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ABSTRACT 1 

Optimizing the operation of a multi-reservoir system is challenging due to the high dimension of 2 

the decision variables that lead to a large and complex search space. A spectral optimization 3 

model (SOM), which transforms the decision variables from time-domain to frequency-domain, 4 

is proposed to reduce the dimensionality. The SOM couples a spectral dimensionality-reduction 5 

method called Karhunen-Loeve (KL) expansion within the routine of Non-dominated Sorting 6 

Genetic Algorithm (NSGA-II). The KL expansion is used to represent the decision variables as a 7 

series of terms that are deterministic orthogonal functions with undetermined coefficients. The 8 

KL expansion can be truncated into fewer significant terms, and consequently, fewer coefficients 9 

by a predetermined number. During optimization, operators of the NSGA-II (e.g., crossover) are 10 

conducted only on the coefficients of the KL expansion rather than the large number of decision 11 

variables, significantly reducing the search space. The SOM is applied to the short-term 12 

operation of a ten-reservoir system in the Columbia River of the United States. Two scenarios 13 

are considered herein, the first with 140 decision variables and the second with 3360 decision 14 

variables. The hypervolume index is used to evaluate the optimization performance in terms of 15 

convergence and diversity. The evaluation of optimization performance is conducted for both 16 

conventional optimization model (i.e., NSGA-II without KL) and the SOM with different 17 

number of KL terms. The results show that the number of decision variables can be greatly 18 

reduced in the SOM to achieve a similar or better performance compared to the conventional 19 

optimization model. For the scenario with 140 decision variables, the optimal performance of the 20 

SOM model is found with 6 KL terms. For the scenario with 3360 decision variables, the optimal 21 

performance of the SOM model is obtained with 11 KL terms. 22 

 23 
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1. INTRODUCTION 26 

The operation of a multi-reservoir system generally requires simultaneous operational 27 

decisions (e.g., a time discretization of outflows) for each reservoir in the system.  For a system 28 

with a large number of reservoirs, hundreds or thousands of decision variables may be 29 

introduced in optimization of multi-reservoir operation. This high dimensionality of decision 30 

variables greatly increases the complexity of the optimization since the search space grows 31 

exponentially with the dimension of the decision variables (Parsons et al., 2004; Houle et al., 32 

2010). Finding global optimal solutions for multi-reservoir operation is challenging and time-33 

consuming within such a large search space that is often non-differentiable, non-convex and 34 

discontinuous (Yeh, 1985; Wurbs, 1993; Cai et al., 2001; Labadie, 2004). Therefore, reducing 35 

dimensionality of the problem is critical to improve the performance of optimization when 36 

involving multiple reservoirs (Archibald et al., 1999; Lee and Labadie, 2007).   37 

System decomposition is a widely used method to reduce dimensionality of multi-reservoir 38 

operation (Turgeon, 1981; Archibald et al., 2006). System decomposition consists in dividing a 39 

reservoir system into smaller subsystems. In this way, the large-scale optimization is converted 40 

to many small-scale optimization problems, which are solved separately. A model based on 41 

stochastic programming and Benders decomposition was proposed and applied to a 37-reservoir 42 

system (Pereira et al., 1985). Finardi and Silva (2006) combined sequential quadratic 43 

programming with a decomposition method to solve a large-scale optimization problem with 18 44 

hydro plants. Despite advantages of reducing a complex problem into a series of small tractable 45 



tasks, the decomposition based optimization generally finds local optima rather than global 46 

optima (Nandalal and Bogardi, 2007).  47 

Aggregation of a reservoir system (Saad, 1994) is another way to solve the high-dimensional 48 

optimization problem by developing an auxiliary model which normally projects the whole 49 

system into a hypothetical single reservoir. Subsequently, disaggregation of the composite 50 

operational strategy is needed for deriving control policies for an individual reservoir. A good 51 

review of this approach can be found in Rogers et al. (1991). Although 52 

aggregation/disaggregation methods are conceptually straightforward for reducing the 53 

dimensionality of large-scale problems, careful selection of the principles and intensive efforts 54 

are required at each aggregation and disaggregation step (Rogerset et al., 1991). In addition, 55 

there might be errors that are introduced by aggregating/disaggregating the problem 56 

representation (Nandalal and Bogardi, 2007). 57 

In addition to decomposition and aggregation, other dimension-reduction methods were 58 

applied to the optimization of multi-reservoir operation. Saad and Turgeon (1988) applied 59 

Principal Component Analysis (PCA) for reducing the number of state variables in the stochastic 60 

long-term multi-reservoir operating problem. In their research, some significant state variables 61 

were observed based on the correlation of the inflows and reservoir trajectories thus the original 62 

problem of ten state variables were reduced to a problem of four state variables. Fu et al. (2012) 63 

used Global Sensitivity Analysis (GSA) to calculate the sensitivity indices of all decision 64 

variables and define a simplified problem that considers only the most sensitive decision 65 

variables. These studies aim to solve a simplified optimization problem with less state or 66 

decision variables. The reduction of the number of decision variables reduces the complexity of 67 



the problem. However it may also reduce the accuracy of the optimization as some decision 68 

variables are explicitly ignored.  69 

The present study proposes a new optimization model which aim to reduce the dimensionality 70 

of multi-reservoir operation by transforming the decision variables from time-domain to 71 

frequency-domain. The proposed model does not decompose or aggregate the system, hence 72 

avoiding local optima. The model builds a connection of the decision variables between time-73 

domain and frequency-domain by coupling a spectral dimensionality-reduction method with an 74 

evolutionary optimization algorithm (i.e., NSGA-II). This connection allows a transformation 75 

between discrete decision variables in time-domain and undetermined coefficients, i.e., decision 76 

variables in frequency-domain. In the optimization algorithm, the large number of decision 77 

variables is first transformed to fewer coefficients, the number of which is predetermined. 78 

