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Abstract8

This paper compares the well-known genetic algorithm (GA) and pattern search
(PS) optimization methods for forecasting optimal �ow releases in a multi-
storage system for �ood control. The simulation models used by the optimiza-
tion models include (a) a batch of scripts for data acquisition of forecasted
precipitation and their automated post-processing; (b) a hydrological model for
rainfall-runo� conversion, and (c) a hydraulic model for simulating river inunda-
tion. This paper focuses on (1) demonstrating the application of the framework
by applying it to the operation of a hypothetical eight-wetland system in the
Cypress Creek watershed in Houston, Texas; and (2) comparing and discussing
the performance of the two optimization methods under consideration. The re-
sults show that the GA and PS optimal solutions are very similar; however, the
computational time required by PS is signi�cantly shorter than that required
by GA. The results also show that optimal dynamic water management can
signi�cantly mitigate �ooding compared to the case without management.
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Real-time10

1. Highlights11

1. We compare the performance of the genetic algorithm (GA) and pattern12

search (PS) methods for forecasting optimal �ow releases in a multi-storage13

system for �ood control.14

2. The results of the GA and PS methods are very similar, however the run15

time required by PS is signi�cantly smaller than that required by GA.16

3. Dynamic water management according to the optimization results can17

help to signi�cantly mitigate �ooding compared to the case without man-18

agement.19

4. A key factor for �ood control is to partially empty the storage systems20

before the rainfall event and during the initial rainfall period before the21

pre-speci�ed inundation level at the control cross-section is exceeded.22
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2. Introduction23

Inland �ooding produces more damage annually than any other weather24

event in the United States (NOAA 2016). It is expected that global warm-25

ing along increasing trends in urban development will make the problem worse26

(NASA 2017). Multiple strategies to mitigate �oods have been developed in the27

last few decades. In particular, �ood mitigation at the watershed scale is re-28

ceiving increasing attention (Kusler 2004, Flotemersch et al. 2016). Within this29

context, �ood control can be improved by operating detention ponds, reservoirs30

and other storage systems in an integrated and coordinated manner according31

to precipitation forecasts (Leon et al. 2020). For instance, �ood control can be32

improved by partially emptying wetlands ahead of (e.g., a few hours or a couple33

of days before) a heavy rainfall that would produce �ooding. In this case, the34

storage made available by the early release would provide extra water storage35

during the heavy rainfall, thus mitigating �oods.36

Even though a few numerical frameworks were proposed for near real-time37

�ood control (e.g., Wei and Hsu 2008, Vermuyten et al. 2020, Tang et al. 2020a),38

there are very few papers comparing the numerical performance of optimization39

algorithms. The present work compares the performance of the well-known40

genetic algorithm (GA) and pattern search (PS) for forecasting optimal �ow41

releases in a multi-storage system for �ood control. This paper is organized as42

follows: (1) the simulation and optimization models are brie�y described; (2) the43

objective function and constraints are presented; (3) the case study is presented44

and discussed. Finally, the key results are summarized in the conclusion.45

3. Model Description46

A numerical framework for forecasting hourly �ow releases in a multi-storage47

system for �ood control needs to include an array of models intended for data ac-48

quisition of forecasted precipitation, landscape rainfall-runo� conversion, level-49

pool routing in storage systems, river inundation modeling and optimization.50

For each of these components, there are an array of options available in the51

literature. Below, it is brie�y described the models used in the paper and the52

justi�cation for their use.53

3.1. Acquisition of precipitation forecast and conversion to DSS format54

The acquisition of precipitation forecasts is obtained using our scripts that55

are provided in GitHub (see Appendix A). The scripts also include code to56

convert the data to DSS format, which is the �le format used by HEC-HMS57

and HEC-RAS for storing time series data (such as precipitation and discharge58

over time) and other types of data (such as unit hydrographs, elevation-area59

curves, and elevation-discharge curves). As an illustration, Fig. 1 presents the60

precipitation forecast for the south east area of the United States. This �gure61

depicts the precipitation forecast for April 13, 2020 and was generated using the62

code on April 08, 2020 (5 days lead time).63
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Figure 1. Precipitable water forecast generated with our Python script for the south east
area of the United States. The scale of the precipitation is in mm and corresponds to 6-h
cumulative precipitable water.

