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Abstract: Short-term operation of a multi-objective reservoir system under inflow uncertainty has 

been receiving increasing attention, however, major challenges for the optimization of this system 

still remain due to the multiple and often conflicting objectives, highly nonlinear constraints and 

uncertain parameters in which derivative information may not be directly available. Population-

based optimization methods do not rely on derivatives while generally have a slow convergence. 

This study presents a hybrid optimization model for short-term operation of multi-objective 

reservoirs under uncertainty that is derivative free and has a relatively fast convergence. The model 

incorporates a local improvement method called Mesh Adaptive Direct Search (MADS) into a 

population-based method NSGA-II and has no requirement for differentiability, convexity and 

continuity of the optimization problem. The operation of a multi-objective and multi-reservoir 

system on the Columbia River under inflow uncertainty is used as a case study. Overall, the hybrid 



model outperforms optimization models based on either the NSGA-II only or the MADS only. 

The model is intended for conditions where derivative information of the optimization problem is 

unavailable, which could have a wide array of applications in water resources systems. 

Keywords: Reservoir operation; Multi-objective; Hybrid optimization; Derivative-free; 
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1 Introduction 

        Short-term operation of reservoirs normally considers multiple purposes and face various 

uncertainties e.g., forecasted inflow. The optimization of reservoir operation is inherently a 

complex multi-objective problem under uncertainty, in which high-dimension decision variables 

and highly nonlinear constraints are often involved. The objective and/or constraint functions may 

be nonconvex, discontinuous (Labadie, 2004; Geressu & Harou, 2015) or noisy as uncertainty is 

incorporated (Gelati et al., 2014). In this context, the derivative information on either objectives 

or constraints often become unavailable, unreliable or impractical (Chen & Chen, 2001; Guan et 

al., 2013), which may present a difficulty to the optimization methods in particular for derivative-

based algorithms e.g., steepest descent or Newton method.  

Over the last several decades, a number of optimization methods e.g., linear programming, 

dynamical programming and heuristic search algorithm have been developed and applied to 

reservoir operation (Yeh, 1985; Labadie, 2004). The optimization methods can be mainly 

classified into two types: global and local methods in terms of the ability for finding global optima 

or local one, or derivative-based and derivative-free methods in terms of the requirements of 

derivatives in the optimization procedure. Genetic Algorithms (GA) and its variants e.g., NSGA-

II are global and derivative-free methods and have been widely applied to multi-reservoir 

operation during the last two decades (Oliveira & Loucks, 1997; Malekmohammadi et al., 2009, 



Chen et al., 2015) owing to its robustness, effectiveness and global optimality properties. Other 

global and derivative-free methods such as particle swarm optimization (PSO) and Ant Colony 

Optimization (ACO) have also been used for optimization of reservoir operation (Baltar & Fontane, 

2008; Kumar& Reddy, 2006). The aforementioned methods can be seen as strong candidates for 

optimizing short-term operation of multi-objective reservoirs under inflow uncertainty.  However, 

like other random search methods, GA works by iteratively moving to better positions in the 

search-space, which are guided by the random process of the GA operators i.e., selection and 

crossover. The embedded randomness of GA is a key element for global optimality, however, this 

method has a slow convergence compared to methods that use derivative information, especially 

when approaching to the optimal point (Erol & Eksin, 2006; Ishibuchi et al., 2009).   

            To improve the efficiency of the GA, Genetic Local Search Algorithm (GLSA) which 

combine local search methods with the GA, have been extensively reported in the literature 

(Knowles et al., 2000; Harada et al., 2006; Derbel et al., 2012). The general idea of the GLSA is 

to incorporate a so-called local search method (LSM) as an extra optimizer in the process of the 

GA optimization. Coupling a LSM and GA is normally done using a serial or concurrent 

procedure. Serial approach applies the LSM by predefining a switching time (Leiva et al., 2000; 

Emmerich et al., 2007). Although this approach guarantees a local optimum with improved speed 

of convergence, the optimal switch timing is not known a priori on most practical problems. A 

recent study proposed a concurrent approach embedding a sequential quadratic programming 

(SQP) within NSGA-II (Sindhya et al., 2011). In the concurrent approach, some or all of the 

intermediate solutions from the GA were regularly modified by the LSM during the process. The 

SQP is treated as another operator in the GA to avoid the switch timing.  



