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Abstract 

A robust model for simulating the simultaneous occurrence of free surface and pressurized flows is 

presented using the Preissmann slot approach for modeling pressurized flows. This model is capable of 

simulating transient flows in closed conduits ranging from free surface flows, to partly free surface-partly 

pressurized flows (mixed flows), to fully pressurized flows. Its robustness for simulating mixed flows is 

accomplished by: (1) Introducing a gradual transition between the pipe and the slot, and (2) Using a 

second-order Godunov-type scheme with a slope limiter to solve the governing free surface flow equations. 

The accuracy and robustness of the modified Preissmann model is investigated using five test cases. The 
results show that the proposed model accurately describes complex flow features, such as negative open 

channel-pressurized flow interfaces and interface reversals. The results also show that the proposed model 

is able to produce stable results for strong (rapid) transients at field scale where no sub-atmospheric flows 

occur.  
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1 Introduction 

Although storm-sewer systems are generally designed based on free surface flow, large variations in the 

inflow and outflow from these systems in practice result in flow conditions that vary from dry to free 

surface flow, to partly free surface-partly pressurized flow (mixed flow), and to fully pressurized flow. The 

transition between free surface and pressurized flows is of particular importance because it is often 

associated with infrastructural damage and problems of operation and control in storm-sewer systems. 

The approaches for modeling mixed flows can be divided into two general categories (e.g., Li and 

McCorquodale 1999, León et al. 2006 b), namely: (1) Simulation of pressurized flows as free surface flow 

using a hypothetical narrow open-top slot ("Preissmann slot"); and (2) Separate simulation of the free 

surface and pressurized flows. The hypothetical slot approach is computationally simpler as it only requires 
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solution for one flow type (free surface flow); however, when using this approach, four main problems 

associated with the approach itself and with the numerical scheme used to solve the governing equations 
may be found: First, the inability of the Preissmann slot approach to describe sub-atmospheric full-pipe 

flows; Second, mass and momentum balance problems associated with the width of the slot; Third, 

instability problems associated with the poor performance of the numerical scheme when the flow changes 

rapidly from the pipe to the slot; and Fourth, inaccuracies in the propagation of pressurized transients (flow 

in slot) associated with the width of the slot. 

The Preissmann approach has been used for modeling smooth (gradual) transient mixed flows with 

good success and strong (rapid) transient mixed flows with poor or no success (e.g., Trajkovic et al. 1999, 

Yen 2001). The poor success in modeling strong transient flows is mainly due to instability problems when 

the flow changes rapidly from the pipe to the slot, which may cause the computer simulation to abort. 

Instability problems are reported even when a slot width as large as 10% of the pipe diameter (e.g., 

Trajkovic et al. 1999) is used. Artificially wide slots may compromise the accuracy of the simulation if 
pressurized transients are simulated besides that they may produce mass and momentum balance problems. 

The separate simulation of free surface and pressurized flows is more complex; however, the models 

based on this approach are able to simulate sub-atmospheric pressures in the pressurized flow regime. 

Current models based on this approach cannot address some complex flow features well, such as open 

channel surges, negative open channel-pressurized flow interfaces and interface reversals. In this approach, 

the moving interface that separates the free surface and pressurized flow is tracked and treated as an 

internal interface. This approach is often referred to as the "shock-fitting" method (e.g., Guo and Song 

1990, Fuamba 2002). 

Recently, Vasconcelos et al. (2006) introduced a Decoupled Pressure Approach, which is formulated 

by modifying the open channel Saint-Venant equations to allow for over-pressurization, assuming that the 

elastic behavior of the pipe walls account for the gain in pipe storage. One of the limitations of this 

approach is the presence of what these authors call "post shock oscillations" near open channel-pressurized 
flow interfaces. To keep these oscillations small, lower values for the pressure wave celerity may be used, 

but this may compromise the accuracy of the simulation if pressurized transients are simulated. 

