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ABSTRACT

We present a new model for unsteady flow routing through dendritic and looped river net-

works based on performance graphs. The model builds upon the application of Hydraulic

Performance Graph (HPG) to unsteady flow routing introduced by González-Castro (2000)

and adopts the Volume Performance Graph (VPG) introduced by Hoy and Schmidt (2006).

The HPG of a channel reach graphically summarizes the dynamic relation between the flow

through and the stages at the ends of the reach under gradually varied flow (GVF) conditions,

while the VPG summarizes the corresponding storage. Both, the HPG and VPG are unique to a

channel reach with a given geometry and roughness, and can be computed decoupled from un-

steady boundary conditions by solving the GVF equation for all feasible conditions in the reach.

Hence, in the proposed approach, the performance graphs can be used for different boundary

conditions without the need to recompute them. Previous models based on the performance

graph concept were formulated for routing through single channels or channels in series. The

new approach expands on the use of HPG/VPGs and adds the use of rating performance graphs
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for unsteady flow routing in dentritic and looped networks. We exemplify the applicability of

the proposed model to subcritical unsteady flow routing through a looped network and contrast

its simulation results with those from the well-known unsteady HEC-RAS model. Our results

show that the present extension of application of the HPG/VPGs appears to inherit the robust-

ness of the HPG routing approach in González-Castro (2000). The unsteady flow model based

on performance graphs presented here can be extended to include supercritical flows.

Keywords: Dendritic network, Flooding; Flow routing, Hydraulic routing; Looped

network; Modeling, River hydraulics; Simulation, Unsteady flow

INTRODUCTION

Most free surface flows (also called open-channel flows) are unsteady and non-

uniform. Hence, in many applications the spatial and temporal variation of water stages

and flow discharges need to be determined. Unsteady flows in river systems are typ-

ically simulated using one-dimensional models although two and three-dimensional

models are now being used more frequently. In a one-dimensional framework, un-

steady flows in rivers are typically simulated by the Saint-Venant equations, the pair

of partial differential equations representing conservation of mass and momentum for

a control volume are:
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where x = distance along the channel in the longitudinal direction; t = time; Q =

discharge; A = cross-sectional area; y = flow depth normal to x; θ = angle between

the longitudinal bed slope and a horizontal plane; g = acceleration of gravity; So =

bed slope and Sf = friction slope. In Eq. (2) [momentum equation], the first, second,
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third, fourth and fifth terms represent the local acceleration, convective acceleration,

pressure gradient, friction and gravity terms, respectively.

The Saint-Venant equations are typically solved for appropriate initial and bound-

ary conditions to simulate the spatial and temporal variation of water stages and flow

discharges resulting from flood routing. At present, no analytical solution for the Saint-

Venant equations is known, except for special conditions (e.g., dam break flow over a

dry bed in a frictionless and horizontal channel). Hence, solutions of general open-

channel flow conditions such as those found in practical applications are sought nu-

merically. Solutions to the full dynamic, one dimensional Saint-Venant Equations and

their quasi-steady, noninertia (or diffusion), and kinematic wave approximations (de-

tails on these approximations can be found for example in Yen 1986) have been sought

based on several numerical schemes and methods (e.g., Abbot and Basco 1989). As

emphasized in González-Castro (2000) and González-Castro and Yen (2012), despite

the wide array of methods available for the solution of the Saint-Venant equations, the

lack of robustness and accuracy issues still pose a problem.

Another important issue with unsteady flow models is computational burden, es-

pecially when an unsteady model is used for optimization problems such as real-time

operation of regulated river systems (e.g., Leon et al. 2012). In this case hundreds

or even thousands of runs need to be performed for each operational decision (∼ 30

minutes), which would require numerically efficient models for unsteady flow routing

or a large number of computer processors (clusters). Even if the simulations are run on

computer clusters, there is no guarantee that hydraulic routing models will work for all

range of conditions (e.g., low stage flows up to flows in the floodplains). In the authors’

experience, under some simulation conditions most of the existing routing models fail

to converge to a solution. In particular, the widely known unsteady HEC-RAS model

(Hydrologic Engineering Center 2010b), which has been found to converge for a range
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of conditions, fails to converge under some conditions. When HEC-RAS fails to con-

verge, it proceeds with the simulation based on assumed pre-specified conditions (e.g.,

critical flow), which may yield questionable results.

In the last three decades, Ben Chie Yen’s research group at the University of Illinois

at Urbana-Champaign extended the concept of delivery curves introduced by Bakhme-

teff (1932). Yen’s group proposed a general approach to summarize the dynamic re-

lation between the water surface elevations (stages) or depths at the ends of a channel

reach (e.g., rivers or canals) for different constant discharges under gradually varied

flow (GVF) conditions (e.g., Yen and González-Castro 2000; Schmidt 2002). This ap-

proach was called the Hydraulic Performance Graph (HPG). The HPG is a set of curves

of constant discharge known as hydraulic performance curves (HPCs). Each HPC de-

fines the locus of the upstream and downstream water depths in a channel reach for a

given constant flow discharge. An example of an HPG for a mild-sloped channel is

depicted in Fig. 1. The HPG shown in Fig. 1 has few HPCs; in actual applications, the

number of HPCs must be set based on a precision goal. This must be decided based

on a convergence analysis, which consists of successive refinement of the resolution

of the set of HPCs to a resolution such that the solution for the conditions of interest

(e.g., stage and flow hydrographs at a given station) becomes nearly independent of the

number of HPCs used. The procedure to determine the optimal resolution of HPCs to

ensure that a prescribed accuracy is afforded, is outside the scope of this paper.

