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Abstract: Optimization of short-term reservoir operation normally involves ramping constraints 4 

of outflows and water elevations at short time steps (e.g., hourly). Random search algorithms, such 5 

as Genetic Algorithms, have been widely used in optimization of reservoir operation. When 6 

applying random search algorithms to hourly reservoir operation, two important issues arise. The 7 

first one is the frequent violation of ramping constraints on the hourly reservoir outflows due to 8 

the random nature of the optimization algorithm. In other words, the optimization struggles to meet 9 

the ramping constraints when finding feasible solutions. The second issue is the zigzag fluctuation 10 

of the hourly decision variables as a result of the random search, which is unrealistic to implement 11 

in practice. In this study, the Savitzky-Golay smoothing filter (also known as least-squares filter) 12 

is incorporated periodically within the routine of the Non-dominated Sorting Genetic Algorithm 13 

(NSGA-II). The goal of this study is to smooth out the decision variables functions without 14 

deteriorating the performance of the optimization algorithm. The performance of the proposed 15 

approach is quantified through three indexes using a multi-reservoir system with 3360 decision 16 

variables as the test case. The results show that the use of the Savitzky-Golay filter not only 17 
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provides a solution to the two aforementioned issues, but also significantly improves the 18 

performance of the NSGA-II for hourly reservoir operation. The optimal decisions obtained using 19 

the proposed approach display similar hourly variability to decisions of actual reservoir operation.  20 

Keywords: Random search algorithm; zigzag operational scheme; Reservoir operation; 21 

Savitzky-Golay filter; Smoothing; 22 

Introduction 23 

Short-term reservoir operation usually involves short time steps (e.g., hourly) in an optimization 24 

horizon of several days or weeks. Ramping rates, which measure the changes on outflow and water 25 

surface elevation between the conservative time steps, are often considered in hourly reservoir 26 

operation due to navigational, environmental and recreational requirements (Edwards 2003; Niu 27 

and Insley  2013). The ramping rates are usually introduced in the optimization model as 28 

constraints that force them to lie between certain ranges. The inclusion of hourly ramping 29 

constraints can have a significant impact on reservoir operation (Veselka et al. 1995; Guisández et 30 

al. 2016) and correspondingly, on the performance of the optimization method.   31 

     Random Search Algorithms (RSA) refer to those algorithms that use some kind of random 32 

mechanism or probability (typically in the form of a pseudo-random number generator) in the 33 

optimization procedure. They are also known as stochastic optimization or global optimization 34 

methods (Zabinsky 2009). RSA include simulated annealing, tabu search, genetic algorithms, 35 

evolutionary programming, particle swarm optimization, and colony optimization, among others. 36 

None of these methods require the gradient of the problem to be optimized and hence, they can be 37 

used for functions that are not continuous or differentiable (Zabinsky 2015). Recently, various 38 

RSA have been widely applied to reservoir operation (Kumar and Reddy 2006; Afshar et al. 2007; 39 

Chen et al. 2016) due to their robustness, effectiveness, and global optimality properties. However, 40 

https://en.wikipedia.org/wiki/Gradient
https://en.wikipedia.org/wiki/Continuous_function
https://en.wikipedia.org/wiki/Differentiable
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there are at least two issues that arise when using RSA for hourly reservoir operation, in which 41 

hourly ramping constraints are considered. The first issue is the recurrent violation of hourly 42 

ramping constraints due to the random generation of the initial population. RSA work by iteratively 43 

moving to better positions in the search space, which are sampled using some probability 44 

distribution (e.g., normal) defined around the current position. The random sampling may result in 45 

high fluctuations of the decision variables that are difficult to comply with the ramping constraints. 46 

The second issue is that the zigzag operational scheme resulting from high fluctuations in decision 47 

variables (Malekmohammadi et al. 2010) is often unrealistic to be implemented in practice. 48 

     Among the studies concerned with hourly reservoir operation with ramping constraints, the 49 

methods used for optimization mainly fall into the category of classical gradient-based methods, 50 

e.g., mix-integer linear programming (Needham et al. 2000; Chou and Wu 2015) or dynamic 51 

programming (Catalão et al. 2010; Wang and Zhang 2011). These methods do not iterate their 52 

candidate solutions by the mechanism of random distribution, and therefore the two issues 53 

mentioned above are not relevant in the classical gradient-based methods. However, other 54 

drawbacks such as the curse of dimensionality (Nandalal and Bogardi 2007) and not being 55 

appropriate to multi-objective optimization (Reddy and Kumar 2006) limit the classical methods 56 

for optimizing multi-objective and multi-reservoir systems. Recently, applications of the RSA to 57 

the optimization of multi-reservoir operation have shown promising results (Oliveira and Loucks 58 

1997; Wardlaw and Sharif 1999; Labadie 2004; Reed et al. 2013; Chen et al. 2015) and have been 59 

receiving increasing attention. Most applications of the RSA on reservoir operation, however, 60 

focus on long-term planning and management with monthly time step or short-term optimization 61 

with a daily time step. The hourly ramping constraints are normally ignored for long time steps 62 

due to simplicity. Including hourly ramping constraints is essential for applying the RSA to the 63 

https://en.wikipedia.org/wiki/Normal_distribution
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practice of reservoir operation. Furthermore, addressing the two aforementioned issues is critical 64 

for future applications of RSA to reservoir operation when using sub-hourly time steps, which are 65 

increasingly being considered in the optimization of power systems that combine wind generation 66 

and/or other renewable sources. These types of applications normally require sub-hourly time steps 67 

for their accurate representations (Wang and Liu 2011; Deane et al. 2014).  68 

     This study aims to address these issues by incorporating a filter function in the RSA. The goal 69 

is to smooth out the decision variables without deteriorating the performance of the optimization 70 

algorithm. Specifically, we consider the non-dominated sorting genetic algorithm, which is 71 

currently one of the most widely used random search methods.  Malekmohammadi et al (2010) 72 

pointed out that high fluctuations of hourly outflows are a result from the Genetic Algorithm. In 73 

the study of Malekmohammadi et al (2010), the reservoir outflow itself is the objective for flood 74 

control and is incorporated with a coefficient of variation to minimize the hourly outflow variations. 75 