Operators of the optimization algorithm (e.g., crossover) are only applied to the coefficients 79 

rather than the large number of decision variables in time domain. This approach greatly reduces 80 

the search space. Once the frequency-domain coefficients are determined at a given generation, 81 

they are transformed back to the original decision variables in time-domain in order to check the 82 

violation of constraints and to evaluate the objectives. In this way, the formulation of the 83 

problem (i.e., decision variables, objectives and constraints) is fully preserved during the 84 

optimization process, and hence, does not simplify the representation of the problem. The 85 

proposed optimization model is compared to a conventional optimization model (without 86 

dimension reduction) using a ten-reservoir system in the Columbia River of the United States as 87 

test case. The study also includes a sensitivity analysis on the number of coefficients that needs 88 

to be predetermined. Finally, the limitations of this approach and future work are discussed. 89 

2. Methodology  90 

2.1 Karhunen-Loeve (KL) expansion 91 



The Karhunen-Loeve (KL) expansion (Kosambi, 1943; Karhunen, 1947; Williams, 2015) is a 92 

representation of a random process as a series expansion involving a complete set of 93 

deterministic functions with corresponding random coefficients. Consider a random process of 94 

( )Q t and let ( )Q t be its mean and C(s,t)=cov( ( )Q s , ( )Q t ) be its covariance function. The Q(s) 95 

and Q(t) are variables at different time step. Then, the KL expansion of ( )Q t can be represented 96 

by the following function: 97 

( ) ( ) ( )
1

k k k
k

Q t = Q t + ψ t ξλ
∞

=
∑         (1) 98 

where { } 1
,k k k=

ψ λ ∞  are the orthogonal eigen-functions and the corresponding eigen-values, 99 

respectively, and are solutions of the following integral equation: 100 

( ) ( ) ( )λψ t = C s,t ψ s ds∫          (2) 101 

Equation (2) is a Fredholm integral equation of the second kind. When applied to a discrete and 102 

finite process, this equation takes a much simpler form (discrete) and we can use standard 103 

algebra to carry out the calculations. In the discrete form, the covariance matrix C(s,t) is 104 

represented as an N×N matrix, where N is the time steps of the random process. Then the above 105 

integral form can be rewritten as ∑ C(s, t)Ψ(s)N
s,t=1   to suit the discrete case.   106 

{ } 1k k=
ξ ∞ in Equation(1) is a sequence of uncorrelated random variables (coefficients) with mean 0 107 

and variance 1 and are defined as: 108 

( ) ( ) ( )1
k k

k

ξ = Q t Q t ψ t dt
λ

 − ∫ .        (3) 109 



The form of the KL expansion in Equation (1) is often approximated by a finite number of 110 

discrete terms (e.g., M), for practical implementation. The truncated KL expansion is then 111 

written as:  112 

( ) ( ) ( )
1

M

k k k
k

Q t Q t + ψ t ξλ
=

≈ ∑ .        (4) 113 

The number of terms M is determined by the desired accuracy of approximation and strongly 114 

depends on the correlation of the random process. The higher the correlation of the random 115 

process, the fewer the terms that are required for the approximation (Xiu, 2010). One approach to 116 

roughly determine M is to compare the magnitude of the eigen-values (descending order) with 117 

respect to the first eigen-value and consider the terms with the most significant eigen-values. 118 

With the truncated KL expansion, the large number of variables in time-domain is reduced to 119 

fewer coefficients in the transformed space (i.e., frequency-domain). The KL expansion has 120 

found many applications in science and engineering and is recognized as one of the most widely 121 

used methods for reducing dimension of random processes (Narayanan et al., 1999; Phoon et al., 122 

2002; Grigoriu et al., 2006; Leon et al., 2012; Gibson et al., 2014). Since the KL expansion 123 

method transforms variables from time-domain to frequency-domain, this method is referred as 124 

a spectral method for dimensionality reduction (Maitre and Knio, 2010). 125 

2.2 NSGA-II 126 

NSGA-II(Deb et al., 2002) is one of the most popular methods for optimization of multi-127 

objective problem (MOP) and increasingly receives attention for practical applications (Prasad 128 

and Park, 2004; Atiquzzaman et al., 2006; Yandamuri et al., 2006; Sindhya et al., 2011; Chen et 129 

al., 2014, Leon et al., 2014). The NSGA-II follows the primary principles of the classical 130 

Genetic Algorithm by mimicking evolution process of genes using selection, crossover and 131 



mutation operators. For a MOP, a set of non-dominated solutions is obtained according to the 132 

concept of non-dominance, rather than a single solution. The final set of non-dominated 133 

solutions that satisfies the stopping criteria is referred to as Pareto-optimal solutions or Pareto 134 

front. The steps of the NSGA-II applied to reservoir operation are illustrated in Figure 1. A 135 

parent-centric crossover (PCX, Deb et al., 2011) is adopted in the NSGA-II instead of the 136 

original simulated binary crossover (SBX). The PCX was found to be superior in the 137 

rotated/epistasis optimization problem (Hadka and Reed, 2013; Woodruff et al., 2013) where the 138 

decision variables have strong interaction between each other. 139 



 140 

Figure 1. Steps of the NSGA-II and spectral optimization model (in bold and italic)  141 