HPGs can be used to summarize gradually varied subcritical and supercritical flows.

However, they have been mostly applied to summarize subcritical GVF in channel

reaches with steep, mild, adverse and horizontal slopes (see methodology in Yen and

González-Castro 2000; and Schmidt 2002). The construction of the HPG for each

reach may involve hundreds of GVF simulations, each simulation corresponding to

one discrete point on the HPG. When using a one-dimensional model for constructing
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the performance graphs, any GVF model can be used. In the present application, the

steady HEC-RAS model was used to generate the HPG’s/VPG’s.

HPGs have been applied to solve problems in open-channel flows including the

(a) evaluation of hydraulic performance of floodplain channels under pre- and post-

breached levee conditions (González-Castro and Yen 1996), (b) assessment of the car-

rying capacity of channel systems in series (Yen and González-Castro 2000), and (c)

theoretical development of discharge ratings based on the hydrodynamics of unsteady

and nonuniform flows (Schmidt 2002). González-Castro (2000) assessed the appli-

cability of HPG’s for unsteady flow routing in single prismatic channels and channel

systems in series with successful results. The unsteady approach of González-Castro

(2000) assumes that the flow is steady at the different time steps of the simulation.

More recently, Hoy and Schmidt (2006) relied on the Volume Performance Graph

(VPG) instead of a finite-difference scheme like the four-point implicit finite difference

scheme used by González-Castro (2000) to satisfy the reach-wise mass conservation

during routing. The VPG approach is equivalent to enforcing Eq. (1) [conservation

of mass] in a reach (see details in Hoy and Schmidt 2006). An example of a VPG

for a mild-sloped channel is depicted in Fig. 2. The HPG and VPG are unique to

a channel reach with a given geometry and roughness, and can be computed decou-

pled from unsteady boundary conditions by solving the GVF equation for all feasible

conditions in the reach. They are essentially a fingerprint of all gradually varied flow

conditions in a channel reach. Consequently, HPG/VPGs need to be revised only when

geomorphic changes modify the geometry or roughness characteristics of the channel

(Yen and González-Castro 2000). A significant advantage of the HPG approach with

respect to other routing models is that the results are little sensitive to space and time

discretization (González-Castro 2000). Even though the performance graph approach

is robust, previous models based on the HPG/VPG engine were formulated only for
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a single channel or channels in series that are not suitable for routing in dentritic and

looped networks.

The present work extends the application of the performance graph approach for

unsteady flow routing in river networks. In a similar fashion to the unsteady approach

of González-Castro (2000), the model introduced here, to which we refer to as OSU

Unsteady Routing (OSU UR) model, assumes that the flow is timewise steady at the

different time steps of the routing. The application presented in this paper is limited

to subcritical flows; however it can be extended to supercritical flows. Besides relying

on the HPG/VPG concept, the OSU Unsteady Routing model also makes use of what

we refer to as Rating Performance Graph (RPG). RPGs graphically summarize the dy-

namic relation between the flow through and the stages upstream and downstream of an

in-line structure. An example of a RPG is depicted in Fig. 3. RPG’s are conceptually

similar to look-up tables such as those utilized to characterize the dynamics of hy-

draulic structures in the FEQ model of Franz and Melching (1997b). However, RPG’s

are described with an adaptive spacing so as to capture changes smoothly, which leads

to better interpolation estimates. Further details on RPGs are presented in the next sec-

tion. The paper is organized as follows: (1) formulation of the OSU Unsteady Routing

model; (2) the OSU Unsteady Routing model and the unsteady HEC-RAS model are

applied to inflow hydrograph routing for a test case in the Applications Guide of the

HEC-RAS model (Hydrologic Engineering Center 2010a); and (3) the results of these

models are compared and discussed.

FORMULATION OF THE OSU UNSTEADY ROUTING MODEL

As mentioned earlier, the OSU Unsteady Routing model is built upon the perfor-

mance graphs approach. HPG’s and VPG’s are obtained for each channel reach for

as many flows and downstream boundary conditions as necessary to cover the region

of possible pairs of upstream and downstream stages in the reach. The maximum wa-
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ter stages are given by the elevations of the channel banks, floodplain levees, or other

topographic features. The HPG/VPGs of a system can also include the inundation of

urban areas (see Fig. 4).

Overall, the limitations of the OSU UR model are the same as those of unsteady

flow routing models based on the Saint-Venant equations. In addition, the present

version of the OSU UR model does not have the capability to model dry-bed flows.

