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ABSTRACT

The model presented herein is the same as that of Leon et al. (2010b), except that it has been

modified to preserve “lake at rest” conditions in sloped prismatic conduits. The results of the

new model (present paper) are identical to those of Leon et al. (2010b) for non-rest conditions.

These schemes are based on the two-governing equation model, where open channel flows are

simulated using the Saint-Venant equations and pressurized flows using the compressible water

hammer equations. The new model preserves “lake at rest” conditions (horizontal still water)

regardless of the conduit slope, resolves moving jump discontinuities over dry-beds in sloped

conduits, and resolves small perturbations from steady-states, even when adjacent to dry re-

gions. The preserving steady-state capability of the new model is of particular importance in

continuous long simulations when the conduits are relatively steep (|So| >∼ 0.5%). Two main

contributions are presented here, namely: (1) a new method for water stage reconstruction that

preserves “lake at rest” conditions regardless of the pipe slope, and (2) a horizontal system of

coordinates, instead of the commonly used inclined coordinate system, is used for facilitating
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the implementation of the proposed well-balanced scheme to complex systems. In the horizon-

tal coordinate system, the cross-section of a circular pipe becomes an ellipse. The hydraulic

characteristics of an ellipse are presented. Good results are achieved in the test cases.

Keywords: Combined sewer system; Finite volume method; Open-channel flow;

Storm-water system, Surcharged flow Transient flow; Unsteady flow, Well-balanced

scheme.

INTRODUCTION

The design and operation of storm-water and combined sewer systems often require

transient and non-transient analysis of these systems. Usually, transient analysis is of

interest in short periods of simulation when the system boundary conditions change

rapidly (e.g., gate closing/opening, pump failure), while as non-transient analysis is

important in long periods of simulation (e.g., continuous simulation) when the system

boundary conditions change slowly. Some simulations may require to combine tran-

sient and non-transient analysis, such as in continuous simulations when the interest

is on assessing the transient and non-transient system response to a series of storm

events.

It has been widely recognized that Finite Volume (FV) methods are well suited

for solving hyperbolic systems of equations that permit various discontinuities such

as shocks (e.g., LeVeque 2002). Various FV methods have been applied to transient

open-channel and surcharged flows (i.e., pressurized flows) in closed conduits (e.g.,

Capart et al. 1997; Bourdarias and Gerbi 2007; Leon et al. 2009 and 2010b; Sanders

and Bradford 2011). However most of these approaches do not address “lake at rest”

conditions when the slope of the pipe is relatively large (|So| >∼ 0.5%). Preserving

“lake at rest” conditions is of particular importance when the system is near or at “lake

at rest” conditions for relatively long periods of time. The sloped conduits may be

completely or partially submerged. A model that is not designed to preserve “lake at
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rest” conditions may lead to “numerical storms” when the flow velocity is at or near

zero. Numerical storms may produce non-physical oscillations of the water surface

and relatively large flow velocities.

Models that are designed to preserve steady states are called well-balanced meth-

ods. Several well-balanced methods were proposed for one- and two-dimensional

open-channel equations (open-channel flows) [e.g., LeVeque 2002; Capart et al. 2003;

George 2006; Canestrelli et al. 2009], however most of these models force the preser-

vation of “lake at rest” conditions by balancing the source term with the pressure gra-

dient (local hydrostatic reconstruction). This approach may be reasonable for near

or at “lake at rest” conditions but not necessarily in transient flow conditions (e.g.,

George 2006). In addition, some of these “well-balanced” methods may still lead to

numerical storms if the slope of the conduit is relatively steep (e.g. 10%) even when a

local hydrostatic reconstruction is used (e.g., George 2006). Furthermore, these “well-

balanced” schemes work well in conduits where the top surface width does not sig-

nificantly change with the water depth (e.g., rectangular or near-rectangular channels).

For other cross-sections (e.g., circular, trapezoidal), these schemes may still lead to

numerical storms. The latter is illustrated in Figure 1(a), in which, hrec is the vertical

water depth at the center of a cell (distance from bottom to free surface) and hmass is

the equivalent vertical water depth in the cell (uniform flow) that provides the same

water volume as the “lake at rest”. For convenience, in the remainder of this paper

the subscript mass is dropped. In a sloped circular conduit under “lake at rest” con-

ditions, the water depth at the center of the cell from the horizontal water surface and

that obtained from the hydraulic area A (water storage), do not coincide except when

the horizontal water surface at the center of the cell (horizontal surface) is exactly half

full. This lack of coincidence in a sloped pipe may lead to numerical storms if the

scheme is not properly designed to preserve “lake at rest” conditions.
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The model presented herein is an improved version of the model of Leon et al.

(2010b). Only the new aspects of the model are presented herein. Two main contri-

butions are made in the new model, namely: (1) a new method for water stage re-

construction that preserves “lake at rest” conditions regardless of the pipe slope and

the pipe spatial discretization, (2) a horizontal system of coordinates instead of the

commonly used inclined coordinate system (e.g., Capart et al. 1997; Bourdarias and

Gerbi 2007; Leon et al. 2009 and 2010b) is used for facilitating the implementation

of the proposed well-balanced scheme to complex conduit systems under transient and

non-transient conditions. Five numerical test cases are presented and discussed.