         Regardless of serial or concurrent procedures, incorporating the LSM into GAs faces two 

major challenges when applying to multi-objective reservoir operation under uncertainty. The first 

one is the exchange of objectives between the LSM and GA. On one hand, a multi-objective GA 

(e.g., NSGA-II) can directly handle multiple objectives of the reservoir operation by using the non-

dominated concept to find the Pareto optimal solutions (Deb et al., 2002). On the other hand, the 

LSM often scalarize multiple objectives into a single objective e.g., a weighted sum (Ishibuchi et 

al., 2003).  It has been shown that most popular linear scalarizations fail to find global optima for 

non-convex problems (Miettinen & Wierzbicki, 2008). Therefore, the linking of single objective 

in the LSM with multiple objectives in the NSGA-II is key for the success of hybrid optimization. 

The second challenge is that most of the LSM require first order or even second order derivatives 

to decide the search direction (Battiti, 1992). This requirement largely limits the application of 

GLSA for multi-objective reservoir operation under uncertainty as the derivative information may 

not always be available in the presence of discontinuous or noisy objective/constraints functions.   

             The present study proposes a hybrid optimization model which aims to overcome the two 

aforementioned challenges. To achieve this goal, a concurrent hybridization scheme is used 

together with the Mesh Adaptive Direct Search (MADS), which is a pattern-based search method, 

as an additional step in the NSGA-II. Instead of using the weighted sum approach, an achievement 

scalarizing function (ASF) is introduced in the MADS to handle the objective exchange and 

ensure a Pareto optimal solution.  A parallel optimization scheme is adopted for the MADS to 

simultaneously refine the multiple intermediate solutions from the NSGA-II process, allowing an 

efficient exchange of the solution vector. The MADS as well as the NSGA-II do not rely on 

derivative information and consequently, the hybrid model is entirely derivative-free. The 

superiority of the hybrid optimization model is demonstrated using a case study of a multi-



objective reservoir system on the Columbia River. The frequency of applying the MADS in the 

routine of NSGA-II is investigated. The major contributions of the study are (1) development of 

a hybrid optimization model that couples the MADS and the NSGA-II for multi-objective short-

term reservoir operation under uncertainty; (2) providing recommendation of a hybrid scheme 

that balances optimization performance and computational cost. The novelty of the paper is the 

development of a derivative-free model that has a relatively fast convergence, which could have 

broad applications in optimization of complex water resources systems.  

2 Methodology  

2.1 NSGA-II 

      NSGA-II is a widely used random search method for multi-objective problem (MOP) and have 

increasingly received attention for reservoir operation (Atiquzzaman et al., 2006; Chen et al., 2016). 

The NSGA-II is a member of the GA family and follows the primary principles of the classical 

GA. First, a set of candidate solutions (population) are randomly generated (first generation) that 

is essentially white noise. By using the selection operator, some candidate solutions from the 

population are selected. A so-called binary tournament is implemented and the chosen candidate 

solutions are compared in pairs based on the evaluation of constraints and objectives. The winners 

of the tournament reproduce the next generation by using recombination and mutation operators. 

The next generation can be viewed as random generation around the parent by some forms of 

distributions. The evolution process continues until meeting the stopping criteria. One of the most 

common stopping criteria is the number of generations. This criterion is problem-dependent, but 

generally a large number of generations can be used for ensuring solution convergence. The global 

optimality of the NSGA-II has been proved in many applications which are non-convex and even 

discontinuous problems (Deb et al., 2007; Deb & Jain, 2012).  



2.2 MADS 

       The MADS belongs to the family of pattern search (PS) methods. Similar to other members 

of the PS family e.g. Generalized Pattern Search (GPS), the MADS does not require gradients for 

the optimization. The MADS is an iterative algorithm which aims to minimize a function f over a 

set Ω by evaluating f at some trial points. Each iteration of the MADS contains two steps, namely 

the search step and the poll step. The search step generates a finite number of mesh points and 

compare their objective function with the best feasible objective function value found so far (called 

current incumbent solution). The poll step is implemented whenever the search step fails to 

generate an improved mesh point. The poll step uses a parameter called poll size to dictate the 

magnitude of distance from the trial points generated in this step to the current incumbent solution. 

