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This paper examines the modeling and computational issues of a framework for representing
uncertain inflows in river systems using the Polynomial Chaos approach. Ensemble forecasts
are used to construct a Karhunen-Loéve expansion of random inflows. The statistics of the
stochastic outflow of the system are computed using Stochastic Collocation. The dynamics of
the river system are efficiently simulated using the performance graphs approach.

Keywords:
Karhunen-Loéve expansion, polynomial chaos, stochastic collocation, reservoir modeling

AMS Subject Classification:
65C20,35Q35,93E20

1. Introduction

Real-time operation of reservoir systems is important for many reasons, including
water storage, electric power, flood control, recreation, water quality and down-
stream fishery needs. Uncertainties arise via upstream inflows, weather forecasts,
imprecise measurements of water levels, and hydropower demands. The resulting
PDE-constrained optimal control problem is a complex task involving stochastic
inputs and objectives, probabilistic constraints, and nonlinear evolution equations
imposed on massive domains. Both the optimization component and the uncer-
tainty quantification require numerous forward simulations of the system. We focus
here on the forward problem and limit the discussion to uncertain inputs.
Uncertain inflows were introduced into a multi-reservoir network using a linear,
stochastic perturbation of an expected inflow hydrograph in [18]. A polynomial
chaos (PC) expansion [5, 10, 29] of the outflow was computed using a stochastic
collocation (SC) approach. The SC method can be interpreted to be a pseudospec-
tral method which allows to approximate the multi-dimensional integrals in the
stochastic space involved in a calculation of the coefficients of continuous orthogo-
nal projection, using the Gaussian quadrature rule based on the collocation points
chosen as the roots of suitable one-dimensional orthogonal polynomials [25, 27].
In the current work, we investigate additional aspects of this general approach
to uncertainty quantification in reservoir modeling. In particular, we assume that
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predictions of inflow hydrographs (ensemble forecasts) come from various sources,
each of which possibly with its own probability of being realized. We wish to trans-
late this discrete set of data into a continuous random framework amenable to PC
expansion. Additionally, we wish to quantify the possible errors in the approxima-
tion resulting from this translation. We can then effectively reduce the dimension
of the random input space to a manageable number with metrics to estimate the
error induced by the approximate subspace. The use of the SC method in com-
puting modes of the uncertain solution allows one to exploit the efficiencies in a
deterministic forward simulation.

The approach for uncertainty quantification presented here will be included as
part of an overall framework for solving the full uncertain constrained optimal
control problem of reservoir planning and operations. Thus we must ensure that
the methods are amenable to large scale optimization and parallelization. In par-
ticular, we mention that, in order to further reduce the computational burden of
the uncertain forward problem, a complementary work in progress [12] involves
developing an approach for decomposing the problem into subdomains (based on
the work in [14]) which can be used in a parallelization of the deterministic forward
simulation. Also, the PC expansion computed here will be used as an initial surro-
gate model for the evaluation of probabilistic constraints involving the components
of the solution vector [13]. Combined with the methods which we describe below,
the unified framework allows for efficient and adaptive determination of stochastic
solutions to the uncertain multi-reservoir river system.

2. Governing Equations

In the following we present an unsteady flow routing (river system flow dynam-
ics). Due to space limitations we consider only one-dimensional models. In a one-
dimensional context, under a deterministic assumption, unsteady flows in open-
channels are typically represented by the Saint-Venant equations, a pair of one-
dimensional partial differential equations representing conservation of mass and
momentum for a control volume, which is shown in conservative differential form
in Equations (1) and (2)
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In these equations, x = distance along the channel in the longitudinal direction;
t = time; () = discharge; A = cross-sectional area; y = flow depth normal to
x; # = angle between the longitudinal bed slope and a horizontal plane; g =
acceleration of gravity; Sp = bed slope and Sy = friction slope. Appropriate initial
and boundary conditions are required to close the system. Due to the presence
of non-linear terms in equation (2), there is, in general, no closed-form solution.
The equations are therefore solved numerically. In a network involving numerous
branches, the system of equations that must be solved becomes extremely large
and the application of the full Saint-Venant equations becomes inefficient for real-
time operation because of the significant computational requirements and error
accumulations [16].

Instead we use the performance graphs approach described in [19]. The method
solves a reduced non-linear system of equations to perform the hydraulic routing of
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the system. The equations are assembled based on information in the reaches and
nodes summarized in appropriate performance graphs formed from high fidelity,
pre-computed solutions. These are combined with continuity and compatibility of
water stages at junctions, and the system’s initial and boundary conditions. Due
to the pre-computation of solutions, efficiencies cannot be realized if the simula-
tor must adjust to incorporate uncertainty, therefore we apply a non-instrusive
uncertainty framework below.

