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Abstract:  
   Optimizing the operation of reservoir involving ecological and environmental 
(eco-environmental) objectives is challenging due to the often competing social-economic 
objectives. Non-dominated Sorting Genetic Algorithm-II is a popular method for solving 
multi-objective optimization problems. However, within a complex search space, the NSGA-II 
population (i.e., a group of candidate solutions) may be trapped in local optima as the 
population diversity is progressively reduced. This study proposes a computational strategy 
that operates several parallel populations to maintain the diversity of the candidate solutions. 
An improved version of the NSGA-II, called c-NSGA-II is implemented by incorporating 
multiple recombination operators from the Borg-MOEA, a state-of-the-art optimization 
algorithm that has been recently proposed. The parallel strategy is then coupled into the routine 
of the c-NSGA-II and applied to the operation of the Qingshitan reservoir (Southwest of China) 
which includes three eco-environmental and two social-economic objectives. Three metrics 
(convergence, diversity, and hyper volume index) are used for evaluating the optimization 
performance. The results show that the proposed parallel strategy significantly improves the 
solution quality in both convergence and diversity. Two characteristic schemes are identified 
for the operation of the Qingshitan reservoir for tradeoff between eco-environmental and 
social-economic objectives.   
Keywords: Reservoir Operation; Ecological and Environmental Objectives; NSGA-II; 
Parallel Strategy 

 
1 Introduction 
  Maximizing yield of reservoir has been one of the most important aspects for integrated 
water resource management (White, 1998; Cardwell et al., 2006). In most integrated 
management of reservoirs, the primary objectives are the maximization of social-economic 
objectives(e.g., power generation, flood control etc.). However, objectives and constraints 
involving eco-environmental aspects (e.g., fish community, environmental flow etc.) are being 
gradually included in reservoir operation due to growing concerns on river ecosystem. Most of 
the early studies use a constant minimum flow discharge as a fixed constraint (Homa et al., 
2005). This “minimum flow” operation has minor impact on the primary social-economic 
objectives (Castellettl et al., 2008), however this operation is commonly criticized for its 
limitations on ecosystem benefits (Whiting, 2002; Petts, 2009). Some other studies focus on 
implementing objectives that involves fish habitat and fish population (Sale et al., 1982; 
Cardwell et al., 1996) or a time-varying constraint based on dynamic flow requirement of a 
target fish (Chen et al., 2015; Li, et al., 2015). Recently, a concept based on river system 
integrity has been further advocated (Richter et al., 1996, 1997, Poff et al., 2010, Yin et al., 
2011) instead of giving priority to the fish species. Operation of the reservoir that combines 
social-economic and eco-environmental objectives, some of which may be highly nonlinear 
and discontinuous (Dorn and Ranjithan, 2003; Smith et al., 2007), present a complex 
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multi-objective optimization problem within a high dimension solution space that is often 
non-differentiable and non-convex (Yeh, 1985; Wurbs, 1993; Labadie, 2004). Finding optimal 
solutions to the problem is challenging and requires a sophisticated optimization algorithm.  
    Non-dominated Sorting Genetic Algorithm-II (Deb et al., 2002), also known as NSGA-II, 
is one of the most popular multi-objective evolutionary algorithms (MOEAs). The NSGA-II is 
recognized for its superior performance in multi-objective optimization and has been receiving 
increasing attention for practical applications on reservoir operation (Prasad and Park, 2004; 
Atiquzzaman et al., 2006; Yin et al., 2011). However, premature convergence (i.e., little or no 
improvement of solutions) is often a problem for the NSGA-II (Leung et al., 1997; Hrstka and 
Kučerová., 2004). In a complex search space, it is difficult for the algorithm to find better 
solutions at every iteration (i.e., generation). The ‘best’ gene in the present generation will 
duplicate itself repeatedly by recombination operator unless better gene is found. The 
population of the NSGA-II is likely dominated by the ‘best’ gene after a few iterations. This 
premature convergence drastically reduces the diversity of the candidate solutions (i.e., 
population) and leads to convergence to a local optima. The NSGA-II is found difficult to 
obtain the global optimal solutions to the optimization problem within complex or 
high-dimensional search spaces (Hrstka and Kučerová., 2004, Hadka and Reed 2013) e.g., the 
optimization of reservoir operation that involves multiple eco-environmental objectives.  

