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Abstract

This paper presents a MATLAB framework for forecasting optimal flow re-
leases in a multi-storage system for flood control. This framework combines
four widely-used models intended for (1) performing hydrologic analysis for a
watershed and for level-pool routing in the storage systems, (2) simulating river
inundation, (3) solving the optimization problem of determining hourly optimal
flow releases in a multi-storage system, and (4) data management and plotting.
The integration of all software is performed in MATLAB, which is a state-of-the-
art and an easy-to-use environment for integrating computation, visualization,
and programming. This paper focuses on (1) presenting the MATLAB scripts
for interfacing the aforementioned four software, (2) describing the rationale for
the objective function of the optimization, and (3) demonstrating the practical
use of the MATLAB framework by applying it to the operation of a hypotheti-
cal eight-pond system in the Cypress Creek watershed in Houston, Texas. The
results of the aforementioned application show that this framework could help
in mitigating flooding.

Keywords: Flood control, Genetic Algorithms, HEC-DSSVue, HEC-HMS,
HEC-RAS, MATLAB, Watershed

1. Introduction

According to the National Oceanic and Atmospheric Administration (NOAA
2016), inland flooding produces more damage annually than any other weather
event in the United States. For the period between 1976 and 2006, the dam-
age produced by inland flooding averaged $6.9 billion per year (NOAA 2016).
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According to the Earth Observatory of NASA (NASA 2017), global warming
will change the major climate patterns and in general, as precipitation patterns
change, storms, floods, and droughts will be more severe. Furthermore, the
changes in land use associated with increasing trends in urban development will
increase the peak discharge and frequency of floods (USGS 2003).

Recently, flood mitigation within the context of a watershed, where the
entire watershed becomes the objective of management, is receiving increasing
attention (Kusler 2004, Flotemersch et al. 2016). Within a watershed, often,
a network of storage systems (e.g. detention ponds, wetlands, reservoirs) is
available for flood control, however, they are rarely managed in a coordinated
manner. The lack of coordination of storage systems control may limit their
effectiveness for flood mitigation. Furthermore, the remote operation of water
release in storage systems is not common and it is often limited to reservoirs. In
an ideal flood mitigation system, all storage systems of the watershed would be
operated in a coordinated manner according to precipitation forecasts to achieve
certain objectives such as minimizing inundation levels at certain sections of the
river. Furthermore, the storage systems would be partially or totally emptied
ahead of (e.g., a few hours or a couple of days before) a heavy rainfall that
would produce flooding. The storage made available by the early release would
provide extra water storage during the heavy rainfall, thus mitigating floods.

Detention ponds and reservoirs are often constructed for mitigating floods
as a main objective and these systems could be operated aggressively during
flooding conditions for mitigating inundation. The operation of wetlands for
flood control, however, could have ecological implications. For instance, many
wetlands retain some water year-round supporting long-lived aquatic animals
such as fish, as well as wetland amphibians and invertebrates (Leon et al. 2018).
However, there are also many wetlands that naturally have a short hydroperiod,
so their function is not necessarily decreased by partial draining (Leon et al.
2018). As pointed out by Leon et al. (2018), draining from wetlands involves
some risks that can be minimized by not draining the wetlands fully, and by
draining only when the certainty of storm events is very high. In any case,
if wetlands would be used for flood control, they would be wetlands that are
naturally flooded for only short periods of the year (a short hydroperiod) and
support primarily facultative wetland animals and plant species that benefit
from or can tolerate occasional flooded conditions but do not require them most
of the year (Snodgrass et al. 2000, Ehrenfeld 2004, Tarr et al. 2005, Leon et al.
2018).

The target audience of this work is anyone interested in near real-time flood
control. This could include engineers responsible for flood management and
short-term flood control. This work is also intended for researchers and stu-
dents interested in open-source techniques for flood mitigation. The focus of
this manuscript is on flood control and thus the storage used for flood mitigation
would exclude wetlands that support long-lived aquatic animals. To facilitate
the coordinated operation of a multi-storage system for flood mitigation, the
integration of hydrology and hydraulic models within an optimization frame-
work would be required. Users often have unique applications that may require



modifying the framework for their particular needs. To achieve the latter, it is
desirable to integrate the aforementioned models within a state-of-the-art and
an easy-to-use environment that is suitable for computation, visualization, and
programming. One of such platforms is MATLAB, which is a high-performance
language for technical computing that integrates computation, visualization,
and programming in an easy-to-use environment (Mathworks 2015). This pa-
per presents a MATLAB framework for forecasting optimal flow releases in
a multi-storage system for flood control. This paper is organized as follows:
(1) the sub-component models and the rationale for the objective function are
briefly described; (2) MATLAB scripts for interfacing the aforementioned sub-
component models are presented; (3) a brief overview of a case study is presented
to illustrate the application of the MATLAB framework. Finally, the key results
are summarized in the conclusion.

2. Considerations for the optimal and coordinated operation of stor-
age systems for flood mitigation

It is clear that each watershed prone to flooding may have specific challenges
and different topographical conditions, however in general, most of these water-
sheds have inline storage systems (e.g., reservoirs) and off-line storage systems
(e.g., detention ponds, wetlands). To make possible the optimal and coordi-
nated operation of storage systems for flood control, it would be necessary to
add or retrofit gates/siphons for water release of the storage systems so they
can discharge most of the water stored in a pre-determined time. This task
would include implementing the necessary hardware and software to make pos-
sible the remote operation of gates/siphons in wetlands, detention ponds and
reservoirs. Remote operation of gates/siphons are necessary because very often
wetlands, detention ponds and reservoirs are located in remote areas far away
from urban areas. The remote operation could be achieved using the classical
Supervisory control and data acquisition (SCADA) system or using latest and
cheaper technologies such as those presented in Leon and Verma (2019). It is
noted that adding conventional drainage pipes (e.g., sloped pipes) would require
substantial earthwork as they would need to be installed in the earthen berm.
Conversely, installing siphons require minimal earthwork as only anchoring of
the siphon pipes over the berms would be necessary.