Compared to the GPS, the MADS is not restricted to a finite number of search directions, and 

results in a much better local exploration of the space of variables, in particular for the problem 

with nonlinear constraints (Audet & Dennis, 2006). Recently, the MADS has been increasingly 

used for complex engineering optimization problems, such as chemical processes and fluid 

structures (Audet et al., 2007; Long et al., 2014). It should be noted that, other derivative-free local 

search methods such as Hooke-Jeeves direct search can be selected for hybrid optimization as well. 

The comparison between different local search methods for hybrid optimization is not within the 

scope of this study but can be explored in the future.  

2.3 Hybrid optimization model  

   Combining the NSGA-II and the MADS is expected to improve the optimization performance 

by enhancing local refinement during the global search.  Alternating the use of the NSGA-II and 

the MADS is similar to the concept of exploration and exploitation. The former helps to locate the 

global optimal by exploring the entire search space and the latter contributes to a faster 
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convergence by exploiting the search within a small region. A step-by-step procedure for setting 

up the hybrid optimization model is presented below:  

(1) Determine parameters for NSGA-II e.g., population and generation;  

(2) Determine parameters for MADS e.g., poll size and stopping criteria; 

(3) Set up interface between NSGA-II and MADS, e.g., exchange of objectives; 

(4) Start NSGA-II and run for a pre-determined number of generations; 

(5) Pause NSGA-II and pass the intermediate results to MADS; Start the MADS; 

(6) Run MADS until the stopping criteria is meet and pass updated results back to NSGA-II; 

(7) Repeat steps (4) to (6) until the predefined frequency of running MADS is meet; 

(8) Run NSGA-II until the predefined generation number is meet.  

The implementation of the hybrid optimization model requires a number of considerations 

which are briefly discussed below: 

2.3.1 Exchange of the objective between NSGA-II and MADS 

        The multi-objective from NSGA-II needs to be transformed to a single objective for MADS 

optimization. For facilitating the exchange of objectives, an achievement scalarizing function 

(ASF) is introduced. The ASF is a reference-point based method that has shown the ability to 

produce proper Pareto optimal solutions (Wierzbicki, 1982). The reference point is usually 

specified by a decision maker (DM) and contains DM’s aspirations about desirable objective 

values. An example of constructing an ASF is shown below:     

                   ASF(𝑓(𝑥),ε) = max
𝑖∈𝑁

(𝜀𝑖(𝑓𝑖(𝑥) − 𝑓𝑖
𝑅) +ρ∑ 𝜀𝑖(𝑓𝑖(𝑥) − 𝑓𝑖

𝑅)𝑁
𝑖=1                          (1) 

      where f(x) is a summation of all the objective functions (multi-objective). The index i 

represents the ith objective and N is the total number of objectives. The parameter 𝜌 is a sufficiently 



small positive scalar and ε is an N-vector of non-negative coefficients used for scaling purposes, 

i.e., normalizing objective functions of different magnitudes.   

         The first term of the ASF in Eq. (1) refers to weakly Pareto optimal solutions, i.e. a solution, 

which can be improved for at least one objective. The second one in Eq. (1) is an augmented term, 

which is used to guarantee that the obtained solutions have at least proper Pareto optimality, which 

generally is a subset of the Pareto optimal solutions. In this study, the parameter ρ in equation (1) 

is set to a small value (0.001), as suggested in Miettinen & Mäkelä (2002) and Sindhya et al (2011). 

The parameter ε is determined as 𝜀𝑖 =
1

𝑧𝑖
𝑚𝑎𝑥−𝑧𝑖

𝑚𝑖𝑛  for normalization purposes, where zmax and zmin 

are maximum and minimum objective values in the obtained solutions, respectively.  It is usual 

and reasonable to start the NSGA-II first to avoid the local optima and then switch to the MADS. 

Therefore, the obtained solutions can be viewed as the current best solutions from the NSGA-II 

process. Each point in the objective space of the obtained solutions is then selected as a reference 

point and consequently, the 𝑓𝑖
𝑅 becomes known.  