3.2. Hydrological and Hydraulic routing64

As discussed in Leon et al. (2020), the U.S. Army Corps of Engineers' Hy-65

drologic Modeling System (HEC-HMS) [Hydrologic Engineering Center 2017]66

is a good alternative for the hydrologic modeling and the U.S. Army Corps of67

Engineers' Hydrologic Engineering Center's River Analysis System (HEC-RAS)68

[Hydrologic Engineering Center 2016a, Hydrologic Engineering Center 2016b] is69

a good option for inundation modeling. The version of the models used herein70

are: HEC-HMS 4.3 and HEC-RAS 5.0.7.71

3.3. Optimal schedules of �ow releases in a multi-storage system72

For forecasting optimal schedules of �ow releases for �ood control, an opti-73

mization solver is needed. The number of decision variables in the optimization74

is directly proportional to the number of storage systems and the number of75

time intervals (e.g., hourly releases) used in the optimization. For instance, if76

the number of storage systems is 20 and optimal schedules of �ow releases are77

needed for a period of 5 days at hourly time intervals, the number of decision78

variables would be 2400 (5x24x20). Thus, a near real-time �ood control frame-79

work requires an optimization solver suitable for large-scale problems. Herein,80

the performance of two state-of-the-art optimization solvers are compared and81

discussed within the context of �ood control. Due to the availability of these82

solvers within the MATLAB optimization Toolbox (Chipper�eld and Fleming83

1995), this toolbox was used herein. The version of the MATLAB model used84

herein is MATLAB R2021a. The two used solvers are brie�y described next.85
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3.3.1. Genetic Algorithm (GA)86

The Genetic Algorithm (GA) solves constrained and unconstrained opti-87

mization problems based on a natural selection process that mimics biological88

evolution (Chipper�eld and Fleming 1995). The GA repeatedly changes a pop-89

ulation of individual solutions. At each generation, the GA randomly selects90

individuals from the current population and uses them as parents to produce91

children for the next generation. After several generations, the population is ex-92

pected to evolve toward an optimal solution. The GA is recommended to solve93

problems that are not well suited for standard optimization algorithms, includ-94

ing problems in which the objective function is discontinuous, nondi�erentiable,95

stochastic, or highly non-linear (Chipper�eld and Fleming 1995). For more96

details about the genetic algorithm and its application to water resources the97

reader is referred to Wardlaw and Sharif (1999), Leon and Kanashiro (2010),98

Leon et al. (2014), Lerma et al. (2015), Yang et al. (2015), and Chen et al.99

(2016).100

3.3.2. Pattern Search (PS) Optimization101

The Pattern search method is an e�cient algorithm for solving smooth and102

nonsmooth optimization problems (MathWorks 2020). At each iteration, the103

pattern search method searches a set of points, called a mesh, around the current104

point, looking for one where the value of the objective function is lower than105

the value at the current point. The Pattern Search method forms the mesh by106

(MathWorks 2020) (1) generating a set of vectors by multiplying each pattern107

vector by the mesh size and (2) adding the set of vectors to the current point,108

which is the point with the best objective function value found at the previous109

step. The set of pattern vectors is de�ned by the number of decision variables110

in the objective function (e.g., N) and the positive basis set. Two commonly111

used positive basis sets in pattern search algorithms are the maximal basis, with112

