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ABSTRACT
Geysers in dropshafts of sewer systems are consecutive eruptions of a mixture of gas and liquid that can attain
heights of more than 30 m. The present study investigates the mechanisms and characteristics of these extreme
events numerically using OpenFOAM toolbox. The numerical model is based on a compressible two-phase flow solver
and was validated using experimental results available in the literature. The results showed that the geyser events
occurred in the experiments can be simulated with the model in both two and three dimensions. However, applicability
of the two dimensional model for modeling geysers in actual sewer systems requires further studies. Moreover, the
results suggested that compressibility of air plays a critical role in the formation of geysers. The conducted numerical
study provides insights into the characteristics of geysers and presents some criteria for performing efficient numerical
simulations of geyser events.

Keywords: Air-water interface interactions; flows in pipes; geyser; numerical validation; OpenFOAM; sewer
hydraulics

1 Introduction

Stormwater and Combined Sewer Systems are generally assemblies of near-horizontal pipes or tunnels
and vertical shafts (dropshafts) which may serve as maintenance access, air ventilation or inflow
passage. During extreme precipitation events, the tunnels might fill rapidly, causing surcharge of
sewer systems and subsequent changes to their hydrodynamics (Yen et al., 1980). These changes
influence capacity and functionality of the sewer systems and can lead to unsteady phenomena such
as geyser events which are violent consecutive eruptions through dropshafts, where the strongest
eruption is not the first one but few eruptions later (Leon et al., 2018). Due to the adverse effects of
this phenomenon, such as infrastructure damage and pedestrian safety, geysers have been subjected
to experimental and numerical studies over the past three decades.

There is yet no consensus regarding the mechanisms leading to geyser events. A number of studies
have focused on the experimental reproduction of a geyser event, e.g. Vasconcelos and Wright (2005),
Lewis (2011) and Cong et al. (2017). These studies explained the significant role of entrapped air
pockets in horizontal pipes in the formation of geysers but failed to reproduce eruptions with charac-
teristics similar to actual geysers in sewer systems. In particular, these studies produced spring-like
eruptions, where the first eruption is the strongest eruption. A field study published in Wright et al.
(2011) provided insightful observations regarding the frequency of consecutive eruptions and pres-
sures attained during geysering events. The data presented in Wright et al. (2011) was collected
from a sewer system below Interstate 35W in Minnesota. The data showed that pressure heads close
to the bottom of the vertical shaft never reached the required head to push the column of water
above ground level. Moreover, based on the footage of a geyser event captured on a traffic cam in
Minnesota (MN Dot, 1999), each event consisted of several consecutive eruptions; a few weak ones
followed by several strong eruptions.

Muller et al. (2017) and Cong et al. (2017) conducted a series of similar experiments which consisted
of a vertical riser, a horizontal pipe, and a tank. They produced spring-like eruptions i.e., one strong
eruption followed by rapidly decaying eruptions. Moreover, Cong et al. (2017) concluded that the
occurrence of eruptions is more likely when two conditions are met; the ratio of the riser diameter
to the horizontal pipe is less than 0.62 and the volume of the air pocket is larger than a certain limit
which depends on the upstream head and diameter of the riser. The eruptions produced in Cong
et al. (2017) and Muller et al. (2017) are substantially smaller than those achieved in actual geysers
e.g., based on field observations Wright et al. (2011) reported geyser heights of about 20 m. A series
of recent laboratory experiments (Leon et al., 2018) successfully reproduced geysers with heights
exceeding 30 m and with characteristics resembling geysers in actual sewer systems. The results of
Leon et al. (2018), details of which are discussed in the following sections, were used in the current
study for validating the numerical model.