Regardless of the approach used to handle mixed flows, most of the models developed primarily to 

examine the formation and propagation of hydraulic transients in storm-sewer systems are based on the 

Method of Characteristics (MOC), usually, the fixed-grid MOC scheme with space-line interpolation (e.g., 

Cardle 1984, Cardle and Song 1988). León et al. (2006 a) have shown that when this scheme is used to 

solve the 1D free-surface flow continuity and momentum equations, mass is not conserved and the wave 

speeds are inaccurate. Accurate prediction of wave speeds is important because these dictate the timing at 

which surcharging occurs. These authors also show that, for a given level of accuracy, second-order finite 

volume Godunov-Type Schemes (GTS) require much less execution time than the first-order fixed-grid 

MOC scheme with space-line interpolation. GTS belong to the family of shock-capturing schemes. These 
methods capture discontinuities in the solution automatically, without explicitly tracking them (LeVeque 

2002). Discontinuities must then be smeared over one or more grid cells. Success requires that the method 

implicitly incorporates the correct jump conditions, reduces smearing to a minimum, and does not 

introduce nonphysical oscillations near the discontinuities. 

The main aim of this paper is to provide a robust model for simulating transient mixed flows that uses 

the Preissmann slot approach for the treatment of pressurized flows. The present paper is an extension of a 

previous work of the same authors (León et al. 2006 a), which was formulated for simulating free surface 

flows in storm-sewer systems. Herein, a gradual transition between the pipe and the slot is introduced and 

the governing free surface flow equations are solved using a second-order finite volume GTS scheme with 

a slope limiter, referred to as the modified Preissmann model. 

 The paper is organized as follows: (1) the governing equations in conservative form for one-

dimensional free surface flows are presented; (2) the Finite Volume (FV) discretization of the governing 
equations is given; (3) one Riemann solver for the flux computation is presented; (4) a brief overview for 

the formulation of boundary conditions is presented; and (5) the model is tested using five test cases 

ranging from laboratory experiments to hypothetical tests. Finally, the results are summarized. 

 

2 Governing equations 

The one-dimensional open-channel flow continuity and momentum equations for prismatic conduits may 

be written in their vector conservative form as 
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where the vector variable U, the flux vector F and the source term vector S may be written as (e.g. Guinot 

2003, León et al. 2006 a) 
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where A = cross-sectional flow area; Q = discharge; p = average pressure of the water column over the 

cross sectional area; ρ = constant liquid density (incompressible flow); g = gravitational acceleration; So = 

slope of bottom channel; and Sf = slope of energy line. The approach proposed herein is applicable to any 
prismatic conduit, however, only a circular cross-section conduit is considered below. 

 The Preissmann slot approach is used for the treatment of pressurized flows. As discussed in the 

Introduction, four main problems are associated with the Preissmann slot approach and with the numerical 

scheme used to solve the governing free surface flow equations. When using this approach nothing can be 

done to address the first problem (inability to describe sub-atmospheric full-pipe flows), however the last 

three problems can be minimized. To address the second problem (mass and momentum balance), a narrow 

slot can be used. The third problem (instability) is important in modeling strong (rapid) transient flows 

when the flow changes rapidly from the pipe to the slot, which may cause the computer simulation to abort. 

To address the fourth problem, a slot width that achieves a gravity wave speed in the slot equal to the water 

hammer wave speed can be used. This slot width Ts is given by 
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where Af is the full cross-sectional area of the pipe and a is the water hammer wave speed. 

 In the modified Preissmann model, the fourth problem is addressed by using a slot width that achieves 

a gravity wave speed in the slot equal to the water hammer wave speed (Eq. 3). This results in a narrow 

slot, minimizing mass and momentum balance problems (second problem). The third problem (instability) 

is addressed by (1) using a slope limiter (MINMOD) in the Monotone Upstream-centred Scheme for 
Conservation Laws (MUSCL)-Hancock method (e.g., Toro 2001) such that the monotonicity of the 

solution is preserved, and (2) introducing a gradual transition between the pipe and the slot [Fig. 1 (b)] such 

that the transition between free surface and pressurized flows is gradual. 

Differences between results produced by simulations that included and ignored the area of the slot and 

the pressure force over the slot area were negligibly small. Thus, these parameters were ignored. In the 

modified Preissmann model, for y < 0.95d [Fig. 1 (a)], with d as the diameter of the conduit and y as the 

water depth, the pressure force over the cross sectional area Ap  is given by 
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Figure 1 (a) Definition of variables in circular cross sections, (b) Preissmann slot geometry (y ≥ 0.95d) (not 

to scale) 

 

3 Formulation of Finite Volume Godunov-type schemes 

This method is based on writing the governing equations in integral form over an elementary control 

volume or cell, hence the general term of Finite Volume (FV) method. The computational grid or cell 

involves discretization of the spatial domain x into cells of length ∆xi and the temporal domain t into 

intervals of duration ∆t. The ith cell is centered at node i and extends from i−1/2 to i+1/2. The flow 
variables (A and Q) are defined at the cell centers i and represent their average value within each cell. 