  Every time when switching from the NSGA-II to the MADS, the ASF is formulated for each 

intermediate solution from the NSGA-II and the MADS is started for optimizing the resultant 

single objective. It is noted that the number of intermediate solutions from the NSGA-II can be as 

many as the population number e.g., 50. Therefore, for improving computational efficiency, a 

parallel computation approach was adopted by using the so-called “island model”. Each MADS 

process is individually run until the stopping criteria i.e., a small difference in the objective is 

satisfied. Each MADS solution is collected and the corresponding result of decision variables is 

stored in a pool. The pool is then used to replace the current chromosome of the NSGA-II, i.e., 

solutions in decision space that were obtained by the NSGA-II.  

2.3.2 Starting time of the MADS 



         The first aspect in hybridizing the NSGA-II and the MADS is the starting time of the MADS. 

Previous researches have shown that the NSGA-II is superior in finding feasible solutions in a 

complex search space (Ray et al., 2009; Wang et al., 2011). Therefore, the NSGA-II is first utilized 

to efficiently handle the constraints. It normally takes a certain number of generations e.g., 100 to 

obtain feasible solutions and this number is expected to be increased for optimization problems 

with a complex search space. During the process of finding feasible solutions, the candidate 

solutions in the NSGA-II tend to be clustered around the one which has the least constraint 

violations.  The solutions then begin to spread after a feasible one is obtained.  Since local search 

is applied to only good offspring from the NSGA-II (Ishibuchi, et al., 2003), it is reasonable to 

start the MADS when the solutions of the NSGA-II have been spread out widely and evenly. In 

this case study, 1000 generations of the NSGA-II is found to be a good starting time for the MADS. 

However, this timing may be problem-dependent and it is left for future work.  

2.3.3 Search depth of the MADS 

      In the context of exploration and exploitation, search depth of the MADS represents the extent 

of exploitation. In our study, the stopping criteria of "objective difference” is implemented for 

determining the search depth of the MADS. The MADS search stops when the difference of the 

objectives between two consecutive iterations is smaller than 10-3.  Other alternate options e.g., 

number of iterations can be used for determining the search depth; however, these are problem-

dependent. The threshold on the objective difference is more general and flexible to different 

problem representations.  

2.3.4 Search frequency of the MADS 

        The key parameter for hybridizing a local and global method is the search frequency of the 

local method, which is defined as the number of implemented local searches during the process of 



global optimization. Too many local searches may significantly degrade the diversity of the 

solutions from global search and too few may result in a slow convergence (Ishibuchi, et al., 2003; 

Sindhya et al., 2011). To investigate the effect of search frequency of the MADS on the overall 

performance of the optimization, various frequencies, ranging from 0 (i.e., NSGA-II only) to 10 

are simulated. The performance of the optimization results are then compared for various search 

frequencies. 

3 Case Study  

3.1 Reservoir system  

A reservoir system on the Columbia River in the United States, which comprises 10 reservoirs, 

is used as a test case. The sketch of the ten-reservoir system is shown in Fig. 1. The reservoir 

system provides multiple operational purposes including hydropower generation, ecological and 

environmental requirements and recreation (Schwanenberg et al., 2014). 

 



Fig.1. Sketch of the ten-reservoir system in the Columbia River 

Because the short-term reservoir operation involves a time horizon of about two weeks, the 

operational horizon in our case study is set to two weeks. Due to data availability, the period from 

August 25th to September 7th is considered herein.  The decision variables are the hourly outflows 

from each reservoir during the optimization horizon, which results in a total of 3360 decision 

variables.   

3.2 Inflow uncertainty  

     Two inflows are considered, one inflow to the GCL Reservoir and another to the LWG 

Reservoir (see Fig.1). Uncertainty in inflow can be caused by a number of reasons, including 

uncertainty in forecasting. Typically, the forecasting uncertainty is smaller at the beginning of the 

forecast period as information is more abundant and accurate, and tends to grow over time as 

information become less available and precise. The uncertainty associated with inflows can be 

illustrated by perturbing the historical record with a random linear function in time, as shown in 

Figure 2. Six different time series data are used to represent 6 forecasting scenarios. It is noted that 

this inflow perturbation is solely for illustrating uncertainty. An ensemble of forecasts (Stedinger 

et al., 2014), each of which is an output from a simulation model (e.g., weather model), is a more 

accurate representation of uncertainty, and should be used for uncertainty quantification whenever 

they are available.   