To maintain the diversity of the candidate solutions in the NSGA-II, the present study 
proposes a computing strategy that simultaneously operates multiple parallel populations, 
instead of a single population in the serial NSGA-II. To improve the performance of the 
optimization, an adaptive version of the original NSGA-II called c-NSGA-II is firstly prepared. 
The c-NSGA-II employ multiple recombination operators that are from the 
Borg-MOEA(Hadka and Reed 2013), a recently developed state-of-the-art optimization 
framework. The proposed parallel strategy is then incorporated into the routine of the 
c-NSGA-II. We apply both parallel NSGA-II (p-NSGA-II) and the c-NSGA-II to the operation 
of the Qingshitan Reservoir in the southwest of China, which comprise three 
eco-environmental and two social-economic objectives. The convergence, diversity and 
quality of solutions of the two optimization techniques are compared using three indexes which 
are commonly used in the literatures. The objective of this study is to: (1) develop a 
state-of-the-art optimization method combining parallel strategy and the c-NSGA-II; and (2) 
apply the method in the operation of the Qingshitan reservoir to test the performance.  

 
2 Methodology 
 
2.1 c-NSGA-II 

   Recombination is one of the most important operators/process in the GA that produces 
child solutions from parent solutions. Hadka and Reed (2013) compared various 
state-of-the-art multi-objective evolutionary algorithms (MOEA) and developed a unified 
optimization framework called Borg-MOEA to overcome critical issues of the MOEA such as 
dominance resistance and deterioration of the optimization algorithm. One of the major 
features of the Borg MOEA is the use of multiple recombination operators to generate 
offspring from the parent population.  

The c-NSGA-II is developed by incorporating the multiple recombination operators from 
the Borg-MOEA (Hadka and Reed, 2013) on the basis of the NSGA-II (Deb et al., 2002). 
Including the original simulated binary crossover (SBX, Deb and Agrawal, 1994), four other 
popular recombination operators are incorporated, i.e., Differential Evolution operator (DE, 
Storn and Price, 1997), Parent-Centric Crossover (PCX, Deb et al., 2011), Unimodal Normal 
Distribution Crossover (UNDX, Kita et al., 1999) and Simplex Crossover (SPX, Tsutsui et al., 
1999). The c-NSGA-II uses primary principles of the original NSGA-II by mimicking 
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evolution process of genes using selection, recombination and mutation operators. The 
procedure of the c-NSGA-II optimization is briefly described below (see also Figure 1). For a 
multi-objective problem (MOP), a set of non-dominated solutions is obtained according to the 
concept of non-dominance. A solution is called Pareto-optimal when there is no solution that 
would improve at least one objective function value without worsening at least one other 
objective function value. The set of all the Pareto-optimal solutions of the MOP is then defined 
as Pareto-optimal front or Pareto front.  
 

 
Figure 1. Major process of the c-NSGA-II optimization (Adapted from Deb et al. 2002) 

 
2.2 p-NSGA-II  

Master-slave model (MS), multi-population model (MP) and diffusion model (DM) are 
three major parallel paradigms that are often implemented in MOEAs. However, their 
implementation varies significantly in the literature. It is more common to use the MS and MP 
paradigm for small scale clusters i.e., less than 50 processors. The MS is probably the easiest 
implementation for paralleling MOEAs. For the MS paradigm, the master processor stores the 
populations and performs all critical computational processes (selection, recombination and 
mutation). The slave processor is used only to evaluate fitness functions and return objective 
values. It is usual to assign approximately equal workload to all the slaves. The MS paradigm 
has only one parameter (i.e., the number of processors) and can be easily implemented. 
However, the relatively large computational costs of communication are often criticized 
(Cantu-Paz, 2000; Coello et al., 2001). Moreover, the MS do not improve serial algorithm’s 
performance due to its parallelized scheme. 