Fluxes, on the other hand, are evaluated at the interfaces between cells (i−1/2 and i+1/2). For the ith cell, 
the updating FV formula for the left side of Eq. (1) is given by (e.g., Toro 2001, LeVeque 2002) 
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where the superscripts n and n+1 reflect the t and t+∆t time levels respectively. In Eq. (5), the 

determination of U at the new time step n+1 requires computation of the numerical flux (F) at the cell 

interfaces at the old time n. To introduce the source terms (right side of Eq. 1) into the solution, a time 

splitting method using a second-order Runge-Kutta discretization is used (e.g., Zhao and Ghidaoui 2004, 

León et al. 2006 a). In the Godunov approach, the flux 
1/ 2
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. This way of computing the flux leads to first-order accuracy of the 

numerical solution. To achieve second-order accuracy in space and time, the MUSCL - Hancock method 

(e.g., Toro 2001) is used herein. Second or higher order schemes are prone to spurious oscillations in the 

vicinity of discontinuities. To preserve the accuracy of the solution away from discontinuities, while 

ensuring that the solution is oscillation-free near shock waves and other sharp flow features, Total 

Variation Diminishing (TVD) methods may be used. The TVD property of the MUSCL - Hancock method 

is ensured by applying the MINMOD pre-processing slope limiter (Toro 2001).  

 In the Godunov approach, the numerical flux is determined by solving the Riemann problem at each 

cell interface. Herein, the numerical flux is computed using the HLL (Harten, Lax and Van Leer) Riemann 

solver. In this approach, the Riemann problem is approximated by an intermediate region U* (star region) 

of constant state separated from the left and right states UL and UR by two waves. The HLL numerical flux 
is given by (e.g., Toro 2001, LeVeque 2002) 
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where sL and sR are the wave speed estimates for the left and right states, respectively. To determine which 

flux condition to use in Eq. (6), the wave speeds sL and sR need to be determined. There are several possible 
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choices for the wave speed estimates. Toro (2001) proposed a choice of wave speeds for rectangular 

channels that leads to accurate and robust schemes. León et al. (2006 a) extended these estimates for an 
arbitrary cross-section channel that can be used for circular cross-section channels including the 

Preissmann slot region. These wave speed estimates were used in this paper and are given by 
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where ΩK (K = L, R) is given by 
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where c is the gravity wave celerity and η = A .p  In Eq. (8), A* and η* are unknowns, however, η* is a 

function of A* or vice versa. Thus, only one variable (A* or η*) is needed to estimate ΩK. In Appendix A, 
several estimates for A* are provided. In presence of wet-dry interfaces, the HLL approach also offers a 

simple way for computing the numerical fluxes. In this case, the wave speeds sL and sR can be determined 

exactly (Appendix B). 

 In the modified Preissmann model, when 0 ≤ min(yL, yR) < d/1000, a wet-dry interface is assumed to be 

present. In this case, the wave speeds sL and sR are computed using the equations provided in Appendix B. 

Otherwise, the wave speeds are computed using Eq. (7). In the latter, an estimate for A* is needed for the 

waves speeds to be fully determined. In the proposed model, the estimate for A* is based on the depth 

positivity condition Riemann solver for max(yL, yR) < 0.80d and on the two-rarefaction wave approximation 

for max(yL, yR) ≥ 0.80d. 

 

 

4 Boundary conditions 

Herein, a single set of governing equations (free surface flow) is used for modeling free surface and 

pressurized flows. Thus, the boundary conditions used are equivalent to those used in free surface flows. In 

the Godunov approach, for the order of accuracy of the numerical solution to be preserved, it is necessary 

to use the same order of reconstruction of the flow variables in all the cells. Since common procedures of 

reconstruction such as MUSCL use one or more cells on each side of the cell to be reconstructed, generally 
one or more cells are missing within the first and last cells of the computational domain. Herein, second-

order accurate boundary conditions are implemented using ghost cells outside of the boundaries (see e.g. 

LeVeque 2002, León et al. 2007). 

 In a typical storm-sewer system, various types of boundaries are present. These may include drop 

shafts, reservoirs, junctions, dead ends, control gates, or pumping stations. Due to space limitations, only a 

three-way junction boundary is described here. However, several boundaries are special cases of the three-

way junction boundary. For instance, a drop shaft boundary is a special case of the three-way junction 

boundary with no inflow pipes. A downstream reservoir boundary also is a special case of the three-way 

junction boundary with one inflow pipe, no outflow pipe, and a large drop shaft area. 