 

 

Figure 2. Illustration of inflow uncertainty 

 



3.3 Objectives  

Two objectives related to hydropower generation are explicitly considered and expressed as 

follows: 

                                                                                                (2) 

                                                                                         (3) 

where PG is hydropower generated in the system (MWh), PD is power demand in the region 

(MWh), t denotes time in hours, Th is the optimization period in hours (336 hours), the index i 

represents reservoir identification number in the system and Nr is the total number of reservoirs. 

The variable hr represents heavy load hours (HLH), which in a typical day takes place from 06:00 

am (06:00 h) to 10:00 pm (22:00). The variable Td corresponds to the optimization period in days 

(14 days in this case). 

        The first objective (Eq. 2) aims to minimize the power deficit during the operational horizon. 

The function min(0, *) expresses that the deficit is equal to 0 if the total power generated is greater 

than or equal to the power demand at time t. The second objective (Eq. 3) aims to maximize 

hydropower generation during heavy load hours for selling power to the electricity market at a 

higher price, which would increase the revenue. The function max(0, *) expresses that the objective 

value is equal to 0 if the total power generated is smaller than or equal to the power demand at 

heavy load hours. In the optimization model, the two objectives are transformed as minimization 

functions and normalized using a dimensionless index between zero and one. Other purposes of 

reservoir operation such as flood control or MOP (minimum operation level) requirements are 

considered as constraints on either reservoir water surface elevations or storage limits, as 

summarized below.  

1 1

(min(0, ( ) ))
hT Nr

i
t t

t i

Minimize PG PD
 

 

14 22

1 6 1

( (max(0, ))
d

Nr
i
hr hr

T hr i

Maximize PG PD
  

  



3.4 Constraints 

1 1 1
, , , ,(( ) / 2 ( ) / 2)t t t t t t

i i in i in i out i out iV V Q Q Q Q t       
                                                   

(4) 

min, , m ,
t

r i r i r ax iH H H      (5) 

                                                                                                                              (6) 
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                                                                                                       (8) 
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                                                                                                        (12) 

       where V is reservoir storage; Qin and Qout are inflow to and outflow from reservoirs, 

respectively; ∆t is time step; Hr is forebay elevation or reservoir water surface elevation; Hrmin and 

Hrmax  are allowed minimum and maximum forebay elevations, respectively;  QS is spill flow and 

QF is fish flow requirement; MOPlow and MOPup are lower and upper boundary for the MOP 

requirement on forebay elevation, respectively. Qtb is turbine flow, Qtb_min and Qtb_max are minimum 

and maximum allowed turbine flows, respectively; Qout_ramp_allow is allowed ramping rate for the 

outflow between any two consecutive time steps; Hramp_down is allowed ramping rate when reservoir 

water level is decreasing; TWramp_down is allowed ramping rate for tailwater when tailwater level is 

decreasing; Nd is power output, Nd_min is minimum output requirement, and Nd_max is maximum 

output capacity. The number of constraints is approximately 28,000 and many of them are highly 

nonlinear resulting in a complex search space.  

i i
t tQS QF

,low up

i t i
r iMOP H MOP 
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t
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out i out i out ramp allow iQ Q Q 

1
, , _ ,

t t t
r i r i ramp down iH H H 

1
, , _ ,
t t t

r i r i ramp down iTW TW TW 

_min, , _max,
t

d i d i d iN N N 



3.5 Robust formulation  

      The problem is formulated as a robust optimization (RO) that accounts for uncertainty.  The 

RO basically seeks for an optimal decision on the worst case scenario and the so-called robustness 

can be adjusted by reflecting DM’s preference on the risk attitude towards uncertainty. In this 

formulation, we treat the optimization as a minimization problem with a weighted sum of the mean 

and standard deviation, in which the relative weighting is determined by the risk tolerance 

coefficient 𝜃. This formulation can be written as  

min( 𝜇𝑖 + 𝜃 ∙ 𝜎𝑖) (13) 

where i (=1, 2) represent the two objectives;  𝜇 and 𝜎 are mean and standard deviation of each 

objective, respectively. The risk tolerance coefficient 𝜃 is provided by the DM or alternatively 

derived by using utility theory, in which the risk attitude of the DM are modelled via a utility 

function. For simplicity, 𝜃 is set to 0.5, which is a balanced attitude of the DM.  