The MP, often referred to as “island model”, is another popular parallel paradigm. The MP 
generates multiple subpopulations and distributes them on different processors. Each processor 
starts with a separate population and exchanges information with each other. This exchange is 
called migration and requires the specification of frequency of migration, numbers of the 
migrants as well as allocations of the migrants (Cantu-Paz, 2007). Early studies showed that 
the MP has a potential of 'superlinear' speed-up (Coello Coello et al., 2002), however they 
require a sophisticated design and careful tuning of the aforementioned parameters (Tang et al., 
2006; Cantu-Paz, 2007).   

In the present study, a parallel strategy that combines the MP and MS paradigms is 
incorporated in the c-NSGA-II and form a parallel method called p-NSGA-II. The main steps 
of the p-NSGA-II are described as follows (also in Figure 2). First, a pre-determined number of 
subgroups (Ng) with the same population size (Pg) are allocated to CPU processors. Each of 
these subgroups randomly generates the initial population. Each subgroup simultaneously 
employs the c-NSGA-II to evolve populations until the predetermined numbers of generations 
(Gg) are reached or a certain number of feasible solutions are found. A gene pool i.e., the 
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combined group (Pc) is set up to store the optimized solutions from each subgroup. Only a 
given ratio (Rm) of the solutions from each subgroup is allowed to migrate to the gene pool for 
maintaining the diversity of the Pc . The c-NSGA-II is employed again for the Pc to continue 
the optimization until the stopping criteria is satisfied. The stopping criteria used in this study is 
the number of generations (Gc) for the combined group.  

 

Figure 2. Flow chart of the parallel strategy for the c-NSGA-II (p-NSGA-II) 
As can be observed in Figure 2, the proposed parallel strategy is a combination of the MP 

and MS models. This strategy has multiple subpopulations at the beginning to allow for more 
diversity. Then the optimization evolves in a similar way to the MP model. Unlike in the MP 
model where the information exchange is between the subpopulations, in the proposed strategy 
the information exchange is between the subpopulations and the gene pool only. The 
information exchange is similar to the MS model, which reduces the intensive communication 
costs of the MP model. Compared to the c-NSGA-II, only two additional parameters, namely, 
number of subgroups (Ng) and migration ratio (Rm), need to be specified in the p-NSGA-II. Pc 
is determined by Ng and Rm and is computed within the optimization process.  
 
2.3 Selected performance metrics  

For a multi-objective optimization, preferred results include: 1) convergence to the true 
Pareto-optimal front, and 2) diversity of solutions in the Pareto-optimal front (Deb, et al., 
2002).  
 
2.3.1 Convergence index 
  There are various metrics to quantify the convergence of MOEAs, such as error ratio 
(Veldhuizen, 1999), set coverage metric (Zltzler, 1999), etc. Herein a commonly-used 
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generational distance metric (Veldhuizen, 1999, Deb et al., 2002) is adopted as the 
convergence index. This metric measures Euclidean Distance in the objective space between 
two sets of solutions. The generational distance index (Cindex) between two sets of solutions is 
given by  
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where n and n* are the number of solutions in these two sets, respectively, and these numbers 
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are the m-th objective function value of the i-th and j-th member of the two sets. The smaller 
Cindex represents the better convergence toward the Pareto-optimal front.  
 
2.3.2 Diversity index 
  Besides convergence, spread of the solutions is also important for decision making. It is often 
desirable to find solutions that span the entire Pareto-optimal region. Herein the metric 
proposed by Deb et al. (2001, 2002) is used for quantifying the diversity of the solutions. This 
metric is given by: 
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where Dindex is the diversity index. N is the number of the solutions in the obtained 
nondominated set. df and dl are the Euclidean distances between the extreme solutions and the 
boundary solutions, respectively. di is the Euclidean distance between consecutive solutions in 
the obtained nondominated set. d is the average of all the distance di, i=1,2,….,N-1. Similarly 
as Convergence index, the smaller diversity index represents better diversity of solutions.  
 
