscillations. The Helmholtz insta-

bility occurs in regions inside the sewer where there is large difference between

the speed of the air layer and the speed of the water layer. Differences in veloc-

ity between the air layer and the water layer underneath it can, for example,

occur when there is a hydraulic jump or a shock front, which pushes the air in

front in the direction opposite to the water layer. A counter current can also

be set up when the water level at the downstream boundary drops suddenly

below the sewer crown, causing the water to move out of the sewer while air

rushes into the sewer to fill the void left by the water. The velocity differential

at the air-water interface, along with the inevitable presence of surface water

waves, causes the air pressure to be lowest near the crests of the perturbed

interface and highest near its troughs. This pressure difference pushes the

crest of the wave upward while the gravity force pulls the crest downward.

The instability sets in when the pressure difference is larger than gravitational
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force (e.g., Kordyban 1977, Hamam and McCorquodale 1982). The amplitude

of the water waves can become sufficiently large to reach the crown of the

pipe (i.e., causing the air column to be bridged by water). As a result, air

becomes trapped between successive water columns. The Helmholtz instabil-

ity at the interface of two fluids with different speeds is a classical problem in

fluid mechanics and its treatment can be found in numerous books, papers and

monographs. However, these studies are often performed under geometrical

and dynamic conditions that are very different from those in sewer flows.

A third surcharging mechanism, which is hereafter referred to as the geo-

metrical instability, is due to the fact that the maximum steady surface flow

in a converging sewer occurs at a water depth below the crown. The geometri-

cal instability occurs when the wetted perimeter and thus the resistance force

increase much faster than the inertial force as the water depth increases. This

occurs in sewers with converging sections such as circular cross sections. There-

fore, any increase in flow beyond the water level corresponding to maximum

flow will cause flow oscillations and a sudden jump to pressurized flow (Yen

1986, 2001). The flow is found to become highly unstable at relative depths

greater than 0.8 for sewers with circular cross sections. It is worthwhile to

note that the flowrate in a sewer with circular cross section at a relative depth

of about 0.8 is the same as when the sewer is full. The results of Hamam and

McCorquodale (1982) indirectly show how the Helmholtz instability interacts

with the geometric instability in such a way as to limit the range of gravity

flows to depths below about 0.8 times the sewer diameter.

Another surcharging mechanism pointed out by Yen (1986, 2001) is due

to lack of enough air supply into the sewer to compensate for the deficit cre-

ated by entrainment of air at the air-water interface inside the sewer. The air
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entrainment is due to a shear instability at the air-water interface. The neg-

ative pressure created by the air deficit can cause increased flow oscillations

resulting in sewer surcharging. A few illustrative examples are given in Yen

(1986, 2001). Pressurization of the air phase in poor air ventilation has also

been found to result in pre-bore motion or in the formation of gravity current

flow where an air wedge at the top moves in opposite direction to the bore

(Vasconcelos and Wright 2003).

Fully pressurized flow instability

This instability is associated with the geysering phenomena known to have

occurred in numerous drainage systems. Preliminary work related to this

instability can be found in Guo and Song (1991) and in the references listed in

their paper. Consider a junction where a manhole or a dropshaft is connected

to surcharged sewer lines. The pressure and flow variation at the junction acts

as a forcing function to the water level in the manhole (dropshaft). Further

forcing can be due to sudden runoff events. The water depth in the junction

can become very high and may result in flooding and geysering when the

forcing frequency by the runoff input and/or the waterhammer oscillation at

the junction reaches the natural frequency of the manhole or the dropshaft or

when the inflow is simply much higher than the outflow.

The physical processes leading to geysering or manhole overtopping are,

generally, well understood. However, the quantitative analysis of geysering

would require accurate estimation of runoff into junctions, accurate modeling

of surcharging in the sewers and accurate formulation of flow behavior in man-

holes and dropshafts. It is noted that this instability is, often, preceded by

the other four instabilities; thus, it is necessary that all other instabilities are
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well understood and modeled if geysering is to be predicted and mitigated.

As of examples of storm-sewer systems that have experienced surcharging,

blow-off of manhole covers and geysering, many cases are reported in the

literature (e.g., Hamam 1982, Guo and Song 1990). One example is a 10-foot

trunk sewer in Hamilton, Ontario that experienced severe pressure transients

during high flows (Hamam 1982). The pressure surges were large enough to

blow a welded manhole cover off a dropshaft and cause basement flooding.

Another well known system that has experienced structural and equipment

damage as well as geysers above ground level associated with severe pressure

transients is the Tunnel and Reservoir Plan (TARP) system in Chicago, Illinois

(Guo and Song 1990). This was one of the first tunnel systems constructed

in the United States for CSO control. Severe surge and geyser conditions

developed during the early phases of implementation of the tunnel system

resulted in the need to retrofit controls. At laboratory scale, Bziuk (1988)

carried out over 200 mixed flow experiments on a storm-sewer model with an

inlet dropshaft and demonstrated that severe pressure transients could occur

during mixed-flow conditions. Since severe transients may occur in free surface,

mixed or pressurized flow conditions, any realistic transient model of closed

conduit systems must be capable of simulating, unsteady free surface flows,

unsteady pressurized flows and the simultaneous occurrence of free surface and

pressurized flows.

A transient flow model must not only be able to reproduce accurately

the physical phenomena, but also be efficient numerically. For a given grid

size and Courant number, one numerical scheme can be more accurate than

another, but not necessarily more efficient numerically. A comparison of effi-

ciency requires measuring the Central Processing Unit (CPU) time needed by
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each scheme to achieve the same level of accuracy (e.g., Zhao and Ghidaoui

2004). The computational speed or efficiency is of paramount importance for

simulating the formation and propagation of hydraulic transients, where small

simulation time steps are needed to reproduce the rapidly varying hydraulics.

In particular the numerical efficiency is a critical factor for real-time control

(RTC), since several simulations are required within a control loop in order to

optimize the control strategy.

To date, mixed flows are simulated by one of two general approaches: (a)

simulation of pressurized flows as free surface flows using a hypothetical nar-

row open-top slot (“Preissmann slot”); and (b) separate simulation of the free

surface and pressurized flows. The Preissmann slot approach is computation-

ally simpler as it only requires solution for one flow type (free surface flow);

however this method may present accuracy and stability problems associated

with the width and shape of the hypothetical slot and it can not simulate

sub-atmospheric pressures.

The separate simulation of free surface and pressurized flows is more com-

plex; however the methods based on this approach are able to simulate sub-

atmospheric pressures in the pressurized flow regime. Current models based on

this approach can not address some complex flow features well, such as open-

channel surges, negative open channel-pressurized flow interfaces and interface

reversals. In this approach, the location of the moving interface between the

two flow types is tracked and treated as an internal interface. This is often

referred to as the “shock-fitting” method (e.g., Guo and Song 1990, Fuamba

2002).

Recently, Vasconcelos et al. (2006) introduced a Decoupled Pressure Ap-

proach (DPA), which is formulated by modifying the open-channel Saint-
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Venant equations to allow for overpressurization assuming that elastic behav-

ior of the pipe walls will account for the gain in pipe storage. This model has

been tested only using weak transients and it may present numerical instability

problems.

Regardless of the approach used for simulating mixed flows, most of the

models developed primarily to examine the formation and propagation of hy-

draulic transients use schemes based on the Method of Characteristics (MOC)

to solve the governing equations (free surface and pressurized flows). The

MOC transforms the partial differential equations of continuity and momen-

tum into a set of ordinary differential equations that are relatively easy to

solve. As a result, many methods and strategies have been developed to ap-

ply the MOC to one-dimensional flows. Among the benefits of MOC schemes

are methods to incorporate complex boundary conditions into MOC solutions.

Although the MOC can easily handle complex boundary conditions, interpola-

tions necessary for Courant numbers less than 1.0 together with the fact that

these schemes are not intrinsically conservative (mass and momentum are not

conserved) result in smoothing (damping) of waves and diffusion of the wave

fronts; diffusion makes waves arrive earlier to the boundaries, and damping

reduces the wave peak and may artificially delay the time of occurrence of sur-

charging. Therefore, what is needed is a computationally efficient scheme that

retains the same ability as the MOC in terms of handling boundary conditions,

but provides higher resolution of waves.

In regard to boundary conditions (BC), the author is not aware of any

model for sewer systems that uses a high-order BC at the extremes of the

computational domain (boundaries). A numerical scheme may have second or

higher-order accuracy in the internal cells, however if this scheme is coupled
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with BCs having only first-order accuracy, a degradation of the accuracy of

the numerical solution in the internal cells may occur. Another issue of BCs

in sewer systems that requires attention is the treatment of shocks at bound-

aries. Most of the current models implemented for transient flows in sewer

systems use the theory of characteristics or Riemann invariants to connect

the boundaries with the internal cells. Although this approach is accurate for

smooth waves, important wave smoothing (damping) may occur when shocks

are present at boundaries. Therefore, what is needed is a formulation of BCs

that can achieve the same accuracy of the internal cells and that can handle

shocks at boundaries well.

The broad objective of this thesis is to advance our understanding of the

process of flood-wave propagation through storm-sewer systems by improving

the methods available for simulating unsteady flows in closed conduits ranging

from free surface flows, to mixed flows, to fully pressurized flows. The specific

objectives of this work are:

1. The development and implementation of two efficient and robust models

for simulating unsteady flows in closed conduits ranging from free sur-

face flows, to partly free surface-partly pressurized flows, to fully pres-

surized flows, that can accurately describe complex flow features –such

as negative open channel-pressurized flow interfaces, interface reversals,

and open-channel surges. In the first model, pressurized flows are sim-

ulated as free surface flows using a hypothetical narrow open-top slot

(“Preissmann slot”). In the second model, free surface and pressur-

ized flows are treated independently while interacting through a mov-

ing interface. In the first model, a gradual transition between the pipe

and the slot is introduced and the free surface flow governing equations
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are solved using Godunov-type Schemes (GTS). This model is called

the modified Preissmann model. GTS schemes belong to the family of

shock-capturing methods. These methods capture discontinuities in the

solution automatically, without explicitly tracking them (LeVeque 2002).

In the second model, both free surface and pressurized flows are handled

using shock-capturing methods –specifically GTS schemes. The moving

interfaces between the two flow types are handled using a shock-tracking-

capturing approach. In this case, cell boundaries are introduced at the

location of open channel-pressurized flow interfaces, subdividing some

regular cells into two subcells, resulting in a variable mesh arrangement

that varies from one time step to the next. However, the vast majority

of grid cells do not vary.

2. The implementation of intrinsically conservative and second-order accu-

rate boundary conditions (same accuracy of internal cells).

3. The application of the modified Preissmann model to simulate transient

flows in complex hydraulic systems. The Tunnel and Reservoir Plan

(TARP) Calumet system of the Metropolitan Water Reclamation Dis-

trict of Greater Chicago is used as the test case.

In general, the scope of this work is limited to single-phase flows (liquids).

However, a simplified model for air-water mixture flows, which is valid when

the amount of gas in the conduit is small, has been implemented in the pres-

surized flow regime. This work does not include the prediction of any type of

air entrainment or air release.

This thesis comprises six chapters, including this introduction. Since the

models proposed in this thesis are intended for simulating free surface, pres-

surized and mixed flows, the description of the models is divided into three
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chapters: free surface flows (Chapter 2), pressurized flows (Chapter 3) and

mixed flows (Chapter 4). The discussion on dry bed flows is included in Chap-

ter 4. No specific chapter for a literature review was included, however, a brief

review of the strengths and limitations of the current approaches for simulating

transient mixed flows was presented earlier in this chapter. In-depth literature

review of these approaches and of their numerical solutions can be found in

Chapter 4. For free surface and pressurized flows, a literature review for the

numerical solution of their governing equations is included at the beginning

of its respective chapter. Chapter 5 deals with the application of the modi-

fied Preissmann model to the TARP Calumet system, and finally, Chapter 6

summarizes the conclusions of the thesis.
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Chapter 2

Free surface flows

2.1 Introduction

Unsteady gravity flows in sewers have been traditionally modeled by numer-

ically solving the one-dimensional equations of continuity and momentum.

Commonly used models range in sophistication from kinematic wave to full

dynamic wave solution of these equations (Yen 2001). Most of the models

that solve these equations at the level of the full dynamic wave use an im-

plicit finite-difference scheme when the formation of transients is secondary

to issues such as conveyance capacity. However, most of the models devel-

oped primarily to examine the formation of hydraulic transients use schemes

based on the Method Of Characteristics (MOC). The MOC can easily handle

complex boundary conditions, however, interpolations necessary for Courant

numbers less than one result in smoothing (damping) of waves and diffusion

of the wave fronts; diffusion makes waves arrive earlier to the boundaries,

and damping reduces the wave peak and may artificially delay the time of

occurrence of surcharging. Therefore, what is needed is a computationally ef-

ficient scheme that retains the same ability as the MOC in terms of handling
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boundary conditions, but provides higher resolution of waves in sewers.

Godunov Type Schemes (GTS) for the solution of shallow water equa-

tions have been the subject of considerable research (Glaister 1988, Alcrudo

et al. 1992, Fujihara and Borthwick 2000, Sanders 2001, Toro 2001, Caleffi et

al. 2003, Zoppou and Roberts 2003). These schemes belong to the family of

shock-capturing methods. These methods capture discontinuities in the solu-

tion automatically, without explicitly tracking them (LeVeque 2002). Discon-

tinuities must then be smeared over one or more grid cells. Success requires

that the method implicitly incorporate the correct jump conditions, reduce

smearing to a minimum, and not introduce nonphysical oscillations near the

discontinuities. GTS schemes fall within the group of Finite Volume (FV)

methods that have the ability to conserve mass and momentum and to pro-

vide sharp resolution of discontinuities without spurious oscillations (Hirsch

1990). Additionally, unlike the MOC schemes, the resolution of GTS is not

significantly reduced for low Courant numbers. Furthermore, the boundary

conditions for these schemes are treated in a similar way to the MOC. Histori-

cally, a GTS for flows in rectangular channels was first implemented by Glaister

(1988) and for non-rectangular prismatic channels by Alcrudo et al. (1992).

Later, another scheme for non-prismatic channels was implemented and ap-

plied to triangular and trapezoidal channels by Sanders (2001). Lately, GTS

methods for simulating transient free surface flows in sewers were implemented

by León et al. (2006a). The latter also compared the accuracy and efficiency

of GTS methods with that of MOC schemes. These authors show that, for a

given level of accuracy, the second-order GTS schemes are significantly faster

to execute than the fixed-grid MOC with space-line interpolation, and in some

cases, the accuracy produced by the GTS schemes can not be matched by the
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accuracy of the MOC scheme, even when a Courant number close to one and

a large number of grids is used.

The present chapter is based on León et al. (2005) and León et al. (2006a).

This chapter is organized as follows: (1) the governing equations are pre-

sented in conservation-law form; (2) the corresponding integral form and FV

discretization is described; (3) two Riemann solvers for the flux computation

at the cell interfaces are provided; (4) a brief description for the formulation of

boundary conditions is presented; (5) the stability constraints for the source

term discretized using the second-order Runge-Kutta are formulated; and (6)

the schemes are tested using several problems whose solution contain features

that are relevant to transient flows in sewers. Finally, the results are summa-

rized in the conclusion.

2.2 Governing equations

One-dimensional open-channel flow continuity and momentum equations for

non prismatic channels or rivers may be written in its vector conservative form

as follows (Chaudhry 1987):

∂U

∂t
+

∂F

∂x
= S (2.1)

where the vector variable U, the flux vector F and the source term vector S

are given respectively by:

U =

[
A

Q

]
, F =

[
Q

Q2

A
+ Ap

ρ

]
and S =

[
0

Fw + (S0 − Sf )gA

]
(2.2)
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Figure 2.1: Definition of variables in circular cross-sections.

where A = cross-sectional area of the channel; Q = flow discharge; p = average

pressure of the water column over the cross sectional area; ρ = liquid density;

g = gravitational acceleration; S0 = slope of the bottom channel; Sf = slope of

the energy line, which may be estimated using an empirical formula such as the

Manning’s equation; and Fw = momentum term arising from the longitudinal

variation of the channel width. For a circular cross-section channel (Fig. 2.1),

Fw becomes zero, the hydraulic area is given by A = d2/8(θ − sin θ), the

hydraulic radius by R = d/4(1− sin θ/θ), and the term Ap/ρ contained in the

flux term F in Eq. (2.2) is given by

Ap

ρ
=

g

12

[
(3d2 − 4dy + 4y2)

√
y(d− y)− 3d2(d− 2y) arctan

√
y√

d− y

]
(2.3)

where d is the diameter of the circular cross-section channel and y is the water

depth.
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2.3 Formulation of finite volume Godunov-type

schemes

This method is based on writing the governing equations in integral form over

an elementary control volume or cell, hence the general term of Finite Volume

(FV) method. The computational grid or cell involves the discretization of

the spatial domain x into cells of length ∆x and the temporal domain t into

intervals of duration ∆t. The ith cell is centered at node i and extends from

i− 1/2 to i+1/2. The flow variables (A and Q) are defined at the cell centers

i and represent their average value within each cell. Fluxes, on the other hand

are evaluated at the interfaces between cells (i− 1/2 and i + 1/2). For the ith

cell, the integration of Eq. (2.1) with respect to x from control surface i− 1/2

to control surface i + 1/2 yields:

∂

∂t

∫ i+1/2

i−1/2

Udx + Fi+1/2 − Fi−1/2 =

∫ i+1/2

i−1/2

Sdx (2.4)

Recalling that the flow variables (A and Q) are averaged over the cell, the

application of Green’s theorem to Eq. (2.4), gives:

Un+1
i = Un

i −
∆t

∆x
(Fn

i+1/2 − Fn
i−1/2) +

∆t

∆x

∫ i+1/2

i−1/2

Sdx (2.5)

where the superscripts n and n + 1 reflect the t and t + ∆t time levels respec-

tively. In Eq. (2.5), the determination of U at the new time step n+1 requires

the computation of the numerical flux at the cell interfaces at the old time n

and the evaluation of the source term. The source terms are introduced into

the solution through a second-order time splitting. The evaluation of the flux
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term is presented in the next section.

2.3.1 Flux computation

In the Godunov approach, the numerical flux is determined by solving a local

Riemann problem at each cell interface. The Riemann problem for a general

hyperbolic system is the following initial-value problem:

∂U

∂t
+

∂F

∂x
= 0 (2.6)

Un
x =

{
Un

L for x ≤ xi+1/2

Un
R for x > xi+1/2

(2.7)

For each cell interface, the states Un
L and Un

R are estimated from a polynomial

reconstruction whose order determines the accuracy of the scheme. For Go-

dunov’s first-order accuracy method, a piecewise constant polynomial is used,

whereas a second-order accuracy scheme is produced if linear interpolation is

used. Higher order accuracy Godunov schemes are found using higher order

polynomials. Only first-order accuracy schemes produce monotone preserving

solutions (Godunov 1959), however the accuracy of these schemes in smooth

regions is of order one and a very fine grid would be required to minimize

numerical errors. The rate of convergence of second or higher order schemes

is much better than first order schemes. Therefore, to achieve a given level

of accuracy, higher order schemes require much less grid points than the first

order schemes. However, higher order schemes are prone to spurious oscilla-

tions in the vicinity of discontinuities. Total Variation Diminishing (TVD)

methods may be used to avoid oscillations near sharp flow features and to

preserve the accuracy of the schemes away from discontinuities. In this chap-
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ter, second-order accuracy in space and time is obtained by using a Monotone

Upstream-centred Scheme for Conservation Laws (MUSCL) reconstruction in

conjunction with a Hancock two-stage scheme for advancing the cell average

solution from one time level to the next (e.g., Toro 2001). The TVD prop-

erty of this method is ensured by applying the MINMOD pre-processing slope

limiter (e.g., Toro 2001).

The intercell flux Fi+1/2 is computed using an exact or approximate solution

of the Riemann Problem. The intercell flux is then used to update U at

the nodes. In order to reduce the computational time, the exact solution of

the Riemann problem is usually replaced with an approximate one. These

approximate solvers, if carefully selected, may lead to robust schemes with

very good accuracy and that are simple to implement. In what follows, two

efficient approximate Riemann solvers are derived for general cross-section

open-channel flows and then applied for circular conduits.

2.3.2 Guinot approximate-state Riemann solver

In this approach, the solution of the Riemann problem is approximated by

an intermediate region U? of constant state separated from the left and right

states UL and UR by two waves that may be rarefactions or shocks (Fig. 2.2).

From these three states only the intermediate state is unknown. This unknown

state is obtained by assuming that the flow is continuous across these two

waves (two rarefaction waves) and consequently the differential relationships

provided by the generalized Riemann invariants hold across these waves. The

derivation of the unknown state is presented next.

The characteristic form of Eq. (2.6) obtained by expressing the Jacobian

matrix of F with respect to U is:
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Figure 2.2: Principle of the Guinot Riemann solver in the physical space
(top) and in the phase space (bottom).

∂U

∂t
+ A

∂U

∂x
= 0, where A =

[
0 1

c2 − u2 2u

]

where u is the water velocity and c the celerity of the gravity wave in still

water given by:

c =

√
g
d

8

√
θ − sin θ

sin θ
2

(2.8)

The eigenvalues (λ) and eigenvectors (K) of A are given by: λ1 = u − c,

λ2 = u + c, KT
1 = [1 u− c] and KT

2 = [1 u + c]. These eigenvectors yield the

following generalized Riemann invariants:

dA
1

= dQ
u−c

across dx
dt

= u− c

dA
1

= dQ
u+c

across dx
dt

= u + c
(2.9)

The differential relationship across the first wave dx/dt = u− c can be written

as (u− c)dA = dQ, but since dQ = udA + Adu, it can be further simplified to
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du + (c/A)dA = 0, which can be expressed as:

du + dφ = 0 (2.10)

where φ =
∫

(c/A)dA. For a general cross section channel, φ can be determined

approximately by integrating c/A between two successive values of A using any

integration technique. For a circular cross-section (Fig. 1), φ is given by:

φ =

√
g
d

8

∫ θ

0

1− cos θ√
(θ − sin θ) sin( θ

2
)

dθ (2.11)

Since an analytical integration for φ has not been found, the expression inside

the integral in Eq. (2.11) was expressed in series and then integrated from 0

to θ resulting in:

φ =

√
g
d

8

[√
3θ−

√
3

80
θ3 +

19
√

3

448000
θ5 +

√
3

10035200
θ7 +

491
√

3

27× 7064780800
θ9 + ...

]

(2.12)

By integrating the differential relationship across the first wave dx/dt = u− c

(Eq. 2.10) the following relationship is obtained.

uL + φL = u? + φ? (2.13)

Similarly, the generalized Riemann invariants across dx/dt = u+ c lead to the

following relationship:

u? − φ? = uR − φR (2.14)
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By combining Eqs. (2.13) and (2.14), the flow variables in the intermediate

state (star region) are obtained:

u? =
uL + uR

2
+

φL − φR

2
(2.15)

φ? =
φL + φR

2
+

uL − uR

2
(2.16)

If the left or right wave is a shock, the speed of this shock (cs) can be computed

by applying the Rankine-Hugoniot condition to either the continuity or the

momentum equation. This gives the following relations:

cs (K = L, R) = Q?−QK

A?−AK

cs (K = L, R) =
Q2

?
A?
−Q2

K
AK

+
A?p?