GOVERNING EQUATIONS

The well-balanced method presented here is based on a two-governing equation

model, where the open-channel region is simulated using the 1D Saint-Venant equa-

tions and the pressurized region is simulated using the 1D compressible waterhammer

equations. A two-governing equation model has been shown to be suitable for mini-

mizing numerical oscillations in pipe-filling bores for large waterhammer wave speeds

(e.g., Leon and Ghidaoui 2010). Typically, the 1D Saint-Venant equations and the 1D

compressible waterhammer equations are presented with reference to an inclined coor-

dinate system x-z (see Figure 1) with x parallel to the conduit bottom (e.g., Chaudhry

1987, 2008; Leon et al. 2006, 2008, 2009). It is worth to mention that x-z is a local

coordinate system for each conduit measured with respect to the local bottom (in-

vert) of the conduit cross-section. The connection between conduits is made through

boundary conditions. Most of the formulations for the 1D Saint-Venant equations and

the 1D compressible waterhammer equations assume that the conduit slope is small

and therefore cosα (α = angle of inclination of the channel bottom) in the pressure

term is set equal to unity. This is not the case for steep channels as cosα may be sig-

nificantly smaller than unity (1.0). Combining the notation of Bourdarias and Gerbi
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(2007) and Leon et al. (2010b), the governing equations for prismatic conduits (the

1D Saint-Venant equations and the 1D compressible waterhammer equations) in the

aforementioned inclined coordinate system x-z can be written in vector conservative

form as

∂U
∂t

+
∂F
∂x

= S (1)

where the vector variable U, the flux vector F and the source term vector S are given

by

U =

 Aeq

Qeq

 , F =

 Qeq

Q2
eq

Aeq
+ I1 cosα

 and S =

 0

(sinα− Se)gAeq

 (2)

where

Aeq =

 A

ρ
f

ρ
ref
Aref

, Qeq =

 Q

ρ
f

ρ
ref
Q

, I1 =


Ap
ρw

A
ref

p

ρ
ref

for open-channel flows

for pressurized flows
(3)

where the subscript eq stands for equivalent and it is used for depicting open channel

and pressurized flow variables using a single representation. The variables for open-

channel flows are: A = cross-sectional area of the flow; p = average pressure of the

water column over the cross sectional area; ρw = constant density for open-channel

flows. The variables for compressible water hammer flows (pressurized flows) are:

A
ref

= reference hydraulic area, p = pressure acting on the center of gravity of A
ref

,

ρref and pref are a reference density and reference pressure, respectively, and ρ
f

=

density for compressible water hammer flows (variable). Also, Q = flow discharge;

g = gravitational acceleration, α = angle of inclination of the channel bottom and Se
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= slope of the energy line. The expressions for Ap
ρw

and
A

ref
p

ρ
ref

in the inclined coordi-

nate system (circular cross-section) will not be used here and hence are not presented.

However, the reader is referred to Leon et al. (2006, 2007, 2009, and 2010b) for these

expressions. The reference state (ref ) is defined at the change from open-channel to

pressurized flow. This state is defined at an user-specified water depth (e.g., 95% of

the maximum water depth in the cross-section). At this reference state all the flow pa-

rameters (e.g., fluid density, hydraulic area and average pressure) in both open-channel

and pressurized flow regime are the same. Notice that pref = pref and ρref = ρw . For

convenience, in the remainder of this paper the subscript “eq” in A and Q used by

Bourdarias and Gerbi (2007) are dropped.

The governing equations for prismatic conduits presented above are for the inclined

coordinate system x-z. An actual system may have a large number of conduits and

each of these may have a different angle of inclination (see Figure 2). Under “lake

at rest” conditions, especially in complex pipe systems, it may be desirable to have a

horizontal system of coordinates (x̃ -z̃) rather than an inclined system because the flow

depths in the horizontal system would be directly used in the local reconstruction of

flow variables to achieve a well-balanced scheme. In this paper a horizontal system of

coordinates is used for convenience in the aforementioned local reconstruction of flow

variables. It is clear that the solution is independent of the coordinate system used. It

is worth mentioning that if the conduit slope is steep, the cosα term in Eq. (2) should

be included regardless of the system of coordinates used (horizontal or inclined). The

governing equations in the horizontal system of coordinates (x̃ -z̃) can be written as

(see Appendix A for derivation):

∂Ũ
∂t

+
∂F̃
∂x̃

= S̃ (4)
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where the vector variable Ũ, the flux vector F̃ and the source term vector S̃ are given

by

Ũ =

 Ã

Q̃

 , F̃ =

 Q̃

Q̃2

Ã
+ Ĩ1 cos4 α

 and S̃ =

 0

(sinα− Se)gÃ cosα

 (5)

The variables with a tilde “∼” refer to the horizontal coordinate system. In Eq.

(5), Ã is an estimate for the hydraulic area of cell i. This estimate is discussed in

the section of treatment of source terms. For an inclined circular conduit, the vertical

section becomes an ellipse. For an ellipse (Figure 1), the hydraulic area (A), and the

term (Ap/ρ) are given by, respectively.

