
Controlling HEC-RAS using MATLAB

Arturo S. Leona,∗, Christopher Goodellb

aDepartment of Civil and Environmental Engineering, University of Houston, Cullen
College of Engineering Building 1, Civil and Environmental Engineering, 4726 Calhoun

Road, Room N107, Houston, TX 77204-4003, USA
bWEST Consultants, Inc., 10300 SW Greenburg Rd, Portland, OR 97223, USA

Abstract

The U.S. Army Corps of Engineers’ Hydrologic Engineering Center’s River Anal-
ysis System (HEC-RAS) is a widely used software application for performing
one-dimensional and two-dimensional steady and unsteady flow river hydraulics
calculations, sediment transport-mobile bed modeling, and water quality anal-
ysis. User’s of HEC-RAS have often unique applications including the coupling
with other software to perform system analysis such as optimization of flooding
structures and multi-objective reservoir operation under uncertainty. One state-
of-the-art environment for integrating software is MATLAB, which integrates
computation, visualization, and programming in an easy-to-use environment.
This paper presents a set of MATLAB scripts to write input files, read output
files, make plots, execute parallel computations, and perform fully-automated
functions of HEC-RAS. Examples of procedures are presented throughout the
paper and they are illustrated using a river-reservoir network that involves ten
inline structures (e.g., dams) with operation of gates at each of these dams.

Keywords: HEC-RAS, HECRASController, MATLAB, Model integration,
Numerical modeling, Optimization

Please cite this paper as:
Leon A. S., Goodell C. (2016). Controlling HEC-RAS using MATLAB, Envi-
ronmental Modelling and Software, 84 (2016), Pages 339-348, ISSN 1364-8152,
http://dx.doi.org/10.1016/j.envsoft.2016.06.026.5

1. Introduction

HEC-RAS is a widely used software application that can perform one and
two-dimensional hydraulic calculations for a full network of natural and con-

∗Corresponding author
Email address: aleon3@Central.UH.EDU (Arturo S. Leon)

Preprint submitted to Elsevier July 21, 2016



structed channels, overbank/floodplain areas, levee protected areas; etc (Hydro-
logic Engineering Center 2016a, Hydrologic Engineering Center 2016b). HEC-10

RAS has four main modules: (1) steady flow water surface profiles, which is in-
tended for calculating water surface profiles for steady gradually varied flow; (2)
unsteady flow simulation, which can simulate one-dimensional, two-dimensional
and combined one/two-dimensional unsteady flow through a full network of open
channels, floodplains, and alluvial fans; (3) sediment transport computations,15

which is intended for the simulation of one-dimensional sediment transport/mov-
able boundary calculations resulting from scour and deposition over moderate
to long time periods; and (4) water quality analysis; which is intended to al-
low the user to perform riverine water quality analyses (Hydrologic Engineering
Center 2016a, Hydrologic Engineering Center 2016b). Standard applications of20

this model include flood wave routing and flood inundation studies.
The user’s of HEC-RAS have often unique applications that may include the

coupling with other software to perform system analysis such as flood risk anal-
ysis, optimization of flooding structures under uncertainty and multi-objective
reservoir operation under uncertainty. A system analysis requires the use of a25

programming platform or environment for integrating multiple software and/or
open source codes. One state-of-the-art programming platform is MATLAB,
which is a high-performance language for technical computing that integrates
computation, visualization, and programming in an easy-to-use environment
(Mathworks 2015).30

This paper presents a set of MATLAB scripts to write input files, read out-
put files, and perform fully-automated functions of HEC-RAS. To the authors’
knowledge this is the first time that MATLAB is used for fully controlling the in-
put and output of HEC-RAS. The scripts described in the paper include parallel
computing (simultaneous computations of HEC-RAS), modifying input files, ac-35

cessing output files and coupling with an optimization software. It is worth men-
tioning that although this paper makes use of the USACE HECRASController
described in Goodell (2014), the main focus of this paper is on programming
procedures for controlling the input and output of HEC-RAS without relying on
available functions of the aforementioned HECRASController. The reasons for40

the latter is that the functions available on the HECRASController are limited
and very often the user’s may want to perform tasks for which there is no func-
tion in the controller. For an in-depth discussion of all functions available in
the USACE HECRASController, the reader is referred to Goodell (2014). This
paper is divided as follows. First, the USACE HECRASController is briefly45

described. Second, MATLAB scripts for various tasks are presented throughout
the paper and they are illustrated using a river-reservoir network that involves
ten inline structures (e.g., dams) with operation of gates at each of these dams.
Finally, the key points of the paper are summarized in the conclusion.