3. Background

In the current work, only the stream inflows (external sources) are assumed to be
completely stochastic. Other uncertain quantities are correlated to the uncertainty
of the stream inflows using the dynamics of the system. For the efficient compu-
tation of the uncertainty components, rather than doing random sampling of the
input distributions, we propose to explicitly model the random space (via ran-
dom variables and processes) and perform a generalized Polynomial Chaos (PC)
representation [9, 11, 27, 29] of the solutions.

3.1 Unecertainty Quantification Methods

Representation of the solutions in the form of a truncated PC expansion requires
determining the coefficients of the expansion. One method for doing this is stochas-
tic Galerkin (SG) method, see e.g., [27]. This approach results in a large coupled
system of equations. The new system of equations must be discretized in space and
time which means that the original deterministic solvers can not be used directly,
since it is an intrusive method which changes the system to be solved. Instead,
we wish to utilize a well-developed forward solution methodology based on perfor-
mance graphs [19]. We therefore employ the SC method [25, 27] for the computation
of coefficients of the PC expansion, a non-intrusive method, which we couple with
the performance graphs implementation in OSU Rivers [19].

A popular alternative to SC is the classical Monte Carlo (MC) method. Both
methods allow to utilize the readily available solvers corresponding to the deter-
ministic equivalents of the system’s governing equations (e.g., are non-intrusive).
Each of the methods has it own advantages and disadvantages. In particular, while
the MC methods are simple to implement, they require more simulations in general
for the moments of the solution to converge. On the other hand, the convergence
rate of relative Lo errors of the mean and variance of the solutions obtained with
PC expansions can be shown to be exponential as the number of basis functions
increases [29]. The SC method is most appropriate for relatively small random
dimension, which we take care to ensure with our methodology below.

Non-intrusive methods involving the construction of a polynomial approximation
usually fall into one of the following three groups: interpolation, regression or pseu-
dospectral projection. The main difference between these three approaches is that,
in general, only the interpolation method requires the approximation to match the
solution exactly at the collocation nodes, see [26, 27] for a detailed description
of each of the approaches, together with the comparison of their advantages and
weaknesses.

Interpolation is based on the construction of the Lagrange basis on a set of pre-
scribed nodes in the random space. Although this approach is straightforward and
easy to implement, the choice of the nodes is not trivial, especially in multidimen-
sional spaces. Thus, it happens often that stochastic collocation methods based on



August 13, 2013

14:3 International Journal of Computer Mathematics ReservoirUQpreprint

4 Gibson, N. L., et.al.

interpolation choose the nodes as a set of cubature points: full tensor [2, 28] or
sparse grids [23].

Using the regression approach one estimates the PC coefficients by minimizing
the mean square error of the response approximation. As in the case of interpo-
lation, it also depends on the choice of the nodes. In [3, 24] authors investigate
the use of the zeros of orthogonal polynomials as a starting point in the choice
of the sampling nodes. They build a full tensor grid but choose only a prescribed
number of nodes with the smallest norm. Sparse PC expansion based on regression
is described in [4]. In the sparse PC expansion, fewer terms are kept in comparison
with the full PC representation.

The pseudospectral approach is sometimes called a discrete projection method
[27]. Tt is based on a numerical approximation of the coefficients of PC repre-
sentation using quadrature formulas. This approach was first introduced in [25]
where author also discusses different choices of the collocation nodes. A sparse
alternative of the pseudospectral approach is presented in [7]. In particular, this
paper addresses the error in the coefficients of PC expansion associated with the
use of the sparse grid based quadrature rules and suggests a method which allows
to minimize it. The pseudospectral approach looks for the coefficients associated
with the known basis functions while interpolation approach looks for the basis
functions corresponding to the known coefficients. Thus, from the point of view of
implementation the pseudospectral approach is more appealing.

In our numerical experiments we use the pseudospectral approach to approximate
the coefficients of the PC expansion. This method is straightforward and easy to
implement. It allows the user control over the computational effort by allowing
to compute only the coefficients which are important for a particular problem
without evaluating the rest of the PC coefficients. Clearly, accuracy of the chosen
quadrature rule is very important for this method.

The error associated with the use of quadrature approximated coefficients, rather
than exact, in the PC representation is called an aliasing error, see e.g. [27]. In order
to minimize this error high precision quadrature rules should be used. At the same
time, in the case of high dimensionality of the random space, this would imply
a significant increase of the computational work required. The use of sparse grids
may decrease the computational work to a desired level. It is generally the case that
when the number of random variables in the representation of the input parameters
is greater than five, sparse grids outperform full tensor grids. Although we mention
the possibility of using the sparse grids, a description of this approach is beyond
the scope of this paper. As we show in our numerical results below, the size of
the random space for the current problem does not exceed three, and furthermore,
calculations based on full tensor grids do not require an unreasonable amount of
time.