Ã =

 ab(r
√

1− r2 + arcsin r + π/2)

ρ
f

ρ
ref
Ãref

for open-channel flows

for pressurized flows
(6)

Ĩ1 =


Ãp̃
ρ

= 2gab
[
−1

4
(b− h)π + 1

6

(√
1− r2 (3hr + b (2− 3r − 2r2))− 3(b− h) arcsin r

)]
for open-channel flows

Ã
ref

p̃

ρ
ref

=
Ã

ref
p̃
ref

ρ
ref

+ c2
f (Ã− Ãref

) for pressurized flows (Leon et al. 2007)

(7)

where cf is the pressure wave celerity in pressurized flow conditions, a = d/2, b = d
2 cosα

,

and r = h
b
− 1 (see Figure 1). For estimating h (vertical water depth in open-channel

or vertical piezometric head with reference to the conduit bottom in surcharged flow

conditions), an iterative procedure is required for open-channel flow conditions while

as an explicit expression can be obtained for pressurized flows. Here, for open-channel

flows, h is obtained from Ã (Eq. 6) by using the Newton-Raphson root finding method.

The derivative of Ã (with respect to r) that is needed when using the Newton-Raphson
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iterative method is given by

dÃ/dr = 2ab
√

1− r2 (8)

For pressurized flows, h is obtained from Eq. (7) which gives

h = h
ref

+
c2
f

g

(
Ã

Ã
ref

− 1

)
(9)

In Eq. (5), Se doesn’t have a tilde because it is computed in the inclined rather than

in the horizontal system of coordinates. This is due to numerical efficiency given that

the computation of the wetted perimeter pw, which in turn is required for the com-

putation of Se, involves elliptical integrals in the horizontal system of coordinates.

Elliptical integrals can be solved by numerical integration only, and hence they are

computationally expensive. To avoid the computation of elliptic integrals, Se is deter-

mined exactly in the x−z system of coordinates (circular conduit) using a water depth

equal to h cosα for open-channel flows and a piezometric head equal to h
ref

cosα for

surcharged flows. Manning’s equation is used for computing the slope of the energy

line as follows:

Se =
n2
m

k2
n

Q
A

∣∣Q
A

∣∣
R4/3

(10)

where kn is 1.0 in Metric units and 1.49 in English units, nm is the Manning roughness

coefficient and again, A and R are computed using a circular cross-section (see Leon

et al. 2006).

NUMERICAL SCHEME

For a better illustration of the proposed well-balanced scheme, a pseudocode of the

scheme is presented in Appendix B. The explicit Godunov-type finite volume method

(e.g., Leveque 2002) is used to update the solution in cell i from the n to the n+1 time
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level as

Ũn+1

i = Ũn+1/2

i + ∆tSn+1/2
i (11)

where

Ũn+1/2

i = Ũn

i −
∆t

∆x̃
(F̃ni+1/2 − F̃ni−1/2) (12)

and Sn+1/2
i is computed using Ũn+1/2

i . In the equations above, ∆x̃ is the length of

the cell in the x̃ axis of the horizontal system of coordinates, ∆t is the time step and

the ith cell is centered at node i and extends from i − 1/2 to i + 1/2. The flow

variables Ũ (Ã and Q̃) are defined at cell centers i and represent their average value

within each cell. Fluxes, on the other hand are evaluated at the interfaces between

cells (i − 1/2 and i + 1/2). Note in Eq. (11) that the source terms are introduced

into the solution through time splitting. The treatment of the gravity (sinα cosαgÃ)

and friction (SegÃ cosα) source terms are discussed later in the section “Treatment of

source terms and stationarity”.

RECONSTRUCTION OF FLOW VARIABLES AND INTERNAL FLUXES

In a similar way to Leon et al. (2010b), the Monotone Upstream-centred Scheme

for Conservation Laws (MUSCL) reconstruction in conjunction with the Hancock two-

stage scheme (e.g., Toro 2001) is used for advancing (from one time level to the next)

the cell average solution of the variable Ã but not of Q̃. For the variable Q̃, a constant

flow discharge is used at each cell. Attempting to use the MUSCL-Hancock method

for Q̃ may result in numerical storms when the the flow is near or at “lake at rest”

conditions. The reason for the latter is due to the fact that in sloped pipes under “lake

at rest” conditions, the spatial gradient of the pressure term in the governing equations

∂/∂x̃(Ã
ref
p̃
ref
/ρ

ref
) is not constant but a function of the local water depth (see Eq. 5).

For the reconstruction of the variable Ã (to be used in the MUSCL-Hancock method),

most “well-balanced schemes” use the water stage at the center of a cell (ηi = hi+zbi)
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where hi is obtained directly from the cell averaged value of Ãi. The latter approach

for the reconstruction of water stage (ηi = hi + zbi) may still lead to numerical storms

under near or at “lake at rest” conditions even when the aforementioned local hydro-

static reconstruction is used. In a sloped pipe under “lake at rest” and open-channel

flow conditions, the water depth at the center of the cell from the horizontal water

surface and that obtained from the cell averaged Ã (water storage), do not coincide

except when the horizontal water surface at the center of the cell (horizontal surface)

is exactly half full. This lack of coincidence is only for open-channel flows but nor

for pressurized flows. The lack of coincidence in a sloped pipe under “lake at rest”

and open-channel flow conditions occurs in all cross-sections except in rectangular

channels and may lead to numerical storms especially for steep slopes and for long

simulation periods (e.g., continuous simulations). To avoid numerical storms created

by this lack of coincidence, a reconstruction of the water surface based on a horizontal

water surface in each cell is used. This approach was used before over arbitrary topog-

raphy with wetting and drying by Begnudelli and Sanders (2006) and for sloped sewer

pipes by Sanders and Bradford (2011). The water depth (or water stage) obtained from

this reconstruction is not the same as that obtained directly from the cell averaged value

of Ã. Ãi is a strict measure of water storage (Ã∆x̃i), which is important for ensuring

conservation of mass. For determining the water stage at the center of a cell using the

proposed reconstruction, it is necessary to find a relationship between this water depth