Additionally, a number of studies have focused on numerical modeling of geysers using single-
phase models such as Hamam and McCorquodale (1982) and Guo and Song (1991), and two-phase
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flow models e.g. Choi et al. (2014) and Chan et al. (2018). Single-phase flow models underestimate
air-water interaction i.e., momentum exchange between entrapped air and water is not considered
which is important in the formation of geyser (Vasconcelos et al., 2009). Choi et al. (2014) used a
compressible solver in Star-CCM+ software package (CD-adapco, 2012) and a set of experimental
data in Vasconcelos and Wright (2011) for studying spring-like geysers. Moreover, Chan et al. (2018)
also used a compressible solver to perform a series of 3D simulations based on experimental results
in Cong et al. (2017). These authors conclude that smaller riser diameter, greater upstream head
and larger air pocket increase the intensity of geyser eruptions. The numerical study of these authors
has the same shortcomings as those of Cong et al. (2017) i.e., the simulated eruptions did not have
the characteristics of geysers in actual stormsewer systems.

The current study utilizes OpenFOAM (CFD Direct, 2017) to numerically investigate geysers
presented in Leon et al. (2018). The rest of the paper is organized as follows; first, the numerical
procedure including the governing equations and the solution algorithm is briefly described. Then
validation of the model based on experimental data in Leon et al. (2018) and subsequent numerical
investigations are discussed. Finally, concluding remarks are made.

2 Numerical Model

OpenFOAM offers a set of C++ libraries for solving partial differential equations and provides
several solvers for CFD applications. Considering the physics of geysers, which was briefly discussed
in the previous section, a compressible two-phase flow solver called compressibleInterFoam (CIF)
was used in this study. CIF is suitable for modeling two compressible and immiscible fluids (CFD
Direct, 2017).

CIF employs an interface capturing approach using a Volume Of Fluid method for simulating
interactions between two fluids. In the present paper, these two phases are water and air which are
denoted by w and a subscripts, respectively. The properties of fluids are calculated for the mixture
of two fluids based on the volume fraction of each phase. For example, the density of the mixture
is calculated using ρ = αρw + (1 − α)ρa, where α is the volume fraction of water, and ρw and ρa
represent the densities of water and air, respectively.

Moreover, the compressibility of phases can be adjusted through equations of state (EOS). In
OpenFOAM, a phase can be considered as incompressible by setting the EOS to rhoConst i.e., the
density of the phase is considered a constant. Conversely, water and air phases can be regarded as
compressible by, for instance, using perfect fluid and ideal gas laws, respectively, given by

ρw = ρw,0 + p

RwT
, ρa = p

RaT
. (1)

Where p and T are pressure and temperature of the mixture, respectively, and the other parameters
are the fluids’ constants which for the current study are considered as ρw,0 = 998.4 kg m−3, Rw =
3000 J kg−1 K−1 and Ra = 287 J kg−1 K−1.

The conservation laws of mass, Eq. 2, momentum, Eq. 3 and energy, Eq. 4, for a homogeneous
mixture are implemented in OpenFOAM as follows (e.g Ma et al. 2016):

∂ρ

∂t
+∇.(ρU) = 0, (2)

∂ρU

∂t
+∇.(ρUU )−∇.(µ∇U) = σκ∇α− g.x∇ρ−∇pd, (3)
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∂ρT

∂t
+∇.(ρUT ))−∇.(αt∇T ) = −

( α

cv,a
+ 1− α

cv,w

)(∂ρK
∂t

+∇.(ρUK) +∇.(Up)
)

(4)

where U is the velocity vector and κ is the curvature of the interface which is given by κ = ∇.( ∇α|∇α|);
g is the gravitational acceleration vector given by (0, 9.81, 0) m s−2 and x represents the position
vector; pd is the dynamic pressure, given by pd = p − ρg.x. In Eq. 4, µ is the kinematic viscosity;
cv,w and cv,a are specific heat capacities of water and air, respectively; αt is thermal eddy diffusivity
and K represents the specific kinetic energy, which is calculated from K = 0.5|U |2.