Furthermore, the performance graphs approach applies to flow routing when the con-

tribution of the local acceleration to the momentum balance is negligible. This condi-

tion is met by flows in many natural and man-made systems. As noted by Henderson

(1966), even for a steep river with a ”very fast-rising flood the local acceleration term

is small compared to the gravity and friction terms. Actually, the relative contribution

of the local acceleration with respect to the pressure gradient is in the order of the

Froude number squared (Henderson 1966). Typically, the maximum Froude number

of mild-slope unregulated river systems and regulated river systems is much smaller

than one. A flow chart of the OSU Unsteady Routing model is presented in Fig. 5,

which comprises six main modules. A brief description of these modules is presented

next.

Module I: Definition of river network

In this module, data of nodes and river reaches that define the river system network

are read and stored for later use. In the OSU Unsteady Routing model, a river system is

represented as a network where all components of the river system are defined by river

reaches and nodes. A river reach is defined by its upstream and downstream nodes and

should have similar geometric properties along the reach (e.g., prismatic channel) as to

ensure GVF conditions. Whether a channel reach is changing gradually enough so that

flow through it can be treated as flow in a prismatic channel must be assessed based on

a more general form of the ordinary differential equation (ODE) for GVF conditions.
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González-Castro (2000) discusses this issue based on the following more general ODE

for GVF in non prismatic channels:

dy

dx
=

So − Sf +
Fr2

cos2 θ
D
T

dT
dx

cos θ − Fr2
(3)

The third term in the numerator of Eq. (3) accounts for changes in nonprismatic chan-

nels. From this equation, it is clear that for a canal to behave as prismatic

So − Sf ≫ Fr2

cos2 θ

D

T

dT

dx
(4)

where T = free surface width, D = hydraulic depth (= A/T ) and Fr = Froude

number. The criterion in Eq. (4) is met by subcritical flows in canals with mild bed

slopes for which Fr2/ cos2 θ = O(0.1) and D/T = O(0.1), even when dT/dx = O(So

- Sf ).

The flow direction in a river reach is assumed to be from its upstream node to

its downstream node as shown in Fig. 6. In Fig. 6, the subscript j and superscript

n represent the river reach index and the discrete-time index, respectively, y and Q

with the subscripts u and d denote the water depths and discharges at the upstream

and downstream ends of the river reach, respectively. A negative flow discharge in a

river reach indicates that reverse flow occurs in that river reach. A node, may have

inflowing and/or outflowing river reaches. A river reach is denoted as inflowing (or

outflowing) when it conveys to (or from) the node. A node in the proposed model

refers to point nodes that have no storage. A node is used at the location of hydraulic

structures, connection of reaches and boundary conditions. It is worth mentioning that

in the OSU Routing model, a reservoir is not represented by a node but by one or a

series of reaches. The treatment of boundary conditions is presented in the Module IV

section.
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Module II: Computation of the Performances Graphs

In this module, HPGs and VPGs for all the reaches of the river system and RPG’s

for the hydraulic structures are computed and stored for later use. In the present ap-

plication, we constructed the system’s performance graphs (PGs) using the HEC-RAS

steady module. The subcritical flow mode of the steady HEC-RAS model allows mul-

tiple steady subcritical flow simulations (e.g., using multiple discharges) with a fixed

downstream water depth as initial condition. This allows a rapid construction of the

performance graphs.

Once the PGs are constructed, they are plotted to ensure that they are free of nu-

merically induced errors. Numerical errors may result in the superposition of PCs or

in PCs that display oscillatory patterns (see Fig. 7). For the discrete points of a HPC

that present apparent problems, the simulations must be repeated with more stringent

criteria. These requires decreasing ∆x (interpolation between cross-sections) and ad-

justing convergence parameters for the GVF simulations. This initial screening of the

PGs results in the elimination of the aforementioned oscillatory patterns and superpo-

sition of HPCs. For a detailed description on the construction of HPGs the reader is

referred to Yen and González-Castro (2000) and Schmidt (2002).

Module III: Initial conditions

The initial conditions in the OSU Unsteady Routing model for each river reach in

the steady case can be specified by two of the variables describing the reach’s HPG,

i.e., the water stages at the reach’s end, or one of the stages and the flow discharge in

the reach. In the case that the simulation starts from non steady conditions, the initial

conditions must be defined as the combination of the stages at the reach’s end and the

flow at one of its ends, or the flows at the reach’s ends and the stage at one of its ends.
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Module IV: Boundary conditions

The following types of boundaries are supported by the OSU Unsteady Routing

model:

1. External Boundary Condition (EBC), which is defined at the most upstream and

downstream ends of the river system. An EBC can have either an inflowing or

outflowing river reach connected to the node. An external boundary includes

an inflow hydrograph, a stage hydrograph or a rating curve.

2. Internal Boundary Condition (IBC), which is defined at internal nodes when-

ever two or more reaches meet. Three types of IBCs are supported in the OSU

Unsteady Routing model. These are:

• A fixed in-line structure BC (e.g., weirs or dams with fixed position of

gates, see Fig. 8a). A single RPG is built for this BC. The water depth

immediately upstream of the in-line structure is computed using the

RPG built for this structure. For building the RPG of an in-line structure

(fixed and mobile), the most upstream and downstream cross sections of

the simulation must be kept close to the in-line structure to avoid large

errors of conservation of mass. The criteria for the selection of cross

sections for the construction of look-up tables can be found in Franz

and Melching (1997a). This criteria also applies to the construction of

RPGs.