3.2 Related Efforts

PC methods have been studied in computational fluid dynamics by numerous in-
vestigators (e.g., [5, 15, 17, 29]). The non-intrusive SC method was introduced in
the computational fluid dynamics literature in [21].

SC method was successfully applied to a non-linear model for incompressible
flow and heat transfer around an array of circular cylinders based on the two-
dimensional Reynolds-averaged Navier-Stokes equations [6]. The uncertainty was
introduced through boundary conditions in a steady-state model.

A network of human arteries was considered in [30] where weakly non-linear
1D equations of pressure and flow wave propagation were used as a model in each
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section of compliant vessels. While a network was considered, with mass balance in-
terface conditions similar to the model described in the current work, the uncertain
quantities were restricted to the geometric and physical properties of the artery,
not inflows or boundary conditions. The study on human arteries did demonstrate
the feasibility of SC on a physiologically realistic network of 37 branches.

4. Uncertainty Framework

The proposed framework can be used for any complex river network. For il-
lustration purposes, consider the sample network system presented in Figure
1 from [18]. This dendritic-looped network consists of eight river reaches, two
reservoirs and three boundary conditions (one inflow hydrograph, one stage hy-
drograph and one rating curve). The (nonlinear) relationship between variables
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Figure 1. Schematic of a simple network system from [18]

—

X =1[Ya, - Yds, Quy - - - Qug, Qu, - - - Q] (water stages y and flow discharges @) up-
stream and downstream of each river reach) on each timestep is represented using

the performance graphs approach described in [19].

In what follows we describe the method we use to introduce the uncertainty
into the system. Let (2, F, P) be a complete probability space, where ) is the set
of outcomes, F C 2 is a o-algebra of events and P : F — [0,1] is a probability
measure. Assume that the initial inflow function @,,, can be described as a function
of finite number N,, of independent random variables {§k}iv;“1, ie.

Qu, (t,w) = Qu, (1, 61(w), E2(W), -+ &N, (W))- 3)

Let pp, : Iy — RT, k = 1,2,..., N,,, denote the probability density function of
the random variable &, with the image T'y = &(Q) C R, k = 1,2,..., N, If
the random variables {§k}iv;“1 are independent then the joint probability density

function p is given by the product of the corresponding densities
p(z) = || pu(zk), z€L, =z €Ly, (4)

where I' = HkN:’l I', ¢ RV~ is a support of the joint density function p. The
introduction of uncertainty through the boundary conditions allows us to consider
model (1) and (2) in the form of stochastic equations, i.e., find @ : Rx [0, T]xT" — R
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hold subject to appropriate initial and boundary

such that for all z € I, (1) and (2)
t,w) = Qu, (t,w).

conditions, including Q(z = 0, ¢,

5. Karhunen-Loéve Representation of the Logarithm of the Inflow Function

In what follows we assume that the logarithm of the inflow function @,, can be
represented as a Gaussian process. This is quite a strong assumption, although the
general uncertainty framework we use can be adjusted if it is violated.

In order to obtain a representation for the inflow function @Q,,, we use the follow-
ing procedure [1]:

(1) Suppose we have M realizations of the inflow function {Q,, ;}}4, measured

at time points {tj}?:m where t; = to + jh, h = ,j=1,...,n, and

[to,T] is a time interval of interest. By Q, i(t;) we denote the value of the
i-th realization of the inflow function at the time point ¢;. Let L;(t;) =
In Q. ,i(tj) denote the logarithm of the inflow at ¢;, and L(t) = In Q,, i(t).

(2) Then we compute the sample mean vector L = (Lq, Lo, ..., L,)" and an
(n x n) covariance matrix C' with elements c; , of the transformed inflows
using the following formulas

L 1 M 1 XM _ _
Lj=L(t;) = ; > Li(ty), k= 71 D (Lilty) = Ly)(Lilte) — Li)-
=1 =1

(5)
(3) It follows that L(t) can be represented in the form of its infinite series
representation, called the Karhunen-Loeéve expansion [27],

L(t) = L(t) + > V()& (6)
k=1

where { A, 1, }72 | are the eigenpairs of the integral equation

T

AY(t) = | C(s,t)ip(s)ds, (7)

to

with C(t,tx) = cjr; and {{}72, is a sequence of uncorrelated random
variables with mean 0 and variance 1 defined by

1 T
V% Ja

We assume that the eigenvalues are arranged in decreasing order, that is,
A1 > Ay > A3 > ---. In the case L is a Gaussian random process, {{;}72,
are independent and identically distributed normal random variables with
mean 0 and variance 1.