Regarding the handling of constraints, the “hard” constraint approach is used herein where no 

constraint violation is allowed for any realization of the data in the uncertainty set.   

3.6 Model configuration 

The optimization experiments were conducted using NSGA-II only, MADS only and a hybrid 

model where the MADS was implemented one, two, five and ten times during the global 

optimization. This resulted in a total of six experiments. The population for all experiments was 

the same and was set to 50. It is noted that larger populations normally result in better performance 

but lead to a heavier computational cost. The stopping criteria for the NSGA-II only and hybrid 

models are the number of generations, which was set to 4000. The stopping criteria for the MADS 

only was set to be when the objective difference is smaller than 10-3. Because of the random nature 

of GA, in a similar way to other random-based search algorithms, optimization results may vary 



for different runs, especially for problems with complex search space and multiple local optima. 

To provide a fair comparison, the initial population for all experiments were set to be the same.  

We first ran the experiment with the NSGA-II only and recorded the first population (i.e. solutions 

that are randomly generated). This recorded information was then used as the first population for 

the other experiments.  For the experiments with the hybrid model, the NSGA-II was run for the 

first 1000 generations and then the MADS was started at regular intervals between the 1000th and 

3000th generations. For example, the hybrid model with 2 times of MADS would start the MADS 

at the 1000th and 3000th generations, respectively. After the 3000th generation, the optimization 

continued with the NSGA-II and stopped at the 4000th generation.  

 The solutions of the objective functions at every ten generations were recorded for the 

experiments with NSGA-II only and for those using the hybrid model. Each of these solutions 

contain 50 points (population is 50) and form a Pareto front in the two-dimensional objective space.  

4 Results and Discussion 

      The resulting Pareto front at every ten generations are shown in Fig 3. As can be observed in 

Fig. 3, the solutions using NSGA-II only gradually move from the left-upper region to the right-

lower region, where the values of the objective functions are improved. This means that power 

deficit to the demand is decreased and extra power for heavy load hours is increased, which results 

are desirable for the decision maker. The extension of the solutions is also gradually increased as 

diversity is gained in the process. However, the extension increase may not be significant or even 

may decrease depending on the structure of feasible regions in the search space and the ability of 

the algorithm for maintaining diversity. For the experiments with the hybrid model, the 

optimization evolution was found to present clear gaps in the objective space as greater 

convergence was gained from the MADS process. Overall, it is observed that a larger number of 



MADS implementation leads to a better convergence; however, the diversity of the solutions are 

decreased. The later means that the two objectives of the reservoir operation problem (i.e., power 

deficit to the demand and extra power for heavy load hours) are both improved but the number of 

options for decision-making is reduced.   

 

Fig. 3 Optimization evolution in the objective space for the experiments with  

NSGA-II only and those with the hybrid model 

      The hypervolume index (Zitzler et al., 2003) of the solutions is investigated for a more 

quantitative comparison. A higher value of the hypervolume index indicates better quality of the 

solution in terms of convergence and diversity. Fig. 4 shows the hypervolume index at every ten 

generations for the experiment with NSGA-II only and those of the hybrid model. The 

improvement of the hypervolume index at early stages (e.g. first 1000 generations in Fig. 4) is very 

similar for all five experiments. This is likely because the same initial population is used for all of 

these experiments.  In a similar fashion to the first 1000 generations, the experiment with NSGA-