(or at the cell boundaries) and the volume of water in a sloped pipe under “lake at rest”

conditions. This volume V between two vertical sections for open-channel flows is

given by

V = ab2

6 tanα

[(
3πr2 + 2

√
1− r2

2 (2 + r2
2) + 6r2 arcsin r2

)
−(

3πr1 + 2
√

1− r2
1 (2 + r2

1) + 6r1 arcsin r1

)] (13)
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where r1 = h1
b
− 1, r2 = h1+∆x̃ tanα

b
− 1, and h1 is the vertical water depth at the left

of the cell. For computing r1(−1 ≤ r1 ≤ 1) and hence h1, the Newton-Raphson root

finding method is used. The function is given by fV = V − Ã∆x̃. The derivative of fV

with respect to r1 is given by

dfV
dr1

= ab2

tanα

[
r2

√
1− r2

2 − arccos r2 −
(
r1

√
1− r2

1 − arccos r1

)]
(14)

The water depth at the center of a cell for reconstruction is given by hrec = (r1 +

1)b + ∆zb
2

. This type of reconstruction for the water depth ensures a horizontal water

surface under “lake at rest” conditions, while Ã ensures a strict conservation of mass.

For surcharged flows (see Figure 3), hreci = hi (Eq. 9) because the piezometric head

at the center of a cell determined from a horizontal water surface and that obtained

from the cell averaged Ã are the same. For partial open channel - partial surcharged

flow conditions, the water stage is obtained from the cell volume, which is given by the

sum of an identical expression to Eq. (13) with ∆x̃1 (open channel region) and Ã∆x̃2

(surcharged region), where ∆x̃ = ∆x̃1 + ∆x̃2.

To avoid spurious oscillations, the MINMOD flux limiter is used here. The two ar-

guments for the MINMOD function are
zbi+h

n
reci

−
(
zbi−1+hnrec

i−1

)
∆x̃

and
zbi+1+hnrec

i+1
−(zbi+hnreci)

∆x̃
).

Then, the MINMOD function of these two arguments is determined as usual (e.g., LeV-

eque 2002)

minmod(a, b) =


a if |a| < |b| and ab > 0,

b if |b| < |a| and ab > 0,

0 if ab ≤ 0

(15)

This reconstruction is intended for relatively steep slopes and when the flow is near

or at “lake at rest” conditions. For mild slopes or when the flow is not near nor at “lake

at rest” conditions, the reconstruction of the water stage can be obtained directly from
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Ã using Eq. (6) or Eq. (9), depending on if the flow is open channel or surcharged,

respectively.

TREATMENT OF SOURCE TERMS AND STATIONARITY

Regardless of the reconstruction approach for the flow variables (in this case only

Ã), it is well known that schemes that introduce source terms into the solution through

time splitting generally don’t preserve “lake at rest” conditions in time. For preserving

the “lake at rest” conditions, several approaches based mainly on a local hydrostatic

reconstruction were proposed (e.g., LeVeque 1998, Capart et al. 2003). The later

means that if the water in a sloped pipe is motionless (u [velocity] ≈ 0), the pressure

gradient in Eqs. (2) and (5) must be balanced by the gravity source term. This leads to

the following estimate for Ã in Eqs. (2) and (5)

Ã = − cos2 α

(
Ãp̃
ρ

)
R
−
(
Ãp̃
ρ

)
L

g(zbR − zbL)
(16)

The above estimate for Ã would be appropriate when the water is near or at “lake at

rest” conditions, however this may be inappropriate for flows that are far from these

conditions. Hence an estimate for Ã in Eqs. (2) and (5) that would be appropriate in

rest and non-rest conditions is sought. An estimate that satisfies these conditions can

be obtained by applying the Leibnitz’s rule to the pressure gradient term (see Appendix

C), which gives

Ã ≈ cos2 α

(
Ãp̃
ρ

)
R
−
(
Ãp̃
ρ

)
L

g(hR − hL)
(17)

Note that in water at rest conditions hR−hL = − (zbR − zbL) and hence Eqs. (16) and

(17) are identical. This implies that the proposed estimate for Ã in Eq. (17) and hence

for the gravity source term is more general than that obtained balancing the pressure

gradient and the gravity source term. Finally, the source term S can be written as
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Sn+1/2
i = (sinα− Sn+1/2

e )gÃ
n+1/2

cosα (18)

where

Sn+1/2
e =

n2
m

k2
n

(Q
A

)n+1/2
∣∣Q
A

∣∣n+1/2

(R4/3)n+1/2
(19)

TREATMENT OF BOUNDARY CONDITIONS

The treatment of boundary conditions for the model presented here is the same as

that described in Leon et al. (2010a). It is clear that the variables in the horizontal

system of coordinates rather than in the inclined system must be used.