It is noted that a siphon flow (uphill flow followed by a downhill flow) or a
pure downhill flow are gravity-driven flows which require a hydraulic gradient
between the water surface level in the storage system and the discharge point
(e.g., natural or artificial drainage ditch). In many instances, even near flat
land can be engineered to create a storage system and achieve a hydraulic gra-
dient of at least 0.6 or 0.9 m, which would still give significant flow velocities
exceeding 1 m/s. A storage system could be engineered to be a single pond or
an interconnected system of multiple ponds (Leon et al. 2018). If the area for
the pond construction is consistently flat, the earthwork of a single pond would
likely be the most economical option. However, in most cases, the terrain is
not horizontally leveled and the earthwork would be significantly reduced if a



system of interconnected ponds with different bottom levels is used (Leon et al.
2018).

3. Model Description

As mentioned earlier, the coordinated operation of storage systems for flood
control requires a computational framework that integrates hydrologic and hy-
draulic models within an optimization framework. There is a vast array of
hydrologic, hydraulic and optimization models available in the literature. Be-
cause one of the most popular and freely available models for simulating river
inundation is the U.S. Army Corps of Engineers’ Hydrologic Engineering Cen-
ter’s River Analysis System (HEC-RAS) [Hydrologic Engineering Center 2016a,
Hydrologic Engineering Center 2016b], this model was selected as the hydraulic
model of the proposed framework. The hydrologic model was selected based on
three criteria (1) compatibility with the aforementioned hydraulic model; (2)
freely available; and (3) widely used in practice. Based on these considerations,
the U.S. Army Corps of Engineers’ Hydrologic Modeling System (HEC-HMS)
[Hydrologic Engineering Center 2017] was used as the hydrologic model. For
determining the optimal schedules of flow releases in a multi-storage system,
it is needed an optimization solver intended for large-scale constrained opti-
mization problems. A widely used solver in water resources engineering (e.g.,
Yang et al. 2015, and Chen et al. 2016) that meets the above criteria is the
Genetic Algorithm (GA). Because the proposed framework was implemented in
MATLAB, and due to the availability of the Genetic Algorithm Toolbox within
MATLAB, this toolbox is used herein. To minimize scripting for data exchange
between HEC-HMS and HEC-RAS (e.g., manipulation of HEC-DSS files), the
U.S. Army Corps of Engineers’ HEC-DSSVue model, which has several built-in
utilities for manipulating data in a HEC-DSS database, was used. The HEC-
HMS, HEC-RAS, MATLAB GA Toolbox, and HEC-DSSVue model are briefly
described below.

3.1. Hydrologic Modeling System (HEC-HMS)

HEC-HMS is intended to simulate the complete hydrologic processes of den-
dritic watershed systems and includes hydrologic analysis procedures such as
event infiltration, unit hydrographs, and hydrologic routing (Hydrologic Engi-
neering Center 2017). HEC-HMS is often used for studies of flow forecasting,
future urbanization impact, reservoir spillway design, flood damage reduction,
floodplain regulation, and systems operation (Hydrologic Engineering Center
2017).

3.2. Hydrologic Engineering Center’s River Analysis System (HEC-RAS)

A highly adopted software in inundation modeling is the U.S. Army Corps
of Engineers’ Hydrologic Engineering Center’s River Analysis System (HEC-
RAS). HEC-RAS can perform one and two-dimensional hydraulic calculations



for a full network of natural and constructed channels, overbank/floodplain ar-
eas, levee protected areas; etc (Hydrologic Engineering Center 2016a, Hydrologic
Engineering Center 2016b). HEC-RAS has four main modules: (1) steady flow
water surface profiles, which is intended for calculating water surface profiles in
steady gradually varied flow conditions; (2) unsteady flow simulation, which can
simulate one-dimensional, two-dimensional and combined one/two-dimensional
unsteady flow through an open channel network; (3) sediment transport com-
putations, which is intended for the simulation of one-dimensional sediment
transport/movable boundary calculations resulting from scour and deposition
over moderate to long time periods; and (4) water quality analysis; which is
intended for performing riverine water quality analyses (Hydrologic Engineer-
ing Center 2016a, Hydrologic Engineering Center 2016b). Standard applica-
tions of this model include flood wave routing and flood inundation studies. In
the present work, inundation is simulated using the unsteady one-dimensional
(1D) HEC-RAS model, which solves the full 1D Saint-Venant equations using
the four-point implicit finite difference scheme (Hydrologic Engineering Center
2016a)

3.3. The MATLAB Genetic Algorithm (GA) Toolbox

The optimization model uses the MATLAB Genetic Algorithm (GA) Tool-
box (Chipperfield and Fleming 1995). The GA solves constrained and uncon-
strained optimization problems based on a natural selection process that mim-
ics biological evolution (Chipperfield and Fleming 1995). The GA repeatedly
changes a population of individual solutions. At each generation, the GA ran-
domly selects individuals from the current population and uses them as parents
to produce children for the next generation. After several generations, the
population is expected to evolve toward an optimal solution. The GA is rec-
ommended to solve problems that are not well suited for standard optimization
algorithms, including problems in which the objective function is discontinuous,
nondifferentiable, stochastic, or highly non-linear (Chipperfield and Fleming
1995). For more details about the genetic algorithm and its application to wa-
ter resources the reader is referred to Wardlaw and Sharif (1999), Leon and
Kanashiro (2010), Leon et al. (2014), Lerma et al. (2015), Yang et al. (2015),
and Chen et al. (2016).