2N vectors, and the minimal basis, with N + 1 vectors. For example, if there113

are two independent variables in the optimization problem, the default for a 2N114

positive basis consists of the following pattern vectors: v1 = [0 1], v2 = [1 0],115

v3 = [0 -1] and v4 = [-1 0]. The reader is referred to Kolda et al. (2006) for116

a description of the way in which the Pattern Search method forms a pattern117

with linear constraints. For more details about the pattern search algorithm118

the reader is referred to Lewis et al. (2007) and Abramson et al. (2009).119

4. Objective Function and Constraints120

4.1. Objective Function121

A typical watershed may experience �ooding only a few times per year.122

During �ooding conditions, the water level at control cross-sections of the rivers123

and creeks should be maintained below the respective pre-speci�ed maximum124

water level. A control cross-section can be speci�ed, for instance, at densely125

populated areas. The maximum water level speci�ed at a control cross-section126
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corresponds to a level where inundation is imminent. The objective function f127

for �ooding conditions can be written as follows:128

f =

CS∑
i=1

wi

P∑
j=1

[
(Ei)j − (Emax)i

]2
(1)

where the summation in Eq. (1) is included for all (Ei)j > (Emax)i and "0"129

otherwise. In Eq. (1), CS and P are the number of control river cross-sections130

at which the water level constraint is checked and the number of time intervals131

(e.g., hourly �ow releases) for each managed wetland, respectively. Also, (Ei)j132

is the water level at control river cross-section i and at time interval j (e.g.,133

hour j), and (Emax)i is the speci�ed maximum water level constraint at control134

river cross-section i. Also, in Eq. (1), wi is the weight of the importance of135

maintaining the water level in control river cross-section i. If the weights are136

equally important, all wi can be set equal to 1.137

4.2. Constraints138

The optimization may be subject to linear equality (Aeq x = beq) and in-139

equality constraints (Aineq x ≤ bineq). The equality constraint needs to be140

speci�ed when, for instance, a certain water level needs to be maintained in141

the wetlands at a given time. For brevity, let's consider only two wetlands and142

three time intervals (e.g., three decision variables for each wetland). For this143

case, the vector of decisions variables x would consist of 6 variables. If a certain144

water storage (Send) needs to be maintaned at the end of the optimization, the145

matrix Aeq and vector beq would be de�ned as:146

Aeq =

[
1 1 1 0 0 0
0 0 0 1 1 1

]

beq =

[
(So − Send)1/∆t + ΣI1
(So − Send)2/∆t + ΣI2

]
where (So)i is the initial storage at wetland i and ΣIi is the sum of in�ows that147

enters wetland i.148

The optimization would also be subject to several linear inequality con-149

straints. For instance, from the operational point of view, it may be desirable150

that the change of two consecutive �ow releases are within a certain value.151

Mathematically, this means that the absolute value of the di�erence of two152

consecutive �ow releases are within a certain value (e.g., c). Note that the abso-153

lute value is equivalent to two linear inequality constraints (xk − xk+1 ≤ c and154

−xk + xk+1 ≤ c). Another inequality constraint can be de�ned to maintain the155

water storage in each wetland above a minimum wetland storage, which may be156

required for ecological purposes (Secol). Another inequality constraint can be157

de�ned to keep the water storage in each wetland below its maximum storage158

capacity (Smax). As an illustration, for the two wetlands and the three time159

intervals mentioned above, the matrix Aineq and the vector bineq for the three160
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aforementioned inequality constraints, in the presented order, can be written161

as:162

Aineq =



1 −1 0 0 0 0
0 1 −1 0 0 0
−1 1 0 0 0 0
0 −1 1 0 0 0
0 0 0 1 −1 0
0 0 0 0 1 −1
0 0 0 −1 1 0
0 0 0 0 −1 1


,bineq =



c
c
c
c
c
c
c
c



Aineq =


1 0 0 0 0 0
1 1 0 0 0 0
1 1 1 0 0 0
0 0 0 1 0 0
0 0 0 1 1 0
0 0 0 1 1 1

 ,bineq =


1 0 0 0 0 0
1 1 0 0 0 0
1 1 1 0 0 0
0 0 0 1 0 0
0 0 0 1 1 0
0 0 0 1 1 1




I11
I21
I31
I12
I22
I32

−


(Secol − So)1/∆t
(Secol − So)1/∆t
(Secol − So)1/∆t
(Secol − So)2/∆t
(Secol − So)2/∆t
(Secol − So)2/∆t