(4) Then the inflow function @,, has the following representation

&k [L(t) — L(t)]4x(t)dt, k> 1. (8)

=1

Qu, (t) = exp (E(t) + \/ka(t)ik) : (9)
k



August 13, 2013

14:3 International Journal of Computer Mathematics ReservoirUQpreprint

International Journal of Computer Mathematics 7

From the practical point of view it is not possible to use the infinite series rep-
resentation of ),,. The truncated representation is used instead

Qu,(t) ~ @Qn,,(t) = exp ( )+ Z V(1) > (10)

The number of terms N,,, in the truncated representation can be chosen in differ-
ent ways. One may use a fact that > 2 |\, = ft (s,s)ds. Based on this criteria
we can choose the number of terms that would capture the major part of the vari-
ability. Another way to determine IV,, is to look at the convergence rate of the
eigenvalues and get rid of those that are close to 0, or insignificant in compari-
son with the first eigenvalue. For example, we can include the eigenvalues A, that
satisfy

A\, < a\ (11)

for some pre-defined constant 0 < a < 1. In some sense a can be treated as a
tolerance. A different perspective on this problem is given in the Section 7.

6. Polynomial Chaos Expansion

To solve the problem (1) and (2) in the stochastic context we form a generalized
Polynomial Chaos (PC) expansion. To illustrate the idea of the proposed uncer-
tainty approach, the following example is presented. Consider the quantity @,
representing flow discharges upstream of reach 1 in Figure 1. We assume that
based on the previous history or some additional data we can construct an uncer-
tainty envelope around this prediction using the KL expansion of the logarithm
L =InQ,,, for example,

Qn,, (t) = exp ( ) + Z V() ) (12)

We want to determine the coefficients of a PC expansion of each component of
the solution vector [Yd,,--.,Yds, Quys---> Quss Qdys-- -, Qds), Or some function of
the solution vector. To do this, one may apply a pseudospectral approach in which
one approximates the weighted inner products between the PC basis functions and
a desired solution component with respect to the joint density p of the random
variables in the representation of the inflow with a suitably chosen quadrature
rule.

For example, consider the most downstream reach, )4,. Its representation in
terms of a degree p expansion

MP
Q[I; (tv ) Ul(t)q)i( )7 (13)
=0
where E = (&,&2,...,&nN,,) is a vector of random variables in the representation of

Qu,, (M, + 1) is a number of basis functions used. The functions {q)z}f\i% are the
orthogonal polynomials of a degree at most p in each of N,, variables. The maxi-
mum possible number of polynomial basis functions in this case is p~. Note that
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the actual number of basis functions depends on if the same degree polynomials
are used in each random dimension for the approximation. In our numerical ex-
periments we use full tensor product basis. This implies that corresponding to the
normal distribution of each components of £, the orthogonal polynomials ®; can
be chosen as the products of the corresponding univariate Hermite polynomials.
Since the relationship between @), and @4, is clearly nonlinear, more than two
basis functions will be required for accurate representation of ()4,. In the numeri-
cal simulations we construct the polynomial approximation of the solution of the
degree p = 2 in each random variables. As we mentioned before depending on the
importance of the particular component of the random vector ¢ a different degree
of approximation can be chosen in the kth random direction associated with &,
k=1,...,Ny. This question is partially answered in the numerical experiments.
Each PC expansion coefficient can be found as an expectation

0i(t) = E[Qu, (1, )0 /@dstz (2)p(z)dz. (14)

The computation of the coefficients (14) can be done efficiently with the use of the
SC method [2].

The outline of the application of the SC method (pseudospectral approach) to
the PC expansion is given below:

(1) Choose a set of collocation points (zj,w;), z; € I, where z; =
(%j,1,2j,2,- -+ %jN,,) is a j-th node and w; is its corresponding weight,
j =1,...,Ng. For the purpose of our numerical experiments we use the
collocation points on the full tensor grid obtained as roots of univariate
orthogonal polynomials with respect to the Gaussian density.

(2) For each j =1,..., N, determine the inflow function @,, ; and solve the
corresponding (deterministic) system of equations (1) and (2), in parallel,
to obtain the flow @p, ;.

(3) Approximate the PC expansion coefficients

vi(t) = E[Qu, (,£)®i(8)] = Z%ng t,2;)0;(z;). (15)
(4) Finally, construct the N,,-variate, pth-order PC approximation of the so-
lution
MP
(88 = ) ui(t)2(). (16)
i=0

The same coefficients v; can be used to approximate the first two moments of
the solution, e.g.