2. HEC-RAS Controller50

This section presents a very brief discussion on the USACE HECRASCon-
troller. We will only focus on few functions of the HECRASController that are

2



very useful. For an in-depth discussion of all functions available in the USACE
HECRASController, the reader is referred to Goodell (2014). The reader is
referred to Script 1 for this discussion.55

• The script line containing actxserver will create a new, invisible copy of
HEC-RAS. The text RAS500.HECRASCONTROLLER is used for HEC-
RAS version 5.0 and RAS41.HECRASCONTROLLER for version 4.1.

• The function Project_Open(ras_file) will open a RAS file, where ras_file
is a string.60

• The function Compute_HideComputationWindow hides the HEC-RAS
computation window, which is useful when performing parallel computa-
tions or serial batch computations. The function Compute_ShowComputationWindow
shows the computation window for each HEC-RAS computation.

• The function Compute_CurrentP lan runs HEC-RAS for current plan.65

• The function Project_Save saves the HEC-RAS project

• The function OutputDSS_GetStageF low is intended for extracting water
surface stage and flow discharge at selected cross-sections.

Script 1. Basic functions of USACE HEC-RAS Controller

1 function run_hec_ras_unsteady(ras_file)70

2 %Written by Arturo Leon (artuleon@gmail.com), Dec 26, 2015
3 %h=actxserver('RAS41.HECRASCONTROLLER');
4 h=actxserver('RAS500.HECRASCONTROLLER');
5 %The above command depends on the version of HEC-RAS. I am
6 %using version 5.0. This key can be found in windows registry75

7 h.Project_Open(ras_file); %Open ras file
8 %h.GetRASVersion; %To print version of HEC-RAS
9 h.Compute_HideComputationWindow; %To hide Computation window

10 %h.Compute_ShowComputationWindow; %To show computation window
11 %h.CurrentPlanFile; %Indicates current HEC-RAS plan file and path80

12 %h.Plan_SetCurrent; %Changes current plan to supplied plan name
13 h.Compute_CurrentPlan(0,0); %Runs HEC-RAS for current plan
14 %[z1,z2,z3,z4,z5,z6,z7,z8,z9] = ...
15 %h.OutputDSS_GetStageFlow(River_ID{k},Reach_ID{k},Node_ID{k}, ...
16 % 0,0,0,0,z9); % This function is for extracting water surface stage85

17 % and flow discharge at selected cross-sections
18 h.Project_Save; %Saves the project
19 delete(h); %Deletes the handle h

3. Reading and Writing HEC-RAS Input Files90

As described in Goodell (2014), the most common HEC-RAS input text files
are:

1. Geometry file: ∗.g##

3



2. Steady flow file: ∗.f##
3. Unsteady flow file: ∗.u##95

There are other input files such as Plan file (∗.p##), Project file (∗.prj), and
others. The manipulation of the input files are very similar so due to space
limitations we will show four examples for the geometry and unsteady flow input
files.

The first example will find and printout the title name of the geometry file.100

The reader is referred to Script 2 for this example. In this script, the filename
will have the extension ∗.g##. Script 2 reads the file line by line. Whenever
the script finds the character “=” , it will split the text in two (left and right
of “=”). Then the script checks if the left of the text is the same as the string
“Geom Title”. If it is, it will extract and printout the right of the text, which105

will be the title name of the geometry file.