ρ
−AKpK

ρ

Q?−QK

(2.17)

After the computation of all the wave celerities and shock speeds (if present),

it is possible to determine in which region the initial discontinuity is located

and thus to compute the flux. In what follows, the scheme due to Guinot

(2003) is summarized:

1. Compute u? (or Q?) and φ? (or A?) using the Eqs. (2.15) and (2.16).

2. Determine u (or Q) and φ (or A) at the interface i+1/2 from the following

tests:

(a) if sL ≥ 0 and s1? < 0 the first wave is a shock. The shock speed

cs must be computed with K = L using one of the relations given

in the system of Eqs. (2.17). The solution is given by UL if cs > 0

and by U? otherwise.
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(b) if sL ≥ 0 and s1? > 0 the solution is given by UL regardless of the

nature of the first wave.

(c) if sL < 0 and s1? > 0 the solution is obtained by solving Eq. (2.13)

with u? = c?.

(d) if s1? ≤ 0 and s2? ≥ 0 the solution is given by U?.

(e) if s2? < 0 and sR > 0 the solution is obtained by solving Eq. (2.14)

with u? = −c?.

(f) if sR ≤ 0 and s2? > 0 the second wave is a shock. The shock speed

cs must be computed with K = R using one of the relations given

in the system of Eqs. (2.17). The solution is given by UR if cs < 0

and by U? otherwise.

(g) if sR ≤ 0 and s2? < 0 the solution is given by UR regardless of the

nature of the second wave.

where sL = uL − cL, s1? = u? − c?, s2? = u? + c? and sR = uR + cR.

3. Once the flow variables (A and Q) at the interface i + 1/2 are known,

the flux at the interface is computed using the Eq. (2.2).

2.3.3 HLL approximate Riemann solver

The HLL Riemann solver takes its name from the initials of Harten, Lax and

Van Leer (Toro 2001). In this approach, the solution of the Riemann problem is

approximated by an intermediate region U? of constant state separated from

the left and right states UL and UR by two infinitely thin waves (shocks).

Fig. 2.3 illustrates this approximation. In this method, the numerical flux

Fi+1/2 is obtained by applying the integral form of the conservation laws in

appropriate control volumes yielding:
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Figure 2.3: Principle of the HLL Riemann solver in the physical space (top)
and in the phase space (bottom).

Fi+1/2 =





FL if sL > 0

sRFL−sLFR+sRsL(UR−UL)
sR−sL

if sL ≤ 0 ≤ sR

FR if sR < 0

(2.18)

where sL and sR are the wave speed estimates for the left and right waves,

respectively. It can be noticed in Eq. (2.18) that the first and third fluxes

correspond to supercritical flows moving to the right and left, respectively and

the second one corresponds to a subcritical flow moving to the right or left.

The wave speeds sL and sR are determined by eliminating Q? in the system

of Eqs. (2.17), resulting in:

sL = uL −ML , sR = uR + MR (2.19)

where MK (K = L, R) is given by

MK =

√
(
A?p?

ρ
− AKpK

ρ
)

A?

AK(A? − AK)
(2.20)
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where A? is an estimate for the exact solution of A in the star region. Toro

(2001) suggested several estimates for the flow depth in the star region (y?)

in rectangular channels. Following some of these estimates are extended for a

general cross-section channel.

Assuming the two-rarefaction wave approximation, an estimate for φ? (or

equivalently A?) is given by Eq. (2.16). Since A? and φ? are functions of θ, to

determine A?, it is required to solve Eq. (2.16) for θ by iteration.

Another relation for A? can be obtained by solving the Riemann problem

for the linearized hyperbolic system ∂U/∂t+∂F(U)/∂x = 0 with F(U) ≡ AU,

A = A(U) and U ≡ (UL + UR)/2. The two eigenvalues for the matrix A are

given by: λ1 = u− c and λ2 = u+ c̄. The application of the Rankine-Hugoniot

condition across the two waves [λi (i = 1, 2)] provides the following relation

for A?:

A? =
AR + AL

2
+

Ā

2c̄
(uL − uR) (2.21)

where Ā = (AR + AL)/2 and c̄ = (cR + cL)/2.

Unlike in the case of Eq. (2.16), in Eq. (2.21) no iteration is required to

estimate A?.

Another estimate for A? that preserves the simplicity of Eq. (2.21) while

adding two important new properties may be obtained based on the depth

positivity condition (flow depth is greater than or equal to zero). The added

properties are (Toro 2001): (1) it can handle situations involving very shallow

water well; and (2) unlike the Riemann solver given in Eq. (2.21), the Riemann

solver based on the depth positivity condition is found to be very robust in

dealing with shock waves. Following a Riemann solver based on the depth

28



positivity condition is derived.

In Eq. (2.16), enforcing φ? ≥ 0 leads to the depth positivity condition for

the two-rarefaction wave approximation that is a limiting case contained in

the exact solution of the Riemann problem.

uR − uL ≤ φR + φL (2.22)

To allow the simple solver given in Eq. (2.21) to have the same depth positivity

condition as that of the exact solution of the Riemann problem, Eq. (2.21) is

written as:

A? =
AR + AL

2
+

uL − uR

2W
(2.23)

where W is a parameter to be determined by enforcing that Eq. (2.23) has the

same depth positivity condition as that of the exact solution of the Riemann

problem.

Likewise, in Eq. (2.23), enforcing the condition A? ≥ 0 leads to:

uR − uL ≤ W (AR + AL) (2.24)

The right hand sides of Eqs. (2.22) and (2.24) are equal in the dry bed limit

(y? = 0), since both Riemann solutions (linearized Riemann solver and the one

based on the two-rarefaction wave approximation) achieve their limiting value

when the flow depth is zero. This condition ensures that the approximate

solver (linearized Riemann solver) satisfies the same positivity condition as
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that of the exact Riemann solution. Hence, comparing the right-hand sides of

Eqs. (2.22) and (2.24), the parameter W is determined as:

W =
φR + φL

AR + AL

(2.25)

which can be substituted in Eq. (2.23), leading to another estimate for A?

based on the depth positivity condition;

A? =
AR + AL

2

[
1 +

uL − uR

φR + φL

]
(2.26)

The types of non-linear left and right waves are determined by comparing y?

with the flow depths in the left and right states [y
K

(K = L,R)]. The left or

right wave is a shock if y? > y
K

(K = L,R), otherwise the wave is a rarefaction

wave (smooth wave). When A? is less or equal than AK (K = L,R), it is

suggested to replace MK with the gravity wave celerity cK (K = L,R) given

by Eq. (2.8). The reason is because if the star region and the left and right

states are connected by a rarefaction wave, the speeds (of the wave heads)

of the left and right rarefaction waves are given respectively by uL − cL and

uR + cR (Toro 2001). Thus, MK may be expressed as:

MK =





√
(A?p?

ρ
− AKpK

ρ
) A?

AK(A?−AK)
if A? > AK

cK if A? ≤ AK

(2.27)

Once the wave speed estimates are computed, the flux at the interface i + 1/2

(Eq. 2.18) is fully determined using Eq. (2.2).

30



2.4 Boundary conditions

In open-channel flows there are three flow regimes, subcritical, critical and

supercritical, which have their counterparts in compressible flow, namely, sub-

sonic, sonic and supersonic. In subcritical flows, small disturbances propagate

upstream and downstream of the location of the perturbation, whereas in su-

percritical flows, small disturbances only can travel downstream. Thus, it is

apparent that if the flow entering the domain is supercritical, two boundary

conditions are needed, and if it is leaving the domain, no boundary condition

is needed. Likewise, in subcritical flows, if the flow is entering or leaving the

domain, only one boundary condition is needed. For instance, in subcritical

regime, if a hydrograph (Q vs t) is to be prescribed at a boundary, the missing

variable may be computed from the generalized Riemann invariants. For the

left-hand boundary (interface i = 1/2), the generalized Riemann invariants

across the wave dx/dt = u+ c (Eq. 2.14), or which is the same along the wave

dx/dt = u− c (negative characteristic c−) yield:

Qn+1
1/2

An+1
1/2

− φn+1
1/2 =

Qn
1

An
1

− φn
1 (2.28)

For a general cross section channel, φ can be determined approximately by

integrating c/A between two successive values of A using any integration tech-

nique. Since An+1
1/2 and φn+1

1/2 are related, Eq. (2.28) can be solved for An+1
1/2 .

In the case of a circular cross-section channel, An+1
1/2 and φn+1

1/2 are functions

of the unknown variable θ, and Eq. (2.28) can be solved for θ by iteration

(three or four iterations is usually enough to ensure convergence). The CPU

time consumed by this iteration process represents only a very small fraction

of the total CPU time. Knowing θ and consequently An+1
1/2 and the prescribed
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variable Qn+1
1/2 , the flux vector Fn+1

1/2 at the boundary and at the time level

n+1 can be computed using Eq. (2.2). Similarly, for the right-hand boundary

(interface i = N + 1/2), the generalized Riemann invariants across the wave

dx/dt = u− c (Eq. 2.13), or which is the same along the wave dx/dt = u + c

(positive characteristic c+) yield:

Qn+1
N+1/2

An+1
N+1/2

+ φn+1
N+1/2 =

Qn
N

An
N

+ φn
N (2.29)

When using higher-order schemes, for the quality of the numerical solution to

be preserved it is necessary to use a higher-order reconstruction in all the cells.

Since common procedures of reconstruction such as MUSCL use one or more

cell on each side of the cell to be reconstructed, generally one or more cells are

missing within the first and last cells of the computational domain. Typical

procedures to handle this problem are based on the implementation of ghost

cells outside of the boundaries (see Chapter 3).

2.5 Incorporation of source terms

Similar to Zhao and Ghidaoui (2004), the source terms S are introduced into

the solution through time splitting using a second-order Runge-Kutta dis-

cretization which results in the following explicit procedure.

First step (pure advection):

Un+1
i = Un

i −
∆t

∆x
(Fn

i+1/2 − Fn
i−1/2) (2.30)

Second step (update with source term by ∆t/2):
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U
n+1

i = Un+1
i +

∆t

2
S
(
Un+1

i

)
(2.31)

Last step (re-update with source term by ∆t):

U
n+1

i = Un+1
i + ∆tS

(
U

n+1

i

)
(2.32)

The evaluation of the source terms S appearing on Eq. (2.2) requires the

definition of the grid bottom slope (S0)i given by

(S0)i = − zi+1/2 − zi−1/2

xi+1/2 − xi−1/2

= −∆zi

∆xi

(2.33)

and the grid energy line slope (Sf )i which may be obtained from Manning’s

equation,

(Sf )i =
n2

m

kn
2

Qi

Ai

∣∣Qi

Ai

∣∣
R

4/3
i

(2.34)

where kn is 1.0 in Metric units and 1.49 in English units, R is the hydraulic

radius and nm is the so-called Manning roughness coefficient.

2.6 Stability constraints

Since the explicit second-order Runge-Kutta discretization has been used for

the incorporation of S into the solution, the stability constraint must include

not only the Courant-Friedrichs-Lewy (CFL) criterion for the convective part,

but also the constraint for the source terms. The CFL constraint is given by:
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Crmax =
∆t

∆xi

Max
i=1,2,...N

(|un
i |+ |cn

i |
) ≤ 1 (2.35)

where Crmax is the maximum Courant number at time level n. From Eq. (2.35),

the permissible time step for the convective part is given by:

∆tmax, CFL = Min
i=1,2,...N

[
∆xi

|un
i |+ |cn

i |
]

(2.36)

The explicit second-order Runge-Kutta procedure involves two discretizations,

which are stated by Eqs. (2.31) and (2.32). Eq. (2.31) is subject to the following

stability constraint:

−1 ≤ U
n+1

i

Un+1
i

≤ 1 (2.37)

Substituting Eq. (2.31) in Eq. (2.37), and due to the fact that the time step

is always positive, the following relations are obtained:

S(Un+1
i )

Un+1
i

≤ 0

S(Un+1
i )

Un+1
i

∆t ≥ −4
(2.38)

The first inequality in Eq. (2.38) indicates that, for the solution to be stable,

the source term S must be of opposite sign to the variable U. From the sec-

ond inequality and taking into consideration the first inequality, the following

constraint is obtained:

∆t ≤ −4
Un+1

i

S(Un+1
i )

(2.39)
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Similarly, due to the explicit discretization in Eq. (2.32), the following stability

constraint is obtained:

∆t ≤ −2
Un+1

i

S(U
n+1

i )
(2.40)

Thus, the permissible time step for the source term (∆tmax,S) is given by:

∆tmax,S = Min
i=1,2,...N

[
− 4

Un+1
i

S(Un+1
i )

,−2
Un+1

i

S(U
n+1

i )

]
(2.41)

Since the same time step ∆t must be used for the convective part and the

source term, Un
i must be used instead of Un+1

i . Finally, the maximum per-

missible time step including the convective part and the source term will be

given by:

∆tmax = Min
i=1,2,...N

[
∆tmax,S, ∆tmax, CFL

]
(2.42)

2.7 Evaluation of finite volume Godunov type

schemes

The purpose of this section is to test the accuracy and efficiency of the two

GTS schemes using problems whose solution contain features that are relevant

to transient flows in sewers such as shock, expansion and roll waves.

The performance of the GTS methods are evaluated by comparing them to

the “Exact” solutions (available only for idealized conditions [e.g., frictionless

and horizontal pipes]), “Near exact” solutions, the fixed-grid MOC scheme

with space-line interpolation and experimental observations. The “Exact” so-
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lution is obtained - at the precision of the computer - with a program written

to solve the general Riemann problem for the shallow water equations in cir-

cular conduits. The “Near exact” solution is obtained by grid refinement until

convergence is achieved. Five tests cases are considered in this section. These

are:

1. Hydraulic bores.

2. Comparison of accuracy and efficiency among GTS and MOC schemes

without friction.

3. Comparison of accuracy and efficiency among GTS and MOC schemes

in presence of friction.

4. Formation of roll waves.

5. Hydraulic routing.

In the following sections, for convenience, the maximum Courant number

Crmax is denoted by Cr. In addition, the grid size, Courant number, Manning

roughness coefficient and channel slope used in each example are indicated in

the relevant figures and thus will not be repeated in the text. Furthermore,

the CPU times that are reported in this chapter were averaged over three

realizations and computed using a Pentium IV 3.20 GHz personal computer.

2.7.1 Hydraulic bores

The purpose of this test is to demonstrate the capability of the GTS schemes in

capturing accurately discontinuities such as hydraulic bores. Hydraulic bores

often occur in sewers, particularly after an abrupt change in flow depth or

discharge, such as the sudden closure of a downstream gate.
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A uniform flow in a 1000 m long frictionless horizontal sewer with a di-

ameter of 2.5 m is considered as the test problem. The initial condition of

this problem involves a uniform flow depth (y = 0.5 m) and discharge (Q =

2 m3/s). At time t = 0, the supercritical flow is completely blocked at the

downstream end of the sewer (e.g., sudden closure of a downstream gate) which

generates a bore that travels upstream. The simulation results for the water

depth profile at t = 300 s are shown in Fig. 2.4. The results show that the

moving hydraulic bore is well resolved by both GTS schemes. Furthermore,

the execution time of both methods is very similar (0.358 s and 0.353 s for the

HLL and Guinot Riemann solvers respectively). The maximum Courant num-

ber used in the simulations was 0.3. This Courant number may seem small for

practical applications, however it must be recalled that the gravity wave celer-

ity is a function of the water depth which may change dramatically in most

of the applications (e.g., from dry-bed conditions to near-full pipe), resulting

in small Courant numbers for some portions of the system. Furthermore, this

thesis is focused on mixed flows in which the celerity in pressurized flows may

be two orders of magnitude greater than the gravity wave celerity, resulting in

very low Courant numbers for free surface flows.

2.7.2 Comparison of accuracy and efficiency among GTS

and MOC schemes without friction

This test is used to compare the accuracy and numerical efficiency of the two

GTS schemes and the MOC with space-line interpolation without friction. For

a given grid size and Courant number, one scheme can be more accurate than

another one, but not necessarily more efficient numerically. A comparison of

numerical efficiency requires measuring the CPU time needed by each of the
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Figure 2.4: Water depth profile of a hydraulic bore in a sewer generated by
complete blockage of the flow at sewer’s downstream end (∆x = 10 m, Cr =
0.3, t = 300 s, Sf = 0, S0 = 0).

schemes to achieve the same level of accuracy (e.g., Zhao and Ghidaoui 2004).

The numerical efficiency of a model is a critical factor for real-time control,

since small simulation time steps and a large number of grids are needed to

reasonably reproduce the formation and propagation of hydraulic transients

in sewer systems.

The test simulates the sudden opening of a gate separating two pools of still

water with different depths mid-way in a 1000 m long frictionless horizontal

sewer with a diameter of 15 m. Zero water flux boundary conditions are used

in the analysis, namely Q (0, t) = 0 and Q (1000, t) = 0. The initial conditions

are:

{
y = 10.0 m and u = 0.0 m/s for x <= 500 m

y = 3.0 m and u = 0.0 m/s for x > 500 m
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Figure 2.5: Water depth versus time at x = 2.5 m for test No. 2 (∆x = 5.0
m, Cr = 0.3, Sf = 0, S0 = 0).

The ability of the schemes to conserve mass is first tested. Since zero water

flux boundary conditions are used in the current test case, the total mass in

the sewer is invariant with time. The simulation results for the water depth

versus time at x = 2.5 m and the mass traces are shown in Figs. 2.5 and 2.6,

respectively. The results show that unlike the MOC scheme, the two GTS

schemes conserve mass. For instance, Fig. 2.6 shows that after 400 seconds of

simulation, about 20% of the initial total water volume is lost by the MOC

scheme and none by the two GTS schemes.

Next, the influence of the Courant number on the accuracy of the schemes

before and after the shock and rarefaction waves have interacted with the zero

water flux boundaries is investigated. The simulations results are shown in

Figs. 2.7, 2.8 and 2.9. The results show that for the same Courant number,

the numerical dissipation exhibited by the two GTS schemes is significantly
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Figure 2.6: Mass traces for test No. 2 (∆x = 5.0 m, Cr = 0.3, Sf = 0, S0 =
0).

smaller than that produced by the MOC scheme. Furthermore, unlike the

MOC scheme, the two GTS schemes preserve their resolution for decreasing

Courant number. The results also show that the jump simulated by the MOC

scheme moves slower than the actual jump. The accurate prediction of the

speed of jumps in sewer systems is very important because it dictates the

timing at which surcharging occurs.

A quantitative measure of the numerical dissipation can be obtained by

using the integral form of the energy equation (Ghidaoui and Cheng 1997).

The absence of friction and gravity forces (recall that in this test case the

sewer is assumed to be frictionless and horizontal) and the invariance of the

total mass in the sewer with time imply that the total energy is conserved

throughout the transient. Therefore, any dissipation found in the results is

solely due to numerical dissipation. Fig. 2.10 shows the relative energy traces

Et/E0 for different Courant numbers. This figure demonstrates that unlike the
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Figure 2.7: Water depth profile for test No. 2 before the shock and rarefaction
waves have interacted with the zero water flux boundaries for HLL Riemann
solver (∆x = 5.0 m, t = 36 s, Sf = 0, S0 = 0).
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Figure 2.8: Water depth profile for test No. 2 before the shock and rarefaction
waves have interacted with the zero water flux boundaries for Guinot Riemann
solver (∆x = 5.0 m, t = 36 s, Sf = 0, S0 = 0).
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Figure 2.9: Water depth profile for test No. 2 after the shock and rarefaction
waves have interacted with the zero water flux boundaries (∆x = 5.0 m, Cr
= 0.3, t = 197 s, Sf = 0, S0 = 0).

MOC scheme, the numerical dissipation exhibited by the two GTS schemes is

not sensitive to the Courant number. This figure also shows that for a given

Courant number, the numerical dissipation produced by the two GTS schemes

is significantly smaller than that obtained by the MOC scheme. For instance,

when Cr = 0.3, after 400 seconds of simulation, more than 40% of the initial

total energy is dissipated by the MOC approach and only about 20% by both

GTS schemes.

To this point, it is shown that for the same grid size and for the same

Courant number, the two GTS schemes are more accurate than the MOC

scheme with space-line interpolation. However, as pointed out by Zhao and

Ghidaoui (2004), a comparison of numerical efficiency requires measuring the

CPU time needed by each of the schemes to achieve the same level of accuracy.

To compare the efficiency of these schemes, before and after the shock
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and rarefaction waves have interacted with the boundaries (first interaction

with the boundaries occurs at about 50 s), the numerical dissipation is plotted

against the number of grids on log-log scale and shown in Figs. 2.11 and

2.12. Fig. 2.11 (before the shock and rarefaction waves have interacted with

the boundaries) shows that the reduction in numerical dissipation when the

number of grids is increased is approximately linear (on log log scale). However,

when convergence is close to being achieved, the reduction of the numerical

dissipation asymptotically tends to zero. In real-time simulations (due to

the computational cost), the accuracy pursued in the numerical modeling will

typically fall in the linear portion of Fig. 2.11. Hence, the linear relationships

are used for the comparison of numerical efficiency. These linear relationships

were fitted to power functions whose equations are given in Fig. 2.11. These

equations were used to compute the number of grids needed by each of the
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schemes to achieve a given level of accuracy. These in turn were used to

compute the CPU times. Accurate estimate of CPU times requires that our

model is run for a sufficiently long simulation time. When using 50 seconds

simulation time, the CPU time for the GTS schemes is in the order of 10−2

seconds. This CPU time is clearly too small to be reliable because the time

allocated to uncontrolled processes during the simulation can have a significant

impact on small CPU times. Therefore, the simulation time was increased to

10000 seconds, which results in CPU times that are in the order of 1 second.

The results for the CPU times for the extended simulation time are presented

in Table 2.1. It is noted that several interactions between the waves and the

boundaries occurs during the extended simulation time. The tasks executed

at a boundary node are similar to those executed at an internal node (i.e., the

efficiency of the scheme is not altered by the interactions at the boundaries).

Therefore, the extrapolation remains valid as long as the tasks executed at the

boundaries are the same as those at the internal nodes. Notice in Table 2.1

that the two GTS schemes have similar efficiency. Also note that to achieve

the same degree of accuracy, the MOC approach requires a much finer grid size

than the two GTS methods. In addition, this table shows that to achieve the

specified level of accuracy, the two GTS schemes are about 100 to 300 times

faster to execute than the MOC approach.

The results after one wave cycle (Fig. 2.12) show that the accuracy pro-

duced by the two GTS schemes cannot be matched by the accuracy of the MOC

scheme, even when using a large number of grids. The poor results obtained

with the MOC scheme may be explained by recalling that this scheme does not

conserve mass. At t = 0, the initial total energy (E0) is only potential. After

the flow has reached to a static equilibrium (t = ∞), the kinetic energy is zero
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Table 2.1: Comparison of efficiency among the two GTS methods and the
MOC scheme with space-line interpolation (Cr = 0.3, t = 10000 s, Sf = 0, S0

= 0) [Nx is number of grids needed to achieve a specified level of accuracy].