Aineq =


−1 0 0 0 0 0
−1 −1 0 0 0 0
−1 −1 −1 0 0 0
0 0 0 −1 0 0
0 0 0 −1 −1 0
0 0 0 −1 −1 −1

 ,bineq =


−1 0 0 0 0 0
−1 −1 0 0 0 0
−1 −1 −1 0 0 0
0 0 0 −1 0 0
0 0 0 −1 −1 0
0 0 0 −1 −1 −1




I11
I21
I31
I12
I22
I32

+


(Smax − So)1/∆t
(Smax − So)1/∆t
(Smax − So)1/∆t
(Smax − So)2/∆t
(Smax − So)2/∆t
(Smax − So)2/∆t


where Iki indicates the in�ow that enters wetland i at time interval k.163

5. Case Study: A hypothetical eight wetland system in the Cypress164

Creek watershed, Houston, TX165

The coupled optimization-simulation model is applied to the operation of166

a hypothetical eight wetland system in the Cypress Creek watershed, which is167

located in Houston, Texas (see Fig. 2). The characteristics of this watershed168

are described in Tang et al. (2020b). The Cypress Creek watershed, which has169

a total area of 8.33x108 m2, experienced devastating �oods during Hurricane170

Harvey in August 2017. The upper half of the Cypress Creek watershed was171

historically covered by wetlands and rice farms and as such, there are a mul-172

titude of existing levees that can be easily repaired to restore the function of173

wetlands (Tang et al. 2020b). To help in �ood mitigation, Tang et al. (2020b)174

considered eight hypothetical wetlands (WL-300, WL-310, WL-330, WL-380,175

WL-390, WL-400, WL-410, WL-420) that are placed in the midstream portion176

of the watershed. These eight wetlands are depicted as yellow clouds in Fig. 3.177

This case study considers a single control cross-section (Station 42006.23178

in the Lower Reach of the Cypress creek River) to track the water level. The179
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Figure 2. Geographical location of Cypress Creek watershed, TX

Figure 3. Cypress Creek Basin of HEC-HMS model displaying the schematics of eight
hypothetical wetlands in midstream (yellow clouds)
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maximum desired water elevation at this river station was set to 37 and 37.5 m.180

It is noted that according to Eq. (1), the objective function is the sum of the181

square of the di�erence between the water level in the control cross-section and182

the maximum desired water elevation. Thus, specifying a higher inundation183

level will result in less �ooding and in more operation �exibility before and184

during the �ood.185

The �ow chart of the fully coupled optimization-simulation model for fore-186

casting optimal �ow releases in a multi-storage system for �ood control is pre-187

sented in Fig. 4. As shown in this �gure, the HEC-HMS and HEC-RAS models188

are prepared, validated, and linked o�ine. The linking consists on using the out-189

�ows of HEC-HMS (managed wetlands and unmanaged basins) as in�ows for190

the HEC-RAS model via DSS �lepaths. After the HEC-HMS and HEC-RAS191

models are speci�ed, the user needs to specify the optimization parameters, the192

initial water levels in the managed wetlands and the initial �ow conditions in the193

river. Then, for a given precipitation (historical or forecasted), the optimization194

model generates an schedule of out�ows for each wetland at each generation in195

GA or at each iteration in PS. The schedule of wetland out�ows is then used by196

HEC-HMS to update the water levels in the wetlands. Then, the out�ows from197

HEC-HMS, which could be unmanaged �ows (sub-basins without managed stor-198

age) or managed �ows (sub-basins with managed storage), enter the streams in199

HEC-RAS. The water levels in the control cross-sections in HEC-RAS are used200

to evaluate the objective function given in Eq. (1). The linear inequality and201

equality constraints are satis�ed at each generation or iteration in both, GA and202