In Eq. 3, σ is the surface tension. Regarding the significance of the surface tension term, it is noted
that in the current study, Eötvös number (the ratio of buoyancy and interfacial tension forces i.e.,
ρwgD

2/σ) and Morton numbers (the ratio of viscous and interfacial tension forces i.e., gµ4
w/[ρwσ3]),

are 3106 and 4.5× 10−13, respectively. Therefore, surface tension is expected to be negligible in the
simulations. Considering the complexity of the flow, however, the validity of this statement was
tested by comparing the results of two simulations with identical configuration except for the surface
tension; one case with a value of zero and another case with a value of 0.073 N m−1 (for the pure
water-air interface at 20 ◦C). The results showed that the absence of surface tension increased the
error in geyser height prediction by about 3 % and pressure fluctuations were slightly stronger which
shows the negligible influence of surface tension as expected.

Additionally, for tracking the air-water interface CIF solves a transport equation for volume frac-
tion, given by:

∂α

∂t
+ U .∇α +∇.U cα(1− α) = − α

ρw

Dρw

Dt , (5)

where D is the material derivative, the third term on the left-hand side is called anti-diffusion and
U c is the compression velocity. The compression velocity is an artificial diffusion term introduced
into the equation for decreasing the smearing of the free surface (Jasak, 1996; Rusche, 2002; Ubbink,
1997).

Regarding turbulence modeling, Chegini and Leon (2018) showed that realizable k-ε is the most
suitable model for simulating geyser events in vertical shafts. Therefore, this model is used for all
the simulations performed in the current study. It is noted that realizable k-ε model is implemented
in OpenFOAM based on Shih et al. (1995).

Moreover, the discretization of the governing equations in OpenFOAM is based on a finite volume
approach on collocated grid layout, i.e. all variables are located on the same grid point (Meier et al.,
1999). Solution algorithm of CIF is based on a predictor-corrector method called pressure implicit
split operator (PISO) (Issa, 1986; Márquez Damián, 2013). The PISO algorithm allows full coupling
of velocity and pressure in each time-step which is necessary for transient simulations.

In the current study, a second order scheme with a flux limiter (van Leer, 1997) was considered for
the spatial discretization and a second-order scheme for the temporal discretization called Crank-
Nicolson. Additionally, the maximum Courant number was set to 0.5.

3 Results and Discussion

The validity of CIF for simulating geyser events was verified using the experimental data in Leon
et al. (2018). A schematic of this experimental setup is shown in Fig. 1 where hd is the length of the
vertical shaft, Lu and Ld are lengths of the horizontal pipe at the upstream and downstream sides
of the vertical shaft, respectively. The horizontal pipe and the vertical shaft both have the same
diameter, Dd, and Va denotes the volume of the air tank. The values of these parameters are given
in Table 1. It is noted that four different vertical shaft lengths, hd, were used in the experiments,
one of which (hd = 6.096 m) was selected for the current study.
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The obtained numerical results in this study are compared based on six criteria, three of which
are used for validating the model based on the experimental data. The remaining three provide a
basis for further analysis of the obtained numerical results. These criteria are as follows:

(1) Pressure fluctuations: Leon et al. (2018) reported pressure data from nine pressure transducers,
two of which were considered for comparing with numerical results; P1 on the top of the tank,
which represents fluctuations of air pressure, and P4 at the bottom of the vertical shaft. The
coordinates of these two sensors are given in Table 1. Moreover, Leon et al. (2018) repeated
the experiments for each case 29 times, two of which were selected for validating the numerical
model.

(2) Geyser height, hg, and its corresponding error, Eh: Geyser height in Leon et al. (2018) is
reported as the maximum height that the eruptions attain, measured from the top of the
vertical shaft. Therefore, for consistency, geyser height in this study is obtained by subtracting
the height of the vertical shaft (6.096 m) from the highest y-coordinate among the cells in the
atmospheric domain that have a volume fraction of at least 0.5. The corresponding error is
determined with respect to the average geyser height obtained in the experiments for the 6 m
vertical shaft. The average geyser height for the 6 m vertical shaft was 12.25 m and the error
was ± 0.87 m.

(3) Snapshots of flow patterns: During the experiments, different flow patterns were observed and
captured using a high-speed camera. The camera footage was used for a qualitative comparison
of the flow patterns in the horizontal pipe and the vertical shaft with those of the simulations.