Description HLL Guinot MOC

(E0 − E)/E0 = 2% Nx 42 42 1324

CPU time (s) 2.44 2.55 819.20

(E0 − E)/E0 = 3% Nx 23 22 468

CPU time (s) 0.83 0.73 104.20

and the total energy is again only potential. If mass is conserved, the potential

energy at t = ∞ is 77.1 % of E0, which means that the maximum energy that

can be dissipated in the system is 22.9 % of E0. Any additional energy loss

is a result of a numerical loss of mass in the simulation. The inability of the

MOC scheme to conserve mass can produce dissipations beyond the maximum

energy that can be dissipated (22.9 %), as can be observed in Fig. 2.10. In this

figure for instance, when Cr = 0.3, after 400 s of simulation time, the MOC

scheme has produced a numerical dissipation of more than 40%, about half of

which can be attributed to the numerical loss of water mass (Fig. 2.6).

2.7.3 Comparison of accuracy and efficiency among GTS

and MOC schemes in presence of friction

This test is used (1) to investigate and compare the accuracy and efficiency

of the two GTS schemes and the MOC method with space-line interpolation

in the presence of friction, and (2) to measure the relative magnitude of the

numerical and physical dissipation. The parameters for this test case are
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the same than the previous one except friction is included using a Manning

roughness coefficient of 0.015.

Because it is shown that the two GTS schemes have similar accuracy and

efficiency, only the GTS scheme with HLL Riemann solver is considered in this

test case. Since the energy dissipation in this case is only due to friction (Ef ),

the total energy (E) after a given period can be obtained by subtracting Ef

attained during that period from the initial energy (E0). Ef may be obtained

by integration of the net work done by the force of friction over a given period.

The simulation results for the relative energy traces (E/E0) for different

numbers of grids and Courant numbers is presented in Fig. 2.13. The results

for the GTS scheme show that for the same Courant number (e.g., Cr = 0.3),

the numerical dissipation is reduced when the number of grids is increased

(e.g., 200 instead of 40). Regarding the influence of the Courant number in

the solution, it was pointed out previously that the two GTS schemes are not

too sensitive to this parameter.

To determine if the dissipation produced by the GTS scheme is only phys-

ical, the traces of E/E0 are compared with the trace of 1 - Ef/E0 obtained

with the HLL scheme using Cr = 0.9 and Nx = 8000. A maximum Courant

number of 0.9 instead of 1.0 is used because when using an explicit scheme (as

used here), the norm of the wave propagation velocity with respect to a fixed

observer on the pipe (|u± c|) at time t+1 may be greater than that at time t,

resulting in a greater Cr at time t+1 compared to time t. Hence, if a Cr equal

to one is used, numerical instabilities may be encountered during the simu-

lations. The Courant number specified in the simulations is the maximum,

which means only one or few cells will satisfy the specified maximum Courant

number. Since only one or in the best of the cases few cells will achieve a
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Figure 2.13: Energy traces for test No. 3 (nm = 0.015, S0 = 0).

Courant number equal or close to one, an exact solution can not be achieved

numerically in free surface flows. Thus, the trace of 1 - Ef/E0 (Fig. 2.13) is not

exact but approximate and it contains some numerical dissipation. However,

given the large number of cells used, it is expected that the trace of 1 - Ef/E0

be close to the exact solution.

To have an idea about the ratio between physical and numerical dissipation

for the given conditions, the traces of E/E0 and 1 - Ef/E0 after 400 s of

simulation time is considered. At this time, the computed values of E/E0 and

1 - Ef/E0 are approximately 0.80 and 0.93, which means that the total energy

dissipation in this example is 20% of the initial energy (E0). However, the

actual physical dissipation is about 7% of the initial energy and consequently

the numerical dissipation is about 13%. In this case, to reduce the numerical

dissipation, a maximum Courant number close to one and a large number of

cells must be used.
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In the case of the MOC scheme, the results show that for the same number

of grids, the dissipation produced is highly dependent on the Courant number.

When using a larger number of grids, the numerical dissipation is reduced but

not enough to overcome the effect of a small Courant number. The results

also show that after the first quarter wave cycle (about 50 s), the accuracy

produced by the GTS scheme cannot be matched by the accuracy of the MOC

scheme, even when using a Courant number close to one and a large number

of grids. In this case, the physical dissipation is totally overwhelmed by the

numerical dissipation. The reasons for the poor results obtained with the

MOC scheme are similar to those discussed in the previous section.

2.7.4 Formation of roll waves

The purpose of this test is to demonstrate the ability of the GTS schemes

to predict the formation of roll waves. The ability of a model to predict

the formation and amplitude of roll waves is important because these waves

constitute one of the instabilities that could lead to sewer surcharging. This

instability is related to the friction in the channel bed and is caused mainly by

the water moving considerably faster near the free surface than near the bed.

Surcharging may occur when the amplitude of these waves is large enough to

reach the sewer crown. Even when the amplitude of the roll waves is not high

enough to reach the sewer crown, these waves may interact with the air in

the gap between the water surface and sewer crown, leading to open channel-

pressurized flow instability, which causes surcharging (Ghidaoui 2004).

Linear stability analysis applied to uniform base flow in a very wide channel

has shown that the formation of roll waves starts to occur when the Froude

number (F ) is above 1.5 for the case of the Manning resistance formula. For
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circular channels this stability critical value is usually greater than 2.0 because

of the sidewall effect (Yen 2001).

In a similar way to Zanuttigh and Lamberti (2002), to demonstrate the

ability of the GTS schemes to predict the formation of roll waves, the evolu-

tion of the periodic perturbation y′ = 0.005 sin (πt/2) imposed upstream (x =

0) over a uniform flow depth y0 is analyzed. Because it is shown that the two

GTS schemes have similar accuracy and efficiency, only the GTS scheme with

HLL Riemann solver is considered in this test case. A code developed using

the aforementioned GTS scheme was applied to verify if the perturbation is

amplified for F higher than about 2.0 and attenuated otherwise. A 500 m

long sewer with a diameter of 4 m is considered in the analysis. The range

of flows used in the simulations is characterized by Froude numbers between

2.02 and 3.96 and a constant uniform flow depth y0 = 1 m. The wall shear

stress is represented using the Manning’s equation with a coefficient equal to

0.015, constant along the channel. Since the flow is supercritical, two upstream

boundary conditions are required. The first boundary condition is a periodic

flow depth (y0 + y′) and the second one is a steady discharge which is com-

puted with the uniform flow parameters. Due to the type of flow regime, at

the downstream end a non-reflective boundary condition is specified to avoid

backward reflections into the domain.

The simulation results for the flow depth versus time at the downstream

end of the channel (x = 500 m) together with the initial perturbation imposed

upstream (x = 0 m) are presented in Fig. 2.14. This figure, although it does not

present characteristics of roll waves (non-symmetric waves with steep fronts),

shows that the perturbation is amplified for F higher than about 2.65 and

attenuated otherwise. When different periodic perturbations were imposed
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Figure 2.14: Flow depth versus time at downstream end of sewer (x = 500
m) for different Froude numbers together with the perturbation at sewer inlet
(x = 0 m) [∆x = 0.05 m, Cr = 0.8, nm = 0.015].

upstream (x = 0), the Froude numbers that dictated whether these perturba-

tions were attenuated or amplified were no longer 2.65, but remained between

2.0 and 3.0. For the tested periodic perturbations, roll waves did not fully

develop. A much longer channel (pipe) was needed for the full development

of this type of waves. This is due to the fact that roll waves are induced by

advective-type instability, where the instabilities grow spatially.

The correct development of the roll waves requires that the frequency of

the forcing function at the upstream end be similar to the one for which the

flow is least stable. The least stable mode is obtainable from linear stability

theory. Such data is not available in this case and it appears that the value of

frequency chosen here may not be representative of the least stable mode. One

way to deal with this issue is to use a random perturbation. Random forcing at

the upstream end subjects the flow to a wide range of perturbation frequencies.
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The least stable mode grows rapidly with distance downstream and quickly

becomes the dominant frequency of the flow and controls the behavior of the

roll waves. Random perturbations are investigated below.

The random perturbation used in the analysis is y′ = 0.01∗ran, where ran

is a random number within the range 0 ≤ x ≤ 1 generated at every time step.

The simulation results for the flow depth versus the longitudinal distance (x) as

well as the parameters used in this new simulation are presented in Fig. 2.15.

The water waves shown in this figure present the typical characteristics of

roll waves. However, the amplitude and speed of these waves may not be

accurately predicted because of the assumptions inherent in the shallow water

equations. Recall that the shallow water equations assume that the pressure

is hydrostatic, the momentum correction coefficient is equal to one and the

wall shear stress during unsteady flow conditions is given by relations that are

derived for steady flow conditions. These assumptions are questionable in roll

wave flows, where the fluid particles experience significant vertical motion and

the velocity profile is far from the steady logarithmic profile. Experimental and

theoretical work is required to investigate the importance of the assumptions

inherent in the shallow water equations (Ghidaoui 2004).

2.7.5 Hydraulic routing

Most practical engineering problems of unsteady open-channel flows involve

hydraulic routing. For instance, hydraulic routing simulations are used for

determining the attenuation and translation of a flood hydrograph through a

stream reach. Given the importance of hydraulic routing in unsteady open-

channel flow problems, the purpose of this section is to evaluate the per-

formance of the two GTS schemes in solving hydraulic routing problems by
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Figure 2.15: Water depth profile showing typical characteristics of roll waves.
[d = 4 m, l = 1200 m, ∆x = 0.04 m, Cr = 0.8, t = 150 s, nm = 0.015, S0 =
0.10].

comparing the results of the simulations obtained with these methods and

experimental observations.

One of the sets of experiments conducted at the Wallingford Hydraulics

Research Station (WHRS) in England by Ackers and Harrison in 1964 is con-

sidered as the test case. The unsteady flow experiments were performed by

introducing prescribed flow hydrographs at the sewer’s upstream end after

running a steady flow for a period. At the sewer’s downstream end, a free

overfall was placed to enforce a critical flow at this location. Water stages

were measured over time at several locations along the channel. The origi-

nal data were reported in a paper by Ackers and Harrison (1964) and have

been partially reproduced in a number of sources such as Franz and Melch-

ing (1997). The Ackers and Harrison paper does not report the values of the

experimental data, but includes plots showing scaled data (data collected in
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Table 2.2: Hydraulic characteristics of the scaled-up data from Ackers and
Harrison (1964). Used with permission from Institution of Civil Engineers,
London.

Sewer & inflow charac- Scaled-up data

teristics and units values

Length (m) 304.8000

Diameter (m) 0.3048

Bed slope 0.0010

Roughness height (cm) 0.06096

Manning’s nm (peak flow) 0.0116

Manning’s nm (base flow) 0.0115

Base flow (m3/s) 0.004984

Peak inflow (m3/s) 0.018689

Base flow depth (m) 0.0768

Inflow duration (s) 132

Shape of inflow hydrograph symmetric trapezoid

Duration of peak inflow (s) 12

0.25-ft diameter pipe and scaled up to 1-ft diameter pipe by Froude criterion).

Since the original experimental data were not available, the scaled up stage

hydrograph is used for comparison here.

The scaled-up data reproduced in Table 2.2 is routed using both GTS

methods. The simulated stage hydrographs are contrasted with the reported

scaled experimental observations in Fig. 2.16. As shown in this figure, the

performance of both GTS schemes is very similar for all the simulated cases.

Furthermore, the execution time of both methods is very similar (8.86 s and

8.72 s for the HLL and Guinot Riemann solvers respectively). In addition,
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Figure 2.16: Simulated and observed water depths at x = 8.66 m and 77.94
m for scaled sewer pipe (∆x = 1.016 m, Cr = 0.3, S0 = 0.001 and nm = 0.0116)
[Experimental data used with permission from Institution of Civil Engineers,
London].

the results show that the stage hydrograph at x = 77.94 m from the upstream

end seems to be equally well simulated by both GTS schemes. However at x

= 8.66 m from the upstream end, the dispersion shown by the observed stage

hydrograph is clearly larger than predicted by both GTS methods, which is

specially noticeable on the receding portion of the hydrograph. Franz and

Melching (1997) using the so called Full Equations (FEQ) model obtained very

similar results to those obtained using the two GTS schemes. They suggest

that the discrepancies between simulated and observed values may be due to

possible scaling problems and due to the fact that some of the experiments

done by Ackers and Harrison included flows in the transition region between

laminar and fully turbulent flow, which causes that the roughness coefficient

be a function of the Reynolds number.
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Chapter 3

Pressurized flows

3.1 Introduction

Most liquids flowing in pipelines contain dissolved gases in solution that may

include free gas, although the volumetric proportion may be very small. In

absence of free air or vapor in a liquid piping system, the pressure wave speed

remains constant. The existence of even a very small fraction of gas dispersed

throughout the liquid in the pipeline can greatly reduce the propagation speed

of the pressure wave (e.g., Wylie and Streeter 1993). When the amount of gas

in the conduit is small (<≈ 1% in volume), the gas-liquid mixture (two-phase)

flow can be treated in a similar way to that of a single-phase flow (pure liquid)

using the single-equivalent fluid approximation. In this chapter, the same

numerical technique is proposed to solve single-phase and two-phase (using

the single-equivalent fluid approximation) flows. Current methods available

for modeling these flows (single and two-phase) are briefly described in the

following section. These methods were proposed for simulating water hammer

flows, however they are valid in general for unsteady pressurized flows.
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3.1.1 Methods for single-phase water hammer flows

Among the approaches proposed to solve the single-phase (pure liquid) water

hammer equations are the Method of Characteristics (MOC), Finite Differ-

ences (FD), Wave Characteristic Method (WCM), Finite Elements (FE), and

Finite Volume (FV). In-depth discussions of these methods can be found in

Chaudhry and Hussaini (1985), Ghidaoui and Karney (1994), Szymkiewicz and

Mitosek (2004), Zhao and Ghidaoui (2004), and Wood et al. (2005). Among

these methods, MOC-based schemes are most popular because these schemes

provide the desirable attributes of accuracy, numerical efficiency and program-

ming simplicity (e.g., Wylie and Streeter 1993, Zhao and Ghidaoui 2004, Ghi-

daoui et al. 2005). In fact, in a review of commercially available water hammer

software packages, it is found that eleven out of fourteen software packages ex-

amined use MOC schemes (Ghidaoui et al. 2005).

As was mentioned above, MOC-based schemes are most popular to sim-

ulate single-phase transient flows in pipes. The MOC transforms the partial

differential equations of continuity and momentum into a set of ordinary differ-

ential equations that are relatively easy to solve. As a result, many methods

and strategies have been developed to apply the MOC to one-dimensional

flows.

For many years the fixed-grid MOC has been used with good success to sim-

ulate transient conditions in pipe systems and networks (Karney and Ghidaoui

1997), however one difficulty that commonly arises relates to the selection of

an appropriate level of discretization (or time step) to use for the analysis. The

obvious trade-off is between computational speed and accuracy. In general the

smaller the time step, the longer the run time but the greater the numerical

accuracy.
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The challenge of selecting a time step is made difficult in pipeline systems

by two conflicting constraints. First, to calculate many boundary conditions,

such as obtaining the head and discharge at the junction of two or more pipes,

it is necessary that the time step be common to all pipes. The second con-

straint arises from the nature of the MOC. If the advective terms in the govern-

ing equations are neglected (as is almost always justified), the MOC requires

that ratio of the distance ∆x to the time step ∆t be equal to the wave speed

in each pipe. In other words, the Courant number should ideally be equal to

one and must not exceed one by stability reasons. For most pipeline systems,

having as they do a variety of different pipes with a range of wave speeds and

lengths, it is impossible to satisfy exactly the Courant requirement in all pipes

with a reasonable (and common) value of ∆t.

Faced with this challenge, researchers have sought for ways of relaxing the

numerical constraints. Two contrasting strategies present themselves. The

“method of wave-speed adjustment” changes one of the pipeline properties

(usually the wave speed, though more rarely the pipe length is altered) so as

to satisfy exactly the Courant condition. Despite the obvious liberties this kind

of adjustment takes with the physical problem, this procedure is widely rec-

ommended in the pipeline literature (e.g., Wylie and Streeter 1983, Chaudhry

1987). The second alternative is to allow Courant numbers less than one and

to interpolate between known grid points. The most common methods include

linear interpolation at a fixed time level, including both space-line interpolation

and reach-out in space interpolation (Wiggert and Sundquist 1977), as well as

interpolation at a fixed location, such as time-line interpolation or reach-back

in time interpolation (Goldberg and Wylie 1983). Lai (1989) combined these

options to form what he calls multimode scheme. A number of nonlinear inter-
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polation techniques also have been proposed including the Holly-Preissmann

scheme (Holly and Preissmann 1977), Holly-Preissmann with time-line inter-

polation (Liggett and Chen 1994), and a method that uses cubic splines (Si-

betheros et al. 1991).

Ghidaoui and Karney (1994) have developed the concept of an equivalent

partial differential equation to analyze theoretically the numerical properties of

a variety of interpolation schemes. They found that all common interpolation

procedures considerably distort the original governing equations and that even

interpolation procedures may change the wave speed. Thus, Ghidaoui and

Karney (1994) concluded that it is unlikely that any discretization approach

would be ideal for all pipeline systems and for all kind of disturbances.

Recently, FV Godunov-Type Schemes (GTS) that belong to the family

of shock-capturing schemes have been applied to single-phase water hammer

problems with good success. The first application of GTS to single-phase

water hammer problems is due to Guinot (2000), who presented first and

second-order schemes based on Taylor series expansions of the Riemann in-

variants. He showed that his second-order scheme is largely superior to his

first-order scheme, although the Taylor series development introduces an in-

evitable inaccuracy in the estimated pressure, especially in the case of low

pressure-wave celerities. A second application is due to Hwang and Chung

(2002), whose second-order accuracy scheme is based on the conservative form

of the compressible flow equations. Although this scheme requires an iterative

process to solve the Riemann problem, these authors state that their scheme

requires a little more arithmetic operation and CPU time than the so-called

Roe’s scheme, but is able to get more accurate computational results than the

latter scheme. Later, Zhao and Ghidaoui (2004) presented first and second-
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order schemes for solution of the non-conservative water hammer equations.

These authors show that, for a given level of accuracy, their second-order GTS

requires much less memory storage and execution time than either their first-

order GTS or the fixed-grid MOC scheme with space-line interpolation. It is

pointed out that the numerical tests carried out by these authors were for low

Courant numbers. When a Courant number very close to 1.0 is used, as shown

in the present paper, the MOC scheme can be more efficient than the scheme

of Zhao and Ghidaoui.

3.1.2 Methods for two-phase water hammer flows (sin-

gle equivalent fluid approximation)

The partial differential equations that describe two-phase flows in closed con-

duits can be simplified to a great extent when the amount of gas in the

conduit is small. In this case, the gas-liquid mixture can be treated as a

single-equivalent fluid (e.g., Chaudhry et al. 1990, Martin 1993, Wylie and

Streeter 1993, Guinot 2001a). The governing equations when using the single-

equivalent fluid approximation are identical to those for a single-phase flow.

Due to this fact, similar techniques to those for a single-phase flow are used

to solve the two-phase flow governing equations based on the single-equivalent

fluid concept. However, since shocks may be produced during transient con-

ditions in two-phase flows (e.g., Padmanabhan and Martin 1978), only those

methods that can handle shocks without special treatment are suitable for

these applications.

In the literature, numerical schemes that have been proposed for model-

ing one-dimensional two-phase flows using the single-equivalent fluid approx-

imation include MOC schemes, Lax-Wendroff schemes, a plethora of explicit
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schemes, and implicit methods (e.g., Chaudhry et al. 1990, Martin 1993). The

MOC scheme requires isolation of shocks. The Lax-Wendroff scheme has the

advantage that shock waves can be handled without special treatment (e.g.,

Martin 1993). However, the solution produces an overshooting of the shock

front, followed by damped oscillations. These oscillations can be eliminated by

introducing pseudo-viscosity. Artificial damping may be also necessary when

using explicit schemes (e.g., Martin 1993). When using implicit methods,

biasing or weighting problems may be encountered (e.g., Martin 1993).

Recently, Guinot (2001a, 2001b) has applied GTS schemes to two-phase

flows with good success. The first-order GTS presented by Guinot (2001a)

showed that numerical diffusion leads to a very fast degradation of the solu-

tion quality after a few oscillation periods. The second-order scheme by Guinot

(2001b) is largely superior to his first-order scheme, although an iterative pro-

cess is required to solve the Riemann problem. Lately, León et al. (2006c)

presented a highly efficient GTS scheme for two-phase water hammer flows.

In their scheme no iteration is required for the solution of the Riemann prob-

lem.

The present chapter focuses on the formulation and numerical efficiency

assessment of a second-order accurate FV shock-capturing scheme for simu-

lating one and two-phase water hammer flows. This chapter which is based

on León et al. (2006c) is organized as follows: (1) the governing equations are

presented in conservation-law form; (2) the corresponding FV discretization

is described; (3) a brief description of the proposed second-order scheme for

the internal cells is presented; (4) Riemann solvers for the flux computation at

the cell interfaces are provided; (5) a brief description for the formulation of

second-order boundary conditions is presented; (6) stability constraints for the
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source term discretized using the second-order Runge-Kutta are formulated;

(7) incorporation of the source terms into the solution is briefly described; and

(8) results from testing the proposed model under single and two-phase flow

conditions are presented.

3.2 Governing equations

The governing equations that describe two-phase flows in closed conduits can

be simplified to a great extent when the amount of gas in the conduit is

small. In this case, it can be assumed that there is no relative motion or slip

between the gas and the liquid and both phases can be treated as a “single-

equivalent fluid” with average properties (e.g., Martin 1993, Wylie and Streeter

1993). Furthermore, the characteristic time scale of the transients is so small

that adsorption/desorption of gas can be considered negligibly small (Zielke

et al. 1989). The mass and momentum conservation equations for the “single-

equivalent fluid” assumptions are identical to those for a liquid-phase flow and

can be written in their vector conservative form as follows (e.g., Chaudhry

1987, Martin 1993):

∂U

∂t
+

∂F

∂x
= S (3.1)

where the vector variable U, the flux vector F and the source term vector S

may be written as:

U =

[
Ω

Qm

]
, F =

[
Qm

Q2
m

Ω
+ Afp

]
and S =

[
0

(S0 − Sf )ρfgAf

]
(3.2)
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where ρf is the fluid density, Af is the full cross-sectional area of the conduit,

Ω = ρfAf is the mass of fluid per unit length of conduit, Qm = Ωu is the

mass discharge, u is the water velocity, p is the pressure acting on the center

of gravity of Af , g is the gravitational acceleration, S0 is the slope of the

conduit, and Sf is the slope of the energy line.