PS. The process is repeated until the optimization stop criteria is satis�ed. Once203

the optimization is completed, the process can be repeated for another precipi-204

tation. The Matlab and Python scripts for the coupled optimization-simulation205

are provided in GitHub (see Appendix B).206

The hydrologic model of the Cypress Creek watershed was created in HEC-207

HMS. The details of the HEC-HMS model construction, calibration and vali-208

dation are discussed in Tang et al. (2020b). It is noted that the present paper209

used gridded precipitation instead of time series precipitation used in Tang et al.210

(2020b). For details of the gridded precipitation, the reader is referred to Bian211

et al. (2021). Our Python and Matlab scripts for obtaining gridded precipita-212

tion are provided in GitHub (see Appendix A). For the present demonstration,213

the eight hypothetical wetlands (WL-300, WL-310, WL-330, WL-380, WL-390,214

WL-400, WL-410, WL-420) have a total combined area of about 3.5% of the215

whole watershed area and each wetland has a maximum depth of 1 m. The hy-216

draulic model of the major streams of the Cypress Creek watershed was created217

in HEC-RAS using the HEC-GeoRAS tool within ArcGIS. The details of the218

HEC-RAS model construction, calibration and validation are discussed in Tang219

et al. (2020b).220

The optimization period considered in this case study is 14 days (336 hours)221

resulting in a total of 2688 optimal hourly �ows for the eight wetlands. The222

optimization parameters speci�ed for the GA are as follows: Population, 128;223

Function Tolerance, 1e-4. The optimization parameters speci�ed for the PS are224

as follows: Initial mesh size, 0.5 m3/s; maximum number of iterations, 1000;225

8



Prepare HEC-HMS and HEC-RAS models. Input in MATLAB data of 
cross-sections of interest to check water levels, tolerance for 

optimization convergence,  etc.   

 GA: Generate population of hourly flow releases at all 
managed storage ponds and evolve solutions using GA 
operators (e.g., selection, crossover and mutation). 

 PS: Form a mesh around the current point by generating a set 
of pattern vectors, adding the vectors to the current point and 
evaluating the objective function at the updated mesh 

Execute HEC-DSSVue to create DSS files of storage outflows with 
data generated by GA/PS

Execute HEC-HMS using “specified release” method with created 
DSSs of storage outflows  

Execute HEC-RAS to simulate watershed inundation and compute 
Objective Function using Eq. (1) 

Convergence criteria satisfied?
No

Yes

Output optimal hourly flow releases at each storage and display 
optimal inundation scenario

Redo optimization with new historical data or updated forecasts and 
real-time data of levels 

Use historical data or use forecasts of rainfall data and real-time 
data of water levels in creeks and storage systems

Figure 4. Flow chart of the integrated model for determining optimal �ow releases in a
multi-storage system for �ood control
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Mesh Tolerance, 1e-4; Function Tolerance, 1e-4. The lower limit for the �ow226

releases at all eight managed wetlands was set to 0 m3/s. The upper limit227

for the �ow releases was set to 25, 12, 15, 15, 25, 10, 10, and 10 m3/s for228

wetlands WL-300, WL-310, WL-330, WL-380, WL-390, WL-400, WL-410, WL-229

420, respectively. To speed up the computations, all HEC-RAS simulations are230

performed in a vectorized manner (e.g., HEC-RAS simulations are computed231

in parallel). Herein we have used 18 available processors in the 8th Generation232

Intel Core i7-8700 (18 parallel computations).233

Equality and inequality constraints were speci�ed for all eight wetlands. Two234

constraint scenarios were speci�ed in the optimization. The �rst constraint235

scenario considered one equality constraint and two inequality constraints. The236

equality constraint speci�ed that 72 hours (3 days) after the beginning of the237

optimization, which was also before the beginning of the rainfall event, the238

water level in all wetlands be at its ecological depth (assumed to be 0.3 m for all239

wetlands). The �rst inequality constraint is that the maximum change between240

two consecutive hourly �ow releases is 5 m3/s. The second inequality constraint241