Our study, however, considers a much broader application in which the hourly ramping rates are 76 

expressed as constraints and the objectives of reservoir operation can be arbitrary. To test the 77 

performance of the proposed approach, a ten-reservoir system in the Columbia River, located in 78 

the Pacific Northwest of the United States, is used as a case study. For test case, we use three 79 

indexes to compare the performance of optimization experiments with and without filtering. The 80 

first index measures the ability of an optimization method to reduce constraint violation. The 81 

second index is the so-called hyper-volume index, which measures the convergence and diversity 82 

of the Pareto front, i.e., the final non-dominated solution. The third index measures the similarity 83 

(in variability) of model solutions to decisions of actual reservoir operation. This paper also 84 

investigates the influence of the frequency of filtering on the three aforementioned indexes.   85 
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Methodology  86 

Non-dominated sorting genetic algorithm 87 

The non-dominated sorting genetic algorithm, known as NSGA-II (Deb et al. 2002), is a widely 88 

used random search method for multi-objective problem (MOP) and has received increasing 89 

attention for study of reservoir operation (Prasad and Park 2004; Atiquzzaman et al. 2006; 90 

Yandamuri et al. 2006; Sindhya et al. 2011; Chen et al. 2013). The NSGA-II is a member of the 91 

Genetic Algorithm (GA) family and follows the primary principles of the classical GA. First, a 92 

set of candidate solutions (population) is generated randomly (first generation) that is essentially 93 

white noise. By using the selection operator, some candidate solutions in the population are 94 

selected. A so-called binary tournament is implemented and the chosen candidate solutions are 95 

compared in pairs based on the performances on the constraints and the objectives. For two feasible 96 

solutions (all the constraints are satisfied), the one that is better than the other according to the 97 

definition of dominance of the multi-objective is declared the winner. If one is feasible and another 98 

is not, the feasible one is better. If both solutions are infeasible, the one with smaller overall 99 

constraints violation wins the tournament. The winners of the tournament reproduce children (next 100 

generation) by using recombination and mutation operators. A child can be viewed as a random 101 

generation around a parent by some type of distribution. The evolution process continues until a 102 

stopping criterion is met. One of the most common stopping criteria is the number of generations. 103 

This criterion is problem-dependent, but generally, a large number of generations is used for 104 

ensuring solution convergence.  105 

Savitzky-Golay smoothing filter   106 

Filter functions are commonly used for time series data to smooth out short-term fluctuations and 107 

focus on longer-term trends and patterns. One of the simplest types of filters is the finite impulse 108 

https://en.wikipedia.org/wiki/Time_series
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response filter (FIR), which produces an output that is essentially a weighted average of the inputs 109 

or original data. The process can be described by the following equation (Giron-Sierra 2017): 110 

𝑆𝑆(𝑡𝑡) = ∑ 𝑐𝑐𝑛𝑛𝐺𝐺(𝑡𝑡 + 𝑛𝑛)𝑛𝑛𝑅𝑅
𝑛𝑛=−𝑛𝑛𝐿𝐿                                                                                                                          (1) 111 

where S(t) is the output at time t. G(*) is the input data at time *; the index n indicates the number 112 

of the input data for generating one output data and ranges from nL, the number of points to the left 113 

of the data point t, up to  nR, the number of points to the right of data point t. Finally, cn represents 114 

the weighting factors that are used to emphasize the importance of the data at some specific time 115 

step. If we assume that nL= nR and cn= 1/( nL+ nR+1), the smoothing process becomes the so-116 

called moving average function (MAV).  117 

   The MAV is one of the standard averaging FIR filters, which tends to filter out a significant 118 

portion of the signal's high-frequency content along with the noise. This means that some 119 

information, such as the amplitude, may be reduced. In order to preserve the pertinent high-120 

frequency components of the signal, the Savitzky-Golay smoothing filter (Savitzky and Golay 121 

1964), also known as digital smoothing polynomial filters or least-squares smoothing filters, was 122 

developed. Unlike the constant weights used in the MAV, the Savitzky-Golay filter approximates 123 

the underlying time-series data by a polynomial. Specifically, for each point G(t), a polynomial is 124 

fit, using least-squares, to all nL+ nR+1 points in the moving window, and then S(t) is set to be the 125 

value of that polynomial at position t. The Savitzky-Golay filter is essentially an optimization 126 

problem which minimizes the least-squares error of the polynomial fitted to frames of noisy data 127 

(Schafer 2011).  The problem can be written in the following: 128 

𝑀𝑀𝑀𝑀𝑛𝑛𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 ∑ (∑ 𝑎𝑎𝑘𝑘𝑁𝑁
𝑘𝑘=0

𝑛𝑛𝑅𝑅
𝑛𝑛=−𝑛𝑛𝐿𝐿 𝑛𝑛𝑘𝑘 − 𝑥𝑥(𝑛𝑛))2                                                                             (2)        129 