The vector Eq. (3.1) does not form a closed system in that the flow state

is described using three variables: Ω, p and Qm. However, it is possible to

eliminate the pressure variable by introducing the general definition of the

celerity of the pressure wave (ag) (e.g., Guinot 2003), which relates p and Ω:

ag =

[
d(Afp)

dΩ

]1/2

(3.3)

The pressure-wave celerity for the gas-liquid mixture (am) can be estimated

as (Guinot 2001a):

am =
a√

1 + ψ
ref

ρf refa
2

p
1
β
ref

p
1+β

β

(3.4)

where a is the pressure-wave celerity in presence of liquid only, pref is a refer-

ence pressure for which the density is known (ρf ref ), β is a coefficient equal to

1.0 for isothermal processes and 1.4 for adiabatic conditions, and ψref is the

volume fraction of gas at the reference pressure. The water density measured

at a temperature of 4 degrees Celsius under atmospheric pressure conditions

is 1000 kg/m3. Thus, the reference density and pressure when the liquid is

water can be taken as 1000 kg/m3 and 101325 Pa, respectively.

The relationship between the volume fraction of gas ψ and pressure for the
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“single-equivalent fluid” assumptions can be expressed as (Guinot 2001a):

pψβ = p
ref

ψβ
ref

(3.5)

The pressure-wave celerity in presence of liquid only depends upon the elastic

properties of the conduit, the bulk modulus of elasticity of the fluid, as well

as on the external constraints. The general expression of the pressure-wave

celerity is given by (e.g., Chaudhry 1987):

a =

[
kf/ρf

1 +
kf

Y
χ

]1/2

(3.6)

where kf is the bulk modulus of elasticity of the fluid, Y is Young’s modulus

of elasticity of the pipe material, and χ is a non-dimensional parameter that

depends upon the geometric properties of the conduit and pipe restraints.

Substituting Eq. (3.4) into Eq. (3.3) and integrating the differentials dΩ and

dp (Af is assumed to be constant) leads to the following equation that relates

p and Ω:

Ω = Ωref +
Af

a2

[
p− pref + (p

−1
β

ref − p
−1
β )βψ

ref
ρf refa

2p
1
β

ref

]
(3.7)

where Ωref = ρf refAf . The pressure p in Eq. (3.7) can be determined by an

iterative scheme such as the Newton Raphson method and typically between

three and five iterations are needed to ensure convergence. In single-phase

liquid flows, the pressure-wave celerity is constant and no iteration is required

to determine p. In this case, the following relation between p and Ω is obtained:

64



p = pref +
a2

Af

(Ω− Ωref ) (3.8)

The flow variables used in this chapter are Ω and Qm. However, the engineering

community prefers to use the piezometric head h and flow discharge Q. The

latter variables can be determined from Ω and Qm as follows:

Q =
Qm

Ω
Af (3.9)

h =
p− pref

ρf refg
+

d

2
(3.10)

where d is the pipe diameter and h is measured over the conduit bottom.

The absolute pressure head (H) in meters of water can be obtained as H =

h + 10.33.

3.3 Formulation of finite volume Godunov-type

schemes

This method is based on writing the governing equations in integral form over

an elementary control volume or cell, hence the general term of Finite Volume

(FV) method. The computational grid or cell involves discretization of the

spatial domain x into cells of length ∆xi and the temporal domain t into

intervals of duration ∆t. The ith cell is centered at node i and extends from

i−1/2 to i+1/2. The flow variables (Ω and Qm) are defined at the cell centers

i and represent their average value within each cell. Fluxes, on the other hand

are evaluated at the interfaces between cells (i− 1/2 and i + 1/2). For the ith
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cell, the integration of Eq. (3.1) with respect to x from control surface i− 1/2

to control surface i + 1/2 yields:

Un+1
i = Un

i −
∆t

∆xi

(F
n+1/2
i+1/2 − F

n+1/2
i−1/2 ) +

∆t

∆xi

∫ i+1/2

i−1/2

Sdx (3.11)

where the superscripts n, n+1/2, and n+1 reflect the t, t+∆t/2, and t+∆t

time levels, respectively. In Eq. (3.11), the determination of U at the new

time step n + 1 requires the computation of the numerical flux (F
n+1/2
i+1/2 ) at

the cell interfaces and the evaluation of the source term. In the Godunov

approach, the flux F
n+1/2
i+1/2 is obtained by solving the Riemann problem with

constant states Un
i and Un

i+1. This way of computing the flux leads to a first-

order accuracy of the numerical solution. To achieve second-order accuracy

in space and time, the Monotone Upstream-centred Scheme for Conservation

Laws (MUSCL)-Hancock method is used in this chapter, which is described in

the next section.

3.3.1 The MUSCL-Hancock method

The first step of the MUSCL-Hancock method (e.g., Toro 2001) is the recon-

struction of piece-wise constant data Un
i into a piecewise linear distribution of

the data Un
i (x) = Un

i +(x−xi)∆i/∆x, where xi = (i−1/2)∆x is the center of

the computing cells and ∆i is a vector difference [∆i = (Un
i+1−Un

i−1)/2], and

then extrapolation of the data to the edges of each cell, yielding the extrapo-

lated values UL and UR. To avoid spurious oscillations near shock waves and

other sharp flow features, a Total Variation Diminishing (TVD) constraint is

enforced in the data reconstruction step by limiting ∆i. The MINMOD pre-

processing slope limiter is used in this chapter to enforce the TVD constraint.
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The reader is referred to the book of Toro (2001) for a detailed description of

the available limiters.

The second step consists in evolving the extrapolated values through a half

time step according to

ŨL,R = UL,R − 1

2

∆t

∆x

[
F(UR)− F(UL)

]
. (3.12)

where F(U) indicates the flux of U.

In the third step, a Riemann problem with initial data consisting of evolved

boundary extrapolated values is solved. In what follows, efficient approximate

Riemann solvers for two and single-phase water hammer flows that do not

require iterations are proposed.

3.3.2 Riemann solver for two-phase water hammer flows

In contrast with single-phase water hammer flows, in two-phase flows the

pressure-wave celerity may be reduced to very low values, in which case u

is not necessarily negligible compared to am. However, u is still smaller than

am and consequently the characteristics travel in opposite directions and the

star region (?), which is an intermediate region between the left and right

states, contains the location of the initial discontinuity. Thus, the flow vari-

ables in the star region are used to compute the flux. Simple estimates for Ω?

and Qm? that do not require iterations can be obtained by solving the Rie-

mann problem for the linearized hyperbolic system ∂U/∂t + ∂F(U)/∂x = 0

with F(U) ≡ AU, A = A(U) and U ≡ (UL +UR)/2. This is described next.

The two eigenvalues for the matrix A are given by: λ1 = u − am and

λ2 = u+am, where ām = (amL
+amR

)/2 and ū = (uL +uR)/2. The application
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of the Rankine-Hugoniot conditions across the two waves [λi (i = 1, 2)] gives:

Qm? −QmL = (ū− ām)
(
Ω? − ΩL

)
(3.13)

QmR −Qm? = (ū + ām)
(
ΩR − Ω?

)
(3.14)

From Eqs. (3.13) and (3.14) the following relations for Ω? and Qm? are ob-

tained.

Ω? =
(ΩL + ΩR

2

)(
1 +

uL − uR

2ām

)
(3.15)

Qm? = QmL + (ū− ām)(Ω? − ΩL

)
(3.16)

By using the estimated values of Ω? and Qm?, the flux is obtained from

Eq. (3.2).

3.3.3 Riemann solver for single-phase water hammer

flows

In this type of flows, the pressure-wave celerity is constant and the order

of magnitude of u is much smaller than a, so the convective term in the

governing equations can be neglected. With these simplifications, the ana-

lytical solution of the Riemann problem for the linearized hyperbolic system

∂U/∂t + ∂F(U)/∂x = 0 provides the following estimates for Ω? and Qm?

Ω? =
ΩL + ΩR

2
+

QmL −QmR

2a
(3.17)
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Qm? =
QmL + QmR

2
+ a

ΩL − ΩR

2
(3.18)

which are used to compute the flux by using Eq. (3.2).

3.4 Second-order accurate boundary conditions

Since Eq. (3.11) is to be used for all the cells of the computational domain, it

is necessary to compute the fluxes F
n+1/2
1/2 (left-hand boundary) and F

n+1/2
Nx+1/2

(right-hand boundary) in order to update the flow variables in the first and last

cells. For the quality of the numerical solution to be preserved, it is necessary

to use the same order of reconstruction in all the cells of the computational

domain (e.g., LeVeque 2002, Guinot 2003). The MUSCL-Hancock scheme

uses one cell on each side of the cell in which the profile is to be reconstructed.

Therefore, one cell is missing when the profile is to be reconstructed within

the first and last cells of the computational domain. The missing information

at the boundaries is restored by adding one virtual cell at each end of the

computational domain. The virtual cell on the left-hand side is numbered

0, while the cell on the right-hand side of the domain is numbered Nx + 1

(Fig. 3.1). The algorithm consists of the following steps: (1) determination of

U at the boundaries 1/2 and Nx + 1/2, and (2) determination of the average

flow variables U over the virtual cells.

3.4.1 Determination of flow variables at boundaries

It is assumed that the average flow variables in the cells 0 to Nx+1 are known

from the previous time step and that a second-order reconstruction has been

carried out in the cells 1 and Nx (Fig. 3.1). The unknown boundary flow
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Figure 3.1: Second-order boundary conditions by adding virtual cells.

variables (Ub) are determined using the theory of Riemann invariants. The

reader is referred to the book of LeVeque (2002) for a deeper discussion on

the theory of Riemann invariants. The generalized Riemann invariants for

two-phase water hammer flows are given by (e.g., Guinot 2003):





(am/Ω)dΩ + du = 0 along dx/dt = u + am

(am/Ω)dΩ− du = 0 along dx/dt = u− am

(3.19)

Due to space limitations, only the procedure to compute the flux at the left-

hand boundary is provided in this section. However, the algorithm is very sim-

ilar for the right-hand boundary. The left-hand boundary (b) is connected to

the left of the first cell (1, L) along the characteristic dx/dt = u−am (Fig. 3.2).

Thus, for the left-hand boundary, the second relationship of Eq. (3.19) is inte-

grated between b and 1, L, which integration can be approximated according

to the trapezoidal rule as follows:
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Figure 3.2: Path of integration at left-hand boundary.

an
m1,L + a

n+1/2
mb

2
(Ω

n+1/2
b − Ωn

1,L)− Ωn
1,L + Ω

n+1/2
b

2
(u

n+1/2
b − un

1,L) = 0 (3.20)

Another relationship is available from prescribing one flow variable or an

equation that relates the two flow variables at the boundary. This relationship

(ζb) may be expressed as:

ζb(Ω
n+1/2
b , Qn+1/2

mb
) = 0 (3.21)

Depending of the type of boundary condition imposed, it may or may not

be necessary to use an iterative technique to solve the system of Eqs. (3.20)

and (3.21). Following computation of the flow variables at the boundaries

(U
n+1/2
b ), their fluxes can be computed by using the flux relation in Eq. (3.2).

For instance, let’s consider that the pressure is prescribed at the left-hand

boundary (p
n+1/2
b ). This is equivalent to prescribing a mass per unit length

Ω
n+1/2
b , computed from Eq. (3.7).
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Ωb = Ωref +
Af

a2

[
pb − pref + (p

−1
β

ref − p
−1
β

b )βψ
ref

ρf refa
2p

1
β

ref

]
(3.22)

The value of u
n+1/2
b is obtained from Eq. (3.20). This yields:

u
n+1/2
b = un

1,L +
(an

m1,L
+ a

n+1/2
mb )(Ω

n+1/2
b − Ωn

1,L)

Ω
n+1/2
b + Ωn

1,L

(3.23)

Since the pressure is prescribed at the boundary, a
n+1/2
mb is known from Eq. (3.4).

Thus u
n+1/2
b is the only unknown in Eq. (3.23). Once u

n+1/2
b is determined,

Q
n+1/2
mb can be calculated (Q

n+1/2
mb = Ω

n+1/2
b u

n+1/2
b ). Once Ω

n+1/2
b , Q

n+1/2
mb , and

Afp
n+1/2
b are known, the flux at the left-hand boundary F

n+1/2
b = F

n+1/2
1/2 can

be computed by using the flux relation in Eq. (3.2).

Now, let’s consider that the discharge is prescribed at the left-hand bound-

ary (Q
n+1/2
b ). Prescribing Q

n+1/2
b is equivalent to prescribing a velocity u

n+1/2
b =

Q
n+1/2
b /Af . Eq. (3.20) can be solved for Ω

n+1/2
b as

Ω
n+1/2
b =

[
1 + 2

u
n+1/2
b − un

1,L

an
m1,L

+ a
n+1/2
mb − u

n+1/2
b + un

1,L

]
Ωn

1,L (3.24)

in which Ω
n+1/2
b and a

n+1/2
mb are the unknowns. The solution is found iteratively.

A first guess is made for Ω
n+1/2
b (for instance Ω

n+1/2
b = Ωn

1,L) and this first

guess is inserted into Eq. (3.22) to compute p
n+1/2
b . The computed value of

p
n+1/2
b in turn is inserted into Eq. (3.4) to compute a

n+1/2
mb . This value is used

in Eq. (3.24) to update Ω
n+1/2
b , the new value of which is used to compute

a
n+1/2
mb . The procedure is repeated until convergence is achieved. Once Ω

n+1/2
b is

determined, p
n+1/2
b can be calculated from Eq. (3.22). Once Ω

n+1/2
b , Afp

n+1/2
b ,
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and Q
n+1/2
mb (= Ω

n+1/2
b u

n+1/2
b ) are known, F

n+1/2
1/2 can be computed as in the

previous case.

For single-phase flows, the fluxes at the boundaries can be also obtained

from the generalized Riemann invariants. Since in single-phase water hammer

flows the flow velocity is much smaller than the pressure-wave celerity, the

convective term (Q2
m/Ω) in the flux vector in Eq. (3.2) is neglected. In this case,

if a pressure is prescribed at the left-hand boundary (p
n+1/2
b ), the following

relations are obtained for Ω
n+1/2
b and Q

n+1/2
mb :

Ω
n+1/2
b = Ωref +

Af

a2
(p

n+1/2
b − pref ) (3.25)

Qn+1/2
mb

= Qn
m1,L

+ a(Ω
n+1/2
b − Ωn

1,L) (3.26)

Because the convective term was neglected, only Afp
n+1/2
b , and Q

n+1/2
mb , are

substituted into the flux vector F
n+1/2
1/2 in Eq. (3.2).

Likewise, if a discharge is prescribed at the left-hand boundary (Q
n+1/2
b ),

the following relations are obtained for Ω
n+1/2
b and Q

n+1/2
mb :

Ω
n+1/2
b =

Qn
m1,L

− aΩn
1,L

Q
n+1/2
b /Af − a

(3.27)

Qn+1/2
mb

=
Q

n+1/2
b

Af

Ω
n+1/2
b (3.28)

The value of Ω
n+1/2
b can be substituted in Eq. (3.8) to determine p

n+1/2
b . Once

Afp
n+1/2
b , and Q

n+1/2
mb are known, F

n+1/2
1/2 can be computed as in the previous

case.
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3.4.2 Determination of U in the virtual cells

Virtual cells are used only to achieve second-order accuracy in the first and last

cells of the computational domain. Therefore, they should advect the same

outflowing information as that at the boundaries and they should maintain the

conservation property of the shock capturing scheme. The latter means that no

unphysical perturbations into the computational domain may be introduced

by the virtual cells. These constraints may be satisfied: (1) by assuming that

the outflowing wave strengths in the virtual cells are the same as those at the

boundaries, and (2) by adjusting the inflowing wave strengths in the virtual

cells in such a way that the fluxes in these cells are the same as those at the

respective boundaries. For the left hand boundary, a simple formulation that

satisfies these two conditions is given by:

Ωn+1
0 = Ω

n+1/2
1/2 = Ω

n+1/2
b

Qn+1
m0

= Q
n+1/2
m1/2 = Q

n+1/2
mb

(3.29)

Note in Eq. (3.29) that the vector flow variable at the left-hand boundary

(U
n+1/2
1/2 ) is adopted by the virtual cell “0” at the time level “n + 1” that

is used for the reconstruction of U in the cell “1” at this time level, unless

monotonicity needs to be preserved in this cell. Note that the inflowing and

outflowing fluxes in the cell 0 are the same, which means that no perturbations

are introduced from the virtual cells into the computational domain when

updating the solution. Notice also that with this formulation, the outflowing

information advected by the virtual cells is the same as that at the boundaries.
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3.5 Incorporation of source terms

In a similar way to Zhao and Ghidaoui (2004), the source terms S are intro-

duced into the solution through time splitting using a second-order Runge-

Kutta discretization which results in the following explicit procedure.

First step (pure advection):

Un+1
i = Un

i −
∆t

∆x
(F

n+1/2
i+1/2 − F

n+1/2
i−1/2 ) (3.30)

Second step (update with source term by ∆t/2):

U
n+1

i = Un+1
i +

∆t

2
S
(
Un+1

i

)
(3.31)

Last step (re-update with source term by ∆t):

U
n+1

i = Un+1
i + ∆tS

(
U

n+1

i

)
(3.32)

where S(U) indicates that U is used to evaluate the source term S. The

evaluation of S requires the definition of the grid bottom slope (S0)i given by

(S0)i = − zi+1/2 − zi−1/2

xi+1/2 − xi−1/2

= −∆zi

∆xi

(3.33)

and the grid energy line slope (Sf )i which may be expressed as (Sf )i =

fui|ui|/(2gd), where f is the Darcy-Weisbach friction factor.
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3.6 Stability constraint

Since the explicit second-order Runge-Kutta discretization has been used for

the incorporation of S into the solution, the stability constraint must include

not only the Courant-Friedrichs-Lewy (CFL) criterion for the convective part,

but also the constraint for the source terms. The CFL constraint is given by:

∆tmax, CFL = Min
i=1,2,...Nx

[
∆xi

|un
i |+ |an

mi
|
]

(3.34)

and the constraint due to the explicit second-order Runge-Kutta discretization

is given by (León et al. 2006a)

∆tmax,S = Min
i=1,2,...Nx

[
− 4

Un+1
i

S(Un+1
i )

,−2
Un+1

i

S(U
n+1

i )

]
(3.35)

Since the same time step ∆t must be used for the convective part and the

source term, Un
i must be used instead of Un+1

i . Finally, the maximum per-

missible time step including the convective part and the source term will be

given by:

∆tmax = Min
i=1,2,...Nx

[
∆tmax,S, ∆tmax, CFL

]
(3.36)

3.7 Evaluation of the model

The purpose of this section is to asses the accuracy and numerical efficiency

of the proposed scheme for modeling one and two-phase water hammer flows.

For single-phase flows, the accuracy and numerical efficiency of the proposed
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scheme is compared against those of the fixed-grid MOC scheme with space-

line interpolation and the second-order scheme of Zhao and Ghidaoui (2004).

For two phase flows, the accuracy and numerical efficiency of the proposed

scheme is compared to the fixed-grid MOC scheme with space-line interpola-

tion. The proposed scheme is also used to reproduce a set of two-phase flow

experiments reported in the literature. Four tests cases are considered in this

section. These are:

1. Instantaneous downstream valve closure in a frictionless horizontal pipe

(one-phase flow)

2. Gradual downstream valve closure in a frictionless horizontal pipe (one-

phase flow)

3. Instantaneous downstream valve closure in a frictionless horizontal pipe

(two-phase flow)

4. Comparison with two-phase flow experiments of Chaudhry et al. (1990)

The proposed approach is valid for pipes with and without friction. In

the three first tests, frictionless pipes are used only because in such cases the

physical dissipation is zero, so any dissipation or amplification in the results is

solely due to the numerical scheme. In the following sections, the number of

grids, grid size and Courant number used in each example are indicated in the

relevant figures and thus will not be repeated in the text. The CPU times that

are reported in this paper were averaged over three realizations and computed

using a HP AMD Athlon (tm) 64 processor 3200 + 997 MHz, 512 MB of Ram

notebook.
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3.7.1 Test 1: Instantaneous downstream valve closure

in a frictionless horizontal pipe (one-phase flow)

This test is used to compare the accuracy and numerical efficiency of the

proposed scheme against the Zhao and Ghidaoui (2004) approach and the

MOC scheme with space-line interpolation for single-phase flows under strong

transient conditions. A strong transient refers to a transient phenomena in

which the resulting flow presents discontinuities (sharp fronts). This type of

transient is generated for instance after an instantaneous valve closure. On

the other hand, a smooth transient refers to a transient phenomena in which

the resulting flow doesn’t present discontinuities. This transient is produced

for instance after a gradual valve closure. The test considers one horizontal

frictionless pipe connected to an upstream reservoir and a downstream valve.

The length of the pipe is 10000 m and its diameter is 1.0 m, the pressure-wave

celerity is 1000 m/s, the upstream reservoir constant head h0 is 200 m, and

the initial steady-state discharge is 2.0 m3/s.

The transient flow is obtained after an instantaneous closure of the down-

stream valve. To investigate the performance of the schemes under consider-

ation when using low Courant numbers, these schemes are used to reproduce

the resulting transient using a coarse grid (to illustrate their performance bet-

ter) and two low Courant numbers (Cr = 0.5 and Cr = 0.1). A portion of

the simulated pressure traces are shown in Figs. 3.3(a) and 3.3(b). Additional

simulations were performed using a Cr = 1.0. As expected, all schemes un-

der consideration have reproduced the exact solution when Cr = 1.0 (results

not shown). It is clear from Figs. 3.3(a) and 3.3(b) that the MOC is more

dissipative than either the second-order scheme of Zhao and Ghidaoui or the

proposed scheme for low Courant numbers. The results also show that the
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Figure 3.3: Pressure traces at downstream valve for test No 1 (Nx = 10
cells) using (a) Cr = 0.5, and (b) Cr = 0.1.

proposed scheme is less dissipative than the scheme of Zhao and Ghidaoui.

The basic difference between the second-order scheme of Zhao and Ghidaoui

and the proposed approach for single-phase flows is that only a first-order

boundary condition is used in the former approach, and a second-order one in

the latter.

In the previous simulations, the reader may question the low Courant num-

bers used. Although in real large-scale systems, whose pipes have different

lengths and water hammer wavespeeds, it is impossible to achieve a Courant
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number of 1.0 when a coarse computational grid is chosen, it can be shown

that by increasing the number of cells, a Cr close to 1.0 can be achieved. In

the latter condition, a good performance of all schemes is expected. A re-

alistic assessment of accuracy and numerical efficiency of the schemes has to

take into account the variation of the Courant number with the number of

grids (Nx). The variation of Cr versus Nx is not the same for different pipe

systems. However, the trend of Cr vs Nx is similar for several scenarios tested

(results not shown). The trend of Cr versus Nx adopted in this test case is

presented in Fig. 3.4. This trend was obtained using the pipe system presented

in Ghidaoui et al. (1998). This system consisted of two pipes in series where

the length of the upstream pipe was 800 m and the length of the downstream

one was 300 m. The pressure wave celerity for both pipes was 1000 m/s.

The discretization strategy was based on the pipe that has the minimum wave

travel time (Karney and Ghidaoui 1997). The approach of using at least one

reach in the pipe that has the minimum wave travel time guarantees that the

Courant number in the remaining pipes of the system is bounded by 0.5 and

1.0.