 In a three-way junction boundary (Fig. 2), seven variables are unknown, namely, the flow depth and 

the flow velocity at each pipe boundary, and the flow depth at the drop shaft pond. Thus, seven equations 

are needed to determine the unknown variables. The three first equations are obtained by applying the 
Rankine-Hugoniot conditions between each pipe boundary and the first cell of the corresponding pipe 

adjacent to the drop shaft. This formulation is intrinsically conservative (mass and momentum are 

conserved), and no special treatment in presence of shocks at the boundary is required. This yields 
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Figure 2 Schematic of reservoir junction with overflow structure (a) Plan view, (b) Side view  
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where the subscript bk (bk = b1, b2 and b3) refers to the pipe boundary, and subscript j (j = 1, 2 and 3) to the 

corresponding adjacent cell to the boundary. 

 When the flow at the junction changes smoothly and no shocks are present, the theory of Riemann 

invariants (León et al. 2006 a) is preferred instead of the Rankine-Hugoniot conditions for numerical 

stability reasons. The fourth equation is obtained from the mass balance at the drop shaft 
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where Qd is the discharge entering the drop shaft (Fig. 2), Q0 is the overflow discharge, and E3 is the 

specific energy of the outflow. If the drop shaft has a relatively small storage capacity in comparison to the 

flow, the right-side of Eq. (12) can be omitted. The specific energy of the outflow is given by 
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 The overflow discharge can be estimated as follows: Q0 = 0, if yd ≤ y0, and Q0 = CB(yd − y0)
3/2, if yd > 

y0, in which yd = flow depth above drop shaft bottom, C = weir discharge coefficient, and B = weir length. 

 The fifth and sixth equations are obtained by replacing the energy equations by the "kinematic 

compatibility condition" for the depths (e.g., Pagliara and Yen 1997, Yen 1986, 2001) 

 For subcritical flow 
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for j = 1, 2, where 
jc

y is the critical depth. 

For supercritical flow 
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for j = 1, 2, where
ju

y is the uniform flow depth corresponding to the instantaneous Qj. The seventh 

equation is obtained by applying the energy equation between the drop shaft and the outflow pipe (pipe 3). 

This yields with the loss coefficient Ku 
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5 Evaluation of model 

The purpose of this section is to evaluate the accuracy and robustness of the modified Preissmann model for 

simulating strong transient mixed flows in storm-sewers under conditions where no sub-atmospheric flows 

occur. The ability of the proposed model in simulating pure pressurized flows is also tested. Five test cases 

are considered, namely: 

 

(1) Experiments type A of Tajkovic et al. (1999), 

(2) Experiments type D of Tajkovic et al. (1999), 

(3) Trial J of Cardle (1984), 
(4) Hypothetical positive shock interface, and 

(5) Pressurized flow transients. 

 

5.1 Experiments type A of Trajkovic et al. (1999) 

In this and the next test case, the proposed model is used to reproduce a set of experiments conducted at the 

Hydraulics Laboratory of University of Calabria by Trajkovic et al. (1999). The experimental setup 
consisted of a perspex pipe about 10 m long, having an inner diameter of 10 cm and a Manning roughness 

coefficient (nm) of 0.008 m1/6. For an explanation of why the units of nm is m1/6 see Yen (1991). Upstream 

and downstream tanks were connected to the pipe with automatic sluice gates. The experimental 

investigations evaluated the effect of rapid changes in the opening or closing of the sluice gates. 

Acknowledging the possible interference of the air phase in case the pipe became pressurized, several vents 

were placed at the top of the pipe. 

 In this first test case, the type A set of experiments of Trajkovic et al. (1999) is considered. The initial 

conditions for this set of experiments were a constant inflow discharge of 0.0013 m3/s, a bed slope of 2.7%, 

the upstream sluice gate opening of e1 = 0.014 m, and the downstream sluice gate totally opened. The 

transient flow was generated after a rapid (but not instantaneous) closure of the downstream sluice gate that 

caused the formation of a filling bore moving upstream. After 30 seconds of the gate closure, the gate was 
partially reopened, producing another transient phenomena. Different values for the re-opening (e2) were 

tested. In this test case, three values for the reopening are considered, namely e2 = 0.008 m, e2 = 0.015 m, 

and e2 = 0.028 m. Simulated and measured pressure traces in sections P3 and P7 for the three re-openings 

are shown in Fig. 3. The sections P3 and P7 were located 4.6 m and 0.6 m upstream from the downstream 

sluice gate, respectively. The simulated pressure traces were generated using 100 cells and a maximum 