speci�ed that the water depth in each wetland needs to be maintained above the242

minimum ecological depth at all times. The second constraint scenario includes243

all constraints of the �rst constraint scenario plus a no over�ow constraint. The244

no over�ow constraint speci�ed that the water depth in all wetlands at all times245

need to be maintained below the respective maximum wetland depth (1 m).246

This inequality constraint was set to avoid over�ows at the wetlands.247

The typical convergence process for the GA and PS are shown in Figs. 5 and248

6, respectively. After the stopping criteria of the GA and PS is satis�ed, our249

framework automatically generates a plot for the best optimal solution for each250

managed wetland. Each plot includes the optimal trace of out�ows, the corre-251

sponding time trace of the water surface elevation and storage in the wetland,252

and the time trace of total in�ow, wetland spill �ow and total out�ow (spill �ow253

+ managed out�ow). A plot produced for wetland WL-390 with GA and PS for254

inundation elevation of 37.5 m and for the �rst constraint scenario is shown in255

Figs. 7 and 8, respectively. As shown in Figs. 7 and 8, the pattern of out�ows256

produced with both algorithms are very similar. As also shown in these �gures,257

the optimization releases water from the wetlands before the rainfall and during258

the initial rainfall period. This initial rainfall period corresponds to the period259

before the control cross-section is about to be inundated.260

Four optimization conditions were simulated. The conditions were obtained261

by utilizing two inundation elevations at control cross-section 42006.23 (37 and262

37.5 m) and the two aforementioned constraint scenarios. Figs. 9 - 12 show263

the time traces of the water elevation and discharge at the control cross-section264

for the above mentioned optimization conditions for the best solutions obtained265

with the GA and PS methods and those without any water management. Over-266

all, the optimization aims to release water from the wetlands before the rainfall267

and during the initial rainfall period. This initial rainfall period corresponds to268

the period before the control cross-section is about to exceed the pre-speci�ed269

level of inundation. During the later rainfall period, there is no signi�cant270

change in the objective function and as such no signi�cant �ood mitigation.271
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Figure 5. GA typical convergence process for optimal schedule of storage out�ows

Figure 6. PS typical convergence process for optimal schedule of storage out�ows
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Figure 7. Optimal trace of out�ows for wetland WL-390 obtained using GA. This plot also
shows the corresponding time trace of the water surface elevation and storage in the wetland,
and the time trace of total in�ow, wetland spill �ow and total out�ow (spill �ow + managed
out�ow) [Assumed inundation elevation = 37.5 m and �rst constraint scenario.]

Figure 8. Optimal trace of out�ows for wetland WL-390 obtained using PS. This plot also
shows the corresponding time trace of the water surface elevation and storage in the wetland,
and the time trace of total in�ow, wetland spill �ow and total out�ow (spill �ow + managed
out�ow) [Assumed inundation elevation = 37.5 m and �rst constraint scenario.]
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This is because during most of this period, the wetlands are full and the river272

is �owing near maximum capacity.273

The results in Figs. 9 - 12 indicate that the results produced by the GA274

and PS are very similar, however the computational time required by PS is275

signi�cantly smaller than that required by GA. For instance, the results in Fig.276

9 required a runtime of 16 hr for the PS and about 5 days for the GA. The277

results also show that the simulation without water management exceed more278

signi�cantly the speci�ed inundation level (37 or 37.5 m) and for longer periods279

of time.280

For the same inundation level (37 or 37.5 m), the results for the two afore-281

mentioned constraint scenarios are also very similar. It is clear that in the282

second constraint scenario, the �ow releases at the managed wetlands will be283

continuous even during the entire rainfall period, however the total out�ow (�ow284

release + spill �ow) for both constraint scenarios are essentially the same. Thus,285

the results are very similar.286
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Figure 9. Time traces of water elevation and discharge at the control cross-section (Station
42006.23) for best solutions obtained with GA and PS methods and those without management
[Assumed inundation elevation = 37 m and �rst constraint scenario.]