To obtain a quantitative measure of numerical dissipation, the energy equa-

tion of Karney (1990) can be used (Ghidaoui et al. 1998). The energy equation

of Karney states that the total energy (sum of internal and kinetic) can only

change as work is done on the conduit or as energy is dissipated from it. In this

test the friction is set to zero, so the rate of total energy dissipation is zero.

Moreover, because the downstream valve is closed instantaneously, no fluid

is exchanged with the environment across a pressure difference; therefore the

work produced at the downstream end of the pipe is also equal to zero (Ghi-

daoui et al. 1998). As an aside, the rate of change of internal energy (δU) given
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Figure 3.4: Courant number versus number of cells.

in Karney (1990) in our notation is given by δU = d[(ρfLAfg
2(hs−h)2)/(2a2)],

where hs is the head after the transient flow has reached steady state measured

over the conduit bottom. By integrating this relation considering that U = 0

at h = hs, the expression for the internal energy at any time can be written

as: U = (ρfAfg
2)/(2a2)

∫
(hs − h)2dx. Notice that in this test, the head hs is

the same as the head at the reservoir and thus, no work is produced at the

upstream end of the pipe (see energy equation of Karney 1990). Therefore,

the total energy (sum of kinetic and internal) in the pipe E is invariant with

time (i.e., E/E0 = 1).

Fig. 3.5 shows relative energy traces E/E0 produced by the schemes under

consideration for two coarse grids (Nx = 10 and 20 cells). The Courant num-

ber associated to each number of cells is obtained from Fig. 3.4 (average trend)

and its values are presented together with the number of cells in Fig. 3.5 cap-

tion. Fig. 3.5 shows that, the numerical dissipation produced by the proposed

scheme using 10 cells is smaller than that obtained by either the MOC scheme
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Figure 3.5: Energy traces for test No 1 (Nx = 10 cells, Cr = 0.9829; Nx =
20 cells, Cr = 0.9938).

or the Zhao and Ghidaoui approach for the same number of cells. For instance,

after 400 s, 29% of the initial energy has been dissipated by the MOC scheme,

21% by the scheme of Zhao and Ghidaoui and 18% by the proposed scheme.

The numerical dissipation results for all the schemes produced using 20 cells

show a significant reduction compared to those using 10 cells. This reduction

is not only due to the increase of cell numbers (10 to 20) but mainly due to the

associated increase of the Courant number (0.9829 to 0.9938). So far, it has

been shown that, for coarse grids, the proposed scheme is more accurate than

either the MOC scheme or the approach of Zhao and Ghidaoui. However, an

objective comparison requires measuring the CPU time needed by each of the

schemes to achieve the same level of accuracy (e.g., Zhao and Ghidaoui 2004,

León et al. 2006).

To compare the numerical efficiency of the schemes, the numerical dissipa-

tion (numerical error) is plotted against the number of grids on log-log scale

(Fig. 3.6). As shown in Fig. 3.6, for coarse grids, the accuracy of the proposed
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scheme is almost the same as Zhao and Ghidaoui and slightly superior than

the MOC scheme. For relatively fine grids (Nx > 1000), the accuracy of the

three schemes is almost the same. For comparison of CPU times, five levels

of numerical error were selected (0.1% - 10%). The number of grids needed

by each scheme to achieve the five numerical error levels were obtained from

Fig. 3.6. These number of grids in turn were used to determine their associated

Courant numbers (Fig. 3.4) and the CPU times. Fig. 3.7 shows the plot of the

numerical error against the CPU time on log-log scale. The CPU time results

show that, to achieve the same degree of accuracy, the proposed scheme has a

similar numerical efficiency as the Zhao and Ghidaoui scheme. The results also

show that the MOC is more efficient numerically than the proposed scheme

and the Zhao and Ghidaoui approach despite the fact that, for a given level of

accuracy, the MOC scheme requires a finer grid than the proposed scheme and

the Zhao and Ghidaoui approach. For the conditions presented in Fig. 3.7, it

is found that the MOC scheme is about 2 to 5 times faster to execute than

the proposed scheme and the Zhao and Ghidaoui approach.

3.7.2 Test 2: Gradual downstream valve closure in a

frictionless horizontal pipe (one-phase flow)

This test is used to compare the accuracy and numerical efficiency of the

proposed scheme against the Zhao and Ghidaoui (2004) approach and the

MOC scheme with space-line interpolation for single-phase flows under smooth

transient conditions (no discontinuities). The test rig used is adapted from

Wylie and Streeter (1983). This test rig considers one horizontal frictionless

pipe connected to an upstream reservoir and a downstream valve. The length

of the pipe is 600 m and its diameter is 0.5 m, the pressure-wave celerity is 1200
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m/s, the upstream reservoir constant head h0 is 150 m, and the initial steady-

state discharge is 0.4882 m3/s. The transient flow in this test is obtained after

a gradual closure of the downstream valve. The valve closure relationship is

given by τ = (1− t/tc)
1.5 where tc is the time of valve closure, which has been

assumed to be 2.1 s.

In the previous test, it was shown that when Cr is very close to 1.0 (>

0.99), the MOC scheme is slightly less accurate than the proposed scheme

and the Zhao and Ghidaoui approach, but it can be more efficient than these

schemes. The same occurs in smooth transient conditions for single-phase

flows. Due to space limitations, results are not shown. As is shown in Fig. 3.4,

although the Courant number average trend tends 1.0 when Nx is increased,

the Courant number has a periodic variation with the number of grids. Thus,

a Cr very close to 1.0 cannot be guaranteed in all the pipes. To investigate the

performance of the schemes for Courant numbers slightly less than 1.0, a Cr =

0.95 is considered in this test. Fig. 3.8 shows simulated pressure traces at the

downstream valve using this Courant number and Nx = 40 cells. The “Near

exact” solution is also presented in this figure. The “Near exact” solution is

obtained by grid refinement until convergence is achieved. As is shown in this

figure, the MOC is more dissipative than either the second-order scheme of

Zhao and Ghidaoui or the proposed scheme. The results also show that the

proposed scheme is less dissipative than the scheme of Zhao and Ghidaoui.

To obtain a quantitative measure of numerical dissipation, the energy equa-

tion of Karney (1990) is also used here. In this test, work is produced at the

downstream boundary while fluid is exchanged with the environment across a

pressure difference. Thus, the total energy (sum of kinetic and internal) is not

invariant with time while the valve is being closed. After the valve is closed,
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Figure 3.8: Pressure traces at downstream valve for test No 2 (Nx = 40
cells, Cr = 0.95).

no work is done or energy is dissipated on the conduit, and therefore the total

energy is invariant with time. Fig. 3.9 shows relative energy traces produced

by the schemes under consideration for Cr = 0.95 and Nx = 40 cells. The

relative energy is expressed as E/Ec, where Ec is the total energy after the

valve is totally closed, and E is the total energy at time t. Fig. 3.9 shows a

reduction in the relative energy until the valve is totally closed (t = 2.1s). For

t > 2.1s, the relative energy is constant and equal to 1.0. Since all numerical

schemes are dissipative, the relative energy traces achieved by the schemes

(after the valve is closed) are smaller than 1.0 (Fig. 3.9).

Fig. 3.10 shows the plot of the numerical error against the number of grids

on log-log scale. As shown in this figure, to achieve a given level of accuracy,

the MOC scheme requires a much finer grid than the proposed scheme and

the Zhao and Ghidaoui approach. For comparison of CPU times, five levels of
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Figure 3.9: Energy traces for test No 2 (Nx = 40 cells, Cr = 0.95).

numerical error were selected (0.1% - 10%). The number of grids needed by

each of the schemes to achieve the five levels of numerical error, were obtained

from Fig. 3.10. These number of grids in turn were used to compute the CPU

times. The numerical error is plotted as a function of CPU time in Fig. 3.11.

This figure shows that, to achieve the same degree of accuracy, the proposed

scheme requires less CPU time than either the MOC scheme or the Zhao and

Ghidaoui approach. For instance, for a numerical error of 1%, the CPU time

required by the proposed scheme is about 0.04 and 0.71 times of those required

by the MOC scheme and the Zhao and Ghidaoui approach, respectively. For

the CPU time results presented in Fig. 3.11, it is found that, the proposed

scheme is about 7 to 249 times faster to execute than the MOC scheme, and

34% to 67% faster than the scheme of Zhao and Ghidaoui.
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Figure 3.10: Numerical error versus number of grids for test No 2 (t = 20 s,
Cr = 0.95).
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(t = 20 s, Cr = 0.95).
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3.7.3 Test 3: Instantaneous downstream valve closure

in a frictionless horizontal pipe (two-phase flow)

This test is used to compare the accuracy and numerical efficiency of the

proposed scheme against the fixed-grid MOC scheme for two-phase flows. The

two-phase homogeneous mathematical model presented in Martin (1993) is

solved when using the MOC scheme. In this case, if shocks are present, the

Rankine-Hugoniot conditions are enforced across the shock. The test rig is the

same as test 1, except that the fluid is an air-water mixture. The void ratio

at the reference pressure (101325 Pa) is assumed to be 0.002 (0.2%). The

instantaneous closure of the downstream valve results in the appearance of a

shock wave at the downstream end of the pipe. This wave propagates upstream

until on reflection against the left boundary, it becomes a rarefaction wave.

Fig. 3.12 shows the pressure profiles at 140 s computed using the MOC scheme

and the proposed approach assuming isothermal conditions (β = 1.0) for two

different number of grids. The “Near exact” profile is also presented in this

figure. In this test case, all the simulations were carried out using a maximum

Courant number of 0.95 to avoid numerical instability problems. It should be

noted that in two phase flows, the air content and pressure wave celerity are

continuously changing (Eqs. 3.4 and 3.5). When using an explicit scheme (as

used here) for simulating these flows, it is possible to exceed Cr = 1.0 if a

Cr close to 1.0 is specified at the beginning of the time step. As shown in

Fig. 3.12, for the same number of grids and maximum Courant number, the

timing and magnitude of the shock wave simulated by the proposed scheme is

in better agreement with the “Near exact” solution than the MOC scheme.

Fig. 3.13 displays the simulated pressure traces at the middle of the pipe

for two different number of grids. As can be observed in this figure, the
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Figure 3.12: Pressure head versus longitudinal distance for test No 3 (β =
1.0, t = 140 s and Crmax = 0.95).

MOC is more dissipative than the proposed scheme. The results presented

in Figs. 3.12 and 3.13 show that, for the same discretization, the proposed

scheme is more accurate than the MOC scheme. A more conclusive comparison

requires measurement of the CPU time needed by each scheme to achieve a

given level of accuracy. The accuracy of a scheme can be measured using the

following error norm (e.g., Liang et al. 2007):

ABSERROR =
ΣNx

i=1|ei|
ΣNx

i=1|φexact
i | (3.37)

where ei = φnumerical
i − φexact

i = difference between the numerical and exact

solution at node i, φ = dependent variable such as the pressure head or flow

velocity, ABSERROR = absolute error, and Nx = number of grids. The

absolute error is a measure of the difference between the numerical and exact
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Figure 3.13: Pressure traces at the middle of the pipe for test No 3 (β = 1.0
and Crmax = 0.95).

solution for either the pressure head or flow velocity.

Fig. 3.14 shows the plot of the absolute error for the pressure head against

the number of grids on log-log scale. As shown in this figure, to achieve a

given level of accuracy, the MOC scheme requires a finer grid than the proposed

scheme, or, for the same number of grids, the proposed scheme is more accurate

than the MOC scheme. For comparison of CPU times, four levels of absolute

error were selected (0.4% - 10%). The number of grids needed by each of the

schemes to achieve the four absolute error levels, were obtained from Fig. 3.14.

These number of grids in turn were used to compute the CPU times, which

results are shown in Fig. 3.15. The CPU time results show that the proposed

scheme is about 3 to 130 times faster to execute than the MOC scheme. The

numerical efficiency of the proposed scheme compared to the MOC approach

increases as the absolute error decreases.
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Figure 3.14: Absolute error for the pressure head versus number of grids for
test No 3 (β = 1.0, t = 140 s and Crmax = 0.95).
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Figure 3.15: Absolute error for the pressure head versus CPU time for test
No 3 (β = 1.0, t = 140 s and Crmax = 0.95).
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Figure 3.16: Schematic of experiment Chaudhry et al. (1990).

3.7.4 Test 4: Comparison with two-phase flow experi-

ments of Chaudhry et al. (1990)

In this test, the fixed-grid MOC and the proposed scheme are used to reproduce

the second set of experiments reported in Chaudhry et al. (1990). The writers

are indebted to one of the authors of this paper, namely Professor C. Samuel

Martin, who kindly provided us the data for this set of experiments. The

schematic of the test facility is shown in Fig. 3.16. The conditions for the

second set of experiments reported in Chaudhry et al. (1990) are reproduced

in Table 3.1.

The test procedure was as follows: A steady state flow of an air-water

mixture was established in the test pipe by controlling the exit valves and

the pressure of the injected air at the inlet. The flow velocity of the air-

water mixture was maintained at a high enough rate so that slug flow could

be avoided by limiting the rate of air injection. Transient flow was created

by a rapid valve closure at the downstream end of the pipe. Transient-state

pressures were monitored by high-frequency-response pressure transducers at

three locations (1, 2 and 3), as shown in Fig. 3.16. The three stations were

located at x = 8 m, 21.1 m and 30.6 m, respectively, from the upstream end.

The upstream boundary was a constant-level reservoir while the down-

stream boundary was the recorded pressure history at station 3 (x = 30.6 m).
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Table 3.1: Experimental conditions for second set of experiments reported in
Chaudhry et al. (1990).

Description Values

Length L (m) 30.600

Diameter d (m) 0.026

Bed slope S0 (m/m) 0.000

Upst. reserv. press. H0 (m of water absol.) 21.700

Steady flow velocity u0 (m/s) 2.940

Darcy-Weisbach friction factor fq 0.0195

Pressure-wave celerity a (m/s) 715.000

Steady air mass flow rate (kg/s) 1.15x10−5

Downstream void ratio ψref 0.0053

A flow discharge boundary condition was not used at the downstream end

because the rate of closure of the exit valve was not reported in Chaudhry et

al. (1990). They suggested instead to use the recorded pressure history at

station 3 as downstream boundary condition because the measurement of the

rate of closure of a valve and, consequently the measurement of velocity are

very difficult. The recorded pressure trace at station 3 is shown in Fig. 3.17.

The simulated pressure traces at stations 1 and 2, assuming isothermal (β =

1.0) and adiabatic (β = 1.4) conditions, are presented with the corresponding

experimental observations in Figs. 3.18 - 3.21. As shown in these figures, the

simulated pressure traces using the MOC and the proposed scheme are very

similar for isothermal and adiabatic conditions. Figs. 3.18 - 3.21 also show

that the simulated peak pressures (MOC and proposed) are higher than those

in the experiments for both conditions. In addition, the results show that the
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Figure 3.17: Experimental absolute pressure trace at downstream end (x =
30.6 m).

simulated pressure traces agree with the experiments better when isothermal

conditions (Figs. 3.18 - 3.19) were assumed than when adiabatic conditions

(Figs. 3.20 - 3.21) were assumed. As an aside, a transient phenomena takes

place in isothermal conditions when there is no change of temperature during

the transient. Likewise, a transient phenomena develops in adiabatic condi-

tions when no heat enters or leaves the system during the transient. In the

experiments reported in Chaudhry et al. (1990), neither isothermal nor adia-

batic conditions seem to have prevailed. This is believed because the time scale

seems too fast for isothermal conditions to prevail. Also, the conductivity of a

stainless steel pipe, which is the material of the pipe used in the experiments,

is not very low for adiabatic conditions to hold.

By comparing the simulated results using the MOC and the proposed

scheme, it can be seen that the pressure traces computed using the MOC

are lower than the proposed scheme for all the simulations. This means that
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Figure 3.18: Computed and experimental absolute pressure traces at x = 8
m (Nx = 100 cells and Crmax = 0.95). The computed pressure traces were
performed under isothermal conditions (β = 1.0).
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Figure 3.19: Computed and experimental absolute pressure traces at x =
21.1 m (Nx = 100 cells and Crmax = 0.95). The computed pressure traces
were performed under isothermal conditions (β = 1.0).
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Figure 3.20: Computed and experimental absolute pressure traces at x = 8
m (Nx = 100 cells and Crmax = 0.95). The computed pressure traces were
performed under adiabatic conditions (β = 1.4).
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Figure 3.21: Computed and experimental absolute pressure traces at x =
21.1 m (Nx = 100 cells and Crmax = 0.95). The computed pressure traces
were performed under adiabatic conditions (β = 1.4).
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the MOC is more dissipative than the proposed scheme. However, the MOC

agrees with the experiments slightly better than the proposed scheme. This

may be confusing because one can conclude that the MOC is more accurate

than the proposed scheme. The apparent advantage of the MOC over the pro-

posed scheme is because, as usually is the case, the physical dissipation can not

be estimated with good accuracy and it is often underestimated. The last is

especially true when the physical dissipation is estimated using only a steady

friction formulation (as used here). Even though there are formulations to

estimate unsteady friction (e.g., Pezzinga 2000), the physical dissipation often

cannot be determined with good accuracy, especially in complex flows such

as two-phase flows. As suggested by Cannizzaro and Pezzinga (2005), in two-

phase flows, the physical dissipation is not only associated to the wall shear

stress but also to thermodynamic processes (e.g., thermic exchange between

the gaseous phase and the surrounding liquid and gas release). In general,

it is very difficult and it may be misleading to compare the accuracy of nu-

merical schemes using experiments. The discrepancies between simulated and

observed values may be attributed to experimental uncertainty, to neglecting

unsteady friction and thermodynamic processes when computing the physical

dissipation, and due to the fact that the thermodynamic conditions during

the experiments were neither isothermal nor adiabatic as was considered in

the simulations.
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Chapter 4

Single-phase mixed flows

4.1 Introduction

Single-phase models ignore the air phase and its interactions with the water

phase. As a result, such models are unable to reproduce any flow behav-

ior associated with the air phase such as pressure oscillation induced by the

Helmholtz instability, the pre-bore motion or the counter flow motion associ-

ated with poor venting, the pressure oscillation due to air entrapment caused

by the geometric instability, to name a few only (e.g., Schmidt et al. 2005).

The Helmholtz instability is developed at the air-water interface inside a

conduit line, causing entrapment of air cavities and large pressure oscillations.

This instability occurs in regions where there is large difference between the

speed of the air layer and the speed of the water layer. Differences in veloc-

ity between the air layer and the water layer underneath it can, for example,

occur when there is a shock front, which pushes the air in front in the direc-

tion opposite to the water layer. A counter current can also be set up when

the water level at the downstream boundary drops suddenly below the pipe

crown, causing the water to move out of the pipe while air rushes into the
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pipe to fill the void left by the water. The velocity differential at the air-water

interface, along with the inevitable presence of surface water waves, causes the

air pressure to be lowest near the crests of the perturbed interface and highest

near its troughs. This pressure difference pushes the crest of the wave upward

while the gravity force pulls the crest downward. The instability sets in when

the pressure difference is larger than gravitational force (e.g., Kordyban 1977,

Hamam and McCorquodale 1982). The amplitude of the water waves can be-

come sufficiently large to reach the roof of the pipe causing the air column

to be bridged by water. As a result, air becomes trapped between successive

water columns. The Helmholtz instability at the interface of two fluids with

different speeds is a classical problem in fluid mechanics and its treatment can

be found in numerous books, papers and monographs. However, these studies

are often performed under geometrical and dynamic conditions that are very

different from those in pipe flows.

It is important to note that much of the complex dynamics in unsteady

pipe flows is due to the air phase (e.g., Hamam and McCorquodale 1982,

Cardle et al. 1988, Li and McCorquodale 1999, Vasconcelos and Wright 2003).

The stability of the flow and the magnitude and frequency of pressures in a

pipe system are highly affected by the initial volume of air in the pipe, by the

rates of inflow and outflow of air into the pipe during the transient and by the

pressure and velocity field in the air phase. Single phase models are unable to

reproduce any flow behavior associated with the air phase. Therefore, single

phase models are expected to be reasonable only when there is an unrestricted

air supply into and out of the system and when the velocity is not large enough

to produce any flow instability.

Single-phase mixed flows are traditionally simulated by one of two general
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approaches (e.g., Li and McCorquodale 1999, León et al. 2006d): (a) simu-

lation of pressurized flows as free surface flows using a hypothetical narrow

open-top slot (“Preissmann slot”); and (b) separate simulation of free surface

and pressurized flows. Recently the Decoupled Pressure Approach (DPA) was

introduced by Vasconcelos et al. (2006). An overview of these approaches is

presented next.

4.1.1 Preissmann slot approach

The Preissmann approach, first applied by Cunge and Wegner (1964), assumes

that the top of the pipe is connected to a slot, which is open to the atmosphere,

and applies the SaintVenant equations to the pipe-slot open-channel. The

hypothetical slot is ideally chosen so that the speed of gravity waves in the slot

is equal to the water hammer wavespeed and the water level in the slot is equal

to the water hammer head. Essentially, this approach exploits the similarity

between the wave equations which describe free surface and pressurized flows.

The wave nature of free surface flows comes from the ability of open channels to

store mass by a change in water elevation. The wave nature of water hammer

flows comes from the ability of a full pipe to store mass by a change in pipe

area and fluid density. Clearly, the storage ability of free surface flows is much

larger than water hammer flows. Therefore, forcing equivalence between the

free surface and water hammer equations requires that the hypothetical slot

stores as much fluid as a full pipe would through a change in pipe area and

fluid density. This results in a slot with very high water level and extremely

small width.

The combination of large water level and small width results in numerical

instabilities (e.g., Yen 1986). Such instabilities can be removed by making the
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slot wider. However, changing the width of the slot destroys the equivalence

between the water hammer and the free surface flow equations and results in

incorrect wavespeeds and pressure heads. It seems there is a general confu-

sion regarding the selection of the slot width. Papers devoted to numerical

schemes for the simultaneous modeling of free surface and pressurized flows

show that the size of the slot doesn’t have a significant influence on the results

for pressure heads (e.g., Trajkovic et al. 1999). Some authors even used a

slot width as large as 10% of the pipe diameter (e.g., Trajkovic et al. 1999)

and even so reported numerical instabilities. The small influence of the slot

width on the resulting pressure heads when simulating mixed flows led to the

incorrect conclusion that the Preissmann model with a wide slot can be used

to model accurately free surface flows, pressurized flows and the simultaneous

occurrence of free surface and pressurized flows. There are even commercial

models intended for simulating all these flows in storm-sewer systems using

the Preissmann slot approach with wide slots. The effect of the slot width

when simulating open channel-pressurized flow interfaces is insignificant, but

it is significant when modeling pure pressurized flows (flow in slot). The veloc-

ity of propagation of an open channel-pressurized flow interface is not greatly

influenced by the wavespeed at each side of the interface but by the conserva-

tion of mass and momentum across the interface. In pure pressurized flows,

however, the water hammer wavespeed determines how fast the pressure tran-

sients are propagated. The only way of reproducing the correct propagation

and interaction of pressurized transients is by using a slot width that achieves

a gravity wavespeed in the slot equal to the water hammer wavespeed.