(4) Peak time, tp: The time at which the most intense eruption occurs. This parameter provides
a quantitative measure of the time required for the most intense eruption to form in each
simulation.

(5) Velocity fluctuations at the exit of the vertical shaft, U , and the maximum exit velocity, Umax:
At each time step, this velocity was obtained by calculating the weighted average of cells
velocity that are located at the top of the vertical shaft using

U =
∑
αiViUi∑
αiVi

where Vi, αi and Ui denote volume, water volume fraction and velocity magnitude of a cell
respectively. This parameter provides a qualitative measure for tracking the occurrence of
eruptions.

(6) Computation time, ts, as a measure of the required computational effort for each simulation. It
is noted that all the simulations were performed using one node with 28 cores and Intel Xeon
E5-2680v4 CPUs.

It is noted that the first three criteria are comparisons with the experimental data and the re-
maining items are obtained only from the numerical results. Moreover, based on the simulations,
one of the major differences among the simulations is the onset of the geysering. For instance, Fig. 2
shows the velocity fluctuations at the exit of the vertical shaft for three different initial pressure head
differences and the following points can be discerned from the figure:
• General characteristics of geyser events, which are described in detail in Section 3.5, are almost

the same in all the cases.
• Spikes in the graphs, which are indicative of the occurrence of eruptions, follow the same trend

in all cases.
• Changing the parameters shifts the peak time, tp, but the geysering occurs more or less in a

period of eight seconds for all cases.
These observations hold true for all the other numerical results obtained in this study, as will be

shown in the following sections. Therefore, all pressure graphs presented in this study are plotted in
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a time range of eight seconds, which corresponds to the geyser duration for the conditions discussed
herein.

A summary of the parameters of interest in the current study is given in Table 2. Each category is
denoted by a two-letter abbreviation which is used for specifying the configuration of each simulation
throughout the paper, e.g. SD=2D and PD=0.05 means that the simulation is performed in 2D and
the initial pressure head difference is 0.05 m. The boldface font denotes the most efficient option in
terms of accuracy and computation time for each category.

3.1 Numerical Setup

A 3D mesh of the geometry of the experimental setup in Leon et al. (2018) was generated using
SALOME (Open Cascade, 2017) and snappyHexMesh, an OpenFOAM meshing utility. A snapshot
of the generated mesh is presented in Fig. 3 where the whole domain is shown on the left side of
the figure and two slices of the mesh are shown on the right. A cylinder is attached to the top
of the vertical shaft, representing the atmospheric region for capturing eruptions and measuring
geyser height. The cylinder has a diameter of 1 m. Also, given that the obtained geyser height in the
experiment is about 12 m, the height of the atmospheric domain is set to 15 m so it does not affect
the flow in the simulation. The mesh is structured, as it is generally more suitable for multiphase
flow simulations (Bayon et al., 2016), and hexahedral dominant.

Regarding boundary conditions, the no-slip boundary condition is applied on the walls for the
velocity field and zero gradient for the other fields. On the atmospheric domain, the total pressure
(sum of static and dynamic pressures) is set to a fixed value of 102,032 Pa (the atmospheric pressure
reported in Leon et al. (2018)) and other fields are set to zero gradient. Considering the use of the
realizable k- ε for turbulence model, boundary layers near the walls are modeled using wall functions
for turbulence parameters; turbulence kinetic energy, k and turbulence dissipation rate, ε.

With regards to initial conditions, several values were used for the initial pressure head difference
between the air tank (point B in Fig. 1) and the bottom of the vertical shaft (point A in Fig. 1) or
“initial pressure head difference” for short. Furthermore, the average initial temperatures of water
and air in the experiments were reported as 19.21 ◦C and 18.64 ◦C, respectively, which are used as
initial conditions for temperature fields. The validation and subsequent numerical investigations were
performed based on three criteria: spatial dimensions (2D and 3D), initial pressure head difference
and compressibility of phases.