Script 2. Script to obtain the title name of the geometry file

1 function GetGeometryTitle(filename)
2 %Written by Arturo Leon (artuleon@gmail.com), Dec 26, 2015
3 fid = fopen (filename, 'r'); %Open file for reading110

4 while ~feof(fid)
5 strTextLine = fgetl(fid);
6 string_temp = regexp(strTextLine, '=','split');
7 strGeometryTitle = string_temp(:,1);
8 %Search geometry text file for the key "Geom Title"115

9 if strcmp(strGeometryTitle, 'Geom Title');
10 str_Geometry_obtained = string_temp(:,2);
11 fprintf('The Title of the geometry file is'), ...
12 str_Geometry_obtained
13 end120

14 end
15 fclose (fid); %Close the text file

The second example updates water stage elevations and flow discharges at
multiple cross-sections that will be used as the initial conditions for an unsteady125

flow simulation. This example corresponds to an optimization of reservoir op-
eration in a ten-reservoir system. The reader is referred to Script 3 for this
example. In this script, the filename to use will have the extension ∗.u##.

Script 3 first reads data of current tailwater and forebay elevation for the
ten dams. Then the script reads the current inflows and outflows of the ten130

reservoirs, which are stored for later use. Following, the unsteady input file needs
to be updated with the corresponding initial water stages and flow discharges.
To perform this task, first the original unsteady file is copied to a temporal
file (“24XSNEW_temp.u01”). Then using as baseline the temporal unsteady
file, the original unsteady file (“24XSNEW.u01”) is rewritten with the current135

water stages and flow discharges. To start to replace the initial conditions, it is
necessary to find the key variable “Use Restart= 0” in the temporal file that is
being read. Once this string is found, it should be printed out in the file and
then the initial flows and stages are also printed out in the original file being
rewritten. The initial flow should contain the string “Initial Flow Loc=” at the140

4



most left part of the text line. This string should be followed by the river, reach,
station and the initial flow discharge at this river station. The initial water stage
should contain the string “Initial RRR Elev=” at the most left part of the text
line. This string should be followed by the river, reach, station and the initial
water stage at this river station. After this data is written in the original file,145

we should continue reading the temporal file without writing anything until the
string “Boundary Location=” is found. The latter will avoid errors in the input
file due to data size incompatibility between the old (temporal file) and the new
(being rewritten) input files.

Script 3. Script to update water stage elevations and flow discharges at multiple cross-
sections that will be used as the initial conditions for an unsteady flow simulation

150
1 %Initial conditions: Update initial water stages and outflows
2 file_current_TW = [home_dir '\InitCond\CurrentTW.txt'];
3 Data_curr_TW = dlmread(file_current_TW);
4 file_current_FB = [home_dir '\InitCond\CurrentFB.txt'];
5 Data_curr_FB = dlmread(file_current_FB);155

6 file_current_inflow = [home_dir '\InitCond\CurrentInflows.txt'];
7 Data_curr_inflows = dlmread(file_current_inflow);
8 file_current_outflow = [home_dir '\InitCond\CurrentOutflows.txt'];
9 Data_curr_outflows = dlmread(file_current_outflow);

10 for j=1:Number_dams;160

11 k = Order_Conv(j);
12 m = 2*j;
13 XS_stage(m-1) = Data_curr_FB(k);
14 XS_stage(m) = Data_curr_TW(k);
15 XS_flow(m-1) = 1000*Data_curr_inflows(k);%to concvert to cfs165

16 XS_flow(m) = 1000*Data_curr_outflows(k);
17 end
18 filenameinput = [home_dir '\RAS_folders\24XS-Col\24XSNEW_temp.u01'];
19 filenameoutput = [home_dir '\RAS_folders\24XS-Col\24XSNEW.u01'];
20 copyfile(filenameoutput,filenameinput);170

21 %filenameinput %Input file is the temporal file
22 %filenameoutput %Output file is the initial file
23 fid = fopen (filenameinput, 'rt'); %Open file for reading
24 fout = fopen (filenameoutput, 'wt'); %Open file for writing
25 while ~feof(fid)175

26 strTextLine = fgetl(fid); %To read one additional line
27 if strfind(strTextLine,'Use Restart= 0');
28 fprintf(fout,'%s\n',strTextLine);
29 for j=1:Number_dams; %Initial_flows
30 m = 2*j;180

31 str1 = 'Initial Flow Loc=';
32 str2 = num2str(XS_flow(m-1));
33 strTextLine2 = strcat(str1,XS_IC(m-1),str2);
34 fprintf(fout,'%s\n',strTextLine2{1});
35 str2 = num2str(XS_flow(m));185

36 strTextLine2 = strcat(str1,XS_IC(m),str2);
37 fprintf(fout,'%s\n',strTextLine2{1});
38 end
39 for j=1:Number_dams; %Initial water stages
40 m = 2*j;190