Under simple conditions, good rating equations are probably

easier to manage than both RPG’s and look-up tables. However, for the

operation of multi-type hydraulic structures under complex flow condi-

tions (e.g., downstream flow conditions ranging from low to high water

stages, and/or viceversa), Relying on RPGs (look-up tables) may expe-
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dite convergence during the simulation of unsteady flow. Both RPGs

and look-up tables can be constructed based on measurements of flow

discharge and water stages and/or results from computational fluid dy-

namics simulations. As pointed out by Franz and Melching (1997a;

1997b), the use of look-up tables (or RPGs) can be used to model the

dynamics of a variety of hydraulic structures such weirs, culverts, spill-

ways, bridges and canal expansions and contractions. The analyst only

needs an adequate description of the relation between the flow through

the structure, and the water-surface elevation downstream and upstream

of the structure. For an application of RPGs to the opening and closing

of gates the reader is referred to Leon et al. (2012).

• A mobile in-line structure BC (e.g., spillways and culverts with control

gates, and pumping stations with pumps of different capacities or oper-

ated at variable speeds). Dams with a combination of tainter and roller

gates are often found in canal networks and dams. In some cases, the

roller gates at dams can be raised (underflow gate) or lowered (overflow

gate). These gates are often operated using pre-defined operating rules

that specify the number of gates to open and percentage of openings

while addressing issues such as scour, safety, outdraft, etc. Complex

arrays and operations can be handled by using a group of RPGs (e.g.,

one for each gate opening) for each gate or pre-specified combinations

of gates depending on how they will be operated. The RPGs will need

to encompass the entire range of gate openings and all possible ranges

of downstream and upstream water levels. Naturally, a given flow dis-

charge can be passed through the dam with more than one combination

of operational settings. If there is any pre-specified order for the op-
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eration of gates, this should be linked to the order of use of the RPGs.

For the application of RPGs to mobile in-line structures, the reader is

referred to Leon et al. (2012).

• Another IBC is a node without a hydraulic structure which is used

to connect two or more river reaches with different roughness or bed

slopes, or where an abrupt bed drop or canal expansion occurs. This

node is denoted as a junction BC and its schematic is depicted in Fig. 8b.

Module V: Evaluation of time step (∆t)

This module estimates the time step for advancing the solution to the next time

level. In the PG approach, the reach-wise averaged flow discharge [1/2 ∗ (Qu + Qd)]

and yd are used to determine yu. Hence, the time step must be long enough to ensure

that disturbances generated at the ends of the reaches have enough time to arrive to the

opposite end. This can be expressed as

∆t > Max
{

∆xj

∥un
j ∥+ cnj

}
∀j (5)

where j is a reach index, and un and cn are the average reach velocity and gravity wave

celerity at time level n, respectively. The average reach-wise gravity wave celerity

and velocity are defined as c = (cu + cd)/2 and u = (uu + ud)/2 , respectively. A

∆t smaller to that of Eq. (5) would mean that disturbances in some of the reaches

don’t have enough time to travel from one end of the reach to the other, which would

violate one of the HPG/VPG assumptions (HPG/VPG use reach-wise averaged flow

variables). The time step presented in Eq. (5) can be expressed as

∆t = kMax
{

∆xj

∥un
j ∥+ cnj

}
∀j (6)
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where k must be set larger than 1. Numerical tests we performed to evaluate the sen-

sitivity of k for both simulations in section “Application to a looped river network”

showed that the results are nearly insensitive to k. The simulation results presented in

this paper were generated using k = 3.

Module VI: River system hydraulic routing

This module assembles and solves a non-linear system of equations to perform

the hydraulic routing of the river system. These equations are assembled based on

information summarized in the reaches HPGs and VPGs, RPGs at nodes with hydraulic

structures, continuity and compatibility of water stages at junctions, and the system’s

initial and boundary conditions. The compatibility of water stages at a junction is a

simplification of the energy equation ignoring losses and assuming that the differences

in velocity heads [u2/(2g)] upstream and downstream of the junction are negligible.

In general for a river network consisting of N reaches, there is a total of 3N un-

knowns at each time level, namely the flow discharge at the upstream and downstream

end of each reach and the water depth at the downstream end of each reach, hence

3N equations are required. The water depth at the upstream end (yu) of each reach is

estimated from the reach HPG using the water depth at its downstream end (yd) and

the spatially averaged flow discharge [Q = (Qu +Qd)/2]. This can be represented as

ynu = HPG[ynd ,
1

2
(Qn

u +Qn
d)], ∀j (7)

The application of Eq. (7) requires an interpolation process for determining yu. Two

cases of interpolation are possible. These are depicted in Figs. 9 and 10. As illustrated

in these figures, the locus of the upstream and downstream water depth for a given

constant flow discharge is denoted as hydraulic performance curve (HPC).