3.4. HEC-DSSVue

HEC-DSSVue is a Java-based visual utilities software intended to plot, tabu-
late, and manipulate data in a HEC-DSS database file (Hydrologic Engineering
Center 2009). HEC-DSSVue incorporates over sixty mathematical functions and
provides several utility functions to enter data sets into a HEC-DSS database,
rename data set names, copy data sets to other HEC-DSS database files, and
delete data sets (Hydrologic Engineering Center 2009). More importantly for
the present work, HEC-DSSVue incorporates the “Jython” standard scripting
language, which allows to execute a sequence of steps in a text format from a
“batch” process (Hydrologic Engineering Center 2009).



3.5. Objective Function

A single objective function f is considered in the optimization, which con-
sists that during flood conditions, the flow must be conveyed slightly below
the specified maximum water level at the cross-sections of interest (e.g., maxi-
mum water levels without producing flooding in urban areas). This objective is
written as

u Vv

U v w
F=CuY Y dule;—E)+C Y Y bieij—Ei*)*+Cw Y Su(yw—ve)” (1)
i=1

i=1 j=1 i=1 j=1

where the first term on the right side of Eq. (1) indicates the penalty function
when the water surface level at the cross-section of interest exceeds the specified
maximum water level constraint. The second term on the right side of Eq. (1)
indicates the penalty function when the water surface level at the cross-section
of interest is far below the specified maximum water level constraint. It is noted
that there is no contradiction between the first and second term on the right
side of Eq. (1). To drain a watershed as fast as possible without producing river
inundation, the water level in the cross-section of interest should be near the
specified maximum water level constraint, not exceeding this level and not far
below. The third term on the right side of Eq. (1) indicates the penalty function
when the water depth at a managed storage pond (y,,) is below the ecological
water depth (y.) specified for the storage pond. The ecological water depth can
be defined as the minimum water depth in the storage pond to minimize the
implications on the ecological functions of the storage pond. In Eq. (1), U,
V and W are the number of cross sections of interest at which the water level
constraint is checked, the number of decision variables during flood conditions,
and the number of managed storage ponds, respectively. Also, e;; is water
surface elevation at cross-section of interest i for decision variable j (e.g., flow
release at hour j), E; is the specified maximum water level constraint at cross-
section of interest i, and E is the water level located at some distance below E;.
The region between E* and F can be seen as a buffer zone where the objective
function is optimal and constant. In the present work E* was set to be 0.9m (3ft)
below E. Also, in Eq. (1), Cy, C; and C,, are penalty constants imposed for
violation of constraints when water level at the cross-section of interest exceeds
E, water level at the cross-section of interest is below E*, and water depth at
a managed storage pond is below the ecological water depth specified for the
storage pond, respectively. Finally, in Eq. (1), dy, §; and ¢,, are given by

1 if respective constraint (u, v or w) is violated
5u,v,w =

0 if respective constraint (u, v or w) is satisfied



4. The integrated model

The flow chart of the integrated model for forecasting optimal flow releases
in a multi-storage system for flood control is presented in Fig. 1. In short, first,
the schedule of outflows of the managed storage ponds, which are generated by
the optimization model, are used by HEC-HMS to update the water levels in
these ponds. Then, the outflows from HEC-HMS, which could be unmanaged
flows (sub-basins without managed storage) or managed flows (sub-basins with
managed storage), enter the streams in HEC-RAS model as lateral flows. Then,
the HEC-RAS model simulates inundation at the watershed scale. For each
simulation of inundation, the objective function is calculated using the water
levels in the cross-sections of interest in HEC-RAS and the water depths in
the managed storage ponds (see Eq. 1). The objective values are sent back
to the optimization model and the process is repeated until the optimization
stop criteria is satisfied. The version of the models used herein are: HEC-HMS
4.2.1, HEC-RAS 5.0.5, MATLAB R2018b and HEC-DSSVue 2.0.1. The scripts
for running the aforementioned models and the links between these models are
briefly described below.

4.1. Executing HEC-HMS from MATLAB

Listing 1 presents the main script for executing HEC-HMS from MATLAB.
ExecHMS in Listing 1 specifies the location of the file that will be called by
MATLAB (Running HDMS.tat) for executing HEC-HMS. The content of the
file Running HMS.txt is presented in Listing 2. Run_ HMJS in Listing 1
changes the entire line that starts with OpenProject in Listing 2 to the spec-
ified name given in T'emp in Listing 1. The latter is necessary when running
multiple instances of HEC-HMS such as when using GA optimization. Finally
dos(ExecHMS') executes the HMS Model. If the run is successful, the status
in Listing 1 will be 0, otherwise the status will be 1.

Listing 1. Script to execute HEC-HMS from MATLAR

1 ExecHMS = ['hec-hms.cmd -s ' home_dir '\utilitaries\Running_HMS.txt']
2 path_general = pwd; %This returns the working directory.

3 cd(path_general);

4 StrID = num2str (RAS_simul_1ID);

5 InpDSS=[path_general '\RAS_HMS_folders\' General_Name_of_Project ...
6 StrID '\' Folder_HMS 1];

7 Temp = [ 'OpenProject ("' Name_of_ HMS_project '", "' InpDSS '")']l;

8 Run_HMS (InputRUN_HMS, OutputRUN_HMS, Temp);

9 cd(path_HMS_executable); $Path of HMS executable

10 [status,cmdout] = dos (ExecHMS );

11 %Status = 0 (successful run), 1 (aborted). If aborted, don't run RAS

Listing 2. Content of file Running HMS.txt




Prepare HEC-HMS and HEC-RAS models. Input in MATLAB
data of cross-sections of interest to check water levels,
tolerance for optimization convergence, etc.