Where N is the order of the fitted polynomial. ak is the coefficient for the kth order of the 130 

polynomial and are determined in the process of finding the smallest least-squares error.  Akaike 131 
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information criterion (AIC; Akaike  1973) is used to determine the order of N and the window 132 

length i.e. nL+ nR+1. The model with N=2 i.e., quadratic model and window length of 5 has the 133 

smallest normalized AIC value (0.793) among the candidate models (N range from 1 to 5 and 134 

window length range from 2 to 10) and therefore, are selected in the study.  135 

The Savitzky-Golay filter is typically used to "smooth out" a noisy signal whose frequency span 136 

(without noise) is large. For this reason, in this type of application, the Savitzky-Golay smoothing 137 

filter performs much better than the MAV and preserves more information from the original data 138 

(Vivó-Truyols and Schoenmakers 2006).  The main purpose of adding a filter to random search 139 

algorithms is to smooth out the high fluctuation between two consecutive time steps. But at the 140 

same time, the amplitude of the decision variable is preserved, since this information may be 141 

helpful for finding the global optimal. To illustrate the advantage of the Savitzky-Golay filter with 142 

respect to the MAV filter, consider a time series data comprised of 120 hourly reservoir outflows. 143 

The reservoir outflows can be thought as a set of candidate decisions on how much water are being 144 

released. The reservoir outflow may be changed for every hour depending on the reservoir inflow 145 

and the power demand etc. However, the decision makers often prefer smooth change in the 146 

practice.  First, the data was randomly generated by the NSGA-II algorithm without a filter. We 147 

then apply the Savitzky-Golay filter with a second-degree polynomial and an MAV filter, each 148 

with a moving window of 5, to the data. The comparison (Figure 1) shows that the Savitzky-Golay 149 

filter preserves much of the amplitude of outflows while as the MAV filter largely reduces the 150 

amplitude of outflows. 151 

Incorporating the Savitzky-Golay filter to NSGA-II 152 

To start the optimization, the NSGA-II randomly generates multiple sets of candidate decisions as 153 

the first generation. Each set of candidate decisions contains a certain number of decision variables. 154 

https://en.wikipedia.org/wiki/Hirotugu_Akaike
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Conventionally, each set of decision variables in the first generation is assigned a value that is 155 

randomly generated in the range of an upper bound and a lower bound, i.e., the so-called box 156 

constraint. Due to this generating mechanism, one decision variable may be assigned two very 157 

different consecutive values, which may result in a large zigzag fluctuation as shown in Figure 1.  158 

 159 

Figure 1. Comparison of the  Savitzky-Golay and MAV filter on the data that are randomly generated by the 160 

NSGA-II(without filter) 161 

      In the present study, the Savitzky-Golay smoothing filter is incorporated in the routine of the 162 

NSGA-II. First, multiple sets of candidate decisions are randomly generated. Then, the Savitzky-163 

Golay filter is applied on each set of candidate decisions, where the original generation is 164 

reconstructed by the smoothed out data. Then, the optimization process is continued as usual. The 165 

main steps of the optimization process are selection, recombination and mutation, where the 166 

decision variables can be replaced in the latter two steps. The fluctuation in the decision variables 167 

may be reintroduced at these two steps at later stages of the optimization. To maintain the 168 

smoothness of the decision variables, the Savitzky-Golay filter is applied periodically in the 169 

optimization process. However, the filtered candidate decisions may deteriorate the quality of the 170 

solutions. Hence, the frequency of the filtering is a parameter that can be evaluated for its trade-171 

off on optimization performance. The procedure of incorporating the Savitzky-Golay filter into the 172 
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NSGA-II is shown in Figure 2. The incorporation of the filter into the NSGA-II involves only a 173 

few steps and its implementation is straightforward. The computational cost of adding the filter is 174 

small since the least-square process in the Savitzky-Golay filter involves only a linear matrix 175 

inversion and can be solved in advance (Press 2007). The frequency of applying the Savitzky-176 

Golay filter is the only parameter that needs to be specified.  177 

 178 

Figure 2. Incorporating the Savitzky-Golay filter into the NSGA-II (in italic and bold) 179 
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Indexes of performance evaluation 180 

 V-index 181 

  During the optimization process, the candidate solutions often violate the constraints, especially 182 

at early stage of the optimization.  It is common that most or even all candidate solutions in the 183 

first generation are infeasible because of the random generation. The binary tournament in the 184 

process of the NSGA-II compares the infeasible solutions and selects the one with less violation 185 

of the constraints to reproduce children solutions. The process is expected to evolve the solutions 186 

with progressively less violation until feasible solutions are found. However, a feasible solution 187 

may be achieved only after many generations for cases in which the constraints are difficult to 188 

satisfy, i.e., a highly constrained problem within a complex search space. Therefore, the ability for 189 

reducing constraint violation is an important aspect for the optimization model. To compare the 190 

optimization performance in finding feasible solutions, this study propose a so-called V-index. 191 

The V-index is formulated in the following: 192 

𝑉𝑉index = 𝐶𝐶𝐶𝐶𝑛𝑛intial

𝐺𝐺f
                                                                                                                            (3)  193 

where Gf is the number of generations required to find the feasible solution and Conintial is the 194 

average constraint violation of the initial population (the 1st generation). Violation of each 195 

constraint is indicated by a positive number, and its magnitude is proportional to the extent of the 196 

violation.  A negative number or zero indicates no violation. The Vindex can be viewed as a rate of 197 

reduction of constraints violation. The greater is the value of the Vindex, the better is the performance 198 

of the optimization in finding feasible solutions. Note that this index can be near zero if no feasible 199 

solutions are found even when a large number of generations are used.  200 
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H-index   201 