2.3.3 Hypervolume index 
  Hypervolume indicator is found to be a good metric for evaluating the performance of 
multi-objective optimization (Zitzler et al., 2003; Reed et al., 2013) due to its property of 
combining the convergence and diversity metrics into a single index. The hypervolume 
indicator basically measures the volume of objective space covered by a set of non-dominated 
solutions. The hypervolume indicator (Ih) (Zitzler et al., 2003; Reed et al., 2013) is defined as: 

                                                  (3) 

where A is any objective vector set, Z is the space (0,1), n for the normalized objectives (n = 5 
in our test case), ( )Aα Ζ  is the attainment function which will have a value of 1 if A is a weakly 
dominated solution set in Z. The hypervolume indicator calculates the volume of the objective 
space enclosed by the attainment function and the axes. A higher hypervolume indicator 
denotes better quality of the solutions in terms of convergence and diversity. 
 
3. Case study 
  The Qingshitan reservoir is a major hydraulic facility of the Lijiang River basin in the 
southwest of China and provides water for multiple purposes. It is located at the upstream of 
the Gantang River, the largest tributary of the Lijiang River. The reservoir releases water 
through turbines for hydropower production and through a bypass channel for irrigation. Due 
to soil drainage, part of the irrigation flow returns to the Gantang River through irrigation 
channels. The total flow immediately downstream of the Qingshitan reservoir joins the Lijiang 
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River at Guilin city, which was primarily used for domestic water consumption. The location 
of the case study and the schematic of water distribution in the Qingshitan Reservoir are 
presented in Figure 3. 

 
Figure 3. Location of case study and schematic of water distribution in the Qingshitan Reservoir. t

GnQ and 
t
LnQ denote the upstream natural flow of the Gantang River and the Lijiang River at time t, respectively; 
t
iQ denotes the operational flow for irrigation at time t; t

tbQ and t
swQ denotes the operational flow through 

turbines and spillways at time t, respectively; t
irQ denotes the returned flow from irrigation at time t (due to soil 

drainage); t
dQ denotes the flow for domestic use in the Guilin city at time t; t

GRQ and t
LRQ denote the total 

flow of the Gantang and Lijiang Rivers at time t, respectively. 
  The Qingshitan reservoir used to be operated only for agricultural irrigation, power 
generation and domestic water supply for the city of Guilin. Recently, the Lijiang River has 
been receiving increasing attention from tourists due to its unique karstic landscape. For this 
recreational purpose, the reservoir needs to discharge a certain flow for maintaining navigation 
of cruise boats in the Lijiang River. On the other hand, a few previous studies showed that the 
present operational scheme of the Qingshitan reservoir has strongly negative impacts on the 
aquatic habitat (Ye et al., 2011, Li et al., 2011). Therefore, new operational schemes for the 
Qingshitan reservoir are being developed for including additional objectives. Based on a 
previous study on the Qingshitan reservoir (Chen et al., 2012), minimizing natural flow 
alteration in the two rivers are proposed as ecological objectives to restore the ecosystem in the 
Gantang and Lijiang rivers. Maintaining an acceptable water quality in the Lijiang River, by 
conveying a minimum amount of water in this river is another added objective, which is both 
environmental and social-economic preferred.  
  The proposed objectives and constraints of the reservoir operation are described in Sections 
3.1 and 3.2. Since the reservoir is annually regulated, the optimization period is chosen to be 
one year. The daily flow releases for hydropower production, irrigation and domestic water 
supply are the decision variables.  