A mesh convergence study was carried out to determine the most efficient mesh size in terms of
accuracy and computation time. Starting from a coarse mesh with a maximum cell length, hmax, of
0.04 m, the mesh was refined by a factor of two to generate a new mesh. After each refinement, the
obtained numerical results were compared with the experimental data. This process was repeated
until the results of the refined mesh were in close agreement with the previous mesh and the experi-
mental data. Results of the mesh convergence study are shown in Fig. 4 and Table 3 where N is the
total number of cells.

As observed in Fig. 4 and Table 3, the coarse mesh produces unacceptable results while both
medium and fine meshes are in good agreement with the experiments. Therefore, considering the
noticeable decrease in computational time from the fine mesh to the medium and the negligible
differences in their performance, a maximum cell length of 0.02 m (the medium mesh) was used for
the rest of the simulations.

Additionally, for 2D simulations, a 2D mesh (x and y directions in Fig. 1) of the geometry was
generated using another OpenFOAM utility, blockMesh, with similar refinements as the 3D mesh
and maximum cell length of 0.02 m per the mesh convergence study.
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3.2 Spatial Dimensions

Even though geyser flows are thought to be highly three-dimensional, to investigate whether geysers
could be represented with good accuracy in 2D, two simulations were carried out in 2D and 3D under
similar numerical conditions and compared with the experiments in Leon et al. (2018). A qualitative
comparison of numerical and experimental results is shown in Figs 5 and 6 which illustrates the flow
patterns formed in the horizontal pipe and the vertical shaft during the formation of the geyser.
Additionally, a quantitative comparison is provided in Fig. 7 and Table 4.

These results show that the 2D model captures reasonably well the flow pattern transitions that
occur during the formation of geysers. Moreover, the comparison of pressure traces and geyser height
shows that both 2D and 3D simulations are in good agreement with the experimental data. This is
an exciting and promising finding since the length scales of stormsewer systems is typically in the
order of thousands of meters so the use of a 3D model for simulating geyser events is computationally
very expensive and not practical. A 2D model, if established to be accurate for simulating geysers,
could be an effective and a practical tool, especially for qualitative studies. It is clear that actual
stormsewer systems are more complex than the experimental setup in Leon et al. (2018) in terms
of geometry and boundary conditions and thus, further studies are needed before the 2D model is
recommended for simulating geysering events.

3.3 Initial pressure head difference

In the experimental tests in Leon et al. (2018), right before air entered the horizontal pipe, the water
and air were quiescent and in an apparent equilibrium. According to the pressure head traces in
Leon et al. (2018), right before the air entered the horizontal pipe, the pressure difference between
the air tank (P1) and the bottom of the vertical shaft (P4) was almost zero for all the experimental
runs. In the numerical simulations, a “small” pressure head difference is required to push the air into
the horizontal pipe. In order to determine this “small’ required initial pressure head difference for
accurate simulation of the experiments, a sensitivity analysis was performed. Five simulations were
carried out with five different pressure head differences, three of which are reported here for brevity
and clarity; 0.01 m, 0.05 m and 0.10 m. It is noted that an initial pressure head difference of 0.1 m
gives a pressure head slope of 1.6 % (0.1/6.274) for the present geometry. The results are presented
in Fig. 8 and Table 5.

The three reported cases are in good agreement with the results of the experiments. According
to the velocity traces in Fig. 8, and as expected, geysering occurs earlier when the initial pressure
head difference is increased. Also, the reported geyser height in Table 5 and pressure traces in Fig. 8
show that the geyser characteristics are similar when the initial pressure head difference is below
0.1 m (1.6 % pressure head slope). However, for larger initial pressure head differences, which are not
reported in this paper, the pressure traces and geyser height predictions deviate significantly from the
experiments. Moreover, an initial pressure head difference of 0.1 m, sped up the simulation by about
30 % compared to a pressure head difference of 0.01 m. It is noted that this threshold is obtained
for the specified geometry and boundary conditions, and might be different for other conditions.
Moreover, considering that the results with a 0.05 m initial pressure head difference are in better
agreement with the experimental data compared to the 0.1 m case and given that the computation
time difference between these two cases is not substantial, the 0.05 m initial pressure difference (0.8 %
pressure head slope) is deemed as the efficient value.