NUMERICAL TESTS

The purpose of this section is to test the accuracy of the proposed well-balanced

scheme for various flow conditions. Five tests cases are considered as follows:

Test 1: Stationarity

The purpose of this test is to demonstrate the capability of the proposed scheme

in preserving “lake at rest” conditions (stationarity). This test, which is depicted in

Figure 4, is comprised of a two circular conduit system forming a pool of still water

adjacent to dry regions (wet-dry bed interfaces). Each of the conduits are 50 m long

and have a diameter of 5.0 m and a Manning roughness coefficient of 0.015. The

longitudinal slope of the conduit on the left is -10% while as the conduit on the right is

+10%. The simulations were performed using 12 cells in each conduit and a Courant

number (Cr) of 0.80 for both conduits. It is worth mentioning that explicit schemes are

stable for Courant numbers less than or equal to one, however it is common practice

to use a Cr significantly smaller than one for numerical stability reasons. Numerical

instabilities may occur under rapid flow acceleration conditions (e.g., sudden increase

in flow velocity), when the distance of wave propagation in one time step exceeds ∆x̃.
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The boundary conditions used for this test are zero water flux conditions, which is

Q (x = 0, t) = 0 and Q (x = 100, t) = 0. The initial conditions are:

 zbi + hreci = 4.0 m and u = 0 m/s for 10 m < x < 90 m

h = 0 m and u = 0 m/s for x ≤ 10 m and x ≥ 90 m

The initial conditions above show a pool of still water adjacent to dry regions.

This test aims to evaluate if the scheme preserves in time the initial conditions. The

solution was integrated for 103, 105 and 107 time steps using a precision for the water

depth of 10−8m. Table 1 presents the maximum discharge and the maximum water

depth fluctuation (with respect to the initial conditions) attained at the end of each

simulation. The results in Table 1 indicate that the proposed scheme preserves steady

states at the computer precision used.

Even though, the “lake at rest” condition is the simplest case of a steady state flow,

this condition may produce numerical storms if not handled properly. To illustrate this,

Figure 5 shows the dimensionless flow discharge [Q/(gd5)1/2] versus number of time

steps (Nr) at midway of first conduit for the present model and an earlier model of

the first author that doesn’t have a treatment for “lake at rest” conditions (Leon et al.

2010b). As can be observed in Figure 5, unlike the model of Leon et al. (2010b) that

oscillates with time, the present model preserves “lake at rest” conditions (Q = 0). Note

that the amplitude of the oscillations obtained with the model of Leon et al. (2010b)

decays with time (due to friction) and converges to a finite value different from zero.

Test 2: Steady-State flows

The purpose of this test is to demonstrate the capability of the proposed scheme in

preserving steady-state flows. This test, which is depicted in Figure 6, is comprised of

a three circular conduit system. The Manning roughness coefficient and diameter for

all pipes are 0.015 and 1 m, respectively. The length of the conduits, from left to right
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are, 50 m, 300 m and 50 m, respectively. The longitudinal slope of the conduits, from

left to right are, 5%, 0.1667% and 5%, respectively. The simulations were performed

using 40 cells in the shortest conduit and a Cr of 0.80 for all conduits. The boundary

conditions used for this test are Q (x = 0, t) = 0.44 m3/s and h (x = 0, t) = 0.20 m.

The initial conditions (t = 0) are h = 0.05 m and Q = 0 m3/s for x > 0 m.

The water surface profile in the system after 500 seconds is presented in Figure 6.

The normal depths for each of the conduits are also presented in this Figure. The flow

depth and discharge at midway of second conduit from left are presented in Figures 7

and 8, respectively. As can be observed in Figures 6 - 8, the present model resolves

well steady states. In particular, note in Figures 7 and 8 that the water depth and flow

discharge remain invariant with time after steady state is achieved.

Test 3: dry-wet bed flow conditions

The purpose of this test is to demonstrate the capability of the proposed scheme

in attaining and preserving “lake at rest” conditions when the flow is adjacent to dry

regions (wet-dry bed interfaces). Test 3 is comprised of a two circular conduit system

that is partially in open-channel flow conditions and partially in dry-bed flow condi-

tions (see Figure 9). Each of the conduits are 50 m long and have a diameter of 5.0

m and a Manning roughness coefficient of 0.015. The longitudinal slope of the con-

duit on the left is -5% while as the conduit on the right is +5%. The simulations were

performed using 20 cells in each conduit and a Courant number (Cr) of 0.80 for both

conduits. This test simulates the sudden opening of a gate separating one pool of still

water (left conduit) and the right conduit completely dry (see Figure 9). The boundary

conditions used for this test are zero water flux conditions, which is Q (x = 0, t) = 0
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and Q (x = 100, t) = 0. The initial conditions are:

 zbi + hreci = 2.5 m and u = 0 m/s for x <= 50 m

h = 0 m and u = 0 m/s for x > 50 m

At time t = 0, the gate is instantaneously opened which generates a shock wave

moving to the right and a rarefaction wave moving to the left. The simulation results

for the water surface profiles at various times are shown in Figures (9) through (12).

The results for the water depth, flow velocity and flow discharge traces at midway of

both conduits are depicted in Figures (13), (14) and (15), respectively. The results in

Figures (13) through (15) indicate that the system achieves “lake at rest” conditions at

about t = 500 seconds. These figures also show that the “lake at rest” conditions are

preserved in time.