2.3 Coupling the KL expansion and the NSGA-II 142 

Incorporating the KL expansion into an optimization framework is not intuitive because the 143 

KL expansion is mainly used for random processes. The fundamental novel contribution of this 144 



work is to introduce the perspective that the optimal decision variables can be treated as a 145 

realization of a random process which itself can be described by a collection of previous 146 

realizations. The random coefficients in the KL expansion are then understood to be the 147 

unknown coefficients of the desired realization to be determined, and therefore to be the new 148 

decision variables. 149 

One of the major uncertainties in reservoir operation is the inflow discharge, which can be 150 

treated as a random process with a pre-defined probability distribution, such as Log-Pearson type 151 

III (Durrans et al., 2003). Historical inflows can be thought as different realizations of this 152 

distribution. On the other hand, the purpose of the optimization is to find optimal operational 153 

policies, i.e., decision variables through a deterministic optimization model given an inflow 154 

realization. In this context, the optimal decision variables can be thought of as another random 155 

process associated to the inflow random process. Each optimal operational policy is a realization 156 

of that random process for a given inflow scenario. Therefore, we can apply the KL expansion to 157 

construct a representation of the decision variables.  158 

To obtain a KL representation of the decision variables, multiple sets of decision variables are 159 

needed in order to calculate the covariance function for the random process. The construction of 160 

KL expansion for the decision variables and the incorporation of the KL expansion into the 161 

NSGA-II algorithm are described below. 162 

(1) Construction of KL expansion for the decision variables 163 

First, a conventional optimization model is set up (i.e., with no incorporation of the KL 164 

expansion). This optimization model is repeatedly run for various historical inflow schemes. 165 

Then, the optimal decision variables for each inflow scenario are collected and treated as a 166 

sample space for the decision variables. By using this collection of decision variables, a 167 



representation of the KL expansion can be constructed using the steps described in Section 2.1. 168 

The KL expansion requires the mean and covariance of the decision variables, which are 169 

calculated from the aforementioned collection. The eigen-values and eigen-functions are 170 

computed using Equation (2), where a predetermined number of terms in this Equation are used 171 

(e.g., 50 terms). After selecting the distribution of random variables e.g., uniform or Gaussian, 172 

the KL expansion is constructed using Equation (1). Then the KL expansion can be truncated by 173 

comparing the ratios of the eigen-values or more rigorously, through sensitivity tests on the 174 

number of truncated terms (Leon et al., 2012; Gibson et al., 2014).  175 

It is clear that the construction of the KL expansion for the decision variables needs a 176 

collection of optimal solutions. This requires multiple runs of the conventional optimization 177 

model under different inflow schemes, which demands intensive computational burden. 178 

However, this computation is only required prior to the construction of the KL expansion and is 179 

a once-for-all task. 180 

(2) Coupling the KL expansion with NSGA-II 181 

After the (truncated) KL expansion is constructed, it is incorporated into the NSGA-II algorithm 182 

using the following procedure (also illustrated in Figure 1): 183 

1. Predetermine parameters for starting the NSGA-II and then predetermine the number of 184 

truncation terms for the KL expansion; 185 

2. Randomly generate multiple sets (e.g., populations) of realizations for the coefficients kξ186 

in the KL expansion. Since the eigen-functions and the corresponding eigen-values are 187 

determined and remain unchanged in the optimization, the decision variables can be 188 



obtained by simply substituting the coefficients kξ in Equation 4. Then, store the values of 189 

the coefficients along with the obtained decision variables.  190 

3. Implement steps (3) and (4) in the NSGA-II procedure (Figure 1), evaluating the 191 

objective and constraints for the decision variables. Then, sort the population according 192 

to their dominance relations. 193 

4. Implement step (5) in the NSGA-II procedure, i.e., creating offspring by the operators. 194 

Note that the variables to be optimized are KL expansion coefficients. Store the values of 195 

the coefficients that have been changed by the operators. Generate a new set of decision 196 

variables as offspring population by using the KL expansion with the changed 197 

coefficients.  198 

5. Implement steps (6) to (9) in the NSGA-II procedure. 199 

The steps above mentioned require few changes in the NSGA-II algorithm and its 200 

implementation is straightforward. Once the KL expansion is constructed, no extra effort is 201 

required during the optimization. The number of KL terms, i.e., the number of random 202 

coefficients, is the only parameter that needs to be specified. The distribution of the random 203 

coefficients is often assumed to be uniform or Gaussian but other distributions can also be used 204 

(Phoon, 2005). 205 

2.4 Evaluation metric 206 

     The performance of multi-objective optimization is measured based on mainly two aspects: 207 

convergence and diversity of the Pareto front (Deb et al., 2002). Various metrics have been 208 

proposed in the past decades (e.g., generational distance for convergence and spread metric for 209 

diversity).  Recently, a hypervolume index was found to be a good metric for evaluating the 210 



performance of multi-objective optimization (Zitzler et al., 2000, 2003; Reed et al., 2013) due to 211 

its property of combining the convergence and diversity metrics into a single index. The 212 

hypervolume index basically measures the volume of objective space covered by a set of non-213 

dominated solutions. A higher hypervolume index denotes better quality of the solutions in terms 214 

of convergence and diversity. Generally, a true Pareto front or the best known Pareto 215 

approximation set (i.e., reference set) is ideal or preferred for performance evaluation. However, 216 

the hypervolume index can be used to compare two solution sets based on its properties 217 