Notwithstanding the problems associated with the size of the slot, the

generic equivalence between the water hammer and the free surface flow equa-
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tions does not imply that both flows are identical. The use of water level to

represent the water hammer head prohibits the formation of sub-atmospheric

pressures and the emergence of vapor cavities, which would occur in a water

hammer flow when the pressure drops below vapor pressure. Whenever the

head drops below the slot, the pressure produced by the Preissmann model is

equivalent to the water depth in the pipe and the magnitude of the wavespeed

drops from the water hammer wavespeed to the open-channel wavespeed. In

reality, however, sub-atmospheric water hammer pressures could form during

depressurization and the speed of these pressures is the same as the water

hammer wavespeed. Therefore, Preissmann slot models cannot simulate sub-

atmospheric pressures, and the results of these models after, as well as during,

depressurization must be treated with caution.

The advantages of the Preissmann slot models are summarized in Yen

(1986). They avoid any switching between free surface flow and pressurized

flow equations, so there is no need to define a surcharging criteria or to track

the interface between the open-channel and the surcharged portions of a pipe.

In addition, Preissmann slot models avoid the special treatment at the flow

boundaries and the numerical complexities that would be required to model

the pressurized portion by the water hammer theory and the open-channel

portion by the surface water theory.

4.1.2 Separate simulation of free surface and pressur-

ized flows

The separate simulation of free surface and pressurized flows is more com-

plex; however the methods based on this approach are able to simulate sub-

atmospheric pressures in the pressurized flow regime. Current models based
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on this approach can not address some complex flow features well, such as

open-channel surges, negative open channel-pressurized flow interfaces, and

interface reversals. In this approach, the location of the moving interface be-

tween the two flow types is tracked and treated as an internal interface. This

is often referred to as the “shock-fitting” method (e.g., Guo and Song 1990,

Fuamba 2002). In this approach, the pressurized flow is treated using rigid

water hammer theory (e.g., Wiggert 1972) or elastic water hammer theory

(e.g., Cardle 1984).

The model of Wiggert (1972) is an example of a model that uses the Saint-

Venant equation for the open-channel part and the rigid water hammer theory

for the surcharged part. The rigid water hammer theory ignores any mass

storage due to fluid compressibility and pipe elasticity. This theory precludes

the computation of water hammer waves in the pressurized portion of the

conduit; this is reasonable as long as the time scale of flow change exceeds the

wave travel time through a pipe. This is often the case when the transient is

generated by an inflow hydrograph, a controlled stoppage or start of a pump,

gradual closures of gates and valves and uncontrolled failures of pumps which

have high inertia. When the flow changes very quickly compared to the wave

travel time, the elastic water hammer theory should be used.

The model of Song et al. (1984) is an example of a model that uses the

Saint-Venant equation for the open-channel part and the elastic water hammer

theory for the surcharged part. This model is suitable for sudden transient

events such as sudden gate closures and the uncontrolled failure of a pump

with low inertia and for long pipe lines. When using the model of Song et

al. (1984), open-channel surges cannot be modeled and negative interfaces are

not adequately addressed. Furthermore, the flow variables at each side of
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the free surface-pressurized flow interface are extrapolated from the respective

adjacent cells, which may lead to mass and momentum conservation problems.

4.1.3 Decoupled pressure approach

Recently, Vasconcelos et al. (2006) introduced a Decoupled Pressure Approach

(DPA), which is formulated by modifying the open-channel Saint-Venant equa-

tions to allow for overpressurization, assuming that elastic behavior of the pipe

walls will account for the gain in pipe storage. One of the limitations of this

approach is the presence of what these authors call “post-shock oscillations”

near open channel-pressurized flow interfaces. To keep these oscillations small,

lower values for the pressure wave celerity may be used, but this may compro-

mise the accuracy of the simulation if pressurized transients are simulated.

4.2 Numerical schemes for modeling single-

phase mixed flows

The Preissmann slot and the DPA approach use the free surface flow equations

to simulate mixed flows. In the other hand, the shock-fitting approach treats

free surface and pressurized flows separately. In the latter case, the same or a

different numerical scheme may be used to simulate free surface and pressurized

flows. Thus, to address the limitations and advantages of numerical schemes

for the modeling of mixed flows, it is necessary to review the schemes available

for modeling free surface and pressurized flows independently. A review of

current numerical schemes available for modeling free surface and pressurized

flows is presented in Chapters 2 and 3, respectively.

As can be seen in Chapters 2 and 3, most of the models developed pri-
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marily to examine the formation and propagation of hydraulic transients in

free surface and pressurized flows are based on the Method of Characteristics

(MOC), usually, the fixed-grid MOC scheme with space-line interpolation.

León et al. (2006a, 2006b, 2006c) showed that, GTS schemes are superior to

the fixed-grid MOC scheme with space-line interpolation for both free sur-

face and pressurized flows. Thus, in this thesis, GTS schemes are chosen for

simulating free surface, pressurized and mixed flows.

In this thesis, two fully-conservative, computationally efficient and robust

models are formulated for simulating mixed flows. In the first model, which

was implemented numerically for complex networks, pressurized flows are sim-

ulated as free surface flows using a hypothetical narrow open-top slot (“Preiss-

mann slot”). In the second model, which was implemented numerically only

for one single pipe, free surface and pressurized flows are treated independently

while interacting through a moving interface.

In the first model, a gradual transition between the pipe and the slot is

introduced and an explicit Finite Volume (FV) GTS scheme with a slope

limiter is used to solve the governing equations (free surface flow). This model

is called the modified Preissmann model and is able to produce stable results

for strong (rapid) transients.

In the second model, both free surface and pressurized flows are handled

using shock-capturing methods to which the GTS belong. Open channel-

pressurized flow interfaces are treated using a shock-tracking-capturing ap-

proach. In this approach, cell boundaries are introduced at the location of

open channel-pressurized flow interfaces, subdividing some regular cells into

two subcells, resulting in a variable mesh arrangement that varies from one

time step to the next. However, the vast majority of grid cells do not vary.
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By having a cell boundary at each open channel-pressurized flow interface, we

avoid the smearing and loss of accuracy that is inevitable when the disconti-

nuity falls within a grid cell and the discrete solution must be averaged over

the cell.

The formulated models for simulating mixed flows are presented in the next

two sections. Each of these sections is organized as follows: (1) the governing

equations in conservative form are presented; (2) a Riemann solver for the

flux computation is presented; and (3) a brief overview for the formulation

of boundary conditions is presented. Finally, the models are tested using

experiments reported in the literature.

4.3 Modified Preissmann slot model

4.3.1 Governing equations

The one-dimensional open-channel flow continuity and momentum equations

for prismatic conduits may be written in their vector conservative form as

follows:

∂U

∂t
+

∂F

∂x
= S (4.1)

where the vector variable U, the flux vector F and the source term vector S

may be written as (e.g., Guinot 2003, León et al. 2006a):

U =




A

Q


 , F =




Q

Q2

A
+ Ap

ρ


 and S =




0

(S0 − Sf )gA


 (4.2)
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where A = cross-sectional area of the flow; Q = flow discharge; p = average

pressure of the water column over the cross sectional area; ρ = liquid density

that is assumed to be constant (incompressible flow); g = gravitational ac-

celeration; S0 = slope of the bottom channel; and Sf = slope of the energy

line. The model proposed in this section is applicable to any prismatic con-

duit, however in the rest of this section, only a circular cross-section conduit

is considered.

When using the Preissmann approach for the treatment of pressurized

flows, four main problems associated with the approach itself and with the

numerical scheme used to solve the governing equations may be found: First,

the inability of the Preissmann slot approach to describe sub-atmospheric full-

pipe flows; Second, mass and momentum balance problems associated with

the width of the slot; Third, instability problems associated with the poor

performance of the numerical scheme when the flow changes rapidly from the

pipe to the slot; and Fourth, inaccuracies in the propagation of pressurized

transients (flow in slot) associated with the width of the slot.

When using the Preissmann approach nothing can be done to address the

first problem, however the last three problems can be minimized. To address

the second problem, a narrow slot can be used. The third problem (instability)

is much more important in modeling strong (rapid) transient flows when the

flow changes rapidly from the pipe to the slot, which may cause the computer

simulation to abort. To address the fourth problem, a slot width that achieves

a gravity wavespeed in the slot equal to the water hammer wavespeed can be

used. This slot width (Ts) is given by

Ts =
gAf

a2
(4.3)
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where Af is the full cross-sectional area of the pipe and a is the water hammer

wavespeed.

In the proposed approach (called the modified Preissmann model), the

fourth problem is addressed by using a slot width that achieves a gravity

wavespeed in the slot equal to the water hammer wavespeed. This results in

narrow slots minimizing mass and momentum balance problems (second prob-

lem). The third problem (instability) is addressed by: (1) using a slope limiter

(MINMOD) in the Monotone Upstream-centred Scheme for Conservation Laws

(MUSCL)-Hancock method (see Chapter 3) such that the monotonicity of the

solution is preserved, and (2) introducing a gradual transition between the

pipe and the slot [Fig. 4.1 (b)] such that the transition between free surface

and pressurized flows occurs gradually. Differences between results produced

by simulations that included and ignored the area of the slot and the pressure

force over the slot area were negligibly small. Thus, these parameters were

ignored.

4.3.2 Formulation of finite volume Godunov-type schemes

The formulation of FV Godunov-type schemes is described in Chapters 2 and

3. In the Godunov approach, the fluxes at the cell interfaces are evaluated by

solving the Riemann problem. In the proposed model (both frameworks), the

Riemann problem is solved using the HLL Riemann solver that is described

in Chapters 2 and 3. For this Riemann solver the wavespeeds need to be

determined. Following, an estimate for wavespeeds using the two-shock wave

approximation is derived.

Figs. 4.2(a) and 4.2(b) illustrate the physical space and phase space for

the two-shock wave approximation, respectively. In order to facilitate the ap-
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Figure 4.1: (a) Definition of variables in circular cross-sections. (b) Preiss-
mann slot geometry (y ≥ 0.95d). The drawing is not in scale.

plication of the Rankine-Hugoniot condition to the continuity and momentum

equations, these equations are transformed to a frame of reference moving with

the left or right wavespeed, depending on the case to be analyzed [Figs. 4.2(c)

and 4.2(d)]. By convention, the wavespeed is positive if the wave is traveling

downstream and negative otherwise.

The application of the Rankine-Hugoniot condition to the continuity and

momentum equations across the left shock, respectively gives

ML = α?(u? − sL) = αL(uL − sL) (4.4)

αL(uL − sL)2 − α?(u? − sL)2 = η? − ηL (4.5)

where α = ρA and η = Ap. Use of ML [Eq. (4.4)] in Eq. (4.5) gives
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Figure 4.2: (a) Physical space and (b) phase space for the two-shock wave
approximation. (c) and (d) transformed frame of references for the left and
right shock waves, respectively.

ML = − η? − ηL

u? − uL

(4.6)

From Eq. (4.4), it is obtained

u? − uL = −ML
α? − αL

α?αL

(4.7)

which can be substituted into Eq. (4.6) to give

ML = ±
√

(η? − ηL)α?αL

α? − αL

(4.8)
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To select the root sign of ML, note in Eq. (4.4) [continuity] that if αL is greater

than α?, u? has to be greater than uL. Otherwise, u? has to be smaller than uL.

Thus, to satisfy Eq. (4.7), the positive root of ML [Eq. (4.8)] has to be selected.

Finally, by plugging the expression for ML into Eq. (4.4), the following relation

for the left shock wavespeed sL is obtained

sL = uL − ML

αL

= uL −
√

(η? − ηL)α?

(α? − αL)αL

(4.9)

A similar expression is obtained for the right shock wavespeed (sR). The left

and right shock wavespeeds are summarized as follows:

sL = uL − ΩL (4.10)

sR = uR + ΩR (4.11)

where ΩK (K = L,R) is given by

ΩK =

√
(η? − ηK)α?

(α? − αK)αK

(4.12)

Notice that η?(= A?p?) is a function of α? or viceversa. Thus, only one vari-

able (α? or η?) is needed to estimate ΩK . When α? is less or equal than

αK (K = L,R), it is suggested to replace ΩK (K = L, R) with the gravity

wave celerity cK (K = L,R) [see León et al. 2006a]. Following, several esti-

mates for α? or equivalently A? based on the two-shock wave approximation,
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the two-rarefaction wave approximation, the linearization of the governing

equations, and the depth positivity condition are provided.

Two-shock wave approximation

Eq. (4.7) relates the velocity in the star region u? with the velocity in the left

region uL. Another similar equation relates u? with the velocity in the right

region uR. These equations may be written as follows:

u? = uL − fL(α?, η?, αL, ηL) (4.13)

u? = uR + fR(α?, η?, αR, ηR) (4.14)

where fK (K = L,R) is given by

fK = (α? − αK)

√
η? − ηK

(α? − αK)α?αK

(4.15)

By eliminating u? from Eqs. (4.13) and (4.14), the following equation, which

is a function of one unknown (α? is a function of η? or viceversa), is obtained

f(α?, η?) = fL(α?, η?, αL, ηL) + fR(α?, η?, αR, ηR) + uR − uL = 0 (4.16)

In Eq. (4.16), it is more convenient to solve for y? than α? because both, α?

and η? are a function of y?.

113



Two-rarefaction wave approximation

Assuming the two-rarefaction wave approximation, the following estimates for

the exact solution of A? (or φ?) and u? are obtained:

For y < 0.95d (for derivation details see Chapter 2):

u? =
uL + uR

2
+

φL − φR

2
(4.17)

φ? =
φL + φR

2
+

uL − uR

2
(4.18)

where φ is given by (see Chapter 2):

φ =

√
g
d

8

[√
3θ−

√
3

80
θ3 +

19
√

3

448000
θ5 +

√
3

10035200
θ7 +

491
√

3

27× 7064780800
θ9 + ...

]

(4.19)

For y ≥ 0.95d, the estimates for A? and u? can be obtained by integrating

the differential relationships provided by the generalized Riemann invariants

across the two rarefaction waves using the trapezoidal rule. This provides

the two following equations that need to be solved by iteration to obtain the

estimates of A? and u?:

uL − u? +
(cL + c?)(AL − A?)

AL + A?

= 0 (4.20)

u? − uR − (c? + cR)(A? − AR)

A? + AR

= 0 (4.21)
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Linearization of governing equations

In this approach, A? is obtained by solving the Riemann problem for the

linearized hyperbolic system ∂U/∂t + ∂F(U)/∂x = 0 with F(U) ≡ AU,

A = A(U) and U ≡ (UL + UR)/2. This yields (for derivation details see

Chapter 2):

A? =
AR + AL

2
+

Ā

2c̄
(uL − uR) (4.22)

where Ā = (AR + AL)/2 and c̄ = (cR + cL)/2.

Unlike in the case of the two-rarefaction wave approximation, in the Rie-

mann solver based on the linearization of the governing equations (Eq. 4.22)

no iteration is required to estimate A?.

Depth positivity condition

Another estimate for A? that preserves the simplicity of Eq. (4.22) while adding

two important new properties may be obtained based on the depth positivity

condition (flow depth is greater than or equal to zero). The added properties

are (Toro 2001): (1) it can handle situations involving very shallow water

well; and (2) unlike the Riemann solver given in Eq. (4.22), the Riemann

solver based on the depth positivity condition is found to be very robust in

dealing with shock waves. Using this approach, the following estimate for A?

is obtained that is valid for y < 0.95d (for derivation details see Chapter 2):

A? =
AR + AL

2

(
1 +

uL − uR

φR + φL

)
(4.23)

In the modified Preissmann model, for y < 0.20d, the Riemann solver based on
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the depth positivity condition is used. For 0.20d ≤ y < 0.80d, the two-shock

wave approximation is applied, and for y ≥ 0.80d, the Riemann solver based

on linearization of the governing equations is utilized.

The incorporation of source terms into the solution and the stability con-

straints for the modified Preissmann model are the same as free surface flows

(see Chapter 2).

4.3.3 Boundary conditions

In this section, a single set of equations (free surface flow) is used for the

modeling of free surface and pressurized flows. Thus, the boundary conditions

used are equivalent to those used in free surface flows.

In the Godunov approach, for the order of accuracy of the numerical solu-

tion to be preserved, it is necessary to use the same order of reconstruction of

the flow variables in all the cells. Since common procedures of reconstruction

such as MUSCL use one or more cells on each side of the cell to be recon-

structed, generally one or more cells are missing within the first and last cells

of the computational domain. In the model proposed in this thesis (both

frameworks), second-order accurate boundary conditions are implemented us-

ing ghost cells outside of the boundaries (see Chapter 3 for implementation

details).

In a typical storm-sewer system, various types of boundaries are present.

These may include dropshafts, reservoirs, junctions, dead ends, control gates,

pumping stations, etc. In this section, only a three-way junction is described.

Several boundaries are special cases of the three-way junction boundary. For

instance, a dropshaft boundary is a special case of the three-way junction

boundary with no inflow pipes. A downstream reservoir boundary also is a
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special case of the three-way junction boundary with one inflow pipe and no

outflow pipe.

Three-way junction boundary

In this type of boundary (Fig. 4.3), seven variables are unknown, namely, the

water depth and the flow velocity at each pipe boundary, and the flow depth

at the dropshaft pond. Thus, seven equations are needed in order to determine

the unknown variables. The three first equations can be obtained by applying

the Rankine-Hugoniot conditions between each pipe boundary and the first

cell of the corresponding pipe adjacent to the dropshaft. This formulation is

intrinsically conservative (mass and momentum are conserved), and no special

treatment in presence of shocks at the boundary is required. This yields:

(un+1
b1

− un
1 )2 − (ηn+1

b1
− ηn

1 )

ρ

(An+1
b1

− An
1 )

An+1
b1

An
1

= 0 (4.24)

(un+1
b2

− un
2 )2 − (ηn+1

b2
− ηn

2 )

ρ

(An+1
b2

− An
2 )

An+1
b2

An
2

= 0 (4.25)

(un+1
b3

− un
3 )2 − (ηn+1

b3
− ηn

3 )

ρ

(An+1
b3

− An
3 )

An+1
b3

An
3

= 0 (4.26)

where the subscript bk (bk = b1, b2 and b3) refers to the pipe boundary, and

the subscript j (j = 1, 2 and 3) refers to the corresponding adjacent cell to

the boundary. When the flow at the junction changes smoothly and no shocks

are present, the theory of Riemann invariants (see León et al. 2006a) is used

instead of the Rankine-Hugoniot conditions for numerical stability reasons.

The fourth equation can be obtained from the mass balance at the dropshaft,
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Figure 4.3: Schematic of reservoir junction with overflow structure. (a) Plan
view, (b) Profile.

(Qn+1
dropsh + Qn

dropsh)

2
− (Qn+1

0 + Qn
0 )

2
+

(Qn+1
b1

+ Qn
b1

)

2
+

(Qn+1
b2

+ Qn
b2

)

2
−

(Qn+1
b3

+ Qn
b3

)

2
= Adropsh

dE3

dt
(4.27)

where E3 is the specific energy of the outflow and Q0 is the overflow discharge.

If the dropshaft has a relatively small storage capacity in comparison to the

flow, the right-side of Eq. (4.27) can be omitted. The specific energy of the

outflow is given by

E3 = y3 +
u2

b3

2g
(4.28)

The overflow discharge can be obtained as follows: Q0 = 0, if ydropsh ≤ y0,

and Q0 = CB(ydropsh− y0)
3/2, if ydropsh > y0, in which C = weir discharge

coefficient and B = weir length.

The fifth and sixth equations can be obtained by replacing the energy equa-

tions by the “kinematic compatibility condition” for the depths (e.g., Pagliara

and Yen 1997, Yen 1986, 2001):
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For subcritical flow:

yj = ycj
if drj + ycj

> y3

drj + yj = y3 otherwise
(4.29)

for j = 1, 2, where ycj
is the critical depth.

For supercritical flow:

yj = yuj
if drj + yuj

> y3

drj + yj = y3 otherwise
(4.30)

for j = 1, 2, where yuj
is the uniform flow depth corresponding to the instan-

taneous flow discharge Qj.

The seventh equation is obtained by applying the energy equation between

the dropshaft and the outflow pipe (pipe 3). This yields:

yn+1
dropsh = yn+1

b3
+ (1 + Ku)

u2
b3

2g
(4.31)

where Ku is the loss coefficient.

4.4 Shock-tracking-capturing model

4.4.1 Governing equations

The one-dimensional open-channel and compressible water hammer flow con-

tinuity and momentum equations for prismatic conduits may be written in

their vector conservative form and in a compatible format as follows:
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∂U

∂t
+

∂F

∂x
= S (4.32)

where the vector variable U, the flux vector F and the source term vector S

for open-channel flows may be written as (e.g., León et al. 2006a):

U =

[
ρA

ρQ

]
, F =

[
ρQ

ρQ2

A
+ Ap

]
and S =

[
0

(S0 − Sf )ρgA

]
(4.33)

and for compressible water hammer flows as (e.g., Guinot 2003):

U =

[
µ

Qm

]
, F =

[
Qm

Q2
m

µ
+ Afp

]
and S =

[
0

(S0 − Sf )ρfgAf

]
(4.34)

where the variables for the free surface flow are: A = cross-sectional area of the

flow; Q = flow discharge; p = average pressure of the water column over the

cross sectional area; ρ = liquid density that for free surface flows is assumed

to be constant but not for pressurized flows; g = gravitational acceleration;

S0 = slope of the bottom channel; and Sf = slope of the energy line, which

may be estimated using the Manning’s formula, the Darcy-Weisbach equation

or any other formulation. The approach proposed in this section is applicable

to any prismatic conduit, however in the rest of this section, only a circular

cross-section conduit is considered.

The variables for the compressible water hammer flow are: Af = full cross-

sectional area of the conduit, p = pressure acting on the center of gravity of

the full cross-sectional area of the conduit, Qm = mass discharge and µ = mass

of fluid per unit length of conduit. Denoting the fluid density for compressible
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water hammer flows by ρf , the mass per unit length can be expressed as

µ = ρfAf and the mass discharge as Qm = µu = ρfAfu. As in the case of

open-channel flows, the slope of the energy line Sf may be estimated using the

Manning’s formula, the Darcy-Weisbach equation or any other formulation.

The Eq. (4.32) for waterhammer flows does not form a closed system in

that the flow is described using three variables: µ, p and Qm. However, it is

possible to eliminate the pressure variable by introducing the definition of the

pressure wave celerity a, which relates p and µ:

a =

[
d(Afp)

dµ

]1/2

(4.35)

In Eq. (4.35), a is constant (single-phase flow) and is assumed to be known.

This variable can be computed using the following relation that is derived from

classical structural mechanics (e.g., Wylie and Streeter 1993):

a =

[
kf/ρf

1 +
kf

E
d
e

]1/2

(4.36)

where d is the pipe diameter, e is its thickness, E is Young’s modulus of

elasticity of the pipe material and kf is the compressibility of the fluid in the

pipe.

Integrating the differentials dµ and dp (Af is assumed to be constant) in

Eq. (4.35) leads to the following equation that relates p and µ:

Afp = Afpref + a2(µ− µref ) (4.37)

where pref is the reference pressure, and µref = Afρref . The pressure as a
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function of µ is readily obtained from Eq. (4.37).