GA Optimization (using jparallel computing)

Generate population of hourly flow releases at all
managed storages

v

Execute HEC-DSSVue to create DSS files of storage
outflows with data generated by GA

12

Execute HEC-HMS using “specified release” method with
created DSSs of storage outflows

v

Execute HEC-DSSVue to write an EXCEL file with water
levels at each storage

v

Execute HEC-RAS to simulate watershed inundation and
compute Objective Function using Eq. (1)

Convergence criteria satisfied?

Yes

-

Plot optimal hourly flow releases at each storage and
display optimal inundation scenario

End

Figure 1. Flow chart of the integrated model for forecasting optimal flow releases in a
multi-storage system for flood control



from hms.model.JythonHms import =*

OpenProject ("CypressHMS", "C:\DSSTest_Wetland_Opt_11_20_2018
\RAS_HMS_folders\Cypressl\CypressHMS")

Compute ("Run 1")

Exit (1)

oA W N =

4.2. Executing HEC-RAS from MATLAB

To automate the HEC-RAS calculations and to perform parallel computa-
tions (simultaneous computations of HEC-RAS) in MATLAB, the scripts in
Leon and Goodell (2016) are used and are not repeated here due to space lim-
itations. The only difference is that the current work uses the last version of
HEC-RAS (5.0.5) instead of 5.0 used in Leon and Goodell (2016). When using
the version 5.0.5 of HEC-RAS, the windows registry key should be changed to
actxserver('RAS505.HECRASCONTROLLER).

4.8. Executing HEC-DSSVue from MATLAB

Listing 3 presents the main script for executing HEC-DSSVue from MAT-
LAB. The content of ChangeDSS files in Listing 3 is presented in Listing
4. ChangeDSS files is used to change the location and name of the stor-
age outflows, and the schedule of outflows for each storage in WriteDss.py
(Listing 5). TextTemp in Listing 3 indicates the new location and name of
the storage outflow while as FlowsTemp extracts the outflow data of the GA
optimization (z(RAS simul ID,posit temp3 : posit temp4) for each popu-
lation (RAS _simul ID) and each storage (posit_temp3 : posit _tempd). As
observed in Listing 4, to replace the data of T'extTemp it is necessary to find the
key variable starting with myDss = HecDss.open while as for FlowsTemp, it
is necessary to find the key variable starting with flows. The script in Listing
5 was adapted from the WriteDss.py Jython script in Hydrologic Engineering
Center (2009). Finally system(exeTemp) in Listing 3 executes HEC-DSSVue
with the information provided in WriteDss.py. If the run is successful, the
status in Listing 3 will be 0, otherwise the status will be 1.

Listing 3. WriteDss.py: Script to execute HEC-DSSVue from MATLAB

1 cd(path_general);

2 InpWrite=[path_general '\utilitaries\WriteDss_temp_doNOTdelete.py'];
3 OutputWriteDSS = [path_general '\utilitaries\WriteDss.py'];

4 StrID = num2str (RAS_simul_1ID);

5 InputDSS = [path_general '\RAS_HMS folders\' .

6 General_Name_of_Project StrID '\' Folder_HMS '\' .

7 NameDSSFile_for WetlandOutflows_with_active_control{kk} '.dss'];
8 TextTemp = [ ' myDss = HecDss.open ("' InputDSS '")'];

9 posit_temp3 = Inflow_points_LATERAL_FROM_WETLANDS* (kk-1)+1;

10 posit_tempd4 = Inflow_points_LATERAL_FROM_WETLANDS«*kk;
11 flow_data = [0 x(RAS_simul_ID,posit_temp3:posit_tempd)];
12 %zero flow at time zero (gates are closed initially)




13 allOneString sprintf('s.1£f,"' , flow_data);

14 allOneString = allOneString(l:end-1); % strip final comma

15 FlowsTemp = [ ' flows = [' allOneString ']'];

16 %FlowsTemp = ' flows = [10,100,50,76.6,67.5,97.0,93.8,65.1,73.5]
17 ChangeDSS_files (InpWrite, OutputWriteDSS, TextTemp, FlowsTemp) ;

18 cd(path_DSSVue_executable);

19 exeTemp = ['HEC-DSSVue.exe' path_general '\utilitaries\WriteDss.py'];
20 [status,cmdout] = system(exeTemp) ;

Listing 4. ChangeDSS files.m: Replaces the data of T'extTemp and FlowsTemp

1 function ChangeDSS_files(filenameinput, filenameoutput, TextTemp,
2 FlowsTemp) ;

3 fid = fopen (filenameinput, 'rt'); %$Open file for reading

4 1f fid == -1

5 error ('Author:Function:0OpenFile', 'Cannot open file: %s',
6 filenameinput) ;

7 end

8 fout = fopen (filenameoutput, 'wt'); %$Open file for writing
9 1if fout == -1

10 error ('Author:Function:0OpenFile', 'Cannot open file: %s',
11 filenameoutput) ;

12 end

13 while ~feof (fid);

14 strTextLine = fgetl (fid); %To read one additional line
15 if strfind(strTextLine, 'myDss = HecDss.open')

16 fprintf (fout, '$s\n', TextTemp);

17 elseif strfind(strTextLine, 'flows = [');

18 fprintf (fout, '$s\n',FlowsTemp) ;

19 else

20 fprintf (fout, '$s\n', strTextLine);

21 end

22 end

23 fclose (fid); %Close the text file
24 fclose (fout); %Close the text file

Listing 5. WriteDss.py: Writes a DSS file (Adapted from WriteDss.py Jython script in
Hydrologic Engineering Center 2009)

1 # name=WriteDss

# displayinmenu=true

# displaytouser=true

# displayinselector=true
from hec.script import =

from hec.heclib.dss import =
from hec.heclib.util import =
from hec.io import =

9 1mport java

0 N A W N

11 try
12 try
13 myDss = HecDss.open ("C:\CypressHMS\WetlandOutflow9.dss")