(Knowles and Corne, 2002). The hypervolume index (Ih) (Zitzler et al., 2000, 2003) is defined 218 

as: 219 

(1,1)

(0,0)
( ) ( )h AI A dzα= Ζ∫            (5) 220 

Where A is an objective vector set, Z is the space (0,1)n for the normalized objectives (n=2 in our 221 

test case), ( )Aα Ζ  is the attainment function which will have a value of 1 if A is a weakly 222 

dominated solution set in Z. The hypervolume index calculates the volume of the objective space 223 

enclosed by the attainment function and the axes. In this study, the hypervolume index is adopted 224 

to compare performances of optimization solutions at various generations.  225 

3. TEST CASE 226 

Ten reservoirs, which are the core part of the Federal Columbia River Power System (FCRPS) 227 

in the United States, are used as a test case. A sketch of the ten-reservoir system is shown in 228 

Figure 2. The Grand Coulee reservoir (GCL) and other five reservoirs are located on the main 229 

stem of the Columbia River (Upper and Lower Columbia in Figure 2). The Lower Granite 230 

(LWG) reservoir and three other reservoirs are located on the Snake River, the largest branch of 231 

http://www.google.com.hk/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&cad=rja&ved=0CDYQFjAB&url=http%3A%2F%2Fwww.bpa.gov%2Fpower%2Fpg%2Ffcrps_brochure_17x11.pdf&ei=hmDXUs2iD5DeoATYoIKgBg&usg=AFQjCNFvCgytyCEhrXzkF-oS2j0VkCXgbg


the Columbia River.  Five small private dams, which are located downstream of the Chief Joseph 232 

reservoir (CHJ), are not part of the FCRPS and hence are not considered in the present study.  233 

 234 

Figure 2. Sketch of the ten-reservoir system in the Columbia River 235 

The FCRPS system serves multiple purposes e.g., power generation, ecological and 236 

environmental objectives (Schwanenberg et al., 2014). During spring and summer, the reservoir 237 

system is operated to help migration of juvenile anadromous fish by maintaining a minimum 238 

operation pool level (MOP) and spilling certain amount of flow (called fish flow) through non-239 

turbine structures. For LWG, LMN, IHR and BON reservoirs, the fish flow requirements are set 240 

as different various rates of flow. For LGS, MCN, JDA and TDA reservoirs, the fish flow 241 

requirements are expressed as percentages of the reservoir outflows. During autumn and winter, 242 

the reservoir system normally has no longer fish flow requirements. 243 

     The optimization period was selected as two weeks, a week before and after the date of 244 

September 1st, at which the reservoir system usually shifts its objectives from maximizing power 245 

generation and minimizing fish flow violation to only maximizing power generation (Chen et al., 246 

2014).  Two optimization scenarios are considered in this study. These two scenarios have the 247 



same objectives, constraints and optimization horizon but with different time step.  The decision 248 

variables are the outflows of each reservoir at each time interval during the optimization horizon, 249 

which is 14 days. The first scenario, with daily time step, consists of 140 decision variables. The 250 

second scenario, with hourly time step, comprises 3360 decision variables.  251 

3.1 Objectives 252 

1) Maximizing Power Revenue  253 

      An important objective of the reservoir system is to meet power load in the region and gain 254 

maximum revenue from electricity generation. Power generated that exceeds the load can be sold 255 

in a power market. On the other hand, electricity needs to be purchased if a deficit to the load 256 

occurs. Net electricity is defined as hydropower generated minus the load. The revenue is then 257 

quantified by multiplying the net electricity by real-time prices from the power market. The 258 

revenue objective is expressed as: 259 

1 1
max (( ) ) )

T Nr
i
t t t

t i
PG PL PR

= =

− ∗∑ ∑                                    (6) 260 

Where PG is hydropower generated in the system (MW), PL is power load in the region (MW). 261 

The variable t is time, e.g., in days(first scenario) or hours(second scenario); T denotes the 262 

optimization period e.g., 14 days, the index i represent reservoirs in the system, Nr is total 263 

number of reservoirs, and PR is the market price for hydropower (MW/dollar). The prices of 264 

hydropower for the two week period were pre-determined by an economic model (Chen et al., 265 

2014) and were treated as deterministic parameters in the study. 266 

2) Minimizing Fish flow violation   267 

Most of the reservoirs in the system are required to spill certain amount of flow through non-268 

turbine structures such as sluices or gates. These flow requirements are expressed as either a 269 



fixed flow rate or a percentage of the total outflow of a reservoir. The objective for minimizing 270 

violation on the fish flow requirements is expressed as 271 

/2

1 3
min ( / )

T Nr
i i i
t t t

t i
QS QF QF

= =

−∑ ∑                                                                                                   (7) 272 

Where QS is the spill flow and QF is the fish flow requirement. According to the Columbia 273 