Courant number Cr = 0.40. 
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Figure 3 Measured and computer piezometric levels h(t) in sections P3 and P7 for three different 

downstream valve re-openings e2 

 

 As can be observed from Fig. 3, the simulated pressure head traces h(t) agree well with the 

corresponding experiments. In particular, the formation of the filling bore and its velocity of propagation 

are accurately predicted by the modified Preissmann model. However, all the computed shock fronts are 

steeper than the measured. This is because in the experiments the closing of the gate was very rapid, but not 

instantaneous, as assumed in the simulations. The instantaneous gate closure assumption in the simulations 
also caused slightly higher pressure heads as compared to the experimental results. 

As is shown in Fig. 3, almost immediately after the re-opening of the downstream gate (t = 30 s), a 

small drop in the pressure head was observed and computed. For a reopening of 0.008 m [Fig. 3 (a)], after a 

small drop in the pressure head, the pressure head continuously increased in all sections. This is because the 

outflow from the pipe was smaller than the inflow. For a re-opening of 0.015 m [Fig. 3 (b)], a stationary 

hydraulic jump was observed and computed in the pipe after the drop in the pressure head. For a re-opening 

of 0.028 m [Fig. 3 (c)], the hydraulic jump traveled downstream, because the outflow was larger than the 

inflow. 

It is interesting to note that Trajkovic et al. (1999), using the Preissmann slot approach and solving the 

governing equations utilizing a shock capturing scheme, as used herein, reported numerical instabilities in 

their simulations when the re-opening was 0.015 m or larger. Numerical instabilities were reported even 
though the slot width they used was as large as 10% of the pipe diameter. Artificially wide slots may spoil 

the accuracy of the simulation if pressurized transients are simulated besides that they may produce mass 

and momentum balance problems. In the modified Preissmann model, the slot width, above the transition 

between the pipe and the slot, is chosen so that the gravity wave speed in the slot is equal to the water 

hammer wave speed. No stability problems were observed when using the modified Preissmann model. The 

most important differences between the proposed model and that of Trajkovic et al. (1999) are: (1) In the 

proposed model, a slope limiter (MINMOD) is used to preserve the monotonicity of the solution and to 

control oscillations that may be present around open channel-pressurized flow shock interfaces, unlike the 

Trajkovic model, and (2) A gradual transition between the pipe and the slot is introduced in the proposed 

model, in contrast to the Trajkovic model.  

 

5.2 Experiments type D of Trajkovic et al. (1999) 

In this test case, one type D experiment of Trajkovic et al. (1999) is considered. The initial conditions for 

this experiment were a constant inflow discharge of 0.0015 m3/s, a bed slope of 1.4%, the upstream sluice 

gate opening of e1 = 0.015 m, and the initial opening of the downstream sluice gate was 0.033 m. These 

initial conditions produced a stationary hydraulic jump between sections P6 and P7 of the experiment. 

Section P6 was located 1.6 m upstream from the downstream sluice gate. The transient phenomena was 
generated after the downstream gate was rapidly closed at t = 0 and re-opened to its initial position after 16 
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s. The simulated and measured pressure head traces in section P7 are shown in Fig. 4. The simulated 

pressure trace was generated using 200 cells and a Cr = 0.40. 
As can be observed from Fig. 4, the simulated pressure head trace for t < 16 s (before the downstream 

gate was re-opened) is slightly overpredicted. This may be attributed in part to the instantaneous gate 

closure assumption in the simulations. Furthermore, the initial piezometric levels in the pipe for the 

simulation of the transient flow were unknown, so it was necessary to generate these computationally. As 

in the experiment, a stationary hydraulic jump between sections P6 and P7 was obtained computationally 

with the initial conditions. However, the computed pressure head at section P7 was slightly larger than the 

measured (compare pressured heads at t = 0 in Fig. 4). This fact may have contributed in part to the over-

prediction of the computed pressure head before the downstream gate was reopened. After the downstream 

gate was re-opened, the simulated results agree well with the experiments. 