Test 4: partial open channel-partial surcharged flow conditions

The purpose of this test is to demonstrate the capability of the proposed scheme in

attaining and preserving “lake at rest” conditions when the flow is under partial open

channel and partial surcharged flow conditions. As in test case 1, this test simulates the

sudden opening of a gate separating one surcharged pool of still water (left conduit)

and the right conduit completely dry. The left conduit is 100 m long and the right

conduit is 70 m long. Both conduits have a diameter of 5.0 m and a Manning roughness

coefficient of 0.015. The longitudinal slope of the conduit on the left is -5% while

as the conduit on the right is +5%. The pressure wave celerity used for surcharged

flow conditions is 100 m/s. The simulations were performed using 58 cells in the

left conduit and 40 cells in the right conduit and a Cr of 0.80 for both conduits. The

boundary conditions used for this test case are the same as those used for Test 3 (zero
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water flux conditions). The initial conditions are:

 zbi + hreci = 20 m and u = 0 m/s for x <= 100 m

h = 0 m and u = 0 m/s for x> 100 m

At time t = 0, the gate is instantaneously opened. The results for the piezometric

depth, flow velocity and flow discharge traces at midway of both conduits are depicted

in Figures (16), (17) and (18), respectively. The time axis of Figures (17) and (18)

were limited to 1500 seconds for clarity purposes, however the results show that the

system attains “lake at rest” conditions (u < 1 cm/s) at about t = 2000 seconds. Note

that Figures (16) through (18) show a slow convergence to “lake at rest” conditions. In

an actual case, the system will likely attain “lake at rest” conditions in a shorter time (t

< 2000 s). This discrepancy is because the model doesn’t consider unsteady friction.

Test 5: Experiment of Vasconcelos et al. 2006

The purpose of this test is to demonstrate the ability of the proposed model to

reproduce experimental surcharged flow conditions for relatively steep slopes. The ex-

perimental work of Vasconcelos et al. (2006) is used because the experimental work

was performed using conduits with slopes of 2%. The experimental setup consisted

of an acrylic pipeline 14.33 m long, having an inner diameter of 9.4 cm. The cen-

ter portion of this pipe was raised about 15 cm with respect to both ends in order to

create conditions for the occurrence of sub-atmospheric pressures. The pipeline was

connected at its upstream end by a box tank and by a cylindrical tank at its downstream

end. The experiment considered was obtained by filling the system to a level of 0.30

m at the box tank and the system allowed to come to rest. Then a syphon outflow was

suddenly initiated at the box tank (t = 0). After some time, the water level in the box

tank decreased to a level that created sub-atmospheric pressures at the center portion of

the pipe. When the water level at the box tank dropped below the pipe crown, a com-
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plex flow pattern was developed. In this case, the flow just downstream of the box tank

was in sub-atmospheric conditions, and under these conditions, air flow flowed from

the tank into the pipe. This constitutes a two-phase flow problem that is outside of the

scope of this work. The intrusion of air flow in the experiment occurred at about t =

42.5 s, and in the model about 1.7 seconds earlier. Since our work is limited to single-

phase flows, the comparison between model prediction and experimental results are

presented until right before the occurrence of air intrusion only (t < ≈40.8 s).

To show the sequence of the formation of sub-atmospheric pressures, simulated

piezometric depth snapshots at different times are presented in Fig. 19. When using

the present model to simulate fully pressurized flows, as in this test case, Aref can be

set equal to Af (full cross-sectional area of the conduit). The pressure wave celerity

used in the simulations was 300 m/s based on experimental measurements of pressure

pulse propagation. The outflow was assumed constant and a value of 0.45 L/s was

estimated by observing the change in water volume over time. For estimating energy

losses, Vasconcelos et al. (2006) used a Manning roughness coefficient of 0.012, which

was also used here.

The simulated and experimental velocities at 9.9 m downstream of the box tank

are presented in Fig. 20. The model predictions and experiments for the piezometric

depth at 14.1 m downstream of the box tank are presented in Fig. 21. The simulated

results were generated using 400 cells and a Cr of 0.80. The results for the velocities

(Fig. 20) show good agreement between model and experiments for the frequency of

oscillations. However, the velocity amplitudes are overestimated by the model. As

suggested by Vasconcelos et al. (2006), this may be in part because the outflow unifor-

mity assumption may not be accurate. The differences between model prediction and

experiments may be associated also to neglecting minor losses and unsteady friction

in the model. The results for the piezometric depth (Fig. 21) show a good agreement

18



between model predictions and experiments. The differences between the simulated

and experimental piezometric depths may be explained using the same reasons given

for the velocities.

CONCLUSIONS

The model presented herein is the same as that of Leon et al. (2010b), except

that it has been modified to preserve “lake at rest” conditions in sloped prismatic con-

duits. The results of the new model (present paper) are identical to those of Leon et

al. (2010b) for non-rest conditions. These schemes are based on the two-governing

equation model, where open channel flows are simulated using the Saint-Venant equa-

tions and pressurized flows using the compressible water hammer equations. The key

findings are as follows:

1. Results show that the proposed model attains and preserves “lake at rest” con-

ditions (horizontal still water) for steep slopes when the flow is adjacent to

dry regions (wet-dry bed interfaces) and under partial open-channel and partial

surcharged flow conditions, and under fully surcharged flow conditions. No

simulation presented characteristics of “numerical storms”.

2. Results also show that the model resolves moving jump discontinuities (e.g.,

shocks) even when adjacent to dry regions.

3. The results also show a good agreement between model predictions and experi-

ments for fully surcharged flow conditions. Overall, the proposed model attains

and preserves “lake at rest” conditions regardless of the conduit slope, resolves

moving jump discontinuities over dry-beds in sloped conduits, and resolves

small perturbations from steady-states, even when adjacent to dry regions.
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APPENDIX A

This Appendix presents the transformation of the continuity and momentum equa-

tions from the inclined x-z coordinate to the horizontal system x̃-z̃ (See Figure 1).