10




14 tsc = TimeSeriesContainer ()

15 tsc.fullName = "/BASIN/LOC/FLOW//1HOUR/OBS/"
16 start = HecTime ("01Jan2018", "0000")

17 tsc.interval = 60

18 flows = [0.0,29.3,493.0,597.8,1112.2,27.0,453.5,495.5,492.7]
19 times = []

20 for value in flows

21 times.append (start.value())

22 start.add(tsc.interval)

23 tsc.times = times

24 tsc.values = flows

25 tsc.numberValues = len(flows)

26 tsc.units = "CFS"

27 tsc.type = "PER-AVER"

28 myDss.put (tsc)

29

30 except Exception, e

31 MessageBox.showError (' '.join(e.args), "Python Error")
32 except java.lang.Exception, e

33 MessageBox.showError (e.getMessage (), "Error")
3¢ finally

35 myDss.close ()

4.4. Executing Genetic algorithm optimization in MATLAB

Listing 6 presents the script for calling the MATLAB GA Optimization Tool-
box. Because the computations are done in parallel ('UseVectorized', true), it
is necessary to allocate the number of processors available for the optimiza-
tion (NumProcessors _for _parallel _computing). In Listing 6, gaoptions in-
dicates the options used for the GA optimization including population size
(PopulationSize), maximum number of generations (MaxGenerations), stall
generations (M axStallGenerations) and the function tolerance ( FunctionT olerance).
MazxGenerations, MaxStallGenerations and FunctionTolerance are all re-
lated to the stop criteria. The GA will stop if the maximum number of iterations
or generations is attained. Also, the GA will stop if the average relative change
in the best fitness function value over Stall generations (M axStallGenerations)
is less than or equal to Function tolerance ( FunctionTolerance). In Listing 6,
is the best solution (decision variables), fval is the value of the fitness function,
exit flag indicates the reason of why GA stopped, and LB and UB indicates the
set of lower and upper bounds on the decision variables, respectively.

Listing 6. Script to execute GA Optimization in MATLAB

if Parallel_computing == 1

delete (gcp ('nocreate'));%$To avoid interactive session error
%Parallel computation

parpool ('local',NumProcessors_for_parallel_ computing);

gaoptions = optimoptions('ga', 'UseVectorized',true,

1
2
3
4
5 end
6
7
8 'PopulationSize', Pop_Opt, 'MaxGenerations', MaxGen_GA,

11



9 'MaxStallGenerations',MaxStall, 'FunctionTolerance',10e-3);

10 gaoptions = optimoptions (gaoptions, 'PlotFcn',

11 {Q@gaplotbestf, @gaplotstopping, @gaplotbestindiv}, 'Display', 'iter');
12 %$InitialPopulationMatrix is for assigning user-defined initial popul.

13 gaoptions.InitialPopulationMatrix = initial_ population_GA_final;
14 [x fval, exitflag,output] = ga(@Fitness_vectorized,nvar,
15 ty,01,101,01,1LB,UB, [],gaoptions);

4.5. Miscellaneous scripts

Besides the aforementioned scripts, few more important scripts that are nec-
essary for assembling the integrated framework are briefly described in this sec-
tion.

4.5.1. Checking water level in a storage at a given time

For estimating the third term on the right hand side of Eq. (1), it is necessary
to know the time series of the water level in each storage. In particular, to
verify if the storage is about to dry, it is necessary to know the storage water
level right before the hydrograph starts to deliver water to the storage (e.g.,
lowest storage water level). A storage with zero or negative depth would violate
the physical water depth and would lead to the abortion of the HEC-HMS
program. To find the water level in a storage at a given time, HEC-DSSVue
is used for writing the time series of storage water levels to an EXCEL file,
from which are read by MATLAB. Lines 1 to 3 in Listing 7?7 write the Excel
file through the Jython script WetlandsDSSSaveExcel.py, which content is
shown in Listing 8. Wet data (Line 9) in Listing ?? reads the Excel file, while
as WetFElev_before hydrog access the desired data in the Excel file.

Listing 7. Script for finding storage water level at a given time

InputDSS = ['HEC-DSSVue.exe ' path_general '\RAS_HMS_folders\'
StrID '\' Folder_HMS '\WetlandsDSSSaveExcel.py'];
[status,cmdout] = system(InputDSS);

%Read data of Wetland Characteristics

filenameinput= [path_general '\RAS_HMS_folders\' General_Project
StrID '\' Folder_HMS '\wet_balance.xls'];

sheet = 'sheetl';

$Wet_data reads "numeric" data, string_wetlands reads "text" data

Wet_data= xlsread(filenameinput, sheet);

10 for jj = 1l:NumberWetlands_managed

© 0 N o A W N =

11 %$initial elevation starts from row 1

12 WetElev_before_hydrog = .

13 Wet_data (Time_at_which_hydrograph_starts(jj), 2 + jJj);
14 end

Listing 8. WetlandsDSSSaveExcel.py: Saves DSS data to an Excel file (Adapted from
FolsomSaveExcel.py Jython script in Hydrologic Engineering Center 2009)
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© 0 N e oA W N =

from hec.script import =
from hec.heclib.dss import =
from hec.dataTable import =
import java