 

 
 

Figure 4 Measured and computed pressure head traces h(t) in section P7 for type D experiment of Trajkovic 
et al. (1999) 

 

5.3 Trial J of Cardle (1984) 

In this test case, the ability of the modified Preissmann model to simulate a positive shock interface (an 

interface is defined to be positive when it is moving from the pressurized flow region toward the open 

channel flow region, and negative otherwise) reversing direction and becoming a negative interface was 
tested, by comparing the results of the proposed model against experimental measurements conducted at 

the St. Anthony Falls Laboratory of the University of Minnesota. These experiments were reported in a 

number of publications including Cardle (1984), which was used herein. The experimental setup consisted 

of a 48.77 m long clear PVC pipe of inner diameter of 16.26 cm. An upstream head tank and a downstream 

reservoir were connected to the pipe with automatic sluice gates. 

In this test case, the trial J experiment of Cardle (1984) is considered. The initial conditions for this 

experiment were a constant inflow discharge of 0.005097 m3/s, a bed slope of 0.05%, and a downstream 

reservoir depth of 0.1372 m. The Manning roughness value suggested by Cardle (1984) of 0.011 m1/6 was 

used in our simulations. The transient flow was produced after a rapid but not instantaneous closure of the 

downstream gate creating a positive interface moving upstream. When this interface had advanced about 

24.4 m, the gate was instantly re-opened. In the simulations, the re-opening occurred at about 15 s after the 
gate was closed. After gate re-opening, the positive interface continued to move upstream propelled by its 

own inertia but after a short time the interface reversed its direction and retreated back downstream. 

Meanwhile, a negative interface was formed at the downstream boundary and started to move upstream. 

The simulated and measured pressure heads at transducer P1, which is located at 9.14 m upstream from 

the downstream end, are presented in Fig. 5. The simulated pressure trace was generated using 200 cells 

and a Cr = 0.50. As can be observed in Fig. 5, the simulated results agree again well with the experimental 

measurements. However, the arrival of the simulated positive interface to transducer P1 is slightly earlier as 

compared to the experiments. This may be because in the experiments the closing of the gate was rapid, but 

not instantaneous, as was assumed in the simulations. The instantaneous gate closure assumption in the 
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simulations also caused slightly higher pressure heads as compared to the experiments. The oscillations in 

the measured pressure heads, after the gate was reopened (t ≈ 15 s), may be due to the presence of air 
bubbles near the pipe crown in the experiment. 

 

 
 

Figure 5 Measured and computed pressure head traces h(t) at transducer P1 for trial J experiment of Cardle 

(1984) 

 

5.4 Hypothetical positive shock interface 

The previous test cases investigated the ability of the proposed model in simulating complex flow features 

including positive shock interfaces. These test cases were laboratory experiments, in which the achieved 

pressure heads were very small. Since the proposed model is intended to be used in field applications and 

due to the lack of experimental data in these situations, this test case and the next present hypothetical tests 

in order to investigate the capability of the proposed model in simulating strong transients at field scale. 

The hypothetical test presented below considers a sloped tunnel connected to a downstream valve. The 

tunnel length is 10,000 m and its diameter is 10 m, the tunnel slope is 0.1%, the Manning's roughness 

coefficient is 0.015 m1/6, the waterhammer wave speed assumed is 1,000 m/s and the initial steady-state 

discharge is 240 m3/s, which results in a steady-state flow velocity of 4.3 m/s and an initial normal depth of 

6.7 m. 

The transient flow is obtained after an instantaneous closure of the downstream valve at time t = 0. The 
gate closure created a strong positive shock interface moving upstream. The simulated pressure heads 300, 

600, and 900 s after the gate closure and the "Near exact" solution are shown in Fig. 6. The "Near exact" 

solution is obtained by grid refinement until convergence is achieved. The simulated pressure heads were 

obtained using 500 cells and a maximum Courant number of Cr = 0.5. As can be observed in Fig. 6, the 

"Near exact" shock interface is well resolved by the proposed model. 