In free surface flows, the gravity wavespeed c is given by c =
√

gA/T where

T is the topwidth of the flow. According to this relation, the gravity wavespeed

is unbounded as the water depth approaches the crown of the conduit. When

the water depth approaches the crown of the conduit; the pressure wave and

not the gravity wave should become the primary mode of propagation of a

disturbance. Therefore, a small length, ε, as proposed by Song et al. (1984) is

introduced such that the phase change from free surface to pressurized flow is

considered to occur when the depth exceeds d− ε. At this threshold condition

(y = d − ε), the fluid density, the hydraulic area and the average pressure

in both open-channel and pressurized flow regime have to be the same. This

threshold state is selected as the reference condition for the pressurized flow

variables in Eq. (4.37). At the threshold state, the reference area (Aref ) is

the hydraulic area below y = d − ε so that Af in the previous equations is

replaced with Aref . In the proposed model ε is chosen to be 2% of the pipe

diameter, which results in a reduction of the hydraulic area of less than 1%.

The reference density considered ρref is 1000 kg/m3 that corresponds to clean

water at a temperature of 4 degrees Celsius.

4.4.2 Differences between free surface and pressurized

flows and their implications for modeling mixed

flows

Although the governing equations from free surface and pressurized flows are

similar, the characteristics of these type of flows have a marked difference.

One important distinction between these flows is the ability of pressur-

ized flows to sustain sub-atmospheric pressures. After a given node has been
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pressurized, free surface flow is not necessarily generated at this node when

its head drops below the pipe crown. The additional and necessary condition

to depressurize this node is that at least one of the surrounding nodes is in

free surface flow regime. When a pipe system has been fully pressurized, the

only way to start the depressurization process is through ventilated boundaries

(e.g., dropshafts, reservoirs, etc.).

Another important difference is that in pressurized flows a disturbance is

propagated at a speed that is two orders of magnitude faster than in free

surface flows. A moving interfacial boundary separates the two flow regimes.

Cardle (1984) defined an open channel-pressurized flow interface as positive if it

is moving towards the open-channel flow (Fig. 4.4), and negative or retreating

if it is moving towards the region of pressurized flow (Fig. 4.5). The change

in direction of the interface from positive to negative or vice versa is called

“interface reversal”(Fig. 4.6).

4.4.3 Formulation of finite volume Godunov-type schemes

The proposed shock-tracking-capturing approach is incorporated within a fi-

nite volume framework that is described in Chapters 2 and 3. As mentioned in

the previous section, the Riemann problem is solved using the HLL Riemann

solver that is also described in Chapters 2 and 3. For this Riemann solver

the wavespeeds need to be determined. Following, an estimate for wavespeeds

using the two-shock wave approximation is derived.

Define:

α =





ρA for open-channel flows

µ = ρfAf for pressurized flows
(4.38)
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Figure 4.4: Positive interfaces (a) moving in the upstream direction (e.g.,
generated by sudden total closure of a gate downstream) (b) moving in the
downstream direction (e.g., created when the inflow rate exceeds the capacity
of the pipe or tunnel somewhere upstream).

and

η =





Ap for open-channel flows

Afp for pressurized flows
(4.39)

where α and η represent the mass of fluid per unit length of pipe and the

pressure force over the cross sectional area, respectively.

Figs. 4.2(a) and 4.2(b) illustrate the physical space and phase space for

the two-shock wave approximation, respectively. In order to facilitate the ap-

plication of the Rankine-Hugoniot condition to the continuity and momentum

equations, these equations are transformed to a frame of reference moving with

the left or right wavespeed, depending on the case to be analyzed [Figs. 4.2(c)

124



Figure 4.5: Negative interfaces (a) moving in the downstream direction (e.g.,
generated by the sudden partial closure of a gate (from above) somewhere up-
stream) (b) moving in the upstream direction (e.g., generated by depressur-
ization at the downstream end of the system).

and 4.2(d)]. By convention, the wavespeed is positive if the wave is traveling

downstream and negative otherwise.

The application of the Rankine-Hugoniot condition to the continuity and

momentum equations across the left shock, respectively gives

ML = α?(u? − sL) = αL(uL − sL) (4.40)

αL(uL − sL)2 − α?(u? − sL)2 = η? − ηL (4.41)

Use of ML (Eq. 4.40) in Eq. (4.41) gives
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Figure 4.6: Interface reversal (a) positive interface moving upstream trans-
formed into an open-channel surge and a negative interface (b) positive in-
terface moving downstream transformed into an open-channel surge and a
negative interface.

ML = − η? − ηL

u? − uL

(4.42)

From Eq. (4.40), it is obtained

u? − uL = −ML
α? − αL

α?αL

(4.43)

which can be substituted into Eq. (4.42) to give

ML = ±
√

[η? − ηL][α?αL]

α? − αL

(4.44)
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The left shock wavespeed sL can be obtained from Eq. (4.40) that gives

sL = uL − ML

αL

(4.45)

Note that the positive root of ML in Eq. (4.44) has to be chosen to satisfy

Eq. (4.43). A similar expression is obtained for the right shock wavespeed

(sR).

The left and right shock wavespeeds are summarized as follows:

sL = uL − ΩL (4.46)

sR = uR + ΩR (4.47)

where ΩK (K = L,R) is given by

ΩK =

√
[η? − ηK ][α?]

[α? − αK ][αK ]
(4.48)

Notice that η? is a function of α? or viceversa. Thus, only one variable (α?

or η?) is needed to estimate ΩK in Eq. (4.48). Following, an estimate for α?

based on the two-shock wave approximation is derived.

Eq. (4.43) relates the velocity in the star region u? with the velocity in the

left region uL. Another similar equation relates u? with the velocity in the

right region uR. These equations may be written as follows:

u? = uL − fL(α?, η?, αL, ηL) (4.49)
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u? = uR + fR(α?, η?, αR, ηR) (4.50)

where fK (K = L,R) is given by

fK = (α? − αK)

√
η? − ηK

(α? − αK)α?αK

(4.51)

By eliminating u? from Eqs. (4.49) and (4.50), the following equation, which

is a function of one unknown (α? is a function of η? or viceversa), is obtained

f(α?, η?) = fL(α?, η?, αL, ηL) + fR(α?, η?, αR, ηR) + uR − uL = 0 (4.52)

The star region may be in either open-channel or pressurized flow regime.

For the case when the star region is in open-channel flow regime, it is more

convenient to solve for y? than α? because both, α? and η? are a function of

y?.

The HLL Riemann solver allows all possible open channel-pressurized flow

interfaces, including interface reversals to be handled automatically. This is a

remarkable advantage of Riemann-based methods over other approaches such

as the shock-fitting model of Song et al. (1984), in which a different set of

equations needs to be formulated and solved for each type of open channel-

pressurized flow interface.

4.4.4 Boundary conditions

For the shock-tracking-capturing framework, solely boundary conditions for

a single pipe are implemented in this thesis. In this case, two variables are
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unknown at each boundary of the pipe, namely, the water depth (or hydraulic

area) and the flow velocity (or flow discharge). One of the variables is specified

and the other is computed using the Rankine-Hugoniot conditions (Eq. 4.24).

The Rankine-Hugoniot conditions can be applied indistinctively to free surface

or pressurized flows.

4.4.5 Shock-tracking-capturing method for open chan-

nel pressurized flow interfaces

The approach we pursue herein is in some degree similar to the approach

proposed by LeVeque and Shyue (1995) and Langseth (1996). These authors

applied shock-tracking in conjunction with shock capturing methods to solve

several problems in gas dynamics with good success.

As was mentioned earlier, in this framework, both free surface and pres-

surized flows are handled using shock-capturing methods. These methods

were described in Chapters 2 and 3. Open channel-pressurized flow interfaces

are treated using a shock-tracking-capturing approach. In this approach, cell

boundaries are introduced at the location of open channel-pressurized flow in-

terfaces, subdividing some regular cells into two subcells, resulting in a mesh

arrangement that varies from one time step to the next. However, the vast

majority of grid cells do not vary.

In a finite volume representation, the value of each grid cell represents the

average value of the solution over that grid cell. By having a cell boundary

at each open channel-pressurized flow interface, we avoid the smearing and

loss of accuracy that is inevitable when the discontinuity falls within a grid

cell and the discrete solution must be averaged over the cell. The Riemann

solution gives, in particular, information about the propagation speed of the
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tracked interfaces that is used to determine the grid at the next time step.

Once the new grid has been determined, the shock-capturing method takes

essentially the same form on both regular and irregular cells. An apparent

difficulty with this approach is the fact that the discontinuity may fall close to

a cell boundary of the underlying grid. This is handled by eliminating some

regular cell boundaries to maintain a lower bound on the cell size. Also the

tracked interface may pass more than one cell if the neighboring cells are small.

This also may be handled by eliminating cell boundaries that fall within the

location of the tracked interfaces at the old and new time step.

When two open channel-pressurized flow interfaces are going to interact,

the time step is adjusted in such a way that the collision of these interfaces

occurs exactly at the end of the time step. Following, the procedure for the

treatment of open channel-pressurized flow interfaces is described. This pro-

cedure is also presented in the form of a flow chart, which is shown in Fig. 4.7.

1. The approach begins by solving the Riemann problem at each open

channel-pressurized flow interface. This allows the computation of the speeds

of the waves to be tracked (two if the initial interface is within the limits of the

star region and one otherwise). If two waves arise after solving the Riemann

problem, the intermediate state may be in open-channel or pressurized flow

regime. In any case, this means that only one open channel-pressurized flow

interface can be generated after the solution of the Riemann problem. If

there is a second wave (which will not be an open channel-pressurized flow

discontinuity), there is no necessity of tracking this wave because the shock-

capturing scheme, which is used for free surface and pressurized flows alone,

will capture this wave automatically.

2. The time step for the simulation is obtained using the Courant num-
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Start

Compute time step to advance the solution 
from tn to t n+1

Interaction of tracked
waves ?

Yes

No

Compute location of new tracked interfaces (tn+1)

Insert new tracked interfaces

Delete regular interfaces between old and new 
tracked interfaces 

End

No

t < simulation timeUn = Un+1

Yes

Insert regular interfaces when a grid size is 

larger than 1.5 ∆x

Read parameters at old time tn

Adjust time step for 
collision to occur 

exactly at tn+1

Merge small cells when they have the same type 
of flow and when 2(Ui - Ui+1)/(Ui +Ui+1) < tolerance

Merge small cells when they have the same type 
of flow and when 2(Ui - Ui+1)/(Ui +Ui+1) < tolerance

Solve Riemann problem solely at open channel-pressu-
rized flow interfaces (old tracked interfaces) to compute

the wave speeds of these interfaces

Solve Riemann problem at regular and tracked 
interfaces and compute the cell average values 

at tn+1

Figure 4.7: Flow chart for the proposed shock tracking-capturing algorithm.
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Figure 4.8: Phase space of tracked interfaces.

ber criteria for the open-channel and pressurized flow. In order to avoid the

interaction of tracked waves, the time step is adjusted if needed. It will be

adjusted in such a way that the collision of two tracked waves occurs exactly

at the end of the time step (Fig. 4.8). This can be accomplished by selecting

the minimum of the collision times of all tracked waves.

3. After determining the time step ∆t, the locations of each tracked wave

at the end of the time step are computed. Some of these locations may coincide

if two waves collide or if the new locations are exactly at the old grid interfaces.

For each distinct wave location in the domain, a new cell interface is inserted

into the old grid. Each new interface subdivides some cells into two subcells.

A cell value must be assigned to each of these subcells. The simplest approach

is to assign the previous cell value to each subcell.

4. Once the new grid is constructed, the cell average values U are then

updated by using Eq. (2.5). Since the new grid has been chosen carefully so

that all open channel-pressurized flow interfaces are propagated exactly to cell

boundaries, there is no smearing of the tracked waves during the averaging

process. The tracked waves may propagate through one or more regular cells

making necessary temporary deletion of some regular interfaces.
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5. In the new grid, small cells are merged if the following criteria is satisfied:

(a) the flow regime of the cells to be merged is the same (free surface or

pressurized flow); (b) the absolute value of the relative difference of a given

characteristic variable of the flow is less than a specified tolerance (for instance

TOL ≤ 5%). For free surface flows, if the hydraulic area is considered as the

characteristic variable, the following additional relation have to be satisfied to

merge two adjacent small cells

∥∥∥∥
2(Ai − Ai+1)

Ai + Ai+1

∥∥∥∥ ≤ TOL (4.53)

Likewise, in pressurized flows, if the equivalent height of water, given by h =

p/(ρg) + d/2 is used as the characteristic variable, the following additional

condition have to be satisfied to merge two small cells

∥∥∥∥
a2

Af
(µi − µi+1)

ρgd
2

+ pref − a2

Af
µref + a2

2Af
(µi + µi+1)

∥∥∥∥ ≤ TOL (4.54)

The cell value in the combined cell is calculated by the weighted combination

of the merged subcells to maintain the correct cell average. For instance, in

Fig. 4.9, the old tracked interface located at xξ is deleted from the new grid

(tn+1) that results in the following cell value for the ith combined cell:

Un+1
i =

xξ − xa

xb − xa

Un+1
ia

+
xb − xξ

xb − xa

Un+1
ib

(4.55)

where Un+1
ia

and Un+1
ib

are the cell averages in the first and second subcell of

the ith cell respectively, and xb − xa is the underlying fixed mesh size.

Conversely to the merging of small cells, when the grid size is larger than
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Figure 4.9: Elimination of old tracked interfaces and merging of cells. (1) and
(2) location of interfaces at old and new time, respectively, (3) and (4) cells at
new time before and after deleting the old tracked interface, respectively.

1.5 times the regular grid size, regular interfaces are inserted within the larger

grids.

6. Repeat the process until the specified time of simulation is achieved.

4.5 Treatment of dry bed flows

The HLL approach offers a simple way of dealing with dry fronts. This Rie-

mann solver has numerical flux as given by Eq. (2.18), which in turn requires

wavespeed estimates sL and sR. If a dry bed exists upstream or downstream

of a cell interface, the governing equations are not strictly hyperbolic and the

two eigenvalues of the Jacobian matrix of F with respect to U collapse into

one (e.g., Zoppou and Roberts 2003). Under these circumstances, no shock

exists and sL and sR represents the speed of the head or toe of the rarefaction

wave, depending if the dry bed is present upstream (yL = 0) or downstream

(yR = 0). In this case, the wavespeeds may be determined exactly, yielding
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for the case of sewers (the derivation of the wavespeeds for the case of sewers

is similar to the presented by Toro 2001 for rectangular cross-sections):

If yL = 0:

sL = uR − φR

sR = uR + cR

(4.56)

If yR = 0:

sL = uL − cL

sR = uL + φL

(4.57)

where c is the gravity wave celerity.

4.6 Evaluation of the model

The purpose of this section is to evaluate the accuracy, numerical efficiency

and robustness of the formulated models in modeling transient mixed flows

in storm-sewers. The first two test cases compare simulation results to labo-

ratory measurements of transient mixed flows. The third test case compare

simulation results to “Near-exact solutions” of transient mixed flows at field

scale. The last test case in this section is designed to investigate the ability

of the formulated models in simulating pressurized flow transients. This last

test compare simulation results to “Near-exact solutions” of pressurized flow

transients at field scale.

4.6.1 Experiments type A of Trajkovic et al. (1999)

In this test case, the proposed schemes are used to reproduce a set of exper-

iments conducted at the Hydraulics Laboratory of University of Calabria by
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Trajkovic et al. (1999). The experimental setup consisted of a perspex pipe

(nm = 0.008) about 10 m long, having an inner diameter of 10 cm. Upstream

and downstream tanks were connected to the pipe with automatic sluice gates.

The experimental investigations evaluated the effect of rapid changes in the

opening or closing of the sluice gates. Acknowledging the possible interference

of the air phase in case the pipe became pressurized, several vents were placed

at the top of the pipe.
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Figure 4.10: Measured and computed piezometric levels in sections P3 and
P7 for three different downstream valve reopenings (e2). (a) e2 = 0.008m, (b)
e2 = 0.015m, (c) e2 = 0.028m.
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In this test case, the type A set of experiments of Trajkovic et al. (1999)

is considered. The initial conditions for this set of experiments were inflow

rate constant at 0.0013 m3/s, the bed slope at 2.7%, the upstream sluice gate

opened e1 = 0.014 m, and the downstream sluice gate totally opened. The

transient flow was generated after a rapid (but not instantaneous) closure of

the downstream sluice gate that caused the formation of a filling bore moving

upstream. After 30 seconds of the gate closure, the gate was partially reopened,

producing another transient phenomena. Different values for the reopening

(e2) were tested. In this test case, three values for the reopening are considered:

e2 = 0.008 m, e2 = 0.015 m, and e2 = 0.028 m. Simulated and measured

pressure traces in sections P3 and P7 for the three reopenings are shown in

Fig. 4.10. The sections P3 and P7 were located 4.6 m and 0.6 m upstream

from the downstream sluice gate, respectively. The simulated pressure traces

were generated using 80 cells and a Cr = 0.40 for the modified Preissmann

model. For the shock-tracking-capturing model, the initial number of cells

and Courant number used were the same as the modified Preissmann model.

However, at the end of the simulation (50 s), the number of cells in the mesh

was 82. This is because in the shock-tracking-capturing model, the mesh

arrangement may vary from one time step to the next.

As can be observed in Figs. 4.10 (a), 4.10 (b), and 4.10 (c), the simulated

pressure traces have a good agreement with the experimental measurements.

In particular, the formation of the filling bore and its velocity of propagation

are accurately reproduced. However, all the computed shock fronts (both mod-

els) are steeper than the measured ones. This is because in the experiments

the closing and partial reopening of the gate was very rapid, but not instan-

taneous, as was assumed in the simulations. The instantaneous gate closure
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assumption in the simulations also caused slightly higher pressure heads as

compared to the experimental results. These figures also show that the pres-

sure traces simulated using the modified Preissmann model are slightly smaller

than those produced using the shock-tracking-capturing model. This may be

because the pipe-slot has more capacity to store mass (due to the gradual

transition between the pipe and the slot) than the shock-tracking-capturing

model.

As is shown in Figs. 4.10 (a), 4.10 (b), and 4.10 (c), almost immediately

after the reopening of the downstream gate (t = 30 s), a small drop in the pres-

sure head was observed and computed. For a reopening of 0.008 m [Fig. 4.10

(a)], after a small drop in the pressure head, the pressure head continuously

increased in all sections. This is because the outflow from the pipe was smaller

than the inflow. For a reopening of 0.015 m [Fig. 4.10 (b)], a stationary hy-

draulic jump was observed and computed in the pipe after the drop in the

pressure head. For the reopening of 0.028 m [Fig. 4.10 (c)], the hydraulic

jump traveled downstream, because the outflow was greater than the inflow.

It is interesting to note that Trajkovic et al. (1999), using the Preiss-

mann approach and solving the governing equations utilizing a shock-capturing

scheme, as used in our modified Preissmann model, reported numerical insta-

bilities in their simulations when the reopening was 0.015 m or greater. Nu-

merical instabilities were reported by these authors even though the slot width

they used was as large as 10% of the pipe diameter. When using the Preiss-

mann approach, as the ratio between the slot width and the diameter increases,

the mass and momentum conservation errors also increases. Furthermore, as

is shown in the last test case of this chapter, when using a wide slot there

is no hope that pressurized transients are well simulated. The only way of

138



reproducing the correct propagation and interaction of pressurized transients

is by choosing a slot width so that the speed of gravity waves in the slot is

equal to the water hammer wavespeed. This criteria is used in the modified

Preissmann model to determine the slot width. Although this criteria results

in very small slot widths, no stability problems were observed when using the

modified Preissmann model.

The most important differences between our modified Preissmann model

and that of Trajkovic et al. (1999) are: (1) unlike the Trajkovic model, in

our model, a slope limiter (MINMOD) is used to preserve the monotonicity

of the solution and to control oscillations that may be present around open

channel-pressurized flow shock interfaces, and (2) in contrast to the Trajkovic

model, in our model, a gradual transition between the pipe and the slot is

introduced. Thus, it seems that the advantage of our modified Preissmann

model with respect to that of Trajkovic et al. (1999) is because of these two

considerations.

4.6.2 Trial J of Cardle (1984)

In this test case, the ability of the proposed models to simulate a positive

shock interface (an interface is defined to be positive when it is moving from

the pressurized flow region toward the open-channel flow region, and negative

otherwise) reversing direction and becoming a negative interface is tested, by

comparing the results of the proposed models against experimental measure-

ments conducted at the St. Anthony Falls Laboratory of the University of

Minnesota. These experiments were reported in a number of publications in-

cluding Cardle (1984), which was used in the preparation of this chapter. The

experimental setup consisted of a 48.77 m long clear PVC pipe, having an in-

139



ner diameter of 16.26 cm. An upstream head tank and a downstream reservoir

were connected to the pipe with automatic sluice gates. Many different flow

conditions could be established in this system by manipulation of the gates

and inflow valve.

In this test case, the trial J experiment of Cardle (1984) is considered. The

initial conditions for this experiment were inflow rate constant at 0.005097

m3/s, the bed slope at 0.05%, the initial downstream reservoir depth at 0.1372

m, and the initial flow depth 30.48 m from downstream end at 0.1372 m.

The Manning roughness value suggested by Cardle (1984) and used in our

simulations was 0.011. The transient flow was produced after a rapid closure

of the downstream gate, that created a positive interface moving upstream.

When this interface advanced 24.4 m, the gate was instantly reopened. This

caused the interface to reverse direction and retreat back downstream. When

the gate was reopened, a second negative interface formed at the downstream

end of the system and moved upstream.

The simulated and measured pressure heads at transducer P1, which is lo-

cated at 9.14 m upstream from the downstream end, are presented in Fig. 4.11.

The simulated pressure trace was generated using 100 cells and a Cr = 0.50 for

the modified Preissmann model. For the shock-tracking-capturing model, the

initial number of cells and Courant number used were the same as the modified

Preissmann model. In the former model, at the end of the simulation (50 s),

the number of cells in the mesh was 105. In the simulations, the downstream

gate was instantaneously reopened at 15 s after the gate was closed. After

the gate was reopened, the positive interface continued to move upstream pro-

pelled by its own inertia. Meanwhile, a negative interface was formed at the

downstream boundary and started to move upstream.
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Figure 4.11: Measured and computed pressure heads at transducer P1 for
trial J experiment of Cardle (1984).

As can be observed in Fig. 4.11, the simulated results have a good agree-

ment with the experimental measurements. In particular, the arrival of the

positive and negative interfaces to the location of transducer P1 is accurately

simulated. However, as in the first test case, the computed shock fronts (both

models) are steeper than the measured ones. Again, this is because in the ex-

periments the closing and reopening of the gate was very rapid, but not instan-

taneous, as was assumed in the simulations. The instantaneous gate closure

assumption in the simulations also caused slightly higher pressure heads as

compared to the experimental results. As in the previous test case, the pres-

sure traces generated using the shock tracking-capturing model are slightly

higher than the modified Preissmann model. In Fig. 4.11, notice also that the

open channel-pressurized flow shock fronts produced using the shock tracking-

capturing model are steeper than the modified Preissmann model. This is be-

cause in the former model, open channel-pressurized flow interfaces are tracked
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to avoid smearing and loss of accuracy that is inevitable when the interface

falls within a grid cell and the discrete solution must be averaged over the cell.