 
3.1 Objective function  
(1) Maximize general water supply (GWS) 
 This objective is composed of three sub-objectives, namely agricultural irrigation, domestic 
water supply and tourism cruise navigation. These three sub-objectives are all expected to be 
maximized in the optimization. The objective function is expressed as follows:  
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where GWS is average rate of general water supply during the optimization period; n is the 
total number of time steps; w

1
, w

2 
and w

3 
are weights of the irrigation, water supply and navigation 

objectives, respectively. According to “the Operation Handbook of the Qingshitan Reservoir”, 
these three objectives are equally important; therefore, all weights have a value of 1/3; 

_
t
i tarQ , _

t
d tarQ and _

t
w tarQ (m3/s) are discharge requirements at time t for irrigation, domestic water 

supply and recreation (cruise navigation), respectively. Other notations were explained in Figure 
3.  
(2) Maximize power generation (PG) 
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where PG is the percentage to the PGmax (kWh), which is the maximum electricity (i.e., 
generated at full capacity) during the optimization period;η  is efficiency of turbine; g is the 
gravitational acceleration (m/s2). t

rH  is average water head (m) at time t; max
t
dQ (m3/s) is 

allowed maximum discharge through turbines; t∆  is the operational time of the turbine during 
each time step.  
(3) Minimize flow alteration in the Gantang River (FAGR) 
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where FAGR is average flow alteration rate of the Gantang River from its natural flow;  
(4) Minimize the flow alteration in the Lijiang River (FALR) 
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where FALR is average flow alteration rate of the Lijiang River from its natural flow  
(5) Maximize Water Quality in the Lijiang River (WQ) 

( )
1

1 max max ( ) /
n

t t t t t t
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t
WQ Q Q Q Q Q Q
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where WQ is water quality index in the Lijiang River and t
wqQ  is the required discharge to 

maintain an acceptable water quality in the Lijiang River.  
 
3.2 Constraints  
The optimization model satisfies the mass balance equation (or continuity equation) and 
constraints as follows: 
(1) Continuity equation 

1  ( Q Q Q )t t t t t
Gn f iV V t+ − = − − ⋅∆                                               (9) 

where 1tV + and tV  are reservoir storage at the t and t+1 time. There is no tributary between the 
Gantang River and the Lijiang River. In the present numerical tests, water leakage and 
evaporation losses are not considered.  
(2) Reservoir water level constraints 

_ min _ max
t

r r rH H H≤ ≤                                                               (10) 

where t
rH  is the reservoir water level at time t; _ minrH and _ maxrH  are allowed minimum and 

maximum reservoir water levels, respectively. The maximum reservoir water level becomes 
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normal water surface elevation (WSE) during flood season. 
(3) Irrigation discharge constraints 

_0 t t
i i allowQ Q≤ ≤                                                                    (11) 

where _
t
i allowQ is allowed maximum discharge in the irrigation channel at time t.  

 (4) Domestic water supply discharge constraints 
 

                                                 (12) 
where  is minimum daily water consumption, determined by the lowest 
record in a year. _

t
d allowQ  is allowed maximum discharge in the water supply channel at 

time t.  
(5) Turbine flow constraints  

_ max0 t
tb tbQ Q≤ ≤                                                           (13) 

where _ maxtbQ is allowed maximum discharge of t
tbQ ;  

 (6) spill flow constraints  
_ max0 t t

sw swQ Q≤ ≤                                                          (14) 

where _ max
t
swQ is allowed maximum discharge of t

swQ at time t.  
 (7) Output constraints  

_ min _ max
t

d d dN N N≤ ≤                                                              (15) 

where t
dN  is power output at time t. _ mindN and _ maxdN  are firm output and output 