It is noteworthy that according to Table 5, the geyser height decreases by increasing the initial
pressure head difference. It is speculated that this reduction is related to the amount of remaining
water in the system after the first few weak eruptions (e.g., right before the strongest eruption). While
the air pocket is approaching the vertical shaft, higher initial pressure head difference increases the
initial spillage of water from the top of the vertical shaft (see Section 3.5 for details). Therefore,
after the first few weak eruptions and right before the strongest eruption, the remaining water in
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the system is smaller than the cases with lower initial pressure head differences. As a result, for the
conditions of the presented study, increasing the initial pressure head difference decreases the geyser
height. This decrease, however, might not take place in actual stormsewer systems as they typically
have a large supply of water.

3.4 Compressibility

Generally, for single phase flows compressibility could be neglected in numerical simulations based
on Mach number while in multiphase flows such assumption should be investigated. In the case of
geysering, the dynamics of air pockets in the horizontal pipe and the vertical shaft plays a key role in
the formation of geysers (Leon, 2018). Moreover, rapid changes in pressure and velocity fields during
the geysering may lead to sudden and significant expansions and contractions of the air phase. To
study the importance of compressibility of the phases in geysering four scenarios were considered;
both phases as incompressible/compressible and only one phase as incompressible.

The obtained results indicate that when both phases were considered incompressible, the model
was unable to produce a geyser. The same holds true for the case where only air was considered
incompressible. By setting only water as incompressible, however, the model successfully produced
geysers which demonstrates the importance of compressibility of air. Obviously, the case where both
phases were compressible was also able to simulate geysering. Figure 9 and Table 6 compares the
results of these two successful cases with the experimental data.

As observed, both successful cases [(1) water and air are compressible, (2) air is compressible and
water is incompressible] are in good agreement with the experimental data, although the incom-
pressible water case presents slightly stronger fluctuations. This is not surprising as very rapid flow
changes (e.g., geyser flows) are not well represented by models that neglect water compressibility
and those models are often overly conservative of pressure changes (e.g., Jung and Karney (2016)).
Considering that the computational effort for both successful cases are almost the same while the
case where air and water are considered compressible is more accurate, this case was deemed as the
most efficient option.

3.5 Geyser Mechanisms

Based on the presented results, following we briefly describe the mechanisms preceding and during
geyser eruptions for the experimental setup in Leon et al. (2018). These mechanisms may differ for
other geometry configurations and other initial and boundary conditions. The mechanisms for the
setup used are in agreement with the mechanisms described in Leon (2018) and are as follows

(1) A large air pocket is admitted to the horizontal pipe from the bottom of the air tank. It
progresses toward the vertical shaft as shown in Fig. 9(a). Up to about 15 s after beginning of
the simulation (Fig. 9(b)) the flow regime in the horizontal pipe is stratified/wavy.

(2) As can be observed in Figs 10(a)–10(c), water spills at the top of the vertical shaft while a few
Taylor-like bubbles ascend in the vertical pipe.

The aforementioned water spillage at the top of the vertical pipe translates into a decrease
in the hydrostatic pressure in the vertical shaft. This pressure decrease results in a rapid
velocity increase of the air flow in the horizontal and vertical pipe. The high velocity in the
horizontal pipe leads to instabilities (e.g., Kelvin–Helmholtz instability), which in turn leads
to a change in the flow regime to slug flow, which is a series of liquid plugs (slugs) separated by
relatively large air compartments. The slugs have initially the same pressure and they create
a discontinuity that blocks the uniform release of air from the horizontal pipe to the vertical
shaft. At this time, the flow in the vertical shaft is highly mixed and turbulent. Once the slugs
are formed in the horizontal pipe, they are violently propelled through the vertical shaft right
after a sudden drop of pressure in the vertical shaft (e.g., after the previous eruption). The
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propelling of each liquid slug is activated whenever a significant pressure gradient between
the slug and the vertical shaft is attained. The discontinuity produced by the slugs allow to
maintain the pressure inside the slugs and hence allows to still achieve significant pressure
gradients (between the slug and vertical shaft) after the first geyser eruption. These results are
written with the help of Figs 10–12.