The oscillations in the measured pressure heads, after the gate was reopened

(t = 15s), may be in part due to the presence of air bubbles near the pipe

crown in the experiment.

4.6.3 Hypothetical positive shock interface

The previous test cases investigated the ability of the proposed models in

simulating complex flow features including positive shock interfaces. These

test cases were laboratory experiments, in which the achieved pressure heads

were very small. Since the proposed models are intended to be used in field

applications and due to the lack of experimental data in these situations,

this section and the next present hypothetical tests in order to investigate the

capability of the proposed models in simulating strong transients at field scale.

The hypothetical test presented in this section considers a sloped tunnel

connected to a downstream valve. The length of the tunnel is 10000 m and

its diameter is 10 m, the tunnel slope is 1%, the Manning’s roughness coef-

ficient is 0.015, the initial steady-state flow discharge is 1000 m3/s, and the

waterhammer wavespeed is 1000 m/s. Notice that in the modified Preissmann

model [Fig. 4.1 (b)], the gravity wave speed in the slot for y > 1.50 d is very

close to 1000 m/s. The uniform flow depth for the initial conditions is 8.57 m

that gives a supercritical flow with a Froude number of 1.40.

The transient flow is obtained after an instantaneous closure of the down-

stream valve at time t = 0. The gate closure created a strong positive shock

interface moving upstream. The simulated pressure heads 50, 100, 150, and

200 s after the gate closure for both models and the ‘Near exact” solution are
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Figure 4.12: Simulated pressure heads for strong transient mixed flows.

shown in Fig. 4.12. The “Near exact” solution is obtained by grid refinement

until convergence is achieved using the shock-tracking-capturing model. For

both models, the simulated pressure heads were obtained using initially 400

cells and a maximum Courant number of 0.6. In the shock-tracking-capturing

model, 200 s after the gate closure, the number of cells in the mesh was 402.

As can be observed in Fig. 4.12, the “Near exact” shock interfaces are well

resolved by both models. By contrasting both models, it can be noticed that

the modified Preissmann model is more dissipative than the shock-tracking-

capturing model.

In the modified Preissmann model, the slot width is chosen so that the grav-

ity wavespeed in the slot is equal to the water hammer wavespeed (Eq. 4.3).
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This results in a slot width of about 0.77 mm (0.0077% d) for the present test

case. When using greater slot width sizes, such as 1% d, 2% d and 5% d, the re-

sults were not significantly influenced (results not shown). This explains why

researchers using wide slots (to avoid numerical instability) obtained good

agreement with experiments when simulating open channel-pressurized flow

interfaces. The velocity of propagation of an open channel-pressurized flow

interface is not greatly influenced by the wavespeed at each side of the in-

terface but by the conservation of mass and momentum across the interface.

Wide slots may be used with good accuracy when simulating open channel-

pressurized flow interfaces. However, as is shown in the next test case, when

simulating pure pressurized flows (flow in slot), only a slot width that is ob-

tained by making the gravity wavespeed in the slot equal to the water hammer

wavespeed gives accurate information on the propagation of pressurized tran-

sients. Unlike other Preissmann models that report numerical instabilities

even when a slot width as large as 10% of the pipe diameter is used, when

using the modified Preissmann model (slot width is about 0.0077% d for this

test case), no instabilities were found even though strong transients at field

scale are simulated.

The results in Fig. 4.12 show that for the same discretization the shock-

tracking-capturing model is more accurate than the modified Preissmann model.

A more conclusive comparison requires measurement of the CPU time needed

by each scheme to achieve a given level of accuracy. The accuracy of a scheme

can be measured using the following error norms (e.g., Liang et al. 2007):

ABSERROR =
ΣNx

i=1|ei|
ΣNx

i=1|φexact
i | (4.58)
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WAVINESS =
ΣNx

i=1|ei+1 − ei|
ΣNx

i=1|φexact
i | (4.59)

where ei = φnumerical
i − φexact

i = difference between the numerical and exact

solution at node i, φ = dependent variable such as the pressure head or flow

velocity, ABSERROR = absolute error, WAVINESS = waviness error, and

Nx = number of grids. The absolute error is a measure of the difference be-

tween the numerical and exact solution for either the pressure head or flow

velocity. The waviness error is a measure of the difference between the gradi-

ent of the exact and numerical solution and quantifies the magnitude of the

spurious oscillation by a numerical scheme (Leonard 1991).

Figs. 4.13 and 4.14 depict the absolute and waviness error as a function of

CPU time for both models. With reference to the absolute error, the shock-

tracking-capturing model is between 20% to 100% more efficient than the

modified Preissmann model. As of the waviness error, the modified Preiss-

mann model presents much more spurious oscillation than the shock-tracking-

capturing model.

4.6.4 Pressurized flow transients

The purpose of this section is to test the ability of the proposed models in

simulating pressurized flow transients. The test considers a horizontal fric-

tionless tunnel connected to an upstream reservoir and a downstream valve.

The length of the tunnel is 10000 m and its diameter is 10 m, the upstream

reservoir constant head h0 is 200 m, the initial steady-state flow velocity is 2.0

m/s, and the water hammer wavespeed is 1000 m/s.

The transient flow is obtained after an instantaneous closure of the down-
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Figure 4.13: Absolute error for the pressure head versus CPU time (t = 200
s, Cr = 0.6).

Figure 4.14: Waviness error for the pressure head versus CPU time (t = 200
s, Cr = 0.6).
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stream valve. The simulated pressure heads 3, 6 and 9 s after the gate clo-

sure for both models and the ‘Near exact” solution are shown in Fig. 4.15.

The “Near exact” solution is obtained by grid refinement until convergence is

achieved using the shock-tracking-capturing model. For both models, the sim-

ulated pressure heads were obtained using 500 cells and a maximum Courant

number of 0.8. In pure free surface or pure pressurized flows, the shock-

tracking-capturing model becomes a shock-capturing model because no open

channel-pressurized flow interface is present. It is recalled that in the shock

tracking-capturing model, only open channel-pressurized flow interfaces are

tracked.
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Figure 4.15: Simulated pressure heads for pressurized flow transients. For
the modified Preissmann model, a slot width of 0.77 mm is used.

As can be observed in Fig. 4.15, the “Near exact” pressure heads are well

resolved by both models. By contrasting both models, it can be noticed that
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the modified Preissmann model is more dissipative than the shock-tracking-

capturing model. Additional simulations using the modified Preissmann model

were carried out to investigate the influence of using wide slots for simulating

the propagation of pressurized transients. The results for a slot width of only

1% d are presented in Fig. 4.16. As can be observed in this figure, the simulated

results for the modified Preissmann model using a slot width of 1% d are not

even close to the “Near exact” solutions. This is because the gravity wavespeed

in the slot (87.8 m/s) is much smaller than the water hammer wavespeed used

in the shock-tracking-capturing model (1000 m/s). It must be recalled that in

pure pressurized flows, the water hammer wavespeed determines how fast the

pressure transients are propagated. Evidently, the only way of reproducing

the correct propagation and interaction of pressurized transients is by using

a slot width that achieves a gravity wavespeed in the slot equal to the water

hammer wavespeed.

As was mentioned earlier, notwithstanding the problems associated with

the size of the slot in the Preissmann model, the generic equivalence between

the water hammer and the free surface flow equations does not imply that

both flows are identical. The use of water level in the Preissmann model to

represent the water hammer head prohibits the formation of sub-atmospheric

pressures and the emergence of vapor cavities, which would occur in a water

hammer flow when the pressure drops below vapor pressure. Whenever the

head drops below the slot, the pressure produced by the Preissmann model is

equivalent to the water depth in the pipe and the magnitude of the wavespeed

drops from the water hammer wavespeed to the open-channel wavespeed. In

reality, however, sub-atmospheric water hammer pressures could form during

depressurization and the speed of these pressures is the same as the water
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Figure 4.16: Simulated pressure heads for pressurized flow transients. For
the modified Preissmann model, a slot width of 1% d is used.

hammer wavespeed. Therefore, Preissmann slot models cannot simulate sub-

atmospheric pressures, and the results of these models after, as well as during,

depressurization must be treated with caution.
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Chapter 5

Applications to the Chicago

TARP system

5.1 Introduction

The objective of this chapter is only intended to illustrate the capability of

the modified Preissmann model in simulating the formation and propagation of

hydraulic transients in complex hydraulic systems. The Tunnel and Reservoir

Plan (TARP) Calumet system located in Chicago is used as the test case. The

reason why only the modified Preissmann model was implemented for complex

networks is because the implementation of this model is much simpler than

that based on a shock capturing-tracking approach. For the latter approach,

major work not only numerically but also analytically is needed especially for

the treatment of boundary conditions.

In this thesis, no major details about the computer model developed (mod-

ified Preissmann model) named “Illinois Transient” are provided. A user’s

manual of this computer program is in preparation. This chapter is organized

as follows: (1) a brief description of the TARP system is provided; (2) the
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parameters for the simulations are presented; and (3) the simulation results

are presented and discussed.

5.2 Description of the TARP Calumet system

The TARP Project, more commonly known as the Deep Tunnel Project or the

Chicago Deep Tunnel, is one of the largest civil engineering projects ever un-

dertaken in terms of scope, money and timeframe. The schematic of the TARP

Project is shown in Fig. 5.1. The goal of this project is to reduce flooding in

the metropolitan Chicagoland area, and to reduce the harmful effects of flush-

ing raw sewage into Lake Michigan by diverting storm and sewage water into

temporary holding reservoirs. The project is managed by the Metropolitan

Water Reclamation District of Greater Chicago.

The project was commissioned in the mid 1970s. Full completion of the

system is not anticipated until 2019, but substantial portions of the system

have already opened and are currently operational. Across 30 years of con-

struction, over 3 billion dollars has been spent on the project (Sanders 2005).

TARP consists of 109 miles (175 km) of deep tunnel, bored in rock and lined

with concrete. The tunnels range from 9 to 33 ft (2.7 to 10 m) in diameter and

are located 200 to 350 ft (61 to 106 m) below ground. The 109 miles of tunnels

were recently (2006) completed and are in service. The system also includes

reservoirs, drop shafts, connecting structures, pumping stations, and other ap-

purtenances for the capture and storage of Combined Sewer Overflows (CSOs)

and for conveying the stored CSOs to water reclamation plants for treatment.

Fig. 5.2 shows the schematic for the capture, storage and treatment of CSOs.

All 450 CSOs in the 375 square mile (971 km2) service area are diverted to the

deep tunnel system (Ven Te Chow Hydrosystems Lab. 2006). Reservoirs are
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Figure 5.1: TARP schematic.

located at the downstream ends of the tunnels to provide additional storage

capacity for CSOs, and consist of the Thornton Reservoir (24,200 Acre-Feet

[29 850 000 m3]), the McCook Reservoir (32,000 Acre-Feet [39 471 000 m3]),

and the O’Hare Reservoir (1,050 Acre-Feet [1 295 000 m3]).

The TARP Project has 3 major tunnel systems namely, Calumet, Des

Plaines, and Mainstream. In this thesis, the Calumet system is used as the

test case. The major additional structures for the Calumet system include

the future Thornton reservoir and the Calumet wastewater reclamation plant.

Following, photos of some structures for the Calumet system that are finished

or under construction are shown.
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Figure 5.2: Combined sewer overflow/Interceptor Schematic.

Figure 5.3: Thornton reservoir under construction.
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Figure 5.4: The Calumet Wastewater Reclamation Plant, located adjacent
to Lake Calumet, Chicago, Illinois.

Figure 5.5: Tunnel boring machine penetrating through terminal construc-
tion shaft.
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Figure 5.6: 27 ft. tunnel boring machine used on one of the contracts for the
TARP Project.

5.3 Parameters for the simulations

The layout of the actual Calumet system is shown in Fig. 5.7. The simpli-

fied layout of this system adopted in the simulations is shown in Fig. 5.8.

The simplified system (Fig. 5.8) consists of 39 tunnel segments, 5 three-way

junctions, 28 two-way junctions and 19 dropshafts/junctions with inflow hy-

drographs. All the junctions and dropshafts are assumed to have a cylindrical

shape with a diameter of 10 m and infinite height to avoid overflows. The

physical characteristics of the tunnel segments are listed in Table 5.1.

In Table 5.1, the first column indicates the identification number (Id) of

each tunnel segment (pipe). The second and third columns designate the Id’s

of upstream tunnel segments to which a downstream tunnel segment is con-

nected. For instance, the first row of Table 5.1 specifies that the upstream end

of pipe 1 is connected to pipes 2 and 16. The fourth and fifth columns spec-
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Table 5.2: Identification number for boundary conditions used in the simu-
lations.

Boundary description Identification number

Dropshaft with inflow hydrograph 4

Three-way junction 7

Two-way junction 8

Downstream reservoir 9

Constant flow discharge 10

ify the upstream and downstream invert elevations for every tunnel segment,

respectively. The sixth, seventh and eighth columns list the length, diameter

and Manning’s roughness for each tunnel segment, respectively. The ninth col-

umn indicates the identification number of the boundary condition specified

upstream of each pipe. Five different boundary conditions were considered in

the simulations, the description of which is listed in Table 5.2. The mathemat-

ical formulation for these boundary conditions can be obtained from Chapter

4. The tenth column designates the Id of the inflow hydrograph imposed up-

stream of every tunnel segment. The inflow hydrographs were specified at 19

open boundaries between junctions and dropshafts. These inflow hydrographs,

which are shown in Figs. 5.9 - 5.11, are based upon triangular hydrographs

with peak flows corresponding to the 5-year storm event.

For the simulations, two scenarios are considered. These scenarios are (1)

excluding the Thornton reservoir (actual state), and (2) assuming the Thorn-

ton reservoir is in operation (future state). In the first scenario, a zero-water

flux boundary (tunnel with dead end) is imposed downstream of pipe segment

1. In the second scenario, the stage-storage curve for the Thornton reservoir
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is specified downstream of pipe segment 1. This curve is shown in Fig. 5.12.

For the initial conditions, a dry-bed state is used in both scenarios. That is,

zero flow depth and discharge throughout the sewer network is specified at the

initial time (t = 0).

5.4 Simulation results and discussions

The simulations presented in this section are only intended to illustrate the

capability of the modified Preissmann model in simulating the formation and

propagation of hydraulic transients in complex hydraulic systems. Following

the simulation results for the two considered scenarios are presented and dis-

cussed.

5.4.1 First scenario

Figs. 5.13 - 5.18 show hydraulic gradelines (measured from the invert of the

pipe rather than from a horizontal datum) along two main lines (Fig. 5.19)

at several instants. As shown in Fig. 5.19, the first main line extends from x

= 0 m to x = 25150 m and the second from x = 25200 m to x = 40500 m.

For clarity in presentation of results, the first main line is subdivided into two

sections. The first section extends from x = 0 m to x = 10000 m and the

second from x = 10000 m to x = 25150 m. Table 5.3 presents the stationing

used in the model for defining the tunnel segments of the system.

Figs. 5.13 - 5.18 show the presence of open-channel bores, open channel-

pressurized flow interfaces and their interactions at different times. These

figures also show that the system starts to presssurize at the three-way junc-

tion of pipes 1, 2 and 16 at about t = 1 hour. Right after this junction gets
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Table 5.3: Stationing used in the model for defining the tunnel segments of
the Calumet system.

Upstream Downstream Pipe ID
stationing (m) stationing (m)

0 1935 36
1935 2337 35
2337 2398 34
2398 2590 33
2590 3175 32
3175 8074 31
8074 8743 30
8743 9011 29
9011 9165 28
9165 9947 27
9947 11188 26
11188 11403 25
11403 12650 24
12650 12789 23
12789 13164 22
13164 13197 21
13197 17605 20
17605 18104 19
18104 18603 18
18603 18776 17
18776 19016 16
19016 25226 1
25226 28719 8
28719 31952 7
31952 33840 6
33840 34376 5
34376 35487 4
35487 35745 3
35745 40554 2
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pressurized, two sharp pressurization waves (positive open channel-pressurized

flow interfaces) start to move upstream from the junction through pipes 2 and

16. The amplitude of each of these waves increases as the wave moves further

upstream inside these pipes. Immediately after the pressurization of the junc-

tion of pipes 1, 2 and 16, another wave also starts to propagate downstream

from this junction towards the dead end (location of Thornton reservoir in

second scenario). This wave propagates smoothly over the adverse slope in

pipe 1. When this wave reaches the dead end, the wave is magnified and

reflected back. The results also show that pressurization may start from up-

stream (5.13). Upstream pressurization may be created when the inflow rate

exceeds the capacity of the tunnel at some point upstream. At later times

complex interactions of waves occur. In this scenario, no outflow from the sys-

tem is allowed, resulting in a continuous increase of the hydraulic gradelines

as long as there is flow entering the system.

The elevation of the ground level of the Chicago city above the Deep Tunnel

system is between 8 and 30 ft (2.4 and 9.1 m). In the actual Calumet system,

there are several relief structures with their overflow crests at the ground

level. Not allowing overflows in the simulations clearly invalidates our results

for gradelines above the Chicago city ground levels. Prediction of overflows is

beyond the scope of this thesis. It is recalled that the objective of this chapter

is only intended to illustrate the capability of the modified Preissmann model

in simulating the formation and propagation of hydraulic transients.

5.4.2 Second scenario

In a similar way to the first scenario, Figs. 5.20 - 5.25 show hydraulic gradelines

at several instants for the second scenario. The results show that the gradelines
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for the second scenario are the same as those for the first scenario for t < ≈
4000 s. After this time, the Thornton reservoir starts to receive water from

the system and becomes the mechanism of control and stabilization for the

hydraulic transients in the system. For instance, at t = 5500 s, between

stations x = 0 m and x = 10000 m the maximum elevation for the hydraulic

gradeline in the first scenario was about +120 m and about +28 m in the

second scenario. At the same instant (t = 5500 s), between stations x = 10000

m and x = 25150 m the maximum elevation for the hydraulic gradeline in the

first scenario was about +88 m and about +13 m in the second scenario. Also,

at t = 5500 s, between stations x = 25200 m and x = 40500 m the maximum

elevation for the hydraulic gradeline in the first scenario was about +80 m and

about -15 m in the second scenario. These results clearly shows that the large

storage capacity of the Thornton reservoir effectively controlled and stabilized

the hydraulic transients in the Calumet system.
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Chapter 6

Conclusion

The main aim of this thesis is to advance our understanding of the process of

flood-wave propagation through storm-sewer systems by improving the meth-

ods available for simulating unsteady flows in closed conduits ranging from free

surface flows, to partly free surface-partly pressurized flows (mixed flows), to

fully pressurized flows. The formulated models can accurately describe com-

plex flow features –such as negative open channel-pressurized flow interfaces,

interface reversals, and open-channel surges– that have not been addressed

well, or not considered at all, by previous models. This work also represents

an advance in computational efficiency, economy in terms of memory require-

ments, and improved accuracy.

Specifically, this thesis has accomplished the following:

1. Two fully-conservative, efficient and robust models capable of simulating

unsteady flows in closed conduits ranging from free surface flows, to

partly free surface-partly pressurized flows, to fully pressurized flows have

been implemented. In the first model, pressurized flows are simulated as

free surface flows using a hypothetical narrow open-top slot (“Preissmann

slot”). In the second model, free surface and pressurized flows are treated
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independently while interacting through a moving interface.

In the first model, a gradual transition between the pipe and the

slot is introduced and an explicit Finite Volume (FV) Godunov-type

Scheme (GTS) is used to solve the free surface flow governing equations.

This model is called the modified Preissmann model. It is clear that

any model implemented within the Preissmann slot framework is valid

only for conditions where no sub-atmospheric flows occur. Numerical

tests for free surface and pressurized flows show that to achieve a given

level of accuracy, second-order GTS schemes are significantly faster to

execute than the fixed-grid Method of Characteristics (MOC) with space-

line interpolation, which has been the most frequently used scheme for

simulating transient flows in sewers.

In the second model, both free surface and pressurized flows are han-

dled using shock-capturing methods –specifically GTS schemes. These

methods capture discontinuities in the solution automatically, without

explicitly tracking them (LeVeque 2002). Open channel-pressurized flow

interfaces are treated using a shock tracking-capturing approach. In this

case, cell boundaries are introduced at the location of open channel-

pressurized flow interfaces, subdividing some regular cells into two sub-

cells, resulting in a variable mesh arrangement that varies from one time

step to the next. However, the vast majority of grid cells do not vary.

By introducing a cell boundary at each open channel-pressurized flow

interface, we can avoid the smearing and loss of accuracy that are in-

evitable when the discontinuity falls within a grid cell and the discrete

solution is averaged over the cell.

Comparisons between simulated results and experiments reported in
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the literature show that the two formulated models can accurately de-

scribe complex flow features –such as negative open channel-pressurized

flow interfaces, interface reversals, and open-channel surges. Numerical

simulations also show that the formulated models are able to produce

stable results for strong (rapid) transients at field scale. Comparisons

of numerical efficiency between the formulated models show that the

shock-tracking-capturing model is slightly more efficient than the mod-

ified Preissmann model. Even so, only the modified Preissmann model

was implemented numerically for complex networks. The reason is that

the numerical implementation of this model is much simpler than that

based on a shock tracking-capturing approach.

2. Intrinsically conservative and second-order accurate boundary conditions

have been implemented. The proposed formulation for boundary condi-

tions maintains the conservation property of FV schemes and does not

require any special treatment to handle shocks at boundaries. A numer-

ical scheme may have second or higher-order accuracy in the internal

cells. However, if this scheme is coupled with the boundary conditions

having only first-order accuracy, a degradation of the accuracy of the

scheme in the internal cells may occur. Thus, for the preservation of the

accuracy of the numerical solution, it is necessary to use the same order

of accuracy in all the cells of the computational domain (e.g., LeVeque

2002, Guinot 2003, León et al. 2006c). In the proposed models, the

boundary conditions are implemented using the same order of accuracy

as the internal cells (second-order).

3. The modified Preissmann model has been applied to simulate transient

flows in complex hydraulic systems. The Tunnel and Reservoir Plan
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(TARP) Calumet system of the Metropolitan Water Reclamation Dis-

trict of Greater Chicago is used as the test case. This application was

only intended to illustrate the capability of this model in simulating the

formation and propagation of hydraulic transients in complex hydraulic

systems.

In general, the scope of this work is limited to single-phase flows (liquids).

However, a simplified model for air-water mixture flows, which is valid when

the amount of gas in the conduit is small, has been implemented in the pres-

surized flow regime. This work does not include the prediction of any type of

air entrainment or air release.

In view of the results and conclusions obtained in this study, the following

may be worth considering for future investigations.

1. A comprehensive experimental investigation for sewer networks in single

and two-phase flow conditions, which goes beyond simply calibrating

existing models, is necessary in order to understand the flow behavior

and to guide future model development.

2. Since much of the complex dynamics in unsteady sewer flows is due to

the air phase; it is suggested to incorporate the air-phase flow component

to the mixed flow model.

3. Implementation of the shock tracking-capturing approach for complex

systems.
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