M,

E[st (t7 _3] ~ UO(t)7 Var ng t, ) Z'Uz (17)

=1

Gaussian quadrature applies efficiently to functions which can be represented as
g(&)W (&) where W is a weight function (e.g., the probability density function in
an expected value) and g(g ) is well-approximated by a polynomial. The nodes 5_;
of the quadrature rule are the roots of a pre-determined orthogonal polynomial
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(by choice of distribution) in the support of p, and the method has the highest
degree of precision possible. SC method requires only solutions of the determin-
istic system evaluated at the fixed points {5] % of the random vector § Upon
computation of the expansion coefficients for the quantities of interest, we have
an analytical representation of a surrogate of the stochastic solution in polynomial
form. This allows, among other things, various solution statistics to be easily ob-
tained, such as expected value (or higher order modes), or parametric sensitivities
[30]. The PC expansion for any function f of output (non-linear, non-smooth or
even discontinuous) may be easily constructed as follows

vi(t) = E[f (X(t,£)®:(E)] ~ ijf (t.£,)) (&)

In practice, only desired functions of the solution of the system need to be repre-
sented explicitly. For instance, in a multi-objective optimal control framework, the
outflows and water stages at the reservoirs may be the actual quantities of interest.
The above example can be restated via a mapping from the solution quantities to
the desired quantities. It is important to note that this mapping need not be linear,
nor need it even be continuous, as demonstrated in [20], however in the latter case
exponential convergence of the errors in the mean and variance of the solution with
an increase in the number of basis functions is sacrificed in favor of algebraic.

7. Distributional Sensitivity

The representation of the random field in terms of the truncated series has its
own features distinct from the original process. If the random process of interest is
Gaussian, e.g., the logarithm of the inflow, then the truncated KL expansion is a
random process represented as a linear combination of several standard Gaussian
random variables. If the random process is not Gaussian, the representation of the
process in the form of its Karhunen-Loeve expansion becomes harder to obtain.
The procedure has to involve the estimation of the distribution of the random co-
efficients in the series representation. In general, for non-Gaussian processes there
may not be enough data to accurately specify the distribution of the random vari-
ables. This creates additional sources of uncertainty which in this case relate to
the lack of data and may not be easily overcome.

In the work [22], the authors describe a distributional sensitivity analysis as
a way to reduce epistemic uncertainty. The idea is to quantify the effect of the
particular distribution of the random variables on the distribution or statistical
moments of the solution. The random variables with large distributional sensitivity
would require more attention and effort to approximate their distribution while
the distribution of random variables with small distributional sensitivity can be
approximated at lower computational expense.

The distributional sensitivity also allows one to obtain an additional rank (aside
from the eigenvalues) of the random variables in the KL expansion based on their
actual effect on the quantities of interest. In particular, relatively small values of
the distributional sensitivity can suggest an insignificance of a particular random
variable in the representation of the input, and consequently in the output. We
illustrate this possibility in our numerical experiments. We note that other metrics
exist for determining sensitivities in a PC expansion which also do not require ad-
ditional model runs, c.f., [24]. Further, dimension adaptive sparse grids [8] could be
used to determine which random dimensions to emphasize, however this approach
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would not allow straight-forward parallelization of the quadrature nodes.

For simplicity of exposition we assume that the solution ()4, depends on the
random vector & = (&1,&2,...,&N,,) through the boundary conditions imposed as
stream inflow QQ,,,. We assume that vector E has a joint density function p;. In our
experiments p; is a joint Gaussian density, i.e. each component of the vector E has
normal distribution with mean zero and variance 1. To quantify the sensitivity of
the solution @4, to the distribution of the random variables {§k}kN:’1 we consider
the following discrete distributional sensitivity

DSelp1, p2](Qay) = ngl(@?zs()pl_ [‘Zf;(@ds)ll

: (18)

where £,(Qq4,) is a quantity of interest associated with Qg,, for example, mean
or variance, with respect to the probability density p; ps is a perturbation of the
density p1; d(p1,p2) is a measure of distance between two densities, for example,
it can be an L' norm.

It is worth mentioning that p; and p2 do not necessarily share the common
parameterization. The distributional sensitivity depends only on the densities p;
and pg, so, in general, it does not matter what numerical methods are used to
approximate the solution @)g,. The calculation of the distributional sensitivity is
a post-processing step, no additional solutions are required. The moments can be
obtained by using the SC method (described in the previous section). For the
moments with respect to the density p; one can use the usual collocation points
and weights; for the moments with respect to the perturbed density ps one can
use the same collocation points with weights scaled by the ratio ps/p; evaluated at
the given collocation point. This means, for example, that if we approximate the
expectation of ()g, with respect to the density p; with

N,

ElQup)0) = 3 w,Qu(,E)) (19)

J=1

then we can approximate the expectation of ()4, with respect to the density py in
the following way

N,

ElQup] (1)~ S w,Qu(1.E)a(E) /1 (E). (20)

=1

This approach allows to reuse the already available data and requires no additional
simulations.