capacity, respectively.  
3.3 Parameters setting  

The c-NSGA-II and p-NSGA-II are both applied to the operation of the Qingshitan 
Reservoir. For the c-NSGA-II, the population is set to 320. The number of generations is set to 
a relatively large number (4000) to investigate the convergence of the solutions. Other 
parameters e.g., mutation rate are set to the same typical values used in the literature (Deb et al., 
2002; Yandamuri et al., 2006; Yin et al., 2011; Sindhya et al., 2011).  
   For the p-NSGA-II, three experiments are conducted with different numbers of parallel 
groups. The number of subgroups (Ng) is set to 8 in Experiment I, which means that 8 
processors are used for the parallel computation. The population for each subgroup (Pg )is set 
to 80. The population of the combined group (Pc) is determined by the product Ng ×Pg ×Rm. 
For matching the population of the c-NSGA-II and the combined group of the p-NSGA-II, we 
intentionally set Rm to 0.5 in the first experiment. Likewise, for experiments II (Ng = 16) and 
III (Ng = 32), Rm is set to 0.25 and 0.125, respectively. For all the three experiments, the 
number of generations for the subgroups (Gg) is set to 3000. The number of generations for the 
combined group (Pc) is set to 1000, which results in a total of 4000 generations, the same as the 
number of generations for the c-NSGA-II.  
   Because of the random nature of Genetic Algorithms, optimization results may have some 
difference for different runs, like other random-based search algorithms. Therefore, 30 
random-seed replicate runs are used in each experiment and the average value as well as the 
corresponding variance is reported.   
4 Results 
4.1 Results of NSGA-II and p-NSGA-II 
  The performance of the c-NSGA-II and p-NSGA-II with different subgroups are compared 
for the three aforementioned metrics. The convergence and diversity indexes are calculated at 
each generation, whose results are presented in Figure 4. For the c-NSGA-II, the results of the 
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two indexes are based on a constant population of 320. For the p-NSGA-II, the convergence 
and diversity indexes for the first 3000 generations are average values of each subgroup (e.g., 
Ng = 8), which is 80 populations. The results for the last 1000 generations are based on the 
combined populations, which is of 320, the same size as the population of the c-NSGA-II.    

 
Figure 4. Convergence index (left) and diversity index (right) as a function of generation for the c-NSGA-II 

and p-NSGA-II with different parallel groups 
   During the first few hundred generations (e.g., 500), the convergence index for both the 
c-NSGA-II and p-NSGA-II decreases rapidly. Between 500 and 1500 generations, there is a 
discontinuity in the convergence rate for the c-NSGA-II and p-NSGA-II. After this 
discontinuity all experiments converge to approximately the same value (i.e., 0.12). For 
generations between 1500 and 3000, the convergence index for the c-NSGA-II and p-NSGA-II 
oscillates slightly around 0.12. For generations larger than 3000, the convergence index for the 
c-NSGA-II still oscillates slightly around 0.12. However, the convergence index for the 
p-NSGA-II is reduced gradually after the parallel groups are combined. Between the 
generations 3000 and 4000, the convergence index for the p-NSGA-II is reduced about 30% 
(from 0.12 to about 0.076). Compared to the convergence index that decreases more or less 
monotonically, the diversity index presents large oscillations especially during the first 1500 
generations. For generations between 1500 and 3000, the diversity index oscillates slightly 
around 0.41 for the c-NSGA-II and p-NSGA-II. For generations larger than 3000, the diversity 
index for the c-NSGA-II still oscillates slightly around 0.41. However, the diversity index for 
the p-NSGA-II is reduced more than 50% (from 0.48 to about 0.21) after the parallel groups are 
combined.   
  The convergence, diversity at the last generation i.e., the final non-dominated solutions, is 
presented in Table 1. The hypervolume index is also included in the table. The mean value and 
variance for each experiment is shown in bold and in parentheses, respectively. As observed in 
Table 1, the convergence and diversity indexes of the p-NSGA-II are smaller than that of the 
c-NSGA-II, which means better performance on the two indexes. The results of Table 1 also 
show that the hypervolume index of the p-NSGA-II is higher than that of the c-NSGA-II The 
hypervolume value of the p-NSGA-II increases nearly 10% than the one of the c-NSGA-II, 
meaning better quality of the solutions from the p-NSGA-II. On the other hand, the different 
experiments of the p-NSGA-II show similar results on the performance indexes. The 
p-NSGA-II with 16 subgroups i.e., Ng=16 obtained slightly better mean values on convergence 
and hypervolume. The best diversity index i.e., smallest value is obtained for Ng=32.   