The first case of interpolation is used whenever ydx is located between two criti-
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cal downstream water depths (ydc1 and ydc2) as shown in Fig. 9. In this interpolation

case (Fig. 9), the discrete points (yda, yu(Q1, yda)), (ydb, yu(Q1, ydb)), (ydc1 , yuc1) and

(ydc2 , yuc2) are known and yux for a given ydx and Qx is sought.

The second interpolation case is used for all conditions other than the first case

(Fig. 10). In the second case interpolation case (Fig. 10), the discrete points (yda,

yu(Q1, yda)), (yda, yu(Q2, yda)), (ydb, yu(Q1, ydb)) and (ydb, yu(Q2, ydb)) are known

and yux for a given ydx and Qx is sought.

The interpolation procedure to determine the upstream water depth yux for a given

Qx and ydx for the first case (Fig. 9) can be summarized as follows:

1. Determine coefficient c1 as:

c1 =
Qx −Q1

Q2 −Q1

2. Determine slope s1 of HPC for Q1 as:

s1 =
yu(Q1, yda)− yuc1

yda − ydc1

3. Determine slope s2 of HPC for Q2 as:

s2 =
yu(Q2, yda)− yuc2

yda − ydc2

4. Determine slope sx of HPC for Qx as:

sx = s1(1− c1) + s2c1
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5. Determine yu(Qx, yda) for Qx and yda as:

yu(Qx, yda) = [1− c1][yu(Q1, yda)] + c1[yu(Q2, yda)]

6. Determine yux for Qx and ydx as:

yux = yu(Qx, yda)− (yda − ydx)sx

The interpolation procedure to determine the upstream water depth yux for a given

Qx and ydx for the second case (Fig. 10) can be summarized as follows:

1. Determine coefficient c1 as:

c1 =
Qx −Q1

Q2 −Q1

2. Determine coefficient c2 as:

c2 =
ydx − yda
ydb − yda

3. Determine yu(Qx, yda) for Qx and yda as:

yu(Qx, yda) = yu(Q1, yda) + c1[yu(Q2, yda)− yu(Q1, yda)]

4. Determine yu(Qx, ydb) for Qx and ydb as:

yu(Qx, ydb) = yu(Q1, ydb) + c1[yu(Q2, ydb)− yu(Q1, ydb)]
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5. Determine yux for Qx and ydx as:

yux = yu(Qx, yda) + c2[yu(Qx, ydb)− yu(Qx, yda)]

As mentioned earlier, 3N equations are required for a river system of N reaches.

For illustration purposes without loosing generality, these equations are formulated

for the simple network system depicted in Fig. 11. The network system presented in

Fig. 11 has eight reaches and therefore has twenty four unknowns (3x8).

The reach-wise conservation of mass provides one equation for each reach. This

equation is typically discretized as follows:

In + In+1

2
− On +On+1

2
=

Sn+1 − Sn

∆t
, ∀j (8)

where I = inflow, O = outflow, S = storage, n = value at the current time level, t and

n + 1 = value at the next time level, t +∆t. It is worth mentioning that the storage S

is not considered an unknown because it can be related to yd and Q through the VPG

(VPG relates S, yd and Q (Qu +Qd)/2).

For our simple network (Fig. 11), the application of Eq. (8) provides a total of

eight equations. For an inflow hydrograph (external boundary), (In + In+1)/2 is the

average flow discharge computed from the hydrograph (integrated volume divided by

∆t ). The water storage (volume of water) at any time in a river reach is determined

from the reach VPG using its downstream water depth and the spatially averaged flow

discharge (Qu +Qd)/2 as input values, as

Sn = VPG [ynd ,
1

2
(Qn

u +Qn
d)], ∀j (9)

For more details on the VPG approach, the reader is referred to Hoy and Schmidt
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(2006). The application of Eq. (9) requires an interpolation process similar to that of

the HPG presented earlier (see Eq. 7). Also, for the network in Fig. 11, five continuity

equations are available (nodes B, C, D, E and G). For instance at node C the continuity

equation is given by

Qd2 = Qu3 +Qu6 (10)

It can be also noticed that the system under study has three external boundary con-

ditions (A, F, H). These external boundary conditions (EBCs) could be for instance in-

flow hydrographs [Q(t)], stage hydrographs [y(t)], overflow structures with hydraulic

controls for which there is a flow-stage relation, or any other boundary pre-specified

by the user. For each of these EBCs, a flow variable (e.g., Q(t), y(t)) or an equation is

available.

For this example, so far sixteen equations are available and eight more equations

are needed. Six of the remaining eight equations can be obtained by enforcing water

stage compatibility conditions at nodes that connect two or more river reaches and that

don’t have any hydraulic structure associated to the node. In this case, if a node is

connected to k river reaches, k-1 water stage compatibility conditions are available for

the junction node. These conditions enforce the same elevation for the water stages

immediately upstream and downstream of the node (Fig. 8b). For instance at node C,

two water stage compatibility conditions are available as

zd2 + yd2 = zu3 + yu3

zd2 + yd2 = zu6 + yu6 (11)

In Eq. (11), zd and zu are the reach bottom elevations immediately downstream and

upstream of a junction node, respectively. In the case of an abrupt change in channel
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geometry or abrupt bed drop at the junction node, the energy equation instead of the

water stage compatibility condition should be used. If a hydraulic structure is asso-

ciated to the node, the equation is obtained from the RPG of the hydraulic structure.