8. Computational Issues

As described above there are several aspects of the problem for which the com-
putations can be quite expensive. In this simple model we have introduced only a
single random inflow, while a realistic model of a complex river network might re-
quire several. Each inflow should be modeled with at least one random dimension.
Taking into account all inflows would imply a dependence of the solution on a large
number of variables. Computation of modes of a stochastic solution thus requires
high dimensional integrations, in addition to the fact that each single deterministic
simulation is already expensive.
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In the above we have described two complementary approaches for reducing
the computational effort required to obtain solutions to the uncertainty propaga-
tion problem. As the SC method described above uses pre-determined quadrature
nodes, it is easily parallelizable into deterministic forward simulations. However,
each forward problem using the performance graphs approach requires thousands
of solutions to be stored in memory. Most massively parallel architectures are lim-
ited in memory and therefore not currently well-suited for this type of distributed
computing as each computational node would need to hold an entire problem in
memory. Therefore a fine-grained parallelism methodology, based on domain de-
composition strategies [14], is being developed in a complementary effort [12]. We
merely note here that the performance graph approach lends itself to this type of
decomposition, and the non-intrusive nature of the SC method allows efficiencies
in deterministic solvers to be maintained.

9. Numerical Experiments

For our simulation experiments we use the river system illustrated on the Figure 2.
We assume that forecast of the inflow @Q),,, is given for reach 1. We wish to calculate
the expected outflow ()4,. at reach 25, along with a quantification of uncertainty.

Middle
spruce

9

T.ower

\szruce

/yRatill g curve

26 i
Q

Figure 2. Schematic of a river system (from [19]) used in numerical experiments below

The predictions that we use are presented in Figure 3. We assume 10 ensembles
(or predictions) of the stream inflow. This is meant to reflect the fact that in
practice several competing forecasts are used to generate different scenarios.

We calculate the statistical mean and covariance of the data using equations (5).
To find a spectral representation of the covariance function of the logarithm of
the stream inflow based on its eigenvalues and eigenfunctions we solve the integral
equation (7). The first five eigenvalues are presented in the Figure 4.(a). It is clear
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Figure 3. Original data

that only the first three eigenvalues are significant in terms of their magnitude:
Al = 5.4721, Ag = 0.2658, and A3 = 0.0561, Ay = 0.0048, \5 = 9.849 x 10~%. In
particular, the first 3 eigenvalues contribute 99.8% of the variance of the infinite rep-
resentation of the logarithm of the inflow function (recall "2, A = [ C(¢,t)dt).
In the Figure 4.(c) we present only the eigenfunctions corresponding to the three
largest eigenvalues.

Eigenvalues ) .
6 . Eigenfunctions
0.2 " ;
[ ---1st
5r 0.15 —2nd
——3rd
4 0.1 S
=3 - 0.05'
O,
2,
-0.05
b -0.1+
0 ? ° ° 0
1 2 3 4 5 01 40 80 120 160 200
n (b) t

(a)

Figure 4. The eigenpairs obtained as part of the spectral representation of the data: (a) the five largest
eigenvalues; (b) the first three eigenfunctions

Since only the first 3 eigenvalues are significant we use those to produce a trun-
cated KL representation (10) of the logarithm of the stream inflow function @, ().
We use the PC expansion coefficients to approximate the first two statistical mo-
ments of the outflow ()4,.. For this demonstration, we employ 1-dimensional Gaus-
sian quadrature points with five nodes in each of the three random dimensions
(roots of the 5th degree univariate Hermite polynomial) to form a full tensor grid
of 5% nodes. With this tensor grid we build the PC expansion of the second degree
in each of the 3 random variables, e.g., with 3% = 27 basis functions. Beyond eval-
uating the first two statistical moments of the solutions we lay the foundation to
have an analytical expression of an approximation to the solution. This is neces-
sary for the overall control framework in that it will be used as a surrogate model
which allows to simplify the evaluation of the probabilistic constraints involving
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the components of the solution vector [13]. These probabilistic constraints are out-
side the scope of the current paper. In Figure 5.(a) we present the realizations of
outflow Qg,. evaluated at 53 = 125 collocation points. We observe that they form
five groups (and every group has five branches and 25 sub-branches arising due to
the choice of the full tensor grid). In Figure 5.(b)-(c) we compare the mean and
the standard deviation of the outflow when 1, 2 and 3 terms are included in the
KL representation of the logarithm of the stream inflow. We observe the difference
between the 1 and 2 terms representation but no visual difference between 2 and 3
terms representation. Note that for illustration purposes we have chosen an outflow
as the solution, but, in general, similar analysis could be done for other components
of the solutions.