Table 1. Performance index of the NSGA-II and p-NSGA-II with different subgroups 
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Method Convergence index  Diversity index  Hypervolume index 

c-NSGA-II 0.1168 (0.0029) 0.4816 (0.023) 0.3085 (0.0018) 

p-NSGA-II (Ng=8) 0.0778 (0.0031) 0.2142 (0.017) 0.3359 (0.0021) 

p-NSGA-II (Ng=16) 0.0748 (0.0018) 0.2128 (0.021) 0.3384 (0.0016) 

p-NSGA-II (Ng=32) 0.0752 (0.0017) 0.2125 (0.025) 0.3367 (0.0019) 

 
4.2 Optimal operational solutions for the Qingshitan Reservoir 
   Unlike some mathematical functions with theoretically Pareto-optimal solutions, there is no 
"known" true Pareto-optimal front for the real-world reservoir operation. Hence, a reference 
set of solutions is assumed to be the “true” Pareto-optimal front. The reference set is generated 
by applying the non-dominated sorting to the combined best solutions from all optimization 
runs (Kollat et al., 2008). This reference set is displayed in Figure 5 as a parallel line plot, 
which is a common way of showing results for more than three objectives (Fu et al., 2012). The 
Pareto solutions for the c-NSGA-II and p-NSGA-II (Ng=16) at the last generation are also 
presented in Figure 5. Each line in Figure 5 represents a solution for the five objectives and the 
arrow shows the direction in which the objective function is improving. Compared to the 
c-NSGA-II (Figure 5, left), the lines of the p-NSGA-II (Figure 5, right) cover a wider range for 
each objective, meaning that the solutions are more spread. The results of p-NSGA-II are also 
found more similar with the reference set (Figure 5, middle).  

 
Figure 5. Parallel line plot for optimal solutions for the c-NSGA-II (left), p-NSGA-II (right) and reference 

set (middle) 
The lines in Figure 5 also represent trade-off between the different objectives. For 

low-dimension objectives such as bi-objective, the trade-off between the objectives is easy to 
be recognized because of the one-to-one competing relation. For high dimension objectives, 
the trade-off are more complex due to the many-to-many competing relations. To identify the 
trade-off relations between the five objectives, a cluster analysis (Duran & Odell, 2013), which 
group similar objects, are applied to cluster the lines for both the c-NSGA-II and p-NSGA-II 
(Ng=16). Two different solution groups (A and B) are identified through the cluster analysis. In 
general, Scheme A (red line) has lower values than Scheme B (blue line) for all the five 
objectives for the c-NSGA-II and p-NSGA-II (Ng = 16). As can be observed in Figure 5, the 
result of the p-NSGA-II is more obvious in such grouping relations.   

The range (lower and upper bounds) of the objective values can be also compared from 
Figure 5. All the objective values are normalized (i.e., bounded between 0 and 1) for a fair 
comparison. For all objectives, larger ranges are observed for the p-NSGA-II (Ng=16) 
compared to the c-NSGA-II. The comparison also show that the p-NSGA-II (Ng=16) solutions 
are closer to the reference set than those of the c-NSGA-II.  