In the modified Preissmann model, the slot width is chosen so that the gravity wave speed in the slot is 

equal to the water hammer wave speed. This results in a slot width of about 0.77 mm (0.0077% d) for the 

present test case. When using larger slot widths, such as 0.5% d, 1% d and 2% d, the results, though not 

shown, were similar. This explains why researchers using wide slots (to avoid numerical instability) 

obtained good agreement with experiments when simulating mixed flows. Artificially wide slots may be 

used with good accuracy when simulating mixed flows. However, as is shown in the next test case, when 
simulating pure pressurized flows (flow in slot), only a slot width that is obtained by making the gravity 

wave speed in the slot equal to the water hammer wave speed gives accurate results for the propagation and 

magnitude of pressurized transients. Unlike other Preissmann models that report numerical instabilities 

even when a slot width as large as 10% of the pipe diameter is used, no instabilities were found when using 

the modified Preissmann model (slot width is about 0.0077% d for this test case) even though strong 

transients at field scale are simulated. 
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5.5 Pressurized flow transients 

The purpose of this section is to test the ability of the proposed model in simulating pressurized flow 

transients. The test considers a horizontal frictionless tunnel connected to an upstream reservoir and a 

downstream valve. The length of the tunnel is 10,000 m and its diameter is 10 m, the upstream reservoir 

constant head is h0 = 200 m, the initial steady-state flow velocity is 2.0 m/s, and the water hammer wave 

speed is 1000 m/s. The transient flow is obtained after an instantaneous closure of the downstream valve. 

The simulated pressure heads 3, 6 and 9 s after the gate closure and the "Near exact" solution are shown in 
Fig. 7. The "Near exact" solution is obtained by grid refinement until convergence is achieved. The 

simulated pressure heads were obtained using 500 cells and a maximum Courant number of Cr = 0.8. 

 

 
Figure 6 Simulated pressure heads h(x) for strong transient mixed flows 

 

 
 

Figure 7 Simulated pressure heads h(x) for pressurized flow transients for a slot width of 0.77 mm 

 
 

 As can be observed from Fig. 7, the "Near exact" pressure head is well resolved by the proposed 

model. The results presented in Fig. 7 were obtained using a slot width (above the transition between the 

pipe and the slot) suggested in the proposed model [Eq. (3)], resulting in a slot width of 0.0077% d. 

Additional simulations were carried out to investigate the influence of using wide slots for simulating the 

propagation of pressurized transients. The results for a slot width of 1% d together with the "Near exact" 

solution are presented in Fig. 8. As can be observed, the simulated results using a slot width of 1% d are not 

even close to the "Near exact" solution. This is because the gravity wave speed for this slot width (87.8 

m/s) is much smaller than the water hammer wave speed (1000 m/s). It must be recalled that in pure 

pressurized flows, the water hammer wave speed determines how fast the pressure transients are 

propagated. Evidently, the only way of reproducing the correct propagation and interaction of pressurized 
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transients is by using a slot width that results in a gravity wave speed in the slot equal to the water hammer 

wave speed. 
 

 
 

Figure 8 Simulated pressure heads h(x) for pressurized flow transients for a slot width of 1% d 

 

As was mentioned previously, notwithstanding the problems associated with the size of the slot in the 
Preissmann model, the generic equivalence between the water hammer and the free surface flow equations 

does not imply that both flows are identical. The use of water level in the Preissmann model to represent 

the water hammer head prohibits the formation of sub-atmospheric pressures and the emergence of vapor 

cavities, which would occur in a water hammer flow when the pressure drops below vapor pressure. 

Whenever the head drops below the slot, the pressure produced by the Preissmann model is equivalent to 

the water depth in the pipe and the magnitude of the wave speed drops from the water hammer wave speed 

to the open-channel wave speed. In reality, however, sub-atmospheric water hammer pressures could form 

during depressurization and the speed of these pressures is equal to the water hammer wave speed. 

Therefore, Preissmann slot models cannot simulate sub-atmospheric pressures, and the results of these 

models after, as well as during, depressurization must be treated with caution. 

 

6 Conclusions 

The main aim of this research was to provide a robust model for simulating transient mixed flows (where 

no sub-atmospheric flows occur) in storm-sewer systems using the Preissmann slot approach for the 

treatment of pressurized flows. In this model, a gradual transition between the pipe and the slot was 

introduced and the governing equations (free surface flow) were solved using a second-order finite volume 

GTS scheme with a slope limiter. This model is referred to as the modified Preissmann model. Its accuracy 
and robustness were investigated using five test cases ranging from laboratory experiments to hypothetical 

tests. The key results of the proposed model are as follows: 

 

(1) It accurately describes complex flow features, such as positive and negative open channel-

pressurized flow interfaces, interface reversals and open channel surges, 

(2) It is capable of simulating transient flows in closed conduits ranging from free surface flows, to 

partly free surface-partly pressurized flows (mixed flows), to fully pressurized flows. Pressurized 

transients are accurately simulated because the slot width, above the transition between the pipe 

and slot, is chosen in such a way that the gravity wave speed in the slot is equal to the water 

hammer wave speed, 

(3) The formulation of boundary conditions is intrinsically conservative (mass and momentum are 

conserved at the boundaries) and no special treatment to handle shocks or discontinuities at the 
boundaries is needed, and 

(4) No instability problems were found in the simulations and no simulations aborted during the 

computations. Overall, the proposed approach is accurate and robust under strong transient flow 

conditions provided no sub-atmospheric flows occur. 
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Appendix A 

Herein, estimates for A* based on the two-rarefaction wave approximation, the linearization of the 

governing equations, and the depth positivity condition are provided. 