41 str1 = 'Initial RRR Elev=';
42 str2 = num2str(XS_stage(m-1));

5



43 strTextLine2 = strcat(str1,XS_IC(m-1),str2);
44 fprintf(fout,'%s\n',strTextLine2{1});
45 str2 = num2str(XS_stage(m));195

46 strTextLine2 = strcat(str1,XS_IC(m),str2);
47 fprintf(fout,'%s\n',strTextLine2{1});
48 end
49 else
50 fprintf(fout,'%s\n',strTextLine);200

51 end
52 end
53 fclose (fid); %Close the text file
54 fclose (fout); %Close the text file205

The third example updates the inflow hydrographs (two) and pre-scheduled
gate outflows at ten inline structures (i.e, dams). The pre-scheduled outflows are
generated by an optimization routine (Genetic Algorithm) with a pre-specified
population.

In a genetic algorithm, a population of candidate solutions (called individ-210

uals) to an optimization problem is evolved toward better solutions. The evo-
lution usually starts from a population of randomly generated individuals, and
is an iterative process, with the population in each iteration called a genera-
tion. In each generation, the fitness of every individual in the population is
evaluated; the fitness is usually the value of the objective function in the op-215

timization problem being solved. The more fit individuals are stochastically
selected from the current population, and each individual’s genome is modi-
fied (recombined and randomly mutated) to form a new generation. The new
generation of candidate solutions is then used in the next iteration of the algo-
rithm. Commonly, the algorithm terminates when either a maximum number of220

generations has been produced, or a satisfactory fitness level has been reached
for the population. For more details about the genetic algorithm and its ap-
plication to reservoir operation the reader is referred to Wardlaw and Sharif
(1999), Leon and Kanashiro (2010), Leon et al. (2014),Lerma et al. (2015),
Yang et al. (2015), and Chen et al. (2016). Due to space limitations, a code of a225

genetic algorithm is not presented herein. However, there are various codes avail-
able in the literature (e.g., https://www.idealsoftware.com/opensource/
genetic-algorithm.html and http://gaul.sourceforge.net/).

The update of dam outflows is done at each generation for each population
of the optimization. It is worth mentioning that in an optimization-simulation230

framework, the initial conditions (second example) need to be updated only at
the beginning of the optimization. The reader is referred to Scripts 4 and 5 for
the third example. In this example, the file to update will have the extension
∗.u##.

This example has two parts. In the first part, the data (inflow hydrographs235

and outflows) to be written in the unsteady file is prepared. The HEC-RAS
unsteady input file (∗.u##) is formatted in such a way that the data points
for inflow hydrographs and outflows at inline structures can have a maximum
of 10 data points per line. Script 4 prepares the lines of data to be written in
the unsteady file. This script first calculates the number of lines of data for240

6

https://www.idealsoftware.com/opensource/genetic-algorithm.html
https://www.idealsoftware.com/opensource/genetic-algorithm.html
https://www.idealsoftware.com/opensource/genetic-algorithm.html
http://gaul.sourceforge.net/


the inflow hydrographs (“NLines_inflow”) and the outflows (“NLines_Out”)
based on the number of data points. For instance, if the simulation period
is 4 days with gate outflows specified every hour, the number of data points
for the outflows would be 97 that includes the initial condition (t = 0). In
this case, the number of lines of data for the outflows (“NLines_Out”) would245

be 10. Next, the script calculates the number of data points for the last line of
the inflow hydrographs (“last_line_inf ”) and the outflows (“last_line_dam”).
The reason for the latter is because not always the number of data points of
the last line is 10. Then, the data for inflow hydrographs is split in two, one
for all the lines except the last one (“Inflow_array_main”) and the last line250

(“Inflow_array_last_line”). Likewise, the data for the dam outflows are split
into (“Outflow_array_main”) and (“Outflow_array_last_line”).