 
5 Discussions 
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  Overall, the population and generation parameters influence the performance of Genetic 
Algorithms. In general, the larger the population and number of generations, the better the 
quality of the solutions (De Jong, 2007). For a fair comparison between the c-NSGA-II and 
p-NSGA-II experiments, the generation number is the same (i.e., 4000). For the population, the 
p-NSGA-II has smaller population (i.e., 80 in each subgroup) than the population of the 
c-NSGA-II (i.e., 320) during the first 3000 generations. However, after 3000 generations (i.e., 
the last 1000 generations), the populations (in the combined group) of the p-NSGA-II are the 
same as the c-NSGA-II. As can be observed in Figure 4, the c-NSGA-II converges faster than 
the p-NSGA-II at the beginning. The result is expected because a larger random population has 
a higher probability for achieving better solutions. However, after an initial fast convergence, 
the c-NSGA-II failed to improve its performance in terms of convergence and diversity. This is 
the so-called premature convergence which results from some “super genes” dominating the 
search space (Leung et al., 1997; Hrstka and Kučerová., 2004). In a premature convergence, 
the population is trapped in local optima. Premature convergence is less of an issue for the 
p-NSGA-II as this method gains diversity after the parallel subgroups are combined (at 3000 
generations in this case study). It can be noted in Figure 4, that the performance of the 
p-NSGA-II, in terms of convergence and diversity, improves after the parallel subgroups are 
combined (i.e., at 3000 generations). Also, as shown in Table 1, compared to the c-NSGA-II, 
all the p-NSGA-II experiments achieved lower values for the convergence and diversity 
indexes, and a slightly higher value for the hypervolume index. These comparisons indicate 
that the p-NSGA-II has a better performance than the c-NSGA-II.  
  Among the different experiments of the p-NSGA-II, the p-NSGA-II with 16 subgroups 
obtain the smallest value of the convergence index (0.0748), meaning the best performance in 
convergence. On the other hand, the p-NSGA-II with 32 subgroups achieve the smallest value 
of the diversity index (0.2125), meaning the best performance in diversity. Enhancing 
convergence and maintaining diversity of the solutions are dual-goals for designing a 
sophisticated algorithm for multi-objective optimization (Deb, et al., 2002). The two goals are 
difficult to achieve at the same time because of the complex interactions between convergence 
and diversity in MOEA (Laumanns & Deb, 2001; Goel & Stander, 2010. In our case study, the 
p-NSGA-II with an intermediate number of parallel groups (i.e., Ng=16) appears to be the best 
choice as it achieves the largest hypervolume index (0.3384). It should be noted, however, that 
the differences of the results for the three experiments of the p-NSGA-II are very small (Table 
1).  

The results in Table 2 show that the p-NSGA-II with Ng=16 has a better spread of solutions 
than the c-NSGA-II for most of the objectives. It is worth mentioning that a better spread of 
solutions is desirable because it provides more flexibility in the reservoir operation. In addition, 
most of p-NSGA-II results are closer to the reference set indicating a better accuracy. Through 
the aforementioned cluster analysis two solutions groups are identified (i.e., Schemes A and 
Schemes B). These groups show different characteristics on balancing the five objectives of 
the reservoir operation. The solutions in Schemes A are found to have less deviation from the 
natural flow regime for both rivers (smaller values of the FAGR and FALR objectives), 
however, less water supply and power generation (smaller values of the GWS and PG 
objectives). This is because the FAGR and FALR objectives favour a natural flow regime (e.g., 
less flow regulation by the reservoir). As expected, the solutions for Schemes A have a lower 
water quality (smaller values of WQ) because of the lesser flow regulation compared to the 
solutions for the Schemes B. On the contrary, the Schemes B has better solutions for 
social-economic interests (i.e., larger values for the GWS and PG objectives) at expenses of the 
eco-environmental objectives. These results show strong conflicts between the 
social-economic and eco-environmental objectives.  
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6 Conclusions  
  Growing concerns on river ecosystem and environment increases the complexity of 
reservoir operation and challenges the optimization algorithms. This study shows that a 
parallel strategy which employs multiple parallel groups of populations help to improve the 
performance of the NSGA-II. This improvement is due to the increase of diversity provided 
by the parallel groups. However, the performance does not improve monotonically with the 
number of parallel groups. In the case of the Qingshitan reservoir operation, 16 parallel 
groups achieve the best overall performance. The parallel strategy is developed based on the 
combination of two commonly-used parallel computing paradigms, i.e., the master-slave and 
the island models. The implementation of the proposed strategy is straightforward and can be 
easily incorporated into other random-based search algorithms. 
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