River operational scheme, the Grand Coulee (i=1) and Chief Joseph (i=2) reservoirs are not 274 

required to satisfy any fish flow requirements. In addition, all the fish flow requirements are 275 

only specified for the first week of the period under consideration.  276 

In the optimization model, the two objectives are converted into a minimization problem and 277 

are normalized using a dimensionless index between zero and one. The power revenue and fish 278 

flow violation objectives are denoted as f1 and f2, respectively. Because our optimization 279 

problem is a minimization, a better result is achieved when the value is closer to zero for each 280 

objective. Other purposes of reservoir operation such as flood control or MOP (minimum 281 

operation level) requirements are expressed as constraints on either reservoir water surface 282 

elevations or storage limits, as described below.  283 

3.2 Constraints 284 

     The constraints considered in the model include: 285 

1) Water Balance Constraints 286 

1 1 1
, , , ,(( ) / 2 ( ) / 2)t t t t t t

i i in i in i out i out iV V Q Q Q Q t+ + +− = + − + ⋅∆                                                    (8) 287 

where V is reservoir storage; Qin and Qout are inflow to and outflow from reservoirs, 288 

respectively; ∆t is unit time within a time interval i.e., time step. Water losses such as 289 

evaporation are not considered in the model. 290 

2) Reservoir Forebay elevation Constraints 291 



min, , m ,
t

r i r i r ax iH H H≤ ≤   (9) 292 

where Hr is Forebay elevation or reservoir water surface elevation; Hrmin and Hrmax  are 293 

allowed minimum and maximum Forebay elevations, respectively. 294 

3) Reservoir MOP Constraints 295 

   In the present test case, the MOP requirements are only necessary during the first week for 296 

helping fish migration. The MOP requirements are expressed as follows: 297 

,low up

i t i
r iMOP H MOP≤ ≤                                                                                                            (10) 298 

Where Hr is Forebay elevation, and MOPlow and MOPup are lower and upper boundary for the 299 

MOP requirement, respectively.  300 

4) Turbine Flow Constraints 301 

The turbine flow constraints are expressed as follows: 302 

_ min, , _ max,
t

tb i tb i tb iQ Q Q≤ ≤                                                                                                     (11) 303 

where Qtb is turbine flow, Qtb_min and Qtb_max are allowed minimum and maximum turbine 304 

flows, respectively; 305 

5) Ramping Limits for Outflow 306 

1
, , _ _ ,

t t t
out i out i out ramp allow iQ Q Q+− ≤                                                                                             (12) 307 

Where Qout is outflow from reservoir, Qout_ramp_allow is allowed ramping rate for the outflow 308 

between any two consecutive time steps. 309 

6) Ramping Limits for Forebay Elevation 310 

The ramping limits for the Forebay elevation are expressed as follows: 311 

1
, , _ ,

t t t
r i r i ramp down iH H H+− ≤ (if 1

, , 0t t
r i r iH H +− >  )                                                                      (13) 312 

1
, , _ ,

t t t
r i r i ramp up iH H H+ − ≤  (if 1

, , 0t t
r i r iH H +− <  )                                                                       (14) 313 



Where Hramp_up is allowed ramping rate when reservoir water level is increasing and 314 

Hramp_down is allowed ramping rate when reservoir water level is decreasing. 315 

7) Ramping Limits for Tail Water Elevation  316 

1
, , _ ,
t t t

r i r i ramp down iTW TW TW+− ≤ (if 1
, , 0t t

r i r iTW TW +− >  )                                                              (15) 317 

where TWramp_down is allowed ramping rate for tail water. This ramping rate is only applied 318 

when tail water elevation is decreasing. 319 

8) Output Constraints 320 

_ min, , _ max,
t

d i d i d iN N N≤ ≤                                                                                                 (16) 321 

Where Nd is power output, Nd_min is minimum output requirement, and Nd_max is maximum 322 

output capacity. 323 

9) Constraints on end-of-optimization Forebay Elevation  324 

The Forebay elevation of the ten reservoirs at the end of optimization is expected to stay 325 

within certain elevations in order to fulfill their future obligations. These targets are often 326 

determined by middle-term or long-term optimization models (Lund, 1996) which are not part of 327 

this study. In the present test case, historical forebay elevations were used as the target elevations 328 

at the end of the optimization.  These constraints are expressed as:  329 

, ,
end
r i tar iH H≥

                                                                                                                  (17) 330 

where ,
end
r iH  is forebay elevation at the end of optimization; Htar is the target forebay elevation at 331 

the end-of-optimization. 332 

3.3 Spectral optimization model  333 

Initially, a conventional optimization model is set up (i.e., with no KL expansion) using the 334 

NSAG-II as the optimization method. It is expected that the number of inflow schemes used in 335 



the construction of the KL has some influence on the optimization results. It is recommended 336 

that the user include as many inflow schemes as possible in order to cover all possible 337 

realizations of the inflow. These can be from historical records or from synthetic inflows. It is 338 

also recommended to exclude abnormal inflow schemes due to for instance dam reconstruction. 339 

In our case study, the Mica dam, which is one of the large reservoirs situated upstream of the ten-340 

reservoir system, was completed in 1973 and expanded its power house in 1977. The Grand 341 

Coulee dam, the upstream reservoir in our case study, was constructed between 1933 and 1942 342 

but its third power station was completed in 1974. Therefore, we considered historical inflow 343 

schemes from the year of 1977 (the most recent change) to the year of 2011 (the most recent 344 

available inflow). Those 35 historical inflow schemes are used as deterministic inflows and the 345 

conventional optimization model is solved for each inflow scenario. Each run of the optimization 346 

provided multiple sets of optimal decision variables (number of sets is equal to the population 347 

size), the collection of which constituted a sample space for the decision variables.  348 