Once the data has been prepared, Script 4 will call Script 5 for each popu-
lation of the optimization. To start to replace the data, it is necessary to find
key variables in the temporal unsteady file that is being read. These variables255

are “Flow Hydrograph=” for the inflow hydrographs and “Rule Table=” for the
dam outflows. In a similar way to the second example, after the data has been
written in the original file, we should continue reading the temporal file without
writing anything until the strings “DSS Path=” and “Rule Operation=” have
been found for the inflow hydrographs and dam outflows, respectively. The lat-260

ter will avoid errors in the input file due to data size incompatibility between
the old (temporal file) and the new (being rewritten) input files.

Script 4. Script to prepare the data lines for the inflow hydrographs and gate outflows to be
written in the unsteady file of HEC-RAS

1 NLines_inflow = fix((Inflow_points-0.1)/10) + 1;
2 last_line_inf = Inflow_points-10*(NLines_inflow-1);%last line infl265

3 NLines_Out = fix((Outflow_points-0.1)/10) + 1;
4 last_line_dam = Outflow_points-10*(NLines_Out-1); %last line outfl
5 pos_data = 10*(NLines_inflow-1);
6 for j=1:Number_Inflow_hydrog;
7 arrayflow1 = Data_Inflow_hydrog(1:pos_data,j:j)';270

8 Inflow_array_main(:,:,j) = reshape(arrayflow1, 10, [])';
9 arrayflow2 = Data_Inflow_hydrog(pos_data+1:Inflow_points,j:j);

10 Inflow_array_last_line(1,:,j) = arrayflow2'; %Transpose
11 end
12275

13 %Adding initial outflows
14 Data_outflow_current = Data_curr_outflows';
15 for i=1:Pop_Opt;
16 temp_int1 = 10*(i-1)+1;
17 temp_int2 = 10*(i);280

18 temp_array1 = Data_optimization_flows(1:Outflow_points-1, ...
19 temp_int1:temp_int2);
20 temp_array2 = [Data_outflow_current; temp_array1];
21 temp_array2 = 1000*temp_array2; %to convert to cfs
22 pos_data = 10*(NLines_Out-1);285

23 for j = 1:Number_dams;
24 k = Order_Conv(j);
25 temp_array3 = temp_array2(1:pos_data,k:k)';

7



26 Outflow_array_main(:,:,j) = reshape(temp_array3, 10, [])';
27 temp_array4 = temp_array2(pos_data+1:Outflow_points,k:k);290

28 Outflow_array_last_line(1,:,j) = temp_array4'; %Transpose
29 end
30 ChangeInlineStruct_Data(ras_inp{i},ras_out{i},NLines_Out, ...
31 Outflow_array_main,Outflow_array_last_line,NLines_inflow, ...
32 Inflow_array_main,Inflow_array_last_line);295

33 end

Script 5. Script to update pre-scheduled gate outflows and hydrographs at dams

1 function ChangeInlineStruct_Data(filenameinput,filenameoutput,...
2 NLines_Out,Outflow_array_main, Outflow_array_last_line, ...300

3 NLines_inflow,Inflow_array_main,Inflow_array_last_line)
4 %Written by Arturo Leon (artuleon@gmail.com), Dec 26, 2015
5 %This is to update outflows and hydrographs at dams
6 fid = fopen (filenameinput, 'rt'); %Open file for reading
7 fout = fopen (filenameoutput, 'wt'); %Open file for writing305

8 i = 0; %initialize pointer for dams
9 m = 0; %initialize pointer for inflow hydrographs

10 while ~feof(fid)
11 strTextLine = fgetl(fid); %To read one additional line
12 if strfind(strTextLine,'Flow Hydrograph=');310

13 m = m+1;
14 fprintf(fout,'%s\n',strTextLine);
15 for k = 1:NLines_inflow-1; %All lines except last one
16 %convert to real + char + reshape + transpose
17 array1 = Inflow_array_main(k,:,m);315

18 B1string=reshape(sprintf('%8.0f',array1),8,[])';
19 B1string=[cellstr(B1string)]';
20 B1string = strjoin(B1string,'');
21 fprintf(fout,'%s\n',B1string);
22 end320

23 array2 = Inflow_array_last_line(1,:,m);
24 B1string = reshape(sprintf('%8.0f',array2), 8, [])';
25 B1string=[cellstr(B1string)]';
26 B1string = strjoin(B1string,'');
27 fprintf(fout,'%s\n',B1string);325