Herein we follow the method of Chaudhry (2008) for transformation of coordinates of

the two-dimensional shallow water (open-channel) equations. Notice that this trans-

formation involves only a rotation around a fixed point. The transformation matrix for

this rotation is given as (presented in most books of Algebra) ,

 cosα + sinα

− sinα cosα

 (20)

Using Eq. (20), the functional form for x̃ and z̃ (new coordinates) and x and z (old

coordinates) are given by

x̃
z̃

 =

 cosα + sinα

− sinα cosα


x
z

 (21)

x
z

 =

cosα − sinα

sinα cosα


x̃
z̃

 (22)
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The transformed variables in the new coordinate system become (see Figure 1)

h = y/ cosα

Ã = A/ cosα

Q̃ = Q

p̃ = p/ cosα

(23)

in which h is the vertical flow depth (open-channel) or piezometric head with ref-

erence to the conduit bottom (surcharged flow) measured vertically and the variables

with a “∼” are referred to the x̃-z̃ system of coordinates. Also, according to Eq. (21)

∂

∂x
= cosα

∂

∂x̃
− sinα

∂

∂z̃
(24)

The term containing the z̃ derivative in Eq. (24) is undesirable, since the original

equations of continuity and momentum have a single spatial dimension (x). However,

the ratio of the second term on the right-hand side in Eq. (24) compared to the first

term on the right-hand side in the same equation gives tan2 α, which is negligible. The

reader can notice that although sinα may not be small, the terms sin2 α and tan2 α

are small and hence can be dropped. The introduction of Eqs. (23) and (24) into the

continuity and momentum equations in the inclined coordinates (Eq. 2) give

U =

 Ã

Q̃

 , F =

 Q̃

Q̃2

Ã
+ cos4 α Ãp̃

ρ

 and S =

 0

(sinα− Se)gÃ cosα

 (25)

APPENDIX B
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Pseudocode for well-balanced scheme
1: Specify required data and parameters [e.g., pipe geometry, boundary conditions

(BCs), calculation parameters]
2: t = 0, n = 0
3: Read initial flow variables at the center of all cells hni , Ãi

n
and Q̃i

n

4: while (t ≤ period of simulation) do
5: Compute maximum ∆t based on specified Courant number and flow variables

at the center of each cell
6: Compute Ãn+1/2 and Q̃n+1/2 at the boundaries of each conduit using flow vari-

ables at time level n and specified boundary conditions {Depending on BC, use
Eqs. (1)-(11) in Leon et al. (2010a)}

7: Compute ηL (ÃL) and ηR (ÃR) for each cell by performing a water stage re-
construction. {No reconstruction of Q is performed (see reconstruction of flow
variables section in this paper)}

8: Apply the MINMOD flux limiter at all cell interfaces (e.g., i− 1/2, i+ 1/2 ) to
avoid spurious oscillations [e.g., at x = i+ 1/2, apply MINMOD (ηRi

, ηLi+1
)].

{Use Eq. (15) in this paper}
9: Solve Riemann problem at all cell interfaces, i.e., compute h, Ã and Q̃ at each

cell interface. {Use Eqs. (6)-(8) in Leon et al. 2009 for pure open-channel
flow interfaces, Eqs. (13)-(14) in Leon et al. 2008 for pure pressurized flow
interfaces, and Eqs. (12)-(20) in Leon et al. 2010b for mixed flow interfaces.}

10: Compute fluxes at all cell interfaces using Eqs. (5)-(7) in this paper with h, Ã
and Q̃ determined at the previous step.

11: Compute the source terms for each cell. {Use Eqs. (16)-(19) in this paper}
12: Update the solution in all cells using Eq. (11) in this paper.
13: t = t+ ∆t;n = n+ 1
14: end while
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APPENDIX C

In this Appendix, part of the pressure term in the momentum equation (∂/∂x̃
[
(Ãp̃)/ρ

]
)

is mathematically manipulated to find an estimate for Ã (Eq. 5).

Let’s start expressing the term ∂/∂x̃
[
(Ãp̃)/ρ

]
as a function of the terms ξ, z̃ and h

(see Figure 1)
∂

∂x̃

(Ãp̃
ρ

)
= g

∂

∂x̃

(∫ h(x̃)

0

ξ(z̃)(h(x̃)− z̃)dz̃

)
(26)

Note in Eq. (26) that the integral is the first moment of the area with respect to the

water surface. Denoting the term ξ(z̃)(h(x̃) − z̃) as F (z̃, x̃), the term ∂/∂x̃
[
(Ãp̃)/ρ

]
becomes

∂

∂x̃

(Ãp̃
ρ

)
= g

∂

∂x̃

(∫ h(x̃)

0

F (z̃, x̃)dz̃

)
= g

∂Ψ(z̃, x̃)

∂x̃
(27)

The Leibnitz’s rule in terms of the variables x̃ and z̃ (see Figure 1) is given by

d
dx̃

∫ f2(x̃)

f1(x̃)

F (z̃, x̃)dz̃ =

∫ f2(x̃)

f1(x̃)

∂

∂x̃
F (z̃, x̃)dz̃ + F (f2(x̃), x̃)

df2

dx̃
− F (f1(x̃), x̃)

df1

dx̃
(28)

Note that the operator in the Leibnitz’s rule (left-hand side) is a total derivative, while

as the operator in Eq. (27) is a partial derivative. Because Ψ is a function of z̃ and x̃,

the total derivative of Ψ(z̃, x̃) with respect to x̃ can be written as

dΨ

dx̃
=
∂Ψ

∂x̃
+
∂Ψ

∂z̃

dz̃
dx̃

(29)