The population size of each run in our study is 50 which then result in 1750 (=35*50) set of 349 

decision variables. Figure 3 shows a collection of decision variables (daily and hourly time step) 350 

for the Grand Coulee reservoir as an example. The oscillation of the hourly decision variables are 351 

expected due to the variation of the power demand during the day, which is normally high during 352 

certain hours of the day (so called Heavy Load Hours) and low in other hours of the day (so 353 

called Light Load Hours). By using this collection of decision variables, a representation of the 354 

KL expansion can be constructed by following the procedures in Sections 2.1 and 2.3. In this 355 

study, we chose uniform random variables to represent the random coefficients in Equation (3), 356 

although other probability distributions could be used, for example a Beta distribution, in order 357 

to give more preference to realizations near the mean. We emphasize that the probability 358 



distribution only affects the initial population as remaining aspects of the model do not utilize the 359 

distribution of the random variables. It is worth mentioning that the KL construction of the 360 

decision variables is expected to be more accurate if more inflow schemes are available to be 361 

included. The relation between the inflow information and the results of the spectral optimization 362 

model will be investigated in a follow-up paper.  363 

The covariance structure C(s,t) of the decision variables for Grand Coulee reservoir is shown 364 

in Figure 4. The large values in the covariance map indicate a strong correlation between the 365 

decision variables. The first 50 eigen-values in the KL expansion are presented in Figure 5. This 366 

figure shows that only the first few eigen-values are significant for both, daily decision variables 367 

and hourly decision variables. Some of the first eigen-functions are also shown in Figure 6 for 368 

reference. The eigen-functions for hourly decision variables show oscillations in a similar way to 369 

the decision variables (Figure 3a). As mentioned earlier, these oscillations are driven by the 370 

variation of the power demand during the day. After the KL expansion is constructed, the 371 

optimization model, coupling the KL expansion and the NSGA-II, is assembled by following the 372 

steps in Figure 1. The resulting model is referred as spectral optimization model because it 373 

incorporates a spectral method for dimension reduction into an optimization routine. It is pointed 374 

out that the KL representation of the decision variables is specific to a reservoir system (e.g., if 375 

one or more reservoirs are added to the system, the KL needs to be reconstructed). The KL 376 

construction of the decision variables will also depend on the choice of time horizon, time step 377 

and other features of the model which affect the structure of the decision variables. From a 378 

practical point of view, the construction of the KL may be viewed as an 'off-line' computation 379 

which can be done before any optimization for actual reservoir operation. After the KL has been 380 



constructed, the spectral optimization model is available to be used as a conventional 381 

optimization model e.g., NSGA-II for any 'on-line' optimization.  382 

 383 

Figure 3. Collection of daily decision variables and hourly decision variables for Grand Coulee Reservoir 384 

 385 

Figure 4. Covariance structure of daily decision variables and hourly decision variables 386 



 387 

Figure 5. The first 50 eigen-values of daily decision variables and hourly decision variables 388 

 389 

Figure 6.  Some of the eigen-functions of daily decision variables and hourly decision variables  390 

for constructing the KL expansion 391 



3.4 Experiments  392 

The most critical parameter of the spectral optimization model is the number of terms in the 393 

KL expansion i.e., M in Equation (4). Normally, fewer terms result in a higher computational 394 

efficiency due to dimension reduction but may lead to a lower accuracy. For each scenario of the 395 

decision variables (i.e., daily decision variables and hourly decision variables),  we tested 1 to 12 396 

KL terms with an increment of 1, and 12 to 40 KL terms with an increment of 4 to investigate 397 

the effect of M in the optimization. This resulted in a total of 38 experiments for the two 398 

scenarios.    399 

We conducted another two experiments to compare the spectral optimization model (SOM) 400 

against a conventional optimization model (COM) which also uses the NSGA-II as the 401 

optimization routine. For a fair comparison between the COM and SOM, the collection of 402 

decision variables is included in the COM. This collection was used in the COM as the so-called 403 

“preconditioning” technique (Nicklow et al. 2009; Fu et al., 2011) which employ some known 404 

good solutions into the first generation (starting points) to improve the search process of 405 

optimization problems. However, those good solutions are not directly taken as the first 406 

generation in the conventional optimization model. Instead, the initial population is obtained 407 

using the constructed KL representation. This way of "preconditioning'' utilizes the range and 408 

covariance (e.g., distribution) calculated from good solutions. The initial population for the 409 

spectral optimization model is obtained in the same way (step 2 in Figure 2). The population and 410 

generation used for the COM and the SOM are also the same. The population is set as 50 and the 411 

number of generations is set as large as 10000 in order to ensure solution convergence.  412 

The performance of both models (SOM and COM) for the two-week period were tested using 413 

a new inflow scheme, i.e., the historical inflow record of year 2012, the optimal decision 414 



variables of which were not used for constructing the KL expansion. The results of the two 415 

models for the historical inflow of year 2012 are compared and discussed in the next section.  416 

4. Results and Discussion  417 

Because of the random nature of Genetic Algorithms, optimization results may have some 418 

differences for different runs, like other random-based search algorithms. For each experiment, a 419 