     One of the most important evaluations of performance in the multi-objective optimization 202 

problem is the global optimality, commonly determined by two main aspects: convergence and 203 

diversity of the Pareto front (Deb et al. 2002). In this context, the hyper-volume index (H-index) 204 

is found to be a good metric for evaluating the performance of multi-objective optimization (Zitzler 205 

et al. 2000; Reed et al. 2013) due to its ability to combine convergence and diversity metrics into 206 

a single index. The H-index is defined as 207 

           (4) 208 

where A is an objective vector set, Z is the hyper-cube (0,1)n of the normalized objectives (n=2 in 209 

our test case). The  is a generalization of the multivariate cumulative distribution 210 

function𝐹𝐹𝑥𝑥(𝑀𝑀) = 𝑃𝑃(𝑋𝑋 ≤ 𝑀𝑀), also called attainment function (Fonseca et al. 2001). The  is 211 

equal to 1 if A is a weakly dominated solution set in Z. Basically, the H-index measures the volume 212 

of the objective space covered by a set of non-dominated solutions by calculating the volume of 213 

the objective space enclosed by the attainment function and the axes. Higher values of the hyper-214 

volume index suggest better quality of the solutions in terms of convergence and diversity. In 215 

general, a true Pareto front or best-known Pareto approximation set (i.e., reference set) is ideal or 216 

preferred for performance evaluation. However, the hyper-volume index can be used to compare 217 

two intermediate solution sets (Knowles and Corne 2002). 218 

S-index   219 

     In reservoir operation practice, smooth changes of decision variables, e.g. outflows, are 220 

preferred rather than large zigzag fluctuations. To compare the applicability of model solutions, 221 

the historical outflows are used as a benchmark. We propose an index that measures the similarity 222 

(1,1)

(0,0)
( )index AH dzα= Ζ∫

( )Aα Ζ

( )Aα Ζ
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of the model solution to the benchmark in terms of shape smoothness.  It is pointed out that we do 223 

not want to match the model solution exactly with the historical solution since there will be 224 

differences due to the optimization. Instead, we prefer a similar smoothness or linearity of the two 225 

sets, e.g., greater similarity (in shape) instead of smaller distances between the sets. Therefore, the 226 

Lp-norm, which measures the distance between two time series data, is not appropriate for this 227 

purpose. Instead, the Dynamic Time Warping (Berndt and Clifford 1994; Müller 2007) algorithm 228 

is used. The Dynamic Time Warping (DTW) is an algorithm that measures the similarity between 229 

two temporal sequences that may vary in time. The DTW has been successfully applied in fields 230 

of data mining and information retrieval due to its advantage for recognizing the “local shape” of 231 

the time series data (Petitjean et al. 2014). The DTW applies a local distance measure to compare 232 

the partial shape of two underlying data sets. A small distance indicates that the two set are similar 233 

in shape. For our study, we prefer model solutions with smaller DTW.  On the other hand, the 234 

same or fewer turning points (from decrease to increase and vice versa) in the model solution are 235 

also desirable. Combining these two conditions, we define the S-index as  236 

𝑆𝑆index = 1

log(𝐷𝐷𝐷𝐷𝐷𝐷d)∗𝑇𝑇𝑇𝑇m

𝑇𝑇𝑇𝑇h

                                                                                                                                    (5) 237 

where DTWd are the DTW distances from the model solution to the historical decisions. The DTW 238 

itself is an optimization problem and a program is used in the study 239 

(https://cn.mathworks.com/matlabcentral/fileexchange/43156-dynamic-time-warping--dtw-.) to 240 

calculate the DTW distance.  The TP is also calculated by a program made by the authors in which 241 

a turning point is detected whenever the sign of the difference between two consecutive points are 242 

changed. TPm and TPh are the turning points in the model solution and historical decisions, 243 

respectively. The log function is used to reduce the magnitude of DTWd , so that Log(DTWd ) can 244 

have the same order of magnitude as 𝑇𝑇𝑃𝑃m/𝑇𝑇𝑃𝑃h.  According to Equation 4, a smaller DTW distance 245 

https://cn.mathworks.com/matlabcentral/fileexchange/43156-dynamic-time-warping--dtw-
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and fewer turning points result in a higher Sindex. The larger the index is, the more applicable the 246 

model solution will be.  247 

Case Study  248 

The test case is a reservoir system on the Columbia River in the United States, which comprises 249 

10 reservoirs. A sketch of the ten-reservoir system is shown in Figure 3.  250 

 251 

Figure 3. Sketch of the ten-reservoir system in the Columbia River (reprinted from Chen et al. 2017) 252 

The reservoir system serves multiple purposes, e.g. power generation, ecological and 253 

environmental objectives (Schwanenberg et al. 2014, Chen et al. 2014). The optimization period 254 

is set to two weeks, beginning on August 25th and ending on September 7th. The reservoir system 255 

shifts some of the objectives during this two-week period based on seasonal consideration for fish 256 

migration and survival (Chen et al. 2014). It should be noted that the choice of the two-week period 257 

would not affect the performance of the proposed filter method as this method is designed for 258 

general use on short-term reservoir operation. The decision variables are the outflows at each 259 

reservoir for each hour during the optimization horizon, resulting in 3360 decision variables in 260 

total.  The decisions normally are made through a joint team which including many stakeholders 261 

such as US Army Corps and Bonneville Power Administration. The reservoir system is 262 

coordinated under the decision-making team.  263 
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Objectives 264 