Given that z̃ is independent of x̃, dΨ/dx̃ = ∂Ψ/∂x̃ (Eq. 29). Now, we can apply the

Leibnitz’s rule to the right hand side of Eq. (27), which gives,

∂

∂x̃

(Ãp̃
ρ

)
= gÃ

∂h

∂x̃
(30)

It is acknowledged that Chaudhry (1987) has obtained a similar relation to Eq. (30)
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based on a Taylor series expansion neglecting higher-order terms. The reader can note

that in the derivation presented above no terms were neglected and the equation is

valid regardless of the flow velocity (e.g., steady state, water at rest or moving jump

discontinuities). Equation (30) can be written as

Ã =
1

g

∂

∂x̃

(Ãp̃
ρ

)/∂h
∂x̃

(31)

Note that multiplying both sides of Eq. (31) by cos2 α, it can be obtained a similar

expression to Eq. (16). Denoting Ã cos2 α as Â, Eq. (31) can be written as

Â = cos2 α

(
Ãp̃
ρ

)
R
−
(
Ãp̃
ρ

)
L

g(hR − hL)
(32)

The expression of Â in Eq. (32) is recommended as an estimate for Ã in Eq. (5).

NOTATION

The following symbols are used in this paper:

A = cross-sectional area of flow;

a = d/2;

b = d/(2 cosα);

c = gravity wave celerity;

cf = waterhammer wave celerity;

Crmax or Cr = maximum Courant number;

d = conduit diameter;

F = Flux vector;

Fni+1/2 = intercell flux;

g = gravitational acceleration;

h = water depth or piezometric head above channel bottom in z̃ direction;
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hrec = vertical water depth (or piezometric head above channel bottom) at the center

of a cell;

hmass = equivalent vertical water depth in the cell (uniform flow) that provides the

same water volume as the “lake at rest” condition;

h = vertical distance from the conduit invert to the centroid of the hydraulic area;

kn = constant equal to 1.0 in Metric units and 1.49 in English units;

nm = Manning roughness coefficient;

Nr = Number of time steps;

p = pressure acting on the center of gravity of A
ref

;

p = average pressure of the water column over the cross sectional area;

Q = flow discharge;

R = hydraulic radius;

r = h/b− 1;

S = vector containing source terms;

Se = slope of the energy line;

So = bed slope;

t = time;

U = vector of flow variables;

u = water velocity;

V = water volume;

x = longitudinal coordinate parallel to the conduit bottom;

x̃ = horizontal axis;

y = water depth or piezometric head above channel bottom in z direction;

z = axis perpendicular to x;

z̃ = vertical axis perpendicular to x̃;

z̃b = elevation of channel bottom;
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α = angle of inclination of the channel bottom;

∆x = spatial mesh size in x direction;

∆x̃ = spatial mesh size in x̃ direction;

∆t = time step;

η = water stage;

ρ
f

= density for compressible water hammer flows (variable);

ρw = density for open-channel flows (constant)

Superscripts

n = computational time level

Subscripts

eq = equivalent;

i = mesh point location in x direction;

L = left state;

R = right state;

ref = reference
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FIG. 1. Sketch of a sloped pipe
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FIG. 2. Sketch of a two pipe system with different angles of inclination
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FIG. 3. Sketch that illustrates a dry-wet interface, open channel and sur-
charged flow conditions
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FIG. 4. Water surface profile for test 1 at time t = 0 s
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FIG. 5. Dimensionless flow discharge versus Nr for test 1 at midway of
first conduit from left
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Normal depth 

FIG. 6. Water surface profile for test 2 at time t = 500 s
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FIG. 7. Flow depth trace at midway of second conduit from left (So=
0.1667%)
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FIG. 8. Flow discharge trace at midway of second conduit from left (So =
0.1667%)
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FIG. 9. Water surface profile for test 3 at time t = 0.1 s
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FIG. 10. Water surface profile for test 3 at time t = 3 s
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t = 20s 
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FIG. 11. Water surface profile for test 3 at time t = 20 s
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t = 240s 
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FIG. 12. Water surface profile for test 3 at time t = 240 s
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FIG. 13. Piezometric depth trace at midway of conduits 1 and 2 for test 3
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FIG. 14. Flow velocity trace at midway of conduits 1 and 2 for test 3
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FIG. 15. Flow discharge trace at midway of conduits 1 and 2 for test 3
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FIG. 16. Piezometric depth trace at midway of conduits 1 and 2 for test 4
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FIG. 17. Flow velocity trace at midway of conduits 1 and 2 for test 4
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FIG. 18. Flow discharge trace at midway of conduits 1 and 2 for test 4

47



FIG. 19. Simulated piezometric depth snapshots
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FIG. 20. Measured and computed velocities at 9.9 m from the upstream
end for the experiments of Vasconcelos et al. (2006)
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FIG. 21. Measured and computed piezometric depths at 14.1 m from the
upstream end for the experiments of Vasconcelos et al. (2006)
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TABLE 1. Maximum discharge and maximum water depth fluctuation
(with respect to initial conditions) attained at the end of various time
steps

Time steps
Description 103 105 107

Flow discharge (m3/s) O(10−5) O(10−5) O(10−5)
Water depth fluctuation (m) O(10−8) O(10−8) O(10−8)
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