50 random-seed replicate runs are used and the average values are reported. For the daily 420 

decision variable scenario, the average computational time for the COM is 233 seconds in the 421 

environment of CPU Intel 3.40GHz/64-bit. The average CPU time for the SOM ranges between 422 

227 and 241 seconds for all experiments under the same computational environment. As the 423 

decision variables change into hourly time step, the average computational time increases to 787 424 

seconds for the COM and 754-832 seconds for the SOM.   425 

The hypervolume index of the last generation (i.e., the 10000th generation) for all the SOM 426 

experiments are shown in Figure 7. For the COM, the hypervolume index of the last generation 427 

for the daily and hourly decision variable scenarios is 0.45 and 0.46, respectively. Since the 428 

hypervolume index represents the quality of the solution, the higher is the value of this index, the 429 

better is the quality of the solution in terms of convergence and diversity. Compared to that of 430 

the COM, most of the SOM experiments resulted in higher hypervolume index except when the 431 

SOM has 1-2 KL terms for the daily decision variable scenario, and 1-4 KL terms for the hourly 432 

decision variable scenario. For the daily decision variable scenario, the SOM with 3 KL terms 433 

has a hypervolume index of 0.459, which is slightly larger than that of the COM (0.45).  An 434 

increase in the number of KL terms results in a larger hypervolume index, i.e., better 435 

performance. However, the performance of the SOM optimization does not improve 436 

monotonically. As can be observed in Figure 7(a), the hypervolume index of the SOM increases 437 



with the number of KL terms and reaches its highest value (0.52) for 6 KL terms. As the number 438 

of KL terms increases to 12, the hypervolume index decreases to around 0.47 and this value is 439 

maintained almost constant when the number of KL terms is further increased up to 40.  Figure 440 

7(b) shows similar results for the hourly decision variable scenario.  The optimal number of KL 441 

terms can be identified as 11. However, there is no obvious “peak” for the hypervolume index 442 

compared to that of the daily decision variable scenario. For the hourly decision variable 443 

scenario, the SOM hypervolume index drastically increases for the first few KL terms. After 5 444 

KL terms, the SOM hypervolume index exceeds the COM hypervolume index (0.46). This 445 

means that the 3360 decision variables can be reduced to only 5 coefficients for achieving the 446 

same optimization performance. In a similar way to the daily decision variable scenario, the 447 

hypervolume index for the hourly decision variable scenario tends to stabilize after the number 448 

of KL terms reach to a certain point (11 KL terms in this case).  449 

 450 

Figure 7 Hypervolume index of last generation for the SOM with different KL terms 451 



For better visualization, we compare the non-dominated solutions for the last generation (i.e., 452 

Pareto front) for the COM and the SOM with different KL terms (Figure 8(a)).  Due to space 453 

limitations and because of the similarity of the two scenarios, only the results for the daily 454 

decision variable scenario are presented herein. To avoid cluttering the figure as well, only the 455 

results of the SOM for 3, 6 and 40 KL terms are presented. Unlike test functions with theoretical 456 

Pareto-optimal solutions, there is no "known" true Pareto-optimal front for a real-world reservoir 457 

operation. Alternatively, a reference set of solutions could be used to approximate the true 458 

Pareto-optimal front. In this study, in a similar way to Kollat et al. (2008) and Reed et al. (2013),  459 

the reference set was generated by combining the best solutions from all the experiments and 460 

performing non-dominated sorting of the obtained results. This reference set is included in 461 

Figure 8(a). 462 

 463 

Figure 8 Pareto fronts (a)and Hypervolume index at every ten generations(b) for the COM and SOM with 464 

different KL terms 465 



Since this is a minimization problem for both objectives f1 and f2, for convergence, the 466 

solutions which are closer to the lower left corner in Figure 6 are the best. For diversity, a Pareto 467 

front with large spread of solutions would be desirable. It is clear that the SOM with 3, 6 and 40 468 

KL terms obtained better Pareto fronts than that of the COM, in both convergence and diversity. 469 

The SOM with 3 KL terms has similar Pareto front with the SOM with 40 KL terms, in 470 

accordance with the results of the hypervolume index (0.459 vs 0.471).  Most of the solutions 471 

obtained using 40 KL terms show better convergence than those using 3 KL terms, however the 472 

solutions with 3 KL terms show a better performance in diversity. Compared to the COM and the 473 

SOM with 3 and 40 KL terms, the SOM with 6 KL terms display better optimization 474 

performance. Most of the non-dominated solutions for the SOM with 6 KL terms are closer to 475 

the lower left corner in Figure 5 indicating a better convergence. Moreover, its Pareto front is 476 

more spread indicating a better diversity than the other experiments. In addition, most of the 477 

solutions for the SOM with 6 KL terms are found to overlap with the reference set, which is the 478 

best approximation of the “true” Pareto front. These results indicate that performance of the 479 

SOM is sensitive to the number of KL terms and that an increase in the number of KL terms does 480 

not necessarily improve the solution. A large number of KL terms (e.g., 40) may deteriorate the 481 

solution due to a large search space. On the other hand, few KL terms (e.g., 1) in the transformed 482 

space may not be able to represent all the decision variables in the time-domain thus failing to 483 

achieve the global optima. An optimal number of KL terms (6 in this case) can be identified 484 

through a sensitivity analysis.  485 

To better understand the improvement of the solutions during the optimization, the 486 

hypervolume index at every 10 generations for the COM and SOM (with 3, 6 and 40 KL terms) 487 

are shown in Figure 7. An increase of the hypervolume index denotes an improvement of the 488 



solutions. If the hypervolume index remains constant, it can be assumed that the solution has 489 

converged. Overall, the results in Figure 7 show that the hypervolume index for the SOM 490 

increases at a faster rate compared to the COM. This rate was particularly faster during the first 491 