# Open the file and get the data
try:
dssFile = HecDss.open ("C:\Cypressl\CypressHMS\Run_1.dss")
elev = dssFile.get ("//WL-410/ELEVATION/01JAN2018/1HOUR/RUN:RUN 1/")
inflow = dssFile.get ("//WL-410/
FLOW-COMBINE/01JAN2018/1HOUR/RUN:RUN 1/")
stor = dssFile.get ("//WL-410/
STORAGE/01JAN2018/1HOUR/RUN:RUN 1/")
totalOutflow = dssFile.get ("//WL-410/
FLOW/01JAN2018/1HOUR/RUN:RUN 1/")
releaseMain = dssFile.get ("//WL-410-RELEASE/
FLOW/01JAN2018/1HOUR/RUN:RUN 1/")
spillOvertopping = dssFile.get ("//WL-410-SPILL-1/
FLOW/01JAN2018/1HOUR/RUN:RUN 1/")
except java.lang.Exception, e
# Take care of any missing data or errors
MessageBox.showError (e.getMessage (), "Error reading data")

# Add Data

datasets = java.util.Vector ()
datasets.add(elev)
datasets.add (inflow)
datasets.add(stor)
datasets.add (totalOutflow)
datasets.add (releaseMain)
datasets.add(spillOvertopping)

# For this code, jython sees a List before a Vector
#list = java.awt.List ()

list = []

list.append(datasets)

table = HecDataTableToExcel.newTable ()

# If you want to run Excel with a specific name and not a temp name:
# table.runExcel (list, "C:\Cypressl\CypressHMS\wet_balance.xls")

# Or, if you would just rather create an Excel file, but not run it:
table.createExcelFile (list, "C:\Cypressl\CypressHMS\wet_balance.xls")

4.5.2. Plotting of optimal flows and other flow variables for each storage pond

Listing 9 presents the script for plotting the optimal schedule of outflows at

each storage pond along other flow variables. The plot is done through HEC-
DSSVue using the Jython script Plot_optim__flow _storage wetlands.py shown
in Listing 10. In Listing 9, Write Python__ for Plot Opt_Wetl wariables is

used for changing the variables for each storage such as storage name (Wetland N ame),

the period for the plot (WritingTimingFromH MS) and the location and name
for saving the jpg figure. An example of the plot generated is shown in Figure
8. Due to space limitations, “Set the inflow and outflow colors” and “Set the
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label text” in Listing 10 are included only for one of the flow variables (“Water
Surface Elevation”). For the other variables, the user needs to make a copy and
change the name of the variable.

Listing 9. Script for plotting optimal schedule of outflows at each storage along other flow
variables

1 Input_temp = [path_general '\utilitaries\

2 Plot_optim_flow_storage_wetlands_doNOTdelete.py'];
3 Output_temp = [path_general '\utilitaries\

4 Plot_optim_flow_storage_wetlands.py'l;

5

6 Text_Open_File = [path_general '\RAS_HMS_folders\'

7 General_Name_of_Project StrID '"\'

8 Folder_HMS '\Run_1.dss'];

9 Text_Open_File = [ 'dssFile = HecDss.open ("' Text_Open_File '")'];
10

11 Text_Save_FileJPEG = [ 'plot.saveToJdpeg ("' path_general
12 "\Optimal_results\'WetlandName{kk} '", 100)"'];

13

14 ElevTemp = [ 'elev = dssFile.get ("//'WetlandName{kk}

15 '"/ELEVATION' WritingTimingFromHMS '")'];

17 Total_outflow=['TotalOutflow = dssFile.get ("//'WetlandName{kk}

18 '"/FLOW' WritingTimingFromHMS '")'];

19

20 InflowTemp = [ 'inflow = dssFile.get ("//'WetlandName{kk}
21 ' /FLOW-COMBINE' WritingTimingFromHMS '")'];

22

23 StorTemp = [ 'stora = dssFile.get ("//'WetlandName{kk}

24 '/STORAGE' WritingTimingFromHMS '")'];

26 Opti_ReleaseTemp=['OptimRelease = dssFile.get ("//'WetlandName{kk}

27 '-RELEASE/FLOW' WritingTimingFromHMS '")'];

28

29 SpillFlowTemp=[ 'Spill = dssFile.get ("//'WetlandName{kk}
30 '-SPILL-1/FLOW' WritingTimingFromHMS '")'];

31

32 Name_Wetland_plot = [ 'plot.setPlotTitleText ("Wetland '
33 WetlandName{kk} '")'];

35 SWrite JPEG files
36 cd(path_general)
37 Write_Python_for_Plot_Opt_Wetl_variables (Input_temp, Output_temp,

38 ElevTemp, Total_outflow, InflowTemp, StorTemp, Opti_ReleaseTemp,
39 SpillFlowTemp, Name_Wetland_plot, Text_Open_File,

40 Text_Save_FileJPEG) ;

41 cd(path_DSSVue_executable);

42 string_temp = ['HEC-DSSVue.exe ' path_general '\utilitaries\

43 Plot_optim_flow_storage_wetlands.py']l;

44 [status,cmdout] = system(string_temp);

14




Listing 10. Plot optim_ flow storage wetlands.py: Script for plotting the optimal sched-
ule of outflows at each storage along other flow variables (Adapted from various Jython scripts
in Hydrologic Engineering Center 2009)

1 from hec.script import =

2 from hec.script.Constants import TRUE, FALSE

3 from hec.heclib.dss import =

4 import java

5

6 # Open the file and get the data

7 try:

8 dssFile = HecDss.open ("C:\DSSTest_Wetland_Opt_11_20_2018\
9 RAS_HMS_folders \Cypressl\CypressHMS\Run_1.dss")
10 elev = dssFile.get ("//WL-420/

11 ELEVATION/01JAN2018/1HOUR/RUN:RUN 1/"

12 stora = dssFile.get ("//WL-420/

13 STORAGE/01JAN2018/1HOUR/RUN:RUN 1/"

14 inflow = dssFile.get ("//WL-420/

15 FLOW-COMBINE/01JAN2018/1HOUR/RUN:RUN 1/"
16 TotalOutflow = dssFile.get ("//WL-420/

17 FLOW/01JAN2018/1HOUR/RUN:RUN 1/")

18 OptimRelease = dssFile.get ("//WL-420-RELEASE/
19 FLOW/01JAN2018/1HOUR/RUN:RUN 1/")

20 Spill = dssFile.get ("//WL-420-SPILL-1/

21 FLOW/01JAN2018/1HOUR/RUN:RUN 1/")

22 except java.lang.Exception, e
23 # Take care of any missing data or errors
24 MessageBox.showError (e.getMessage (), "Error reading data")

26 # Initialize the plot and set viewport size in precent
27 plot = Plot.newPlot ("Wetland plots")

28 layout = Plot.newPlotLayout ()

20 topView = layout.addViewport (10.)