 

Two-rarefaction wave approximation 

Assuming the two-rarefaction wave approximation, the following estimates for the exact solution of A* (or 

*f ) and u* are obtained: 

For y < 0.95d (León et al. 2006 a) 
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For y ≥ 0.95d, the estimates for A* and u* are obtained by integrating the differential relationships provided 

by the generalized Riemann invariants across the two rarefaction waves using the trapezoidal rule. This 

provides the two following equations that need to be solved by iteration to obtain the estimates of A* and u* 
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Linearization of the governing equations 

In this approach, A* is obtained by solving the Riemann problem for the linearized hyperbolic system 

/ / 0t x∂ ∂ + ∂ ∂ =U A U with A = ( )A U  and ( ) / 2
L R

= +U U U , where A  is the Jacobian matrix of the 

flux vector. This yields with A  = (AR+AL)/2 and c  = (cR+cL)/2 (León et al. 2006 a) 
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Unlike in the case of the two-rarefaction wave approximation, in the Riemann solver based on the 

linearization of the governing equations (Eq. 21) no iteration is required to estimate A*. 

 
 

Depth positivity condition 

Another estimate for A* that preserves the simplicity of Eq. (21) while adding two important new properties 

may be obtained based on the depth positivity condition (flow depth is greater than or equal to zero). The 

added properties are (Toro 2001): (1) it can handle situations involving very shallow water; and (2) unlike 

the Riemann solver given in Eq. (21), the Riemann solver based on the depth positivity condition is found 
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to be very robust in dealing with shock waves. Using this approach, the following estimate for A* is 

obtained that is valid for y < 0.95d (León et al. 2006 a) 
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Appendix B 

Below the exact wave speeds sL and sR in presence of wet-dry interfaces are presented. In presence of wet-

dry interfaces, the governing flow equations are not strictly hyperbolic and the two Eigenvalues of the 
Jacobian matrix of F with respect to U collapse into one (e.g., Zoppou and Roberts 2003). Under these 

circumstances, no shock exists and sL and sR represent the speeds of the head or the toe of the rarefaction 

wave, depending if the dry bed is present upstream (yL = 0) or downstream (yR = 0). In this case, the wave 

speeds may be determined exactly, yielding for the case of sewers (the derivation of the wave speeds for 

sewers is similar to the presented by Toro 2001 for a rectangular cross-section) 

If yL = 0 
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If yR = 0 
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where c is the gravity wave celerity and f  is given by (León et al. 2006 a) 
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In the series expansion of Eq. (25), no generic expression for the terms in the series was found. 

 

Notation 

A = cross-sectional area of flow 

A = Jacobian matrix of flux vector 
a = water hammer wave speed 

Ad = horizontal cross-sectional area of drop shaft pond 

Af = full cross-sectional area of the pipe 

Cr = maximum Courant number 

c = gravity wave celerity 

d = sewer diameter 

E = specific energy 

F = flux vector 

1/ 2

n

i
F

+
 = inter-cell flux at time step n 

g = acceleration due to gravity 

h = pressure head 

Ku = loss coefficient 

nm = Manning roughness coefficient 

p = average pressure of the water column over cross sectional area 

Q = discharge 
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S = vector containing source terms 

Sf = energy line slope 
So = bed slope 

sL = left wave speed 

sR = right wave speed 

T = top width 

Ts = slot width 

t = time 

U = vector of flow variables 

Ui = vector of flow variables at node i 

u = water velocity 

x = longitudinal coordinate 

y = water depth above channel bottom 
yd = water depth above drop shaft bottom 

y0 = distance from drop shaft pond invert to crest of overflow structure 

∆x = spatial mesh size 

∆t = time step 

η = Ap  

θ = angle of reference 

ρ = water density 

( )/ dc A Af = ò  

 

Superscripts 

n = computational time level 

 

Subscripts 

i = mesh point location in x-direction 

* = star region 
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