Minimizing Power deficit to the demand    265 

An important objective of the reservoir system is to meet power demand in the region.  A deficit 266 

occurs when the generated power is less than the demand. Though the deficit can be compensated 267 

from buying power from an electricity market, it is desirable to minimize the power deficit during 268 

the operational horizon. This objective is expressed as 269 

                             (6) 270 

where PG is hydropower generated in the system (MWh), PD is power demand in the region 271 

(MWh). The variable t denotes time in hours and Th  is the optimization period (3360 hours). The 272 

index i represents reservoirs in the system, and Nr is the total number of reservoirs. The function 273 

min(0, *) expresses that the deficit is equal to 0 if the total power generated is greater than or equal 274 

to the power demand at time t.  275 

Maximizing power generation for heavy load hours 276 

It is desirable to generate more power during heavy load hours (certain hours in a day) for selling 277 

power to the electricity market at a higher price, which would increase the revenue. This objective 278 

is expressed as 279 

              (7) 280 

where hr means heavy load hours (HLH) for a day (typically from 06:00 to 22:00). The quantity 281 

Td corresponds to the optimization period in days (14 in our case). The function max(0, *) 282 

expresses that there is no excess power if the total power generated  is smaller than or equal to the 283 

power demand at heavy load hours.  284 

1 1
( min(0, ( ) ))

hT Nr
i
t t

t i
Minimize PG PD

= =

−∑ ∑

14 22

1 6 1
( ( max(0, ))

d

Nr
i
hr hr

T hr i
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= = =

−∑ ∑ ∑
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The two aforementioned objectives are generally conflicting when trying to move power 285 

generation from one period to another.  One extreme case is to generate power only during HLH, 286 

which may lead to a large deficit on the demand in light load hours (LLH). Another extreme case 287 

is to meet the demand at all times (zero deficit) while generating excess power during HLH. 288 

However, the latter case is only possible if enough water is available. In the optimization model, 289 

the two objectives are normalized using a dimensionless index between zero and one. Other 290 

purposes of reservoir operation such as flood control, special operation Forebay(SOF) and seasonal 291 

requirements for fish migration and survival(fish flow) are expressed as constraints, and are 292 

described below.  293 

Constraints 294 

Reservoir forebay elevation constraints 295 

The reservoir elevation constraints are expressed as 296 

min, , m ,
t

r i r i r ax iH H H≤ ≤     (8) 297 

where Hr is forebay elevation or reservoir water surface elevation; Hrmin and Hrmax  are allowed 298 

minimum and maximum forebay elevations, respectively. 299 

Fish flow constraints 300 

To assist juvenile salmon and steelhead species in surface passage past the dams, most of the 301 

reservoirs in the system are required to spill a certain amount of flow through non-turbine 302 

structures such as sluices or gates. These flow requirements are expressed as either a fixed flow 303 

rate or a percentage of the total outflow of a reservoir (NOAA Fisheries 2014), these requirements 304 

are expressed as  305 

  , ,
t
s i sr iQ Q=   (for i =5,7,8,9)                                                                                                 (9) 306 
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,
, ,100

s it t
s i out i

q
Q Q=  (for i =3,4,6,10)                                                                                       (10)                                                307 

where Qs is the spill flow, Qsr is the fixed fish flow requirement, qs is the flow rate and Qout  is the 308 

total outflow from the reservoir. According to the “Biological Opinion” issued by the National 309 

Oceanic and Atmospheric Administration (NOAA), the Grand Coulee (i=1) and Chief Joseph (i=2) 310 

reservoirs are not required to satisfy any fish flow requirement. Furthermore, the flow constraints 311 

are only required for the first week of the chosen period, namely from August 25th to August 31st.   312 

SOF constraints 313 

     For the same purpose of assisting fish migration, the forebay elevations of reservoirs in the 314 

system are required to be kept within specific ranges, i.e., the SOF. The SOF requirements are 315 

expressed as follows 316 

    𝑆𝑆𝑆𝑆𝐹𝐹𝑙𝑙𝐶𝐶𝑙𝑙𝑙𝑙𝑙𝑙,𝑖𝑖  ≤ 𝐻𝐻𝑙𝑙,𝑖𝑖
𝑡𝑡 ≤ 𝑆𝑆𝑆𝑆𝐹𝐹𝑢𝑢𝑢𝑢𝑢𝑢𝑙𝑙𝑙𝑙,𝑖𝑖                                                                                                 (11)  317 

where Hr is forebay elevation, and SOFlower and SOFupper are lower and upper boundary for the 318 

SOF requirement, respectively. This flow constraint is also only required for the first week during 319 

the two-week period.   320 

Turbine flow constraints 321 

The turbine flow constraints are expressed as follows 322 

                                                                                                       (12) 323 

where Qtb is turbine flow, Qtb_min and Qtb_max are allowed minimum and maximum turbine flows, 324 

respectively. 325 

Ramping limits for outflow 326 

The ramping limits for the outflow are expressed as follows 327 

  �𝑄𝑄𝐶𝐶𝑢𝑢𝑡𝑡,𝑖𝑖
𝑡𝑡 − 𝑄𝑄𝐶𝐶𝑢𝑢𝑡𝑡,𝑖𝑖

𝑡𝑡+1 � ≤ 𝑄𝑄𝐶𝐶𝑢𝑢𝑡𝑡_𝑙𝑙𝑟𝑟𝑟𝑟𝑢𝑢_𝑟𝑟𝑙𝑙𝑙𝑙𝐶𝐶𝑙𝑙,𝑖𝑖                                                                                          (13) 328 