II only resulted in a continuous increase of the hypervolume index during the last 3000 generations 

as the diversity and convergence of the solutions were gradually improved (see Fig.3).  In contrast 

to the results with the NSGA-II only, the hypervolume index for all hybrid optimizations show 

sudden jumps after the implementation of the MADS. The results also show that a larger number 

of hybridization times (e.g., number of times MADS is implemented) gives a higher hypervolume  

index, which indicates a better quality of the solution in terms of convergence and diversity. For 

better visualization, the optimal solutions of the last generation are shown in Fig. 5. This figure 

also shows a reference solution, which was obtained with the NSGA-II only using 100,000 

generations. This reference solution represent the best possible results that can be achieved for the 

two objectives in the reservoir operation optimization problem (i.e., minimize the power deficit to 

the demand and maximize extra power for heavy load hours). As the two objectives are conflicting 

with each other, without additional subjective preference information, all solutions from the 

reference Pareto are considered equally good in the context of multi-objective optimization and 

selection of one solution depends on preference of the decision maker.  The solutions for the 

experiment with MADS only are also included for comparison. Fig. 5 shows the final optimal 

solutions in objective space for all experiments. The result for the experiment with MADS only is 

inferior to the other experiments. This is because the MADS, which focus is on convergence, may 

be trapped into local optima. Contrary to the MADS, diversity is created by the NSGA-II. It is 

worth mentioning that too many local exploitation decreases the diversity of the solutions in the 

process of seeking for convergence. The optimal solutions for the hybrid model with ten 

hybridization times is the closest to the reference solution. However, the diversity of the solutions 

is decreased compared to the hybrid model with lesser hybridization times.  

https://en.wikipedia.org/wiki/Subjectivity


 

Fig. 4 Run-time hypervolume index for NSGA-II and the hybrid model 

 

Fig. 5 Final optimal solutions in objective space for all experiments 



    Another important aspect of the algorithm is the computational cost. The computational cost of 

the NSGA-II can be evaluated based on the number of generations or function evaluations. 

However, this approach is not applicable to the MADS because this method takes the objective 

difference as the stopping criteria. For a fair comparison, the central processing unit (CPU) time 

was recorded for all experiments under the same computing environment. The computational cost 

is expressed as a dimensionless ratio denoted as computational index, where the CPU time of the 

experiment with NSGA-II only is used as the benchmark (e.g., ratio denominator). The result of 

the computational index is shown in Fig. 6. The final hypervolume index for all experiments is 

also included for comparison. The results for experiment 1 (NSGA-II only) and 2 (one 

hybridization) in Fig. 6 are used to produce a straight line (dashed line) as a representation of linear 

relationship. As shown in Fig. 6, the hypervolume index increases almost linearly until the number 

of hybridization times is about 2. For a larger number of hybridization times, the hypervolume 

index still increases, but at a much slower rate.  The computational cost also increases with the 

number of hybridization times. For instance, for ten hybridization times, the computational cost is 

increased by 30% compared to the case with no hybridization. Also, as shown in Fig. 6, the 

computational cost for the experiment with the MADS only is the lowest, but its hypervolume 

index is also the lowest. The hybrid model with two hybridization times shows overall good 

performance in terms of hypervolume index, diversity of solutions and computational cost. For 

two hybridization times, the hypervolume index is improved by nearly 10% at an increase of 

computational cost of less than 0.1% compared to the NSGA-II.   



 

Fig. 6 Hypervolume index of final solutions and their associated computational costs 

for the six experiments  

5 Conclusion   

       A novel hybrid optimization model, which incorporates the MADS into the NSGA-II, is 

developed to enhance local search in global exploration of the NSGA-II. An achievement 

scalarizing function is introduced in the MADS to attain Pareto optimal solutions. The major 

advantages of the model are (1) derivative-free, (2) fast convergence and (3) efficient exchange of 

solution vectors between local and global optimization methods. The case study for the 



optimization experiments is the short-term operation of a multi-objective reservoir system under 

uncertainty.  In general, the results show that the hybrid model has a superior performance 

compared to both NSGA-II only and MADS only. The hybrid model with two times of MADS 

shows overall good performance in terms of hypervolume index, solution diversity and 

computational cost. For this case, the hypervolume index is improved by nearly 10% at an increase 

of computational cost of less than 0.1%, compared to the NSGA-II only model.  Overall, the 

proposed hybrid model is derivative-free and can be applied to a wide array of complex 

optimization problems in water resource planning and management.  
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