28 elseif strfind(strTextLine,'Rule Table=');
29 i = i+1;
30 fprintf(fout,'%s\n',strTextLine);
31 for k = 1:NLines_Out;
32 strTextLine = fgetl(fid);330

33 fprintf(fout,'%s\n',strTextLine);
34 end
35 for k = 1:NLines_Out-1; %All lines except last one
36 array3 = Outflow_array_main(k,:,i);
37 A1string=reshape(sprintf('%8.0f',array3),8,[])';335

38 A1string=[cellstr(A1string)]';
39 A1string = strjoin(A1string,'');
40 fprintf(fout,'%s\n',A1string);
41 end
42 array4 = Outflow_array_last_line(1,:,i);340

43 A1string = reshape(sprintf('%8.0f',array4), 8, [])';
44 A1string=[cellstr(A1string)]';
45 A1string = strjoin(A1string,'');

8



46 fprintf(fout,'%s\n',A1string);
47 else345

48 fprintf(fout,'%s\n',strTextLine);
49 end
50 end
51 fclose (fid); %Close the text file
52 fclose (fout); %Close the text file350

4. Extracting output variables, plotting and parallel computing

This section presents examples to extract water surface stages and flow dis-
charges, plotting and to perform parallel HEC-RAS computations. There are
functions available in the HECRASController for extracting water surface stages355

and flow discharges, and their plotting, so these tasks are straight forward. The
reader is referred to Script 6 for extracting water surface stages and flow dis-
charges and Script 7 for plotting water surface stage and flow discharge at a given
river station. The HECRASController function “OutputDSS_GetStageF low”
allows to extract stage and flow hydrographs at a given river station. The360

HECRASController subroutine “PlotStageF low” allows to plot the stage and
flow hydrograph at a given river station. An example of this plot is shown in
Figure 1.

Script 6. Script to extract water surface stage and flow discharge

1 h=actxserver('RAS500.HECRASCONTROLLER');365

2 h.Project_Open(ras_file); %Open ras file
3 h.Compute_CurrentPlan(0,0); %Runs HEC-RAS for current plan
4 z9 = 'error message';
5 for k=1:Num_XS_Outp;
6 i = int8(k/2+0.1); %This will give 2 ones, 2 2s, etc370

7 [z1,z2,z3,z4,z5,z6,z7,z8,z9] = ...
8 h.OutputDSS_GetStageFlow(River_ID{k},Reach_ID{k},Node_ID{k},0,0,0,0,z9);
9 if mod(k,2) == 0 %If mod=0, then it is even. (1=odd)

10 FB_stage_Output(:,Number_dams*(j-1)+i) = z7;
11 FB_flow_Output(:,Number_dams*(j-1)+i) = z8;375

12 elseif mod(k,2) == 1
13 TW_stage_Output(:,Number_dams*(j-1)+i) = z7;
14 TW_flow_Output(:,Number_dams*(j-1)+i) = z8;
15 else
16 error('mod(k,2) .ne. 0 ,1. Check run_hec_ras_unsteady')380

17 end
18 end

Script 7. Script to plot water surface stage and flow discharge

1 h=actxserver('RAS500.HECRASCONTROLLER');385

2 h.Project_Open(ras_file{Pop2}); %Open ras file
3 h.PlotStageFlow(River_ID{XS2},Reach_ID{XS2},Node_ID{XS2});

9



 

Figure 1. Example of a plot produced using the HECRASController subroutine
“PlotStageF low

10



Following we present the script to perform parallel HEC-RAS computations.
The reader is referred to Script 8 for this example. The script first creates390

a special job on a pool of workers, and connects the MATLAB client to the
parallel pool. This is done using the “parpool” function of MATLAB. Then, the
scripts defines an array of handles (h {j}) with a number equal to the number
of HEC-RAS computations. Next, the parfor function of MATLAB is used
for the parallel computations. Finally, the system taskkill command is used395

to close all open HEC-RAS projects. A snapshot of simultaneous HEC-RAS
computations is shown in Figure 2.