6. Conclusions287

This paper compares the performance of the well-known genetic algorithm288

and pattern search methods for forecasting optimal �ow releases in a multi-289

storage system for �ood control. This framework combines HEC-HMS, HEC-290

RAS, the MATLAB Optimization Toolbox, and a batch of scripts to integrate291

these models. All scripts used are made available in GitHub (see Appendices A292

and B). The case study is illustrated using the operation of a hypothetical eight293
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Figure 10. Time traces of water elevation and discharge at the control cross-section (Station
42006.23) for best solutions obtained with GA and PS methods and those without management
[Assumed inundation elevation = 37 m and second constraint scenario.]
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Figure 11. Time traces of water elevation and discharge at the control cross-section (Station
42006.23) for best solutions obtained with GA and PS methods and those without management
[Assumed inundation elevation = 37.5 m and �rst constraint scenario.]
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Figure 12. Time traces of water elevation and discharge at the control cross-section (Station
42006.23) for best solutions obtained with GA and PS methods and those without management
[Assumed inundation elevation = 37.5 m and second constraint scenario.]

wetland system in the Cypress Creek in Houston, Texas. The key results are as294

follows:295

1. The results produced by the genetic algorithm (GA) and pattern search296

(PS) methods are very similar, however the computational time required297

by PS is signi�cantly smaller than that required by GA.298

2. In general, the results show that the dynamic water management accord-299

ing to the optimization results can help to signi�cantly mitigate �ooding300

compared to the case without management (e.g., uncontrolled water re-301

lease of wetlands).302

3. The results without any water management exceed more signi�cantly the303

maximum water level at the control cross-section and for longer periods304

of time.305

4. A key factor for �ood control is to partially empty the storage systems306

before the rainfall event and during the initial rainfall period. This initial307

rainfall period corresponds to the period before the pre-speci�ed inunda-308

tion level at the control cross-section is exceeded. During the later rainfall309

period, the optimization doesn't play a signi�cant role because the wet-310

lands are full and the river is �owing near maximum capacity.311

7. Software and Data Availability312

All scripts used in this paper are made available in GitHub (see Appendices313

A and B).314
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Appendix A: Automated Acquisition of Precipitation Forecast and319

conversion to DSS for its use in HEC-HMS320

The acquisition of precipitation forecast and the automated conversion of321

the acquired data to DSS format is performed using a batch of scripts available322

at https://web.eng.fiu.edu/arleon/Code_Precip_Forecast_DSS.html and323

the GitHub repository https://github.com/artuleon/Automate-Precipitation-Forecast.324

git325

The acquired precipitation is the bias-corrected Global Forecast System326

(GFS) for a lead time of 5 days (today's time is April 04 of 2021) and a time327

interval of 6 hours. The acquired data is automatically projected to the Cy-328

press Creek Watershed. The precipitation map for a lead time of 5-days is329

shown in Fig. 13. This �le is automatically generated in the folder �\Fore-330

cast_GFS� with the name �precip_plot.pdf�. The DSS �le is automatically331

generated in the folder �\Forecast_GFS� with the name �GFS.dss�. The script332

�Forecast_GFS.py� re-samples the precipitation to a 1000 m Ö 1000 m grid cell333

and 1 hour time interval. An example of gridded precipitation converted to DSS334

for its use in HEC-HMS is shown in Fig. 14.335
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Figure 13. Snapshot of bias-corrected Global Forecast System (GFS) acquired by Python
and projected to the Cypress Creek Watershed
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Figure 14. Snapshot of gridded precipitation converted to DSS for its use in HEC-HMS.

Appendix B: Coupled simulation-optimization model for forecasting336

optimal �ow releases in a multi-storage system for �ood control337

Our scripts for the coupled optimization-simulation used in this paper can be338

found at https://web.eng.fiu.edu/arleon/Code_Flood_Control_DSS.html339

and the GitHub repository https://github.com/artuleon/Flood_Control_340

DSS341
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