30 middleView = layout.addViewport (10.)

31 bottomView = layout.addViewport (70.)

33 # Add Data in specific viewports

34 topView.addCurve ("Y1", elev)

35 middleView.addCurve ("Y2", stora)

36 bottomView.addCurve ("Y1", inflow)

37 bottomView.addCurve ("Y1", TotalOutflow)
38 bottomView.addCurve ("Y1", OptimRelease)
39 bottomView.addCurve ("Y1", Spill)
41 panel = plot.getPlotpanel ()

42 prop = panel.getProperties|()

43 prop.setViewportSpaceSize (0)

a5 # Break our first rule - actually this creates the plot to change
46 plot.configurePlotLayout (layout)

48 panel = plot.getPlotpanel()
49 prop = panel.getProperties|()
50 prop.setViewportSpaceSize (0)

52 # Invert the precip and make pretty

53 # view0 = plot.getViewport (0)
54 # yaxis = viewO.getAxis("Y1")
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55 # yaxis.setReversed(FALSE)

56 # precipCurve = plot.getCurve (precip)
57

58 # precipCurve.setFillColor ("blue")

50 # precipCurve.setFillType ("Above")

60 # precipCurve.setLineVisible (FALSE)

61

62 # Set the inflow and outflow colors

63 elevCurve = plot.getCurve (elev)

64 elevCurve.setLineColor ("darkcyan")

65 elevCurve.setLineWidth (3.)

66

67 # Set the label text

68 label = plot.getLegendLabel (elev)

69 label.setText ( "Water Surface Elevation")
70 label.setFont ("Arial Black")

71 label.setFontSize (24)

72

73 # Set the plot title

74 plot.setPlotTitleText ("Wetland WL-420")
75 tit = plot.getPlotTitle()

76 tit.setFont ("Arial Black")

77 tit.setFontSize (18)

78 plot.setPlotTitleVisible (TRUE)

79

80 plot.setSize(1500,1200)

81 plot.showPlot ()

82

83 # Now that it is complete, save to a .jpg and close it
84 plot.saveToJdpeg ("C:\DSSTest_Wetland_Opt_11_20_2018\
85 Optimal_results\WL-420", 100)

86 plot.close()

5. Brief overview of a case study: Application of framework to an
eight pond system in the Cypress Creek watershed, Houston, TX

It is noted that the purpose of this paper is not to describe a case study but
instead to present a series of MATLAB scripts for forecasting hourly optimal
flow releases in a multi-storage system for flood mitigation. The optimization
period considered in this case study is 11 days, which means that 264 optimal
flows need to be determined for each managed storage pond. Solely with the
objective of illustrating the application of the MATLAB framework, this section
presents a brief overview of a case study using the operation of a hypothetical
eight pond system in the Cypress Creek watershed, which is located in Houston,
Texas. For an in-dept discussion of this case study, the reader is referred to Tang
et al. (2019a). The total area of the Cypress Creek watershed is 8.33x10% m?2.
The Cypress Creek watershed is located in northern Houston, within the Harris
County Flood Control District. Figure 2 depicts the geographical location of
this watershed. Cypress Creek watershed has a drainage area of about 267 sq.
miles and it experiences about two to three flooding events per year on average
(HGAC, 2016). The Cypress Creek watershed experienced devastating floods
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during Hurricane Harvey in August 2017. The major stream in the watershed,
Cypress Creek, originates from northwest of the watershed, takes a north-south
course first, and then changes course to a west-east direction. There are several
tributaries along the way, of which the largest tributary is named Little Cypress
Creek. The upper half of the Cypress Creek watershed is mostly agricultural
area, and the downstream of the watershed is mainly urban area. The upper
half of the watershed was historically covered by wetlands and rice farms, and
as a result there are a multitude of existing levees which can be easily repaired
to restore the function of wetlands.
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Figure 2. Geographical location of Cypress Creek watershed, TX

The hydrologic model of the Cypress Creek watershed was created in HEC-
HMS. The details of the model construction, calibration and validation are
discussed in Tang et al. (2019b). The HEC-HMS model of the Cypress Creek
watershed was divided into 23 sub-basins, as shown in Fig. 3. As shown in this
figure, the watershed was divided into three portions, upstream, midstream and
downstream with total areas of 2.55x10%, 2.88x10%, and 2.90x10® m?, respec-
tively. To help in flood mitigation, a hypothetical eight storage pond system
(W300, W310, W330, W380, W390, W400, W410, and W420) with a total area
ranging from 0.7 to 6.9% of the total watershed area is placed in the midstream
portion of the watershed, which are displayed as yellow clouds in Fig. 3. The
reason to implement storage ponds in midstream is that most of the natural wet-
lands and abandoned rice farms are located within this region. For user-defined
water releases in HEC-HMS, the “Outflow Structures” method is selected and
then for the “Release” option select yes. Then, specify the name of the "Gage
Release" time-series data. Finally, the filename and pathname of the DSS file
containing the gage release data is specified. The optimization model will up-
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Upstream Middle-stream Downstream

Figure 3. Screenshot of the HEC-HMS model for Cypress Creek watershed, TX along with
schematics of eight hypothetical storage ponds in midstream, displayed as yellow clouds

Figure 4. Screenshot of the geometry plan view of the HEC-RAS model for the Cypress
Creek watershed, TX

date the gage release data for each generation of the optimization until the stop
criteria is satisfied. The schedules of storage outflows of the last generation of
the optimization are the optimal results. For simulating the overflows over the
pond berms, the user should define the number of “Spillways” in the “Reservoir”
(e.g., storage pond) module of HEC-HMS. One can simply choose one spillway
and define the elevation, length and discharge coefficient for the “broad-crested
spillway”, which would represent a storage pond berm. The flows overtopping
the spillway are labeled as "spill flow" in the MATLAB framework.