(3) After occurrence of the most intense eruption, there may be a few more eruptions, however as
water is depleted, the horizontal pipe is depressurized, which is followed by the termination of
the geysering process (Fig. 9(f)).

4 Conclusion

The present study investigated characteristics of geysers in a vertical shaft using numerical simula-
tions carried out in OpenFOAM. The model was validated using experimental data in Leon et al.
(2018) based on pressure traces, geyser height and snapshots of the flow in the system. Although
geysering is often considered an intrinsically 3D phenomenon, the geyser experiments in Leon et al.
(2018) was modeled in 2D with good accuracy. Further work is needed to verify the applicability of
2D models for simulating geysers in actual stormsewer systems. Furthermore, the influence of com-
pressibility of water and air in the simulation of geyser events was studied. The results show that
air compressibility is crucial for simulating geysers events, while water compressibility is not. The
study also discussed the flow patterns during a geysering event as well as the mechanisms preceding
and during the geyser eruptions. As a subsequent study, the validated model will be used to explore
solutions for preventing the occurrence of geysers in stormsewer systems.
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Notations

cv,w = Specific heat capacity of water (J kg−1 K−1)
cv,a = Specific heat capacity of air (J kg−1 K−1)
Dd = Diameter of all pipes (m)
Eh = Error in computation of the geyser height (–)

g = Gravitational acceleration (m s−2)
hd = Length of vertical shaft (m)
hg = Geyser height (m)

hmax = Maximum cell length in a mesh(m)
Ld = Length of horizontal pipe at the downstream side of the vertical shaft (m)
Lu = Length of horizontal pipe at the upstream side of the vertical shaft (m)
K = Specific kinetic energy (m2 s−2)
k = Turbulence kinetic energy (J kg−1)
N = Number of cells in a mesh (–)
p = Pressure field (Pa)

Rw = Vapor constant (J kg−1 K−1)
Ra = Gas constant (J kg−1 K−1)
tp = Time shift of pressure graph (s)
ts = Computation time of simulation (min)
T = Temperature field (K)
U = Velocity field (m s−1)

U c = Compression velocity (m s−1)
U = Magnitude of the exit velocity (m s−1)

Umax = Magnitude of the maximum exit velocity (m s−1)
V = Volume of a cell (m3)
Va = Volume of the air tank (m3)
x = Position vector (m)
α = Volume fraction of water phase (–)
αt = Thermal eddy diffusivity (kg m−1 s−1)
ε = Turbulence dissipation rate (J kg−1 s−1)
κ = Curvature of interface (–)
µ = Kinematic viscosity (m2 s−1)
ρ0 = Initial density of water (kg m−3)
ρa = Density of air (kg m−3)
ρw = Density of water (kg m−3)
σ = Surface tension (N m−1)
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Table 1 Geometry parameters of the experimental
setup in Leon et al. (2018)

Parameters Value

Volume of tank (Va) 1.7 m3

Diameter of pipes (Dd) 0.152 m
Horizontal pipe length* (Lu) 6.274 m
Horizontal pipe length** (Ld) 3.073 m
vertical shaft length (hd) 6.096 m
P1 sensor coordinate (9.347, 1.000, 0) m
P4 sensor coordinate (3.149, 0.812, 0) m
*upstream of the vertical shaft
**downstream of the vertical shaft
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Table 2 Categories of simulations parameters
(SD) (PD) (CW)

Spatial Dimensions Pressure Head Difference (m) Compressibility of Water

2D 0.00 Compressible
3D 0.05 Incompressible

0.10
Boldface font indicates the computationally efficient option
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Table 3 Summary of the mesh convergence study with three mesh refinement levels
Level N hmax (m) Umax (m s−1) hg (m) E(%) tp (s) ts (min)