_ min, , _ max,
t

tb i tb i tb iQ Q Q≤ ≤
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where Qout is outflow from the reservoir, Qout_ramp_allow is allowed ramping rate for the 329 

outflow between any two consecutive time steps. 330 

Ramping limits for forebay elevation 331 

The ramping limits for the forebay elevation are expressed as follows 332 

 𝐻𝐻𝑙𝑙,𝑖𝑖
𝑡𝑡 − 𝐻𝐻𝑙𝑙,𝑖𝑖

𝑡𝑡+1 ≤ 𝐻𝐻𝑙𝑙𝑟𝑟𝑟𝑟𝑢𝑢_𝑑𝑑𝐶𝐶𝑙𝑙𝑛𝑛,𝑖𝑖 (if  )                                                                     (14) 333 

 𝐻𝐻𝑙𝑙,𝑖𝑖
𝑡𝑡+1 − 𝐻𝐻𝑙𝑙,𝑖𝑖

𝑡𝑡 ≤ 𝐻𝐻𝑙𝑙𝑟𝑟𝑟𝑟𝑢𝑢_𝑢𝑢𝑢𝑢,𝑖𝑖 (if  )                                                                        (15) 334 

where Hramp_up is the allowed ramping rate when the reservoir water level is increasing and 335 

Hramp_down is the allowed ramping rate when the reservoir water level is decreasing. 336 

Ramping limits for tail water elevation  337 

The ramping limits for tail water elevation are expressed as follows 
338 

𝑇𝑇𝑇𝑇𝑙𝑙,𝑖𝑖
𝑡𝑡 − 𝑇𝑇𝑇𝑇𝑙𝑙,𝑖𝑖

𝑡𝑡+1 ≤ 𝑇𝑇𝑇𝑇𝑙𝑙𝑟𝑟𝑟𝑟𝑢𝑢_𝑑𝑑𝐶𝐶𝑙𝑙𝑛𝑛,𝑖𝑖 (if  )                                                                   (16) 339 

where TWramp_down is the allowed ramping rate for tailwater, which is only applied when tailwater 340 

elevation is decreasing. 341 

Output constraints 342 

The output constraints are 343 

                                                                                                      (17) 344 

where Nd is power output, Nd_min is minimum output requirement, and Nd_max is maximum output 345 

capacity. 346 

Constraints on end-of-optimization forebay elevation 347 

The Forebay elevations of the ten reservoirs at the end of optimization are expected to stay within 348 

certain elevations in order to fulfill their future obligations. These targets are often determined 349 

by middle-term or long-term optimization models (Lund 1996), which are not part of this study. 350 

1
, , 0t t

r i r iH H +− >

1
, , 0t t

r i r iH H +− <

1
, , 0t t

r i r iTW TW +− >

_ min, , _ max,
t

d i d i d iN N N≤ ≤
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In the present test case, historical forebay elevations are used as the target elevations at the end 351 

of the optimization.  These constraints are expressed as:  352 

                                                                                                                      (18) 353 

where  is forebay elevation at the end of optimization; Htar is the target forebay elevation at 354 

the end-of-optimization. 355 

Reservoir System Modelling  356 

The reservoir storages at each time step are modeled through the following equation (i.e., 357 

continuity equation) as to conserve the mass 358 

1 1 1
, , , ,(( ) / 2 ( ) / 2)t t t t t t

i i in i in i out i out iV V Q Q Q Q t+ + +− = + − + ⋅∆                                                             (19) 359 

where V is reservoir storage; Qin and Qout are inflow to and outflow from reservoirs, respectively; 360 

∆t is time step. The inflow is input to the model and the outflows are the decision variables.  361 

The evaporation or seepage is important for reservoir operation model set-up, particularly for long-362 

term planning model or for the arid or semi-arid research area (Celeste and Billib 2010). Due to 363 

the short time frame in our study, water losses such as evaporation and seepage are not considered 364 

in the model.  365 

    The forebay elevations are obtained from the established forebay-storage relation by the given 366 

storages. The tail water for each dam is determined using a regression equation as a function of 367 

the dam outflow and the forebay elevation of the downstream reservoir. The turbine flow is 368 

modeled by relating the outflow with the fish flow requirement through the following procedures 369 

_ min _ min , , _ min

, , , _ min , , _ max

_ max , _ max ,

,

t
tb tb out i sr i tb

t t
out i sr i sr i tb out i sr i tbt

tb t
tb sr i tb out i

t
out i

Q if Q Q Q Q

Q Q if Q Q Q Q Q
Q

Q if Q Q Q

Q else

 ≤ < +


− + ≤ < +
= 

+ ≤



                                                (20) 370 

, ,
end
r i tar iH H≥

,
end
r iH
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 where Qtb is turbine flow, Qtb_min and Qtb_max are allowed minimum and maximum turbine flows, 371 

respectively.  372 

   The power generation is computed based on the turbine flow and the water head (a function of 373 

forebay elevation and tailwater elevation) with project-aggregated coefficients 374 

, ,( )
d i

t t t
i r i i

t
tbK WN H T Q= − ×                                                                                                                            (21) 375 

where Nd is power output, TW is the tailwater elevation.  K is the coefficient to express the overall 376 

efficiency of each turbine, which is aggregated as one value for each project (reservoir). In 377 

general, however, this value depends on water head and flow released in the turbines (i.e., a 378 

function of water head and flow). Schwanenberg et al (2014) validated the Big-10 Reservoir 379 

system by comparing the historical power generation from 2008-2012 with the simulated results 380 

from equation (20). The overall bias of the simulated project-aggregated power generation is in 381 

the range of −0.7 and 1.7MW and is, therefore, negligible when compared to the average 382 

generation of the individual projects. Therefore, the efficiency of the turbine as aggregated at the 383 

plant level is appropriate within the current modeling context. Note, however, this simplification 384 

may not be sufficient for unit commitment (UC) or other scheduling problems (Hidalgo et al., 385 