Outflow hydrograph, N=1

Response function values (every 5 minutes)
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Figure 5. (a) The response outflow function evaluated at 125 collocation nodes with the interval of 5
minutes. Mean plus/minus standard deviation of the response function values: (b) only 1 term is included
in the representation of the inflow; (c) 2 terms are included in the representation of the inflow; (d) 3 terms
are included in the representation of the inflow

The magnitude of the eigenvalues shows the contribution of the corresponding
term of the Karhunen-Loéve expansion to the stream inflow. In other words it ex-
plains how much of the variation in data can be expressed with the particular term.
The notion of the distributional sensitivity discussed earlier in this paper shows the
contribution of each term to the outflow function. We measure the sensitivity (the
effect of change of the distribution on the outflow) by perturbing the distribution
of the random coefficients {£}3_, one at a time. For the perturbed version of the
density p; we use the density po corresponding to the normal distribution with
mean J and variance 1 + €.

We present our findings in two tables. To produce the results for Table 1 we
assume that the KL representation of the logarithm of the stream inflow has two
terms. The table shows the distributional sensitivity of the mean and variance of
the outflow Q)4,. due to the change of the mean and variance of each of the two
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random variables. We observe that the mean of the solution ()g4,. is affected more
than the variance if only the means of the random variables are changed. The mean
of the solution is only slightly sensitive to the variance of the random variables.
Note that the sensitivity of the mean is well-approximated by perturbing both
mean and variance simultaneously (the values are close in both cases), but the
sensitivity for the variance is different in comparison with the first two cases. It
appears in this case that the variance of the solution is more sensitive to the change
in the distribution of the second variable. This suggests that the magnitudes of the
sensitivity estimates are not necessarily consistent with the arrangement of the
eigenvalues when both mean and variance of the random variables are changed but
are consistent when only mean or variance is perturbed.

Table 1. Distributional sensitivity of expected outflow and its variance based on two terms in the KL expansion
& | 0 | e | DSgg,,.le1,p2)(Qa,) | DSvarq.,.ile1s p2](Qa,,)
glo1| o 4278 0.379
& 0.1 0 1.174 0.056
&1 0 ]0.01 6.081e-3 2.068
&0 ] 0.01 7.913e-4 0.354
& 101 0.01 4.176 0.039
& 0.1 0.01 1.193 0.179

In Table 2 we consider a case when the representation of the logarithm of the
stream inflow depends on three variables. The distributional sensitivity estimates
for the first three variables seem to agree with the estimates presented in Table 2.
The estimates for the third variable shows that they are at least 20 or more times
smaller than the corresponding estimates for the second variable. These observa-
tions are consistent with the results presented in the Figure 5, that is, the statistical
moments of the solution are not affected much by the presence and distribution of
the third random variable.

Table 2.

Distributional sensitivity of expected outflow and its variance based on three terms in the KL expansion

& | 0 | € | DSgq,. e, p2)(Qa) | DSvar(q., 11, p2)(Qass)
& 101 0 4.281 0.381
& |01 0 1.174 0.058
&1 0.1 0 0.047 0.001
&1 0 ] 0.01 6.085e-3 2.069
&0 ] 0.01 7.952e-4 0.355
&1 0 ] 0.01 9.331e-7 0.0006
& 1017 0.01 4.176 0.039
&1 0.1 0.01 1.193 0.181
&1 0.1 ] 0.01 0.047 0.0006

Note that the results in Tables 1 and 2 are obtained using the same set of data:

no additional model runs are necessary to produce either the two or three terms
case. All estimates were based on the original 125 model runs mentioned at the
beginning of this section. The mean and variances of the solutions with respect to
the perturbed distributions are calculated using the formula (20).

To compare to the moments of the solution ()4,. approximated with PC expan-
sion, we calculate the moments obtained with 17000 MC realizations. We produce
17000 inflows and find the corresponding solutions 4,.. We also use varying num-
bers of collocation points to approximate the coefficients in the PC expansion. Each
set of collocation points is used to construct a polynomial of the second degree in
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each of the three random variables. The results are presented in the Figure 6.
We see that PC expansions provide a good agreement with the moments obtained
with MC method, which suggests that a second degree expansion gives an adequate
representation of the solution @)g,, .