Fine 16,531,313 0.01 34.98 12.98 5.9 17.56 39,564
Medium 2,088,410 0.02 34.12 11.62 5.1 22.30 4725
Coarse 270,555 0.04 33.34 8.94 27.0 49.34 1456
SD=3D, PD=0.05, CW=compressible ddddddddddddddddddddddddddddddddddddddddd
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Table 4 Comparison of 2D and 3D simulations
SD Umax (m s−1) hg (m) E(%) tp (s) ts (min)

2D 32.62 11.31 7.7 25.83 63
3D 34.12 11.62 5.1 22.30 4725
PD=0.05, CW=compressible
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Table 5 Comparison of simulations with different initial pressure
head differences

PD Umax (m s−1) hg (m) E(%) tp (s) ts (min)

0.01 m 34.41 12.08 1.39 61.04 89
0.05 m 32.62 11.31 7.7 25.83 63
0.10 m 37.84 8.62 29.6 14.50 61
SD=2D, CW=compressible
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Table 6 Comparison of simulations with water phase being considered in-
compressible and compressible

CW Umax (m s−1) hg (m) E(%) tp (s) ts (min)

Compressible 32.62 11.31 7.7 25.83 63
Incompressible 33.11 11.46 6.4 24.61 62
SD=2D, PD=0.05
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Figure 1 A schematic of the experimental setup in Leon et al. (2018)
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Figure 2 Comparison of velocity fluctuations at the exit of the vertical shaft (U) with different initial pressure head differences
(SD=2D, CW=compressible)
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Figure 3 3D mesh of the experimental setup in Leon et al. (2018) with medium refinement
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Figure 4 Results of simulations for the mesh convergence study at pressure probes (a) P1 and (b) P4 and (c) velocity
fluctuations at the exit of the vertical shaft (SD=3D, PD=0.05, CW=compressible)
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Figure 5 Snapshots of the simulation (colorful images) and the experiment (grayscale images) in the horizontal pipe at (a)
t = 115.3 s (Stratified/wavy flow), (b) t = 118.2 s (Slug flow) and (c) t = 118.6 s; the air-water interface in the experiment’s
snapshots are highlighted with red (SD=2D, PD=0.05, CW=compressible)
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Figure 6 Snapshots of the simulation (colorful images) and the experiment in Leon et al. (2018) (grayscale images) through
the vertical shaft at (a) t = 114.4 s (Slug flow), (b) 120.5 s (Churn flow) and (c) 123.2 s (Annular flow); the air-water interface
in the experiment’s snapshots are highlighted with red (SD=2D, PD=0.05, CW=compressible)
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Figure 7 Results of 2D and 3D simulations at pressure probes (a) P1 and (b) P4 and (c) velocity fluctuations at the exit of
the vertical shaft (PD=0.05, CW=compressible)
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Figure 8 Results of simulations for different initial pressure head difference at pressure probes (a) P1 and (b) P4 and (c)
velocity fluctuations at the exit of the vertical shaft (SD=2D, CW=compressible)
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Figure 9 Results of simulations with water phase being considered incompressible and compressible at pressure probes (a) P1
and (b) P4 and (c) velocity fluctuations at the exit of the vertical shaft (SD=2D, PD=0.05)
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Figure 10 Snapshots of the simulation in the horizontal pipe at (a) t = 8.0 s (b) t = 15.0 s (c) t = 18.6 s (d) t = 20.0 s (e) t =
22.0 s (f) t = 32.0 s (SD=2D, PD=0.05, CW=compressible)

30



March 30, 2019 Journal of Hydraulic Research main

water air
(a) (b) (c) (d) (e)

Figure 11 Snapshots of the simulation in the vertical shaft at (a) t = 18.0 s (b) t = 20.0 s (c) t = 20.8 s (d) t = 21.4 s (e) t =
22.0 s (SD=2D, PD=0.05, CW=compressible)
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Figure 12 Snapshots of the simulation in the atmospheric domain at (a) t = 19.6 s (b) t = 21.0 s (c) t = 21.6 s (d) t = 22.9 s
(e) t = 23.4 s (SD=2D, PD=0.05, CW=compressible)
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