2014), which are not being considered here, as the efficiency of turbines is sensitive to the 386 

performance of individual turbines. For the UC problem, a nonlinear function (normally high 387 

degree polynomial) of the generating discharge and the water head is often used to calculate 388 

power for each unit (Finardi et al. 2006).  389 

The flow propagation within the reservoir-river network is modeled using Muskingum-Cunge 390 

routing method with calibrated coefficients. Most of the propagation times in the river between 391 

two reservoirs are 1-3 hours except the river reach between CHJ reservoir and MCN reservoir with 392 

an average propagation time of 21 hours.  393 
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Results  394 

For each optimization run, the population and generation were set to 50 and 5000, respectively. 395 

Fifteen different experiments were tested in this case study. Because of the random nature of 396 

Genetic Algorithms, optimization results may have some differences for different runs, like other 397 

random-based search algorithms. For each experiment, a 30 random-seed replicate runs are used 398 

and the average values are reported, as in Fu et al. 2011.  The typical parameters of the NSGA-II 399 

i.e., crossover rate were set as default values as recommended by Deb et al. 2002. 400 

      The first experiment (Ex0) did not use a filter while as the remaining fourteen (Ex1 to Ex14) 401 

used a different number of times that the filter is applied. The number of filtering times ranged 402 

from 1 to 40 with an increment of 3. The number of filtering times was evenly distributed among 403 

the total number of generations (i.e., 5000). The optimization model (written in Matlab) was 404 

executed on a desktop with Intel E3-1240/3.40GHZ/Dual Cores/24GB RAM. The CPU time for a 405 

typical experiment (population = 50, number of generations = 5000) was approximately 25 minutes. 406 

The time difference between the experiments with different filtering times is small since the filter 407 

is simply a few function evaluations during the model run. For an instance, the experiment with 1 408 

times filter runs 1478s averagely and the experiment with 40 times filter runs 1483s averagely, 409 

resulting in 0.3% time difference.  410 

For each run, the three aforementioned indexes were computed using Equations (2) to (4). To 411 

facilitate the comparison of results, all indexes were normalized to the range 0-1, where 0 and 1 412 

correspond to the worst and best performance, respectively. The three indexes for all experiments 413 

are shown in Figure 4. To investigate the violation of constraints as a function of the generations 414 

for various filtering times, these are plotted in Figure 5. To assess the variation of the S-index, the 415 

Pareto fronts of various experiments are presented in Figure 6.  To illustrate the best model solution 416 
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in comparison to the historical operation, the solution of Ex7 and the historical hourly outflows 417 

are shown in Figure 7.  418 

 419 

Figure 4. Index values for the experiments with different number of filtering times 420 

 421 

Figure 5. Violation of constraints versus generations for various filtering times   422 

 423 

Figure 6. Pareto front for various filtering times  424 
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   425 

(a)                                                                                                    (b) 426 

Figure 7. Grand Coulee reservoir outflows for various scenarios of 336 hours (a) and that of a typical 24 427 

hours cycle (b) 428 

 In Figure 6 we can observe that all three indexes for Ex0 (no filtering) are zero, meaning that this 429 

experiment has the worst performance compared to those that use a filter. For the experiments with 430 

filter (Ex1 to Ex14), the V-index for all experiments achieved similar values. However, the H-431 

index and S-index varied significantly with the number of filtering times. The S-index increased 432 

monotonically with the number of filtering times. The H-index increased monotonically with the 433 

number of filtering times until NF = 16 (NF is the number of filtering times) and then decreased 434 

monotonically with the number of filtering times.   435 

Figure 7 shows that the experiment with no filter (Ex0) required more than 2000 generations to 436 

reduce the violation of constraints to zero. Contrastingly, the experiments with filter (Ex1 to Ex14) 437 

reduced the violation of constraints to zero in as few as 3 or 4 generations. Figure 8 compares 438 

Pareto fronts of Ex0 (without filtering), Ex1 (1 time filtering), Ex7 (16 times filtering) and Ex14 439 

(40 times filtering).  Since this case study is a Max-Min optimization problem, the best solutions 440 

would be located at the bottom right corner of the objective space. However, a spread Pareto front 441 

is preferred for extending the range of optimal solutions (Deb et al., 2002). Notice that the solution 442 
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of Ex0 is inferior to all other solutions in the figure. Figure 6 also shows that the solution of Ex7 443 

(16 times filtering) has the best overall performance in terms of solution convergence and diversity. 444 

It is noted that Ex7 has also the best H-index as shown in Figure 4. Furthermore, as shown in 445 