PCE mean vs. MC mean

Difference in MC and PCE means
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Figure 6. Comparison of the moments approximated with 17000 MC realizations and PC expansion
with varying numbers of collocation points: (a) discharge means approximated by PC expansion and MC
method; (b) difference in discharge means; (c) standard deviations approximated by PC expansion and
MC method; (d) difference in the standard deviations of discharge.

In Figure 7.(a) we consider the magnitude of all 27 coefficients in the second de-
gree full tensor PC approximation. The coefficients are calculated with the quadra-
ture rule based on 113 collocation points. We see that coefficient vg associated with
a constant function &y = 1 has the largest [ norm. The coefficients associated
with the basis functions containing a linear term in either the first or second ran-
dom variable are the next largest, and are an order of magnitude larger than the
rest. For the illustration of convergence we approximate the first seven coefficients
having the largest discrete ls norm with different number of collocation points
(from 3% to 73) and compare those with the coefficients approximated with 113
collocation points. The results are presented in Figure 7.(b). Indices shown in the
legend represent the degree of the basis function in each of the random dimen-
sion, e.g., index i = (i1,1i9,43) denotes the basis function obtained as product of
3 functions: ©; = P(;, 4,4, = ¢4, (§1)9i, (§2)9i, (€3), where ¢o(§) = 1, ¢1(§) = &,
and ¢2(¢) = (€2 — 1)/v/2. We assume that basis functions ®; are arranged in the
graded lexicographic order, that is, index 7 is greater than index j if ||i||1 > [|j|1
and the first nonzero element in the difference, i — j, is positive. Note that the
ly-error in the coefficients is already small using 3% quadrature nodes, but it also
exhibits convergence as the number of quadrature nodes is increased.

In Figure 8 we compare the moments (means and standard deviations) approxi-
mated with PC expansion coefficients based on 113 collocation points to moments



August 13, 2013

14:3 International Journal of Computer Mathematics ReservoirUQpreprint

16 Gibson, N. L., et.al.

Discrete 12 norm of the PCE coefficients

Disgrete 12 error of the first 7 PCE coefficients
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Figure 7. PCE coefficients: (a) discrete l2 norm of all 27 coefficients (arranged in the graded lexicographic
order) calculated with the quadrature rule based on 112 collocation points; (b) discrete Iz error of the first
seven PCE coefficients calculated with the quadrature rule based on varying numbers of collocation points,
as compared to 113,

approximated by the MC method (17000 realizations) and the PC approach using
different numbers of collocation points. ls-convergence of the mean and standard
deviation of the solution is demonstrated as the total number of function evalua-
tions increased, but, as we see, the PC approach requires orders of magnitude fewer
simulations than MC for the same level of accuracy.

MC and PCE means vs 1RCE
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Figure 8. Discrete l2 norm of the difference in moments approximated with MC method and PC based on
different number of collocation points in comparison with PC moments based on 113 collocation points:
(a) difference in means; (b) difference in standard deviations

10. Conclusions and Future Work

The work presented in this paper greatly extends the applicability of the research
presented in [18]. We have used a Karhunen-Loéve expansion-based representation
of a space of random inflow functions implied by a given set of ensemble pre-
dictions. We also include the distributional sensitivity estimates to help quantify
the importance of each random variable in the polynomial approximation of the
outflow. In particular, distributional sensitivity suggests that 2 input random vari-
ables are sufficient. These results agree with the simulations. We also observed that
quadratic polynomial representation of the output is adequate as moments approx-
imated with MC and PC approach are close. We mentioned previously that the
pseudospectral approach allows to evaluate the suitably chosen coefficients of the
PC representation of a quatity of interest. Decay in the ls-norm of the coefficients
has shown that only a few terms in the full tensor product are necessary. lo-error
in the coefficients with the largest norms was shown to be sufficiently small using
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3% quadrature nodes and illustrated a convergence as the number of quadrature
nodes is increased. Lastly, lo-convergence of the mean and standard deviation of
the solution obtained with PC method was demonstrated as the total number of
simulations increased, requiring orders of magnitude fewer simulations than MC
for the same level of accuracy.

Future work includes introducing inflow uncertainty into the full optimization
framework, i.e., an optimal operation of multi-reservoir systems. Clearly, even a
deterministic optimization problem of this complexity would require many forward
simulations. With uncertainty included in the system, the computational effort
increases dramatically. The uncertainty framework described in this work, together
with a performance graph approach to unsteady flow routing, and fine-grained
parallelism will be combined in order to attempt to reduce the computational
expenses to practical levels.

A more complete introduction of uncertainty involves the stochastic represen-
tation of the price of electricity, load and wind power generation. Each of these
sources of uncertainty have different structures and require additional theory to be
developed.
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