Script 8. Script to perform parallel HEC-RAS computations

1 %Run HEC-RAS Model for all the populations of the optimization
2 prompt = 'Will you use parallel computing (y/n)? ';400

3 paral_comput = input(prompt,'s')
4 if paral_comput == 'y'
5 delete(gcp('nocreate'));%To avoid interactive session error
6 parpool('local',4); %Parallel computation
7 end405

8 for j=1:Pop_Opt;
9 StrID_2 = num2str(j);

10 h{j} = StrID_2;
11 end
12 parfor j=1:Pop_Opt %Population_Optim;410

13 h{j}=actxserver('RAS500.HECRASCONTROLLER');
14 h{j}.Project_Open(ras_file{j}); %Open ras file
15 h{j}.Compute_HideComputationWindow; %Hide Comput. Window
16 %h{j}.Compute_ShowComputationWindow; %Show Comput. Window
17 h{j}.Compute_CurrentPlan(0,0); %Run current plan415

18 h{j}.Project_Save; %Saves the project
19 delete(h{j}) %Deletes the handle h{j}
20 end
21 %To kill hec-ras from the background
22 !taskkill /im ras.exe420

5. Conclusions

This paper presents a set of MATLAB scripts to write input files, read output
files, and perform fully-automated functions of HEC-RAS. Examples of various
programming procedures are presented throughout the paper and they are illus-425

trated using a river-reservoir network that involves ten inline structures (e.g.,
dams) with operation of gates at each of these dams. The procedures includes
reading and writing HEC-RAS input files, extracting output variables, plotting
and parallel computing. In addition, this paper presents a brief introduction to
the USACE HECRASController.430

Acknowledgments

The first author gratefully acknowledges the financial support of the Bon-
neville Power Administration of the U.S. Department of Energy under award

11



 

Figure 2. A snapshot of simultaneous HEC-RAS computations

number TIP#258.

References435

Chen, D., Leon, A.S., Gibson, N.L., Hosseini, P., 2016. Dimension reduction
of decision variables for multireservoir operation: A spectral optimization
model. Water Resources Research 52, 36–51.

Goodell, C., 2014. Breaking the HEC-RAS Code. First ed., h2ls, Portland,
Oregon.440

Hydrologic Engineering Center, 2016a. HEC-RAS, River Analysis System, Hy-
draulic Reference Manual. Version 5.0. U.S. Army Corps of Engineers, Davis,
California.

Hydrologic Engineering Center, 2016b. HEC-RAS River Analysis System User’s
Manual - Version 5.0. U.S. Army Corps of Engineers, Davis, California.445

Leon, A.S., Kanashiro, E., 2010. A new coupled optimization-hydraulic routing
model for real-time operation of highly complex regulated river systems, in:
Watershed Management Conference: Innovations in Watershed Management
Under Land Use and Climate Change, ASCE-EWRI, Madison, Wisconsin,
USA. pp. 213–224.450

Leon, A.S., Kanashiro, E., Valverde, R., Sridhar, V., 2014. Dynamic frame-
work for intelligent control of river flooding: Case study. Journal of Water
Resources Planning and Management 140, 258–268. doi:10.1061/(ASCE)WR.
1943-5452.0000260.

Lerma, N., Paredes-Arquiola, J., Andreu, J., Solera, A., Sechi, G.M., 2015.455

Assessment of evolutionary algorithms for optimal operating rules design in

12

http://dx.doi.org/10.1061/(ASCE)WR.1943-5452.0000260
http://dx.doi.org/10.1061/(ASCE)WR.1943-5452.0000260
http://dx.doi.org/10.1061/(ASCE)WR.1943-5452.0000260


real water resource systems. Environmental Modelling & Software 69, 425 –
436.

Mathworks, 2015. MATLAB version 8.6.0.267246 (R2015b). The Mathworks,
Inc. Natick, Massachusetts.460

Wardlaw, R., Sharif, M., 1999. Evaluation of genetic algorithms for optimal
reservoir system operation. Journal of Water Resources Planning and Man-
agement 125, 25–33.

Yang, T., Gao, X., Sellars, S.L., Sorooshian, S., 2015. Improving the multi-
objective evolutionary optimization algorithm for hydropower reservoir oper-465

ations in the california orovilleÃćâĆňâĂĲthermalito complex. Environmental
Modelling & Software 69, 262 – 279.

13


	Introduction
	HEC-RAS Controller
	Reading and Writing HEC-RAS Input Files
	Extracting output variables, plotting and parallel computing
	Conclusions