Figure 9, the solution of Ex7 has a better agreement with the historical hourly outflows, in terms 446 

of frequency and amplitude, than the solution without filtering.  447 

Discussion  448 

 The incorporation of a filter greatly improves the performance of NSGA-II in finding feasible 449 

solutions. For the traditional NSGA-II (with no filter), the initial population is randomly generated 450 

within a box constraint. Normally the decision variables, i.e., reservoir outflows can range from 0 451 

to a large value such as 300 kcfs in our case study. Due to the random generation of the decision 452 

variables, the ramping constraints, which are the limits of the changes of two consecutive decision 453 

variables, can be frequently violated. Using a large number of generations may reduce the violation 454 

of constraints. However, this leads to a high computational cost. Incorporating a filter helps to 455 

smooth out the variability of the decision variables and therefore, to satisfy the ramping constraints 456 

much more efficiently. In addition, the number of generations needed to find feasible solutions (3 457 

or 4 generations) is much smaller than those required when not using a filter (more than 2000 458 

generations) as can be observed in Figure 7. This explains why the V-index, which measures the 459 

performance of finding feasible solutions, is much higher for the experiments with filtering than 460 

those without filtering (Figure 6).  461 

      The quick finding of the feasible solutions also contributes to a better Pareto front. The H-462 

index, which measures the overall quality of the Pareto front, are higher for the experiments with 463 

filter compared to that without filter (Figure 6). At the same time, the Pareto front obtained from 464 

these experiments shows better convergence and diversity than the experiment without filter 465 
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(Figure 8). This is because of the so-called elitist preserving mechanism in the NSGA-II.  Similar 466 

to other RSA, the NSGA-II maintains the best genes at each generation by assigning a higher 467 

probability to them for reproduction.  For the experiments without a filter, most or even all 468 

candidate solutions may be unfeasible for many generations. In the latter case, the genes with the 469 

least violations are maintained and may dominate the population, which may lead to little or no 470 

improvement of solutions. This so-called premature convergence (Hrstka and Kučerová 2004, 471 

Chen et al. 2009) is caused by lack of diversity of the candidate solutions. This premature 472 

convergence is less critical for the experiments with the filter because feasible solutions are 473 

obtained after only a few generations.   474 

  Operational schemes obtained by an optimization model with the filter are more similar to the 475 

historical operation than those without a filter, as observed in Figure 9. This means that solutions 476 

obtained by the model with the filter are more reasonable to be implemented in practice. Thus, as 477 

expected, the S-index, which measures the similarity of model solutions to the historical operation, 478 

is higher for the models with filter compared to those without filter (Figure 6).  479 

      For the experiments with a different number of filtering times, the three indexes show different 480 

patterns (Figure 6).  The V-index is almost the same for all experiments with filter, indicating that 481 

the V-index is not sensitive to the number of filtering times. This also indicates that the first filter 482 

reduces most of the zigzag fluctuation in the decision variables. Successive filtering is less 483 

effective in reducing fluctuation, since the data has already been smoothed out the first time the 484 

filter was applied. It is worth mentioning that applying filters an excessive number of times may 485 

decrease the quality of the Pareto front solutions i.e., lower H-index in Figures 6 and 8. This is 486 

because a filter removes some information from the original data (e.g., amplitude), which may 487 

help in finding optimal solutions.  On the other hand, the S-index is monotonically increased with 488 
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the number of filtering times, which indicates that the operational scheme obtained by a model 489 

with more filtering resembles better the historical operation.  However, it should be noted that, the 490 

approach used in the study for determining the frequency of filtering (i.e., number of filtering times) 491 

is essentially a sensitivity analysis on single parameter and the result provide a somewhat ad-hoc 492 

solution. Different number of filtering times are expected for other cases and consequently, make 493 

itself a problem-dependent parameter. Since the filtering is involved in the process of optimization, 494 

the effect of filtering may interact with other parameters of the NSGA-II such as the population 495 

size and the number of generations. The difference (in terms of the zigzag behavior) between 496 

random generated solutions and the preferred (final) solutions can also affect the number of 497 

filtering times. Quantifying those interactive relations requires more cases studies and a global 498 

sensitivity analysis, which can be explored in future studies.  499 

   Since the optimization is multi-objective, each experiment results in a Pareto front that 500 

contains multiple points. Each point of the Pareto front is associated with a solution in the objective 501 

space and an operational scheme in the search space. Since each point on the Pareto front is 502 

indifferent in the context of multi-objective, selection of a point from the Pareto front merely 503 

depends on the preference of the decision maker. A neutral preference, representing a balanced 504 

attitude of the decision maker (towards the two objectives) is considered in the study. However, 505 

there are quite a few techniques which can help DM to select a “good” choice if some information 506 

is given such as the attitude towards risk (Emmerich  and Deutz 2006; Blasco et al. 2008). 507 

Conclusions  508 

  The two issues of the NSGA-II for hourly reservoir operation, i.e., a frequent violation of ramping 509 

constraints and unrealistic zigzag operational scheme, are addressed by incorporating a Savitzky-510 

Golay smoothing filter in the NSGA-II optimization routine. The incorporation of this filtering 511 
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technique significantly increases the ability of the optimization model in finding feasible solutions 512 

and overcoming the difficulty in satisfying the hourly ramping constraints.  The V-index, which 513 

measures performance in finding feasible solutions, is much higher for the model with a filter 514 

than without a filter.  The incorporation of a filter also smooths out the decision variables and the 515 

resulting operational scheme is not zigzag between consecutive time steps. The S-index, which 516 

measures the similarity of the model solution to the historical solution, is higher for the model 517 

with a filter than that without a filter. This means that the operational scheme obtained by the 518 

model with filter is similar to the historical operation. Hence, solutions obtained by the model 519 

with the filter are reasonable to be implemented in practice and greatly improve the performance 520 

of the NSGA-II. Furthermore, the H-index, which measures the overall quality of the Pareto front, 521 

is increased when the filter is incorporated.    522 

       Although the NSGA-II was the algorithm of choice in this study, the flexibility of the 523 

Savitzky-Golay filter would allow it use with other random search algorithms. Future work 524 

include the incorporation of wind generation into the power supply. The power generated from 525 

wind farms normally require sub-hourly time steps for their accurate representations, which may 526 

prompt the system operator to seek an even shorter time step solution from reservoir operations.    527 
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