In our example, the last two equations are obtained from RPG’s at in-line-structures

(nodes B and E in Fig. 11). The treatment of fixed and mobile in-line structures in the

OSU Unsteady Routing model are the same. The only difference is that a single RPG

is used for a fixed in-line structure while as a group of RPG’s (depending on discrete

gate position’s) are required for a mobile in-line structure. For instance at node B,

the water stage upstream of the structure is obtained from the RPG of the structure as

follows (see Fig. 11)

yd1 = RPG[yu2 ,
1

2
(Qd1 +Qu2)]

(12)

The application of Eq. (12) requires an interpolation process similar to that of the

HPG for a river reach presented earlier (Eq. 7). For solving the resulting non-linear

system of equations, the OSU UR model uses the Open Source C/C++ MINPACK

code. MINPACK solves systems of nonlinear equations, or carries out the least squares

minimization of the residual of a set of linear or nonlinear equations. For more details

on this library the reader is referred to Moré et al. (1984)

APPLICATION TO A LOOPED RIVER NETWORK

For illustrating the use of the OSU Unsteady Routing model, this model has been

applied to a looped river system adapted from an example in the Applications Guide of

the HEC-RAS model (Hydrologic Engineering Center 2010a). The plan view of this

system is depicted in Fig. 12 and the geometric characteristics of the twenty six reaches

that compose the system are presented in Table 1. To assess the OSU Unsteady Routing
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model two test cases were simulated. For each case, the results of the OSU Unsteady

Routing model were compared with the results from the unsteady HEC-RAS model

version 4.0. For this comparison, an inflow hydrograph and a rating curve boundary

conditions were specified at the most upstream (node 1) and most downstream (node

26) ends of the system, respectively (Figs. 13 and 14, respectively). The inflow hy-

drograph (Fig. 13) for the first case represents a slow flood-wave, whereas the one for

the second test case represents a fast flood-wave. All performance graphs used in the

applications (HPGs and VPGs) were generated using the steady HEC-RAS model.

To determine the initial conditions in the two subcritical flow test cases, a steady-

flow discharge of 1.395 m3/s with a water depth of 1.65 m at the downstream end of

reach 26 (see Fig. 12) was used. These values of water depth and flow discharge were

used for determining the water depths and flow discharges at the ends of every reach.

The water depth and flow discharge at the ends of each reach are the necessary initial

conditions.

Case 1: slow flood-wave

The simulated flow and stage hydrographs at two locations obtained with the OSU

Unsteady Routing model are compared with the results obtained with HEC-RAS in

Figs. 15 and 16, respectively. As can be observed in these figures, the difference be-

tween the OSU Unsteady Routing model results and the HEC-RAS results are rather

small.

To evaluate the discrepancies in flow discharge, water stage and volume between

the OSU Unsteady Routing and the HEC-RAS model results, the following relative
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differences were defined

EQ(%) = 100

(
QOSU Unsteady −QHEC-RAS

QInflow Hidromax −QInflow Hidromin

)
EWS(%) = 100

(
WSOSU Unsteady −WSHEC-RAS

WSHEC-RASmax −WSHEC-RASmin

)
EV (%) = 100

(
VOSU Unsteady − VHEC-RAS

VHEC-RAS

)
(13)

where EQ, EWS and EV are the relative differences in flow discharge, water stage and

cumulative outflow volume, respectively. Note in Eq. (13) that the discrepancies in

flow discharge and water stage are defined as the difference of results between the two

models normalized by the range of flow discharges or water stages.

The relative differences defined by Eq. (13) are shown in Figs. 17, 18 and 19 for

the flow discharge, water stage and cumulative outflow volume (V ) at the downstream

end of reaches 9 and 18, respectively. The relative differences in flow discharge ranged

from -0.6 to 0.6 %, in water stage varied from -0.25 to 0.30 % and in cumulative out-

flow volumes varied from -1.0 to 1.5 %. While the discrepancies between the results

of HEC-RAS and the OSU routing model are negligible, the maximum discrepancies

in discharge and stage occur near the time of the peak discharge (see Figures 17, 18).

The local acceleration term may be responsible for the discrepancies, as the local ac-

celeration term is more important in a sudden rising and falling of the flow (i.e., near

peak flow). The unsteady HEC-RAS model accounts for the local acceleration term,

while as the OSU routing model neglects this term.

Note that the relative differences in flow discharge and cumulative outflow vol-

ume for reaches 9 and 18 shown in Figures 17 and 19 nearly complement each other.