3000 generations, at the end of which the solutions for the SOM have practically converged. 492 

Contrastingly, the solution for the COM did not converge until about 9500 generations. The 493 

results also show that all the solutions for the SOM after 1000 generations are superior to the 494 

COM even after 10000 generations. This would imply that the convergence rate for the SOM is 495 

at least 10 times faster than the COM. In other words, the SOM would need only one tenth of the 496 

number of iterations of the COM to achieve a similar accuracy.   497 

Overall, as expected, the hypervolume index for the SOM and COM increases with the 498 

number of generations. The hypervolume index for the SOM with 40 KL terms increased rapidly 499 

during the first 1000 generations, after which the increase slows down converging to a constant 500 

value smaller than that of the SOM with 6 KL terms. This behavior may be associated to 501 

premature convergence which is typical of GA-based algorithms dealing with complex 502 

optimization problems. Premature convergence often occurs when some super-genes dominate 503 

the population and hence, converge to a local optima instead of the global (Leung et al., 1997; 504 

Hrstka and Kučerová., 2004). It should be noted in Figure 7 that the initial hypervolume index 505 

(the 10th generation) for the SOM with 40 KL terms is the largest, although it is exceeded by the 506 

SOM with 6 KL terms after about 1500 generations. From these results, it can be inferred that a 507 

larger number of KL terms results in a higher hypervolume index and faster convergence rate at 508 

the beginning of the optimization. This is reasonable since more information is provided to the 509 

coefficients from the decision variables in the time-domain. On the other hand, fewer KL terms 510 

help to reduce the search space, reducing the time for achieving the optimal solutions. Therefore, 511 



a dynamic number of KL terms during the optimization process may be a good alternative, where 512 

more KL terms can be used in the early stages of the optimization for the so-called “exploration” 513 

and then reduced gradually at later stages for the so-called “exploitation”. This alternative will be 514 

explored in a follow-up work of this paper.  515 

Overall, this study shows that the SOM achieves better convergence and diversity compared to 516 

the COM. The efficiency and accuracy of the optimization are greatly improved due to the 517 

largely reduced search space. The better performance of the SOM may be also associated with 518 

the interdependences between the decision variables. The search difficulty increases as the 519 

decision interdependences between the decision variables increases (Goldberg 2002, Hadka and 520 

Reed, 2013; Woodruff et al., 2013). The decision variables of a multi-reservoir system are 521 

obviously correlated and dependent in some extent, which makes the optimization (e.g., the 522 

COM) difficult to solve in the time domain even when the PCX operator is used. Contrastingly, 523 

the decision variables in the frequency domain (i.e., coefficients) are mutually independent and 524 

hence the optimization (e.g., the SOM) is not as complex as in time domain.  525 

It should be noted that the transformation of the decision variables from time-domain to 526 

frequency-domain requires some prior information for constructing the KL expansion. The prior 527 

information can be obtained from historical inflows or from synthetically generated inflows. 528 

Alternatively, historical records of decision variables could also be used for constructing the KL 529 

expansion. The quality of the prior information (e.g., number of data sets available) may 530 

significantly affect the quality of the results. Future studies may need to address these issues. In 531 

addition, the problem structure e.g., constraints and objectives are also expected to influence the 532 

representation of the KL expansion since changes of the constraints or objectives certainly 533 

change the decision variables.  It is worth mentioning that the representation of the KL expansion 534 



is specific to a problem with a given structure, inflow distribution and optimization horizon. The 535 

KL representation needs to be done before any optimization for actual reservoir operation and 536 

may be thought as an 'off-line' computation. This 'off-line' preparation can be computational 537 

expensive but it is done only once.  538 

 539 

5. Conclusion 540 

This paper presents a spectral optimization model for multi-reservoir operation which can 541 

transform a large number of decision variables in time-domain to fewer undetermined 542 

coefficients in frequency-domain, therefore largely reducing the dimensionality of the problem. 543 

To assess the benefits of the spectral optimization model (SOM), the SOM with various numbers 544 

of coefficients (from 1 to 40) was compared to a conventional optimization model (COM) using 545 

a ten-reservoir system in the Columbia River as test case. Overall, the results show that the 546 

proposed SOM achieves better convergence and diversity compared to the COM. For the 547 

scenario with 140 decision variables, the SOM with only 3 coefficients (i.e., KL terms) can 548 

achieve a similar optimization performance as the COM. The SOM with 6 KL terms was found 549 

to achieve the overall best performance. For the scenario with 3360 decision variables, the SOM 550 

with 5 KL terms exhibit a similar optimization performance as the COM. For this scenario, the 551 

SOM with 11 KL terms achieved the overall best performance. Future work needs to be 552 

conducted to investigate relations between variability of inflows, correlation degree of reservoir 553 

system and reduction of decision variables.  554 

Although the NSGA-II algorithm is used in this study, the concept of spectral optimization is 555 

general and can be easily implemented in other evolutionary algorithms or random search based 556 

optimization routines.  557 
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