The HEC-RAS model of the major streams of Cypress Creek watershed was
built using the HEC-GeoRAS tool within ArcGIS. The plan and profile views of
the constructed HEC-RAS model are presented in Figs. 4 and 5, respectively.
The HEC-RAS model is used to simulate inundation in the watershed. The
inflow data for the HEC-RAS model is provided by the HEC-HMS model. The
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Figure 6. Screenshot of typical parallel
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total outflows from each managed storage pond (optimization derived outflows
and spill flows) along the unmanaged flows enter the main streams in HEC-
RAS as lateral flows. Thus, in this case study, only eight lateral flows change
in HEC-RAS at every generation during the optimization. To speed up the
computations, all HEC-RAS simulations are performed in parallel. A screenshot
of typical HEC-RAS parallel computations is shown in Fig. 6. Herein we have
used 18 available processors in the 8th Generation Intel Core i7-8700 (18 parallel
computations), however for better display, Fig. 6 shows only three parallel
simulations.

As shown in Fig. 1, once the HEC-HMS and HEC-RAS models are con-
structed and validated, the GA optimization generates the schedule of outflows
for the managed storage ponds (eight in this case). Then, these flows are used
by HEC-HMS to update the water levels in the eight storage ponds. Next,
the outflows from HEC-HMS (unmanaged and managed) enter the streams in
HEC-RAS as lateral flows to simulate inundation at the watershed scale. Next,
the optimization model calculates the objective function according to Eq. (1) to
determine the new population of schedules of flow releases at the eight ponds.
This procedure is repeated until the optimization stopping criteria is satisfied.
Tests using a population of 72 and a tolerance of 0.01 cfs required about 40-50
generations to converge. The screenshot of a typical convergence process of the
optimization is shown in Fig. 7. After the optimization stop criteria is sat-
isfied, the plots for the optimal schedule of outflows at all storage ponds are
automatically generated. Each plot includes the time trace of the water surface
elevation, storage, total inflow, spill flow and total outflow. A typical graph
produced for one managed storage pond is shown in Fig. 8. As shown in Fig. 8,
the optimization tends to release part of the water from the storage pond ahead
of the inflow hydrograph to provide extra water storage during a heavy storm
event. In the present exercise, the minimum ecological water depth was set to
0.5 ft and the model tried to keep the water level in the storage pond above this
value. In an actual application, the model can be run every few hours to update
the optimal schedule of outflows according to the new precipitation forecasts
and updated water levels in the streams and storage ponds, if available. As
mentioned earlier, in this case study 18 processors in the 8th Generation Intel
Core i7-8700 was used, which requires between 1.5 to 2 hours to complete the
optimization.

Fig. 9 shows downstream inundation area with and without dynamic storage
management for eight storage ponds with a total combined area ranging from 0.7
to 6.9% of the total watershed area. The results in Fig. 9 indicate that when the
combined storage pond area is below around 1.4% of the total watershed area,
there is no visible impact from dynamic storage management. The storage ponds
fill up quickly at the beginning of the rainfall event and there is no much room for
dynamic storage management. When the percentage of combined storage pond
area is above 1.4% of the total watershed area, dynamic storage management
can significantly decrease the downstream inundation area. For example, a
percentage of combined pond area of 2.1% with dynamic storage management
achieves almost the same inundation as a percentage of combined pond area of
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Figure 7. Screenshot of a typical convergence process for optimal schedule of storage outflows
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Figure 8. Typical graph produced for one managed wetland using the plotting scripts

3.5% without dynamic storage management. The latter indicates a reduction
in 40% of the total combined area of storage ponds by using dynamic storage
management. The results also show that inundation can be eliminated when the
percentage of combined pond area is 4.8% with dynamic storage management
and 6.2% without dynamic storage management.

Fig. 10 shows the time trace of inundation depth at the Kenchester Park in
the Cypress Creek watershed with and without dynamic storage management
for a percentage of combined pond area of 3.5%. The results in Fig. 10 show
that the maximum inundation depth and inundation period decreased about
35% with storage management. In practice, land available for flood control is
often limited and the results above show that dynamic storage management
could play an important role in flood mitigation.

6. Conclusions

This paper presents a MATLAB framework for forecasting optimal flow re-
leases in a multi-storage system for flood control. This framework combines
four models namely, HEC-HMS, HEC-RAS, the MATLAB Genetic Algorithm
(GA) Toolbox, and HEC-DSSVue. This paper focuses on presenting a set of
MATLAB scripts for interfacing the aforementioned four software. The scripts
are illustrated using the operation of a hypothetical eight pond system in the
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Figure 10. Time trace of inundation depth at the Kenchester Park in the Cypress Creek
watershed with and without dynamic storage management for a percentage of combined pond
area of 3.5%

Cypress Creek in Houston, Texas. The results of the case study indicate that
dynamic storage management can help to mitigate floods. For instance, in the
present case study, the total combined area of shallow storage ponds (maximum
pond height 0.9 m) required for producing a given flood mitigation can be
reduced in up to 40% by dynamic storage management. It is clear that these
results are case dependent and cannot be generalized.
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