Complementary results are to be expected when the model of reference (HEC-RAS in

this case) is exact and when the two branches of the loop are identical (same number

of reaches, all with identical geometric and roughness). In this application example
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the two branches of the loop are not identical. The relative differences in flow dis-

charge and cumulative outflow volume for the case of slow flood-wave (Figures 17

and 19) were near complimentary likely because the model of reference (HEC-RAS)

was highly accurate in this case.

Case 2: fast flood-wave

The flow and stage hydrographs at two locations simulated with the OSU Unsteady

Routing and the HEC-RAS models are shown in Figs. 20 and 21, respectively. Simu-

lation results obtained with both models appear to be similar. However the differences

are noticeably more significant for this case than those for slow flood-wave conditions

of case 1. Figs. 22, 23 and 24, show the differences in flow discharge, water stage and

cumulative outflow volume between OSU Unsteady Routing and HEC-RAS (accord-

ing with Eq. 13) at the downstream end of reaches 9 and 18. As shown in Figs. 22,

23 and 24, the relative difference in flow discharge ranged from -1.5 to 0.7 %, in water

stage from -0.7 to 0.5 %, and in cumulative outflow volume from -1.0 to 5.5 %.

Fig. 25 shows the plot of the flow discharge versus water stage (i.e., rating curve)

at the downstream end of reach 18 for the fast flood-wave case (case 2). This figure

shows a typical looped rating curve having greater flows at lower stages in the rising

limb and smaller flows at higher stages in the receding limb. The rating curve for the

slow flood-wave case is similar to that of the fast flood-wave case; however, it is not

shown due to space limitations.

To assess the robustness of the OSU Unsteady Routing model with respect to time

discretization, we carried out the simulations with three different time resolutions (t =

10 s, 30 s and 60 s). Fig. 26 shows the results of numerical accuracy of OSU Unsteady

Routing model due to time discretization for the upstream end of reach 14 and down-

stream end of reach 23. This figure appears to show that time discretization does not

affect significantly the results. With regard to space and water depth discretization (∆x
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and ∆y, respectively), the maximum value of ∆x or ∆y used to obtain a good accuracy

is system dependent and should be obtained for each system by iteration. For instance,

for ∆x, two values of ∆x can be used to check if the simulated results of discharge

and water stage are similar for both discretizations. The process can be repeated to find

the largest ∆x that produces the desired accuracy and in turn the minimum CPU time.

The reader is referred to González-Castro (2000) for an in-depth discussion on spatial

discretization.

The results for the Central Processing Unit (CPU) times obtained using a Dell

Precision T3500 2.67GHz, 1.00 GB of RAM for the OSU Unsteady Routing and the

HEC-RAS models are presented in Table 2. The CPU time in Table 2 included the

time of pre-processing and computational engine but not that of post-processing. The

pre-processing in the OSU Routing model involves the reading of performance graphs

(from .dat files into matrices) while as in HEC-RAS, it involves pre-processing ge-

ometric and hydraulic data for import into HEC-RAS. The post-processing typically

demands more time and it depends on the user-specified outputs. As can be observed

in Table 2, the results obtained with the OSU Unsteady Routing model is about 700%

faster than that of the HEC-RAS model. In the OSU Unsteady Routing model, for

the slow flood-wave, the time step (∆t) ranged from 8.16 to 12.62 s while as for the

fast flood-wave, the time step ranged from 8.31 to 12.62 s. For both flood-waves, the

HEC-RAS model was simulated using a time step of 10 seconds.

CONCLUSIONS

In this paper we present a computationally efficient model for unsteady flow routing

through river networks with dendritic, looped or a combination of dendritic and looped

topologies. The application of the OSU UR model focused on routing of subcritical

flows; however, the model can be extended to include reaches susceptible to transition

from subcritical to supercritical flow (and vice versa) during routing. The model builds
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upon the application of Hydraulic Performance Graph (HPG) to unsteady flow rout-

ing introduced by González-Castro (2000) and adopts the Volume Performance Graph

(VPG) introduced by Hoy and Schmidt (2006). Moreover, in the OSU UR model we

extend the concept of performance graphs to ratings and introduce the Rating Perfor-

mance Graphs (RPGs) which graphically summarize the dynamic relation between the

flow through and the stages upstream and downstream of in-line structures. The OSU

Unsteady Routing model solves a system of nonlinear equations assembled based on

information summarized in the systems’ HPG’s, VPG’s and RPG’s, continuity in junc-

tions, water stage compatibility at junctions of reaches, and the system’s initial and

boundary conditions. We exemplify the applicability of the OSU Unsteady Routing

model to a looped network and contrast its simulation results with those from the well-

known unsteady HEC-RAS model. The key findings are as follows:

1. Results show that agreement between OSU Unsteady Routing and HEC-RAS

models is very good for slow and fast flood-wave conditions, with better agree-

ment for slow flood-wave conditions.

2. The use of HPGs, VPGs and RPGs for unsteady flow routing in a river system

as proposed herein is a relatively robust and numerically efficient approach

because the momentum and storage for all river reaches are computed prior to

the system routing based on the momentum and mass conservation principles

of GVF and most of the computations for the system routing only involves

interpolation steps to satisfy the prescribed BC’s. It is worth mentioning that

the OSU UR model provided an accurate solution for the looped system right

the first time, while the unsteady HEC-RAS model required few adjustments to

get the model to run properly. In addition, when using the performance graphs

approach, instabilities or other problems due to discretization and numerical

inaccuracies are removed as the system’s HPGs, VPGs and RPGs are being
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constructed.

3. The application examples presented here suggest that, overall, the proposed

model is computationally more efficient than and affords a numerical accuracy

comparable to the unsteady HEC-RAS model for unsteady flow routing through

river networks. It is clear that the CPU time for pre-computing the PGs can be

computationally demanding but this is done only once. The advantage of the

OSU UR model may be significant when it is used for optimization problems

such as real-time operation of regulated river systems. In this case hundreds or

even thousands of runs would be needed for each operational decision that may

be as short as 30 minutes.

4. Further assessment of the proposed approach includes evaluating the sensitivity

of results to the algorithms for interpolation from the HPGs, VPGs and RPGs,

and to discretization over space prescribed for the routing.

5. The authors are considering assessing the effect of BCs on the accuracy and

robustness of the OSU UR model as future work.
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NOTATION

The following symbols are used in this paper:

EBC = external boundary condition;

c = average gravity wave celerity;

HPG = hydraulic performance graph;

I = inflow;

∀i = for all i;

N = set of nodes;

NB = set of downstream boundary nodes;

NS = set of source nodes;

O = outflow;

Qdj = flow discharge at downstream end of reach j;

Quj
= flow discharge at upstream end of reach j;

S = storage;

u = average reach velocity;

VPG = volume performance graph;

∆x = length of river reach;

ydj = water depth at downstream end of reach j;

yuj
= water depth at upstream end of reach j;

zdj = channel bottom elevation at downstream end of reach j;

zuj
= channel bottom elevation at upstream end of reach j;

∆t = time step;
Subscripts

d = downstream end index;

i = node index;

j = river reach index;

u = upstream end index;
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Superscripts

n = discrete-time index;
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FIG. 1. Example of a Hydraulic Performance Graph (HPG).
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FIG. 2. Example of a Volumetric Performance Graph (VPG).

32



0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

 Downstream Water Depth (m)

 U
p

st
re

am
 W

at
er

 D
ep

th
 (

m
)

Q=0.01 m
3
/s

Q=8 m
3
/s

Q=31 m
3
/s

Q=53 m
3
/s

Q=75 m
3
/s

Q=112 m
3
/s

Q=191 m
3
/s

Q=175 m
3
/s

Q=207 m
3
/s

Q=222 m
3
/s

FIG. 3. Example of a Rating Performance Graph (RPG).

33



FIG. 4. Schematic of a river cross-section
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FIG. 6. Schematic of a river reach
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FIG. 8. Schematic of an in-line structure and a junction node
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FIG. 9. Schematic of first interpolation case
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FIG. 10. Schematic of second interpolation case
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FIG. 11. Schematic of a simple network system
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FIG. 12. Plan view of HEC-RAS looped river system.
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FIG. 14. Rating curve boundary at node 26
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FIG. 26. Numerical accuracy of OSU Unsteady Routing model due to time
discretization for the upstream end of reach 14 and downstream end of
reach 23
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Table 1. Geometric characteristics of river reaches
Reach ID Length (m) zu (m) zd (m) Slope (m/m)

1 35.05 6.2332 6.1631 0.002000
2 35.05 6.1631 6.0930 0.002000
3 38.10 6.0930 6.0198 0.001920
4 32.00 6.0198 5.9497 0.002190
5 24.38 5.9497 5.8887 0.002500
6 39.62 5.8887 5.8339 0.001385
7 39.62 5.8339 5.7790 0.001385
8 45.72 5.7790 5.7241 0.001200
9 44.20 5.7241 5.6693 0.001241
10 32.00 5.6693 5.6144 0.001714
11 36.58 5.6144 5.5596 0.001500
12 39.62 5.5596 5.5047 0.001385
13 25.91 5.5047 5.4712 0.001294
14 21.34 5.9497 5.8979 0.002429
15 51.82 5.8979 5.8491 0.000941
16 54.86 5.8491 5.7760 0.001333
17 48.16 5.7760 5.7638 0.000253
18 56.39 5.7638 5.7028 0.001081
19 56.39 5.7028 5.6510 0.000919
20 54.86 5.6510 5.5839 0.001222
21 57.00 5.5839 5.5535 0.000535
22 57.91 5.5535 5.5047 0.000842
23 21.34 5.5047 5.4712 0.001571
24 47.24 5.4712 5.4315 0.000839
25 42.67 5.4315 5.4132 0.000429
26 51.82 5.4132 5.3950 0.000353
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Table 2. Comparison of CPU times for the simulation of cases 1 and 2.
Description OSU Unsteady Routing Time (s) HEC-RAS Time (s)

Case 1 (slow flood-wave) 218.8 (∆t = 9.77 s) 752.7 (∆t = 10 s)
Case 2 (fast flood-wave) 7.3 (∆t = 10.27 s) 52.6 (